[PATCH] hwmon: f71805f semaphore to mutex conversions
[linux-2.6.git] / kernel / cpuset.c
blobc86ee051b734584e0e126aa3875113c8dc5fee39
1 /*
2 * kernel/cpuset.c
4 * Processor and Memory placement constraints for sets of tasks.
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004 Silicon Graphics, Inc.
9 * Portions derived from Patrick Mochel's sysfs code.
10 * sysfs is Copyright (c) 2001-3 Patrick Mochel
11 * Portions Copyright (c) 2004 Silicon Graphics, Inc.
13 * 2003-10-10 Written by Simon Derr <simon.derr@bull.net>
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson <pj@sgi.com>
17 * This file is subject to the terms and conditions of the GNU General Public
18 * License. See the file COPYING in the main directory of the Linux
19 * distribution for more details.
22 #include <linux/config.h>
23 #include <linux/cpu.h>
24 #include <linux/cpumask.h>
25 #include <linux/cpuset.h>
26 #include <linux/err.h>
27 #include <linux/errno.h>
28 #include <linux/file.h>
29 #include <linux/fs.h>
30 #include <linux/init.h>
31 #include <linux/interrupt.h>
32 #include <linux/kernel.h>
33 #include <linux/kmod.h>
34 #include <linux/list.h>
35 #include <linux/mempolicy.h>
36 #include <linux/mm.h>
37 #include <linux/module.h>
38 #include <linux/mount.h>
39 #include <linux/namei.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/seq_file.h>
45 #include <linux/slab.h>
46 #include <linux/smp_lock.h>
47 #include <linux/spinlock.h>
48 #include <linux/stat.h>
49 #include <linux/string.h>
50 #include <linux/time.h>
51 #include <linux/backing-dev.h>
52 #include <linux/sort.h>
54 #include <asm/uaccess.h>
55 #include <asm/atomic.h>
56 #include <linux/mutex.h>
58 #define CPUSET_SUPER_MAGIC 0x27e0eb
61 * Tracks how many cpusets are currently defined in system.
62 * When there is only one cpuset (the root cpuset) we can
63 * short circuit some hooks.
65 int number_of_cpusets __read_mostly;
67 /* See "Frequency meter" comments, below. */
69 struct fmeter {
70 int cnt; /* unprocessed events count */
71 int val; /* most recent output value */
72 time_t time; /* clock (secs) when val computed */
73 spinlock_t lock; /* guards read or write of above */
76 struct cpuset {
77 unsigned long flags; /* "unsigned long" so bitops work */
78 cpumask_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
79 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
82 * Count is atomic so can incr (fork) or decr (exit) without a lock.
84 atomic_t count; /* count tasks using this cpuset */
87 * We link our 'sibling' struct into our parents 'children'.
88 * Our children link their 'sibling' into our 'children'.
90 struct list_head sibling; /* my parents children */
91 struct list_head children; /* my children */
93 struct cpuset *parent; /* my parent */
94 struct dentry *dentry; /* cpuset fs entry */
97 * Copy of global cpuset_mems_generation as of the most
98 * recent time this cpuset changed its mems_allowed.
100 int mems_generation;
102 struct fmeter fmeter; /* memory_pressure filter */
105 /* bits in struct cpuset flags field */
106 typedef enum {
107 CS_CPU_EXCLUSIVE,
108 CS_MEM_EXCLUSIVE,
109 CS_MEMORY_MIGRATE,
110 CS_REMOVED,
111 CS_NOTIFY_ON_RELEASE
112 } cpuset_flagbits_t;
114 /* convenient tests for these bits */
115 static inline int is_cpu_exclusive(const struct cpuset *cs)
117 return !!test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
120 static inline int is_mem_exclusive(const struct cpuset *cs)
122 return !!test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
125 static inline int is_removed(const struct cpuset *cs)
127 return !!test_bit(CS_REMOVED, &cs->flags);
130 static inline int notify_on_release(const struct cpuset *cs)
132 return !!test_bit(CS_NOTIFY_ON_RELEASE, &cs->flags);
135 static inline int is_memory_migrate(const struct cpuset *cs)
137 return !!test_bit(CS_MEMORY_MIGRATE, &cs->flags);
141 * Increment this atomic integer everytime any cpuset changes its
142 * mems_allowed value. Users of cpusets can track this generation
143 * number, and avoid having to lock and reload mems_allowed unless
144 * the cpuset they're using changes generation.
146 * A single, global generation is needed because attach_task() could
147 * reattach a task to a different cpuset, which must not have its
148 * generation numbers aliased with those of that tasks previous cpuset.
150 * Generations are needed for mems_allowed because one task cannot
151 * modify anothers memory placement. So we must enable every task,
152 * on every visit to __alloc_pages(), to efficiently check whether
153 * its current->cpuset->mems_allowed has changed, requiring an update
154 * of its current->mems_allowed.
156 static atomic_t cpuset_mems_generation = ATOMIC_INIT(1);
158 static struct cpuset top_cpuset = {
159 .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
160 .cpus_allowed = CPU_MASK_ALL,
161 .mems_allowed = NODE_MASK_ALL,
162 .count = ATOMIC_INIT(0),
163 .sibling = LIST_HEAD_INIT(top_cpuset.sibling),
164 .children = LIST_HEAD_INIT(top_cpuset.children),
167 static struct vfsmount *cpuset_mount;
168 static struct super_block *cpuset_sb;
171 * We have two global cpuset mutexes below. They can nest.
172 * It is ok to first take manage_mutex, then nest callback_mutex. We also
173 * require taking task_lock() when dereferencing a tasks cpuset pointer.
174 * See "The task_lock() exception", at the end of this comment.
176 * A task must hold both mutexes to modify cpusets. If a task
177 * holds manage_mutex, then it blocks others wanting that mutex,
178 * ensuring that it is the only task able to also acquire callback_mutex
179 * and be able to modify cpusets. It can perform various checks on
180 * the cpuset structure first, knowing nothing will change. It can
181 * also allocate memory while just holding manage_mutex. While it is
182 * performing these checks, various callback routines can briefly
183 * acquire callback_mutex to query cpusets. Once it is ready to make
184 * the changes, it takes callback_mutex, blocking everyone else.
186 * Calls to the kernel memory allocator can not be made while holding
187 * callback_mutex, as that would risk double tripping on callback_mutex
188 * from one of the callbacks into the cpuset code from within
189 * __alloc_pages().
191 * If a task is only holding callback_mutex, then it has read-only
192 * access to cpusets.
194 * The task_struct fields mems_allowed and mems_generation may only
195 * be accessed in the context of that task, so require no locks.
197 * Any task can increment and decrement the count field without lock.
198 * So in general, code holding manage_mutex or callback_mutex can't rely
199 * on the count field not changing. However, if the count goes to
200 * zero, then only attach_task(), which holds both mutexes, can
201 * increment it again. Because a count of zero means that no tasks
202 * are currently attached, therefore there is no way a task attached
203 * to that cpuset can fork (the other way to increment the count).
204 * So code holding manage_mutex or callback_mutex can safely assume that
205 * if the count is zero, it will stay zero. Similarly, if a task
206 * holds manage_mutex or callback_mutex on a cpuset with zero count, it
207 * knows that the cpuset won't be removed, as cpuset_rmdir() needs
208 * both of those mutexes.
210 * The cpuset_common_file_write handler for operations that modify
211 * the cpuset hierarchy holds manage_mutex across the entire operation,
212 * single threading all such cpuset modifications across the system.
214 * The cpuset_common_file_read() handlers only hold callback_mutex across
215 * small pieces of code, such as when reading out possibly multi-word
216 * cpumasks and nodemasks.
218 * The fork and exit callbacks cpuset_fork() and cpuset_exit(), don't
219 * (usually) take either mutex. These are the two most performance
220 * critical pieces of code here. The exception occurs on cpuset_exit(),
221 * when a task in a notify_on_release cpuset exits. Then manage_mutex
222 * is taken, and if the cpuset count is zero, a usermode call made
223 * to /sbin/cpuset_release_agent with the name of the cpuset (path
224 * relative to the root of cpuset file system) as the argument.
226 * A cpuset can only be deleted if both its 'count' of using tasks
227 * is zero, and its list of 'children' cpusets is empty. Since all
228 * tasks in the system use _some_ cpuset, and since there is always at
229 * least one task in the system (init, pid == 1), therefore, top_cpuset
230 * always has either children cpusets and/or using tasks. So we don't
231 * need a special hack to ensure that top_cpuset cannot be deleted.
233 * The above "Tale of Two Semaphores" would be complete, but for:
235 * The task_lock() exception
237 * The need for this exception arises from the action of attach_task(),
238 * which overwrites one tasks cpuset pointer with another. It does
239 * so using both mutexes, however there are several performance
240 * critical places that need to reference task->cpuset without the
241 * expense of grabbing a system global mutex. Therefore except as
242 * noted below, when dereferencing or, as in attach_task(), modifying
243 * a tasks cpuset pointer we use task_lock(), which acts on a spinlock
244 * (task->alloc_lock) already in the task_struct routinely used for
245 * such matters.
247 * P.S. One more locking exception. RCU is used to guard the
248 * update of a tasks cpuset pointer by attach_task() and the
249 * access of task->cpuset->mems_generation via that pointer in
250 * the routine cpuset_update_task_memory_state().
253 static DEFINE_MUTEX(manage_mutex);
254 static DEFINE_MUTEX(callback_mutex);
257 * A couple of forward declarations required, due to cyclic reference loop:
258 * cpuset_mkdir -> cpuset_create -> cpuset_populate_dir -> cpuset_add_file
259 * -> cpuset_create_file -> cpuset_dir_inode_operations -> cpuset_mkdir.
262 static int cpuset_mkdir(struct inode *dir, struct dentry *dentry, int mode);
263 static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry);
265 static struct backing_dev_info cpuset_backing_dev_info = {
266 .ra_pages = 0, /* No readahead */
267 .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
270 static struct inode *cpuset_new_inode(mode_t mode)
272 struct inode *inode = new_inode(cpuset_sb);
274 if (inode) {
275 inode->i_mode = mode;
276 inode->i_uid = current->fsuid;
277 inode->i_gid = current->fsgid;
278 inode->i_blksize = PAGE_CACHE_SIZE;
279 inode->i_blocks = 0;
280 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
281 inode->i_mapping->backing_dev_info = &cpuset_backing_dev_info;
283 return inode;
286 static void cpuset_diput(struct dentry *dentry, struct inode *inode)
288 /* is dentry a directory ? if so, kfree() associated cpuset */
289 if (S_ISDIR(inode->i_mode)) {
290 struct cpuset *cs = dentry->d_fsdata;
291 BUG_ON(!(is_removed(cs)));
292 kfree(cs);
294 iput(inode);
297 static struct dentry_operations cpuset_dops = {
298 .d_iput = cpuset_diput,
301 static struct dentry *cpuset_get_dentry(struct dentry *parent, const char *name)
303 struct dentry *d = lookup_one_len(name, parent, strlen(name));
304 if (!IS_ERR(d))
305 d->d_op = &cpuset_dops;
306 return d;
309 static void remove_dir(struct dentry *d)
311 struct dentry *parent = dget(d->d_parent);
313 d_delete(d);
314 simple_rmdir(parent->d_inode, d);
315 dput(parent);
319 * NOTE : the dentry must have been dget()'ed
321 static void cpuset_d_remove_dir(struct dentry *dentry)
323 struct list_head *node;
325 spin_lock(&dcache_lock);
326 node = dentry->d_subdirs.next;
327 while (node != &dentry->d_subdirs) {
328 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
329 list_del_init(node);
330 if (d->d_inode) {
331 d = dget_locked(d);
332 spin_unlock(&dcache_lock);
333 d_delete(d);
334 simple_unlink(dentry->d_inode, d);
335 dput(d);
336 spin_lock(&dcache_lock);
338 node = dentry->d_subdirs.next;
340 list_del_init(&dentry->d_u.d_child);
341 spin_unlock(&dcache_lock);
342 remove_dir(dentry);
345 static struct super_operations cpuset_ops = {
346 .statfs = simple_statfs,
347 .drop_inode = generic_delete_inode,
350 static int cpuset_fill_super(struct super_block *sb, void *unused_data,
351 int unused_silent)
353 struct inode *inode;
354 struct dentry *root;
356 sb->s_blocksize = PAGE_CACHE_SIZE;
357 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
358 sb->s_magic = CPUSET_SUPER_MAGIC;
359 sb->s_op = &cpuset_ops;
360 cpuset_sb = sb;
362 inode = cpuset_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR);
363 if (inode) {
364 inode->i_op = &simple_dir_inode_operations;
365 inode->i_fop = &simple_dir_operations;
366 /* directories start off with i_nlink == 2 (for "." entry) */
367 inode->i_nlink++;
368 } else {
369 return -ENOMEM;
372 root = d_alloc_root(inode);
373 if (!root) {
374 iput(inode);
375 return -ENOMEM;
377 sb->s_root = root;
378 return 0;
381 static struct super_block *cpuset_get_sb(struct file_system_type *fs_type,
382 int flags, const char *unused_dev_name,
383 void *data)
385 return get_sb_single(fs_type, flags, data, cpuset_fill_super);
388 static struct file_system_type cpuset_fs_type = {
389 .name = "cpuset",
390 .get_sb = cpuset_get_sb,
391 .kill_sb = kill_litter_super,
394 /* struct cftype:
396 * The files in the cpuset filesystem mostly have a very simple read/write
397 * handling, some common function will take care of it. Nevertheless some cases
398 * (read tasks) are special and therefore I define this structure for every
399 * kind of file.
402 * When reading/writing to a file:
403 * - the cpuset to use in file->f_dentry->d_parent->d_fsdata
404 * - the 'cftype' of the file is file->f_dentry->d_fsdata
407 struct cftype {
408 char *name;
409 int private;
410 int (*open) (struct inode *inode, struct file *file);
411 ssize_t (*read) (struct file *file, char __user *buf, size_t nbytes,
412 loff_t *ppos);
413 int (*write) (struct file *file, const char __user *buf, size_t nbytes,
414 loff_t *ppos);
415 int (*release) (struct inode *inode, struct file *file);
418 static inline struct cpuset *__d_cs(struct dentry *dentry)
420 return dentry->d_fsdata;
423 static inline struct cftype *__d_cft(struct dentry *dentry)
425 return dentry->d_fsdata;
429 * Call with manage_mutex held. Writes path of cpuset into buf.
430 * Returns 0 on success, -errno on error.
433 static int cpuset_path(const struct cpuset *cs, char *buf, int buflen)
435 char *start;
437 start = buf + buflen;
439 *--start = '\0';
440 for (;;) {
441 int len = cs->dentry->d_name.len;
442 if ((start -= len) < buf)
443 return -ENAMETOOLONG;
444 memcpy(start, cs->dentry->d_name.name, len);
445 cs = cs->parent;
446 if (!cs)
447 break;
448 if (!cs->parent)
449 continue;
450 if (--start < buf)
451 return -ENAMETOOLONG;
452 *start = '/';
454 memmove(buf, start, buf + buflen - start);
455 return 0;
459 * Notify userspace when a cpuset is released, by running
460 * /sbin/cpuset_release_agent with the name of the cpuset (path
461 * relative to the root of cpuset file system) as the argument.
463 * Most likely, this user command will try to rmdir this cpuset.
465 * This races with the possibility that some other task will be
466 * attached to this cpuset before it is removed, or that some other
467 * user task will 'mkdir' a child cpuset of this cpuset. That's ok.
468 * The presumed 'rmdir' will fail quietly if this cpuset is no longer
469 * unused, and this cpuset will be reprieved from its death sentence,
470 * to continue to serve a useful existence. Next time it's released,
471 * we will get notified again, if it still has 'notify_on_release' set.
473 * The final arg to call_usermodehelper() is 0, which means don't
474 * wait. The separate /sbin/cpuset_release_agent task is forked by
475 * call_usermodehelper(), then control in this thread returns here,
476 * without waiting for the release agent task. We don't bother to
477 * wait because the caller of this routine has no use for the exit
478 * status of the /sbin/cpuset_release_agent task, so no sense holding
479 * our caller up for that.
481 * When we had only one cpuset mutex, we had to call this
482 * without holding it, to avoid deadlock when call_usermodehelper()
483 * allocated memory. With two locks, we could now call this while
484 * holding manage_mutex, but we still don't, so as to minimize
485 * the time manage_mutex is held.
488 static void cpuset_release_agent(const char *pathbuf)
490 char *argv[3], *envp[3];
491 int i;
493 if (!pathbuf)
494 return;
496 i = 0;
497 argv[i++] = "/sbin/cpuset_release_agent";
498 argv[i++] = (char *)pathbuf;
499 argv[i] = NULL;
501 i = 0;
502 /* minimal command environment */
503 envp[i++] = "HOME=/";
504 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
505 envp[i] = NULL;
507 call_usermodehelper(argv[0], argv, envp, 0);
508 kfree(pathbuf);
512 * Either cs->count of using tasks transitioned to zero, or the
513 * cs->children list of child cpusets just became empty. If this
514 * cs is notify_on_release() and now both the user count is zero and
515 * the list of children is empty, prepare cpuset path in a kmalloc'd
516 * buffer, to be returned via ppathbuf, so that the caller can invoke
517 * cpuset_release_agent() with it later on, once manage_mutex is dropped.
518 * Call here with manage_mutex held.
520 * This check_for_release() routine is responsible for kmalloc'ing
521 * pathbuf. The above cpuset_release_agent() is responsible for
522 * kfree'ing pathbuf. The caller of these routines is responsible
523 * for providing a pathbuf pointer, initialized to NULL, then
524 * calling check_for_release() with manage_mutex held and the address
525 * of the pathbuf pointer, then dropping manage_mutex, then calling
526 * cpuset_release_agent() with pathbuf, as set by check_for_release().
529 static void check_for_release(struct cpuset *cs, char **ppathbuf)
531 if (notify_on_release(cs) && atomic_read(&cs->count) == 0 &&
532 list_empty(&cs->children)) {
533 char *buf;
535 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
536 if (!buf)
537 return;
538 if (cpuset_path(cs, buf, PAGE_SIZE) < 0)
539 kfree(buf);
540 else
541 *ppathbuf = buf;
546 * Return in *pmask the portion of a cpusets's cpus_allowed that
547 * are online. If none are online, walk up the cpuset hierarchy
548 * until we find one that does have some online cpus. If we get
549 * all the way to the top and still haven't found any online cpus,
550 * return cpu_online_map. Or if passed a NULL cs from an exit'ing
551 * task, return cpu_online_map.
553 * One way or another, we guarantee to return some non-empty subset
554 * of cpu_online_map.
556 * Call with callback_mutex held.
559 static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
561 while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map))
562 cs = cs->parent;
563 if (cs)
564 cpus_and(*pmask, cs->cpus_allowed, cpu_online_map);
565 else
566 *pmask = cpu_online_map;
567 BUG_ON(!cpus_intersects(*pmask, cpu_online_map));
571 * Return in *pmask the portion of a cpusets's mems_allowed that
572 * are online. If none are online, walk up the cpuset hierarchy
573 * until we find one that does have some online mems. If we get
574 * all the way to the top and still haven't found any online mems,
575 * return node_online_map.
577 * One way or another, we guarantee to return some non-empty subset
578 * of node_online_map.
580 * Call with callback_mutex held.
583 static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
585 while (cs && !nodes_intersects(cs->mems_allowed, node_online_map))
586 cs = cs->parent;
587 if (cs)
588 nodes_and(*pmask, cs->mems_allowed, node_online_map);
589 else
590 *pmask = node_online_map;
591 BUG_ON(!nodes_intersects(*pmask, node_online_map));
595 * cpuset_update_task_memory_state - update task memory placement
597 * If the current tasks cpusets mems_allowed changed behind our
598 * backs, update current->mems_allowed, mems_generation and task NUMA
599 * mempolicy to the new value.
601 * Task mempolicy is updated by rebinding it relative to the
602 * current->cpuset if a task has its memory placement changed.
603 * Do not call this routine if in_interrupt().
605 * Call without callback_mutex or task_lock() held. May be called
606 * with or without manage_mutex held. Doesn't need task_lock to guard
607 * against another task changing a non-NULL cpuset pointer to NULL,
608 * as that is only done by a task on itself, and if the current task
609 * is here, it is not simultaneously in the exit code NULL'ing its
610 * cpuset pointer. This routine also might acquire callback_mutex and
611 * current->mm->mmap_sem during call.
613 * Reading current->cpuset->mems_generation doesn't need task_lock
614 * to guard the current->cpuset derefence, because it is guarded
615 * from concurrent freeing of current->cpuset by attach_task(),
616 * using RCU.
618 * The rcu_dereference() is technically probably not needed,
619 * as I don't actually mind if I see a new cpuset pointer but
620 * an old value of mems_generation. However this really only
621 * matters on alpha systems using cpusets heavily. If I dropped
622 * that rcu_dereference(), it would save them a memory barrier.
623 * For all other arch's, rcu_dereference is a no-op anyway, and for
624 * alpha systems not using cpusets, another planned optimization,
625 * avoiding the rcu critical section for tasks in the root cpuset
626 * which is statically allocated, so can't vanish, will make this
627 * irrelevant. Better to use RCU as intended, than to engage in
628 * some cute trick to save a memory barrier that is impossible to
629 * test, for alpha systems using cpusets heavily, which might not
630 * even exist.
632 * This routine is needed to update the per-task mems_allowed data,
633 * within the tasks context, when it is trying to allocate memory
634 * (in various mm/mempolicy.c routines) and notices that some other
635 * task has been modifying its cpuset.
638 void cpuset_update_task_memory_state(void)
640 int my_cpusets_mem_gen;
641 struct task_struct *tsk = current;
642 struct cpuset *cs;
644 if (tsk->cpuset == &top_cpuset) {
645 /* Don't need rcu for top_cpuset. It's never freed. */
646 my_cpusets_mem_gen = top_cpuset.mems_generation;
647 } else {
648 rcu_read_lock();
649 cs = rcu_dereference(tsk->cpuset);
650 my_cpusets_mem_gen = cs->mems_generation;
651 rcu_read_unlock();
654 if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
655 mutex_lock(&callback_mutex);
656 task_lock(tsk);
657 cs = tsk->cpuset; /* Maybe changed when task not locked */
658 guarantee_online_mems(cs, &tsk->mems_allowed);
659 tsk->cpuset_mems_generation = cs->mems_generation;
660 task_unlock(tsk);
661 mutex_unlock(&callback_mutex);
662 mpol_rebind_task(tsk, &tsk->mems_allowed);
667 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
669 * One cpuset is a subset of another if all its allowed CPUs and
670 * Memory Nodes are a subset of the other, and its exclusive flags
671 * are only set if the other's are set. Call holding manage_mutex.
674 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
676 return cpus_subset(p->cpus_allowed, q->cpus_allowed) &&
677 nodes_subset(p->mems_allowed, q->mems_allowed) &&
678 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
679 is_mem_exclusive(p) <= is_mem_exclusive(q);
683 * validate_change() - Used to validate that any proposed cpuset change
684 * follows the structural rules for cpusets.
686 * If we replaced the flag and mask values of the current cpuset
687 * (cur) with those values in the trial cpuset (trial), would
688 * our various subset and exclusive rules still be valid? Presumes
689 * manage_mutex held.
691 * 'cur' is the address of an actual, in-use cpuset. Operations
692 * such as list traversal that depend on the actual address of the
693 * cpuset in the list must use cur below, not trial.
695 * 'trial' is the address of bulk structure copy of cur, with
696 * perhaps one or more of the fields cpus_allowed, mems_allowed,
697 * or flags changed to new, trial values.
699 * Return 0 if valid, -errno if not.
702 static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
704 struct cpuset *c, *par;
706 /* Each of our child cpusets must be a subset of us */
707 list_for_each_entry(c, &cur->children, sibling) {
708 if (!is_cpuset_subset(c, trial))
709 return -EBUSY;
712 /* Remaining checks don't apply to root cpuset */
713 if ((par = cur->parent) == NULL)
714 return 0;
716 /* We must be a subset of our parent cpuset */
717 if (!is_cpuset_subset(trial, par))
718 return -EACCES;
720 /* If either I or some sibling (!= me) is exclusive, we can't overlap */
721 list_for_each_entry(c, &par->children, sibling) {
722 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
723 c != cur &&
724 cpus_intersects(trial->cpus_allowed, c->cpus_allowed))
725 return -EINVAL;
726 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
727 c != cur &&
728 nodes_intersects(trial->mems_allowed, c->mems_allowed))
729 return -EINVAL;
732 return 0;
736 * For a given cpuset cur, partition the system as follows
737 * a. All cpus in the parent cpuset's cpus_allowed that are not part of any
738 * exclusive child cpusets
739 * b. All cpus in the current cpuset's cpus_allowed that are not part of any
740 * exclusive child cpusets
741 * Build these two partitions by calling partition_sched_domains
743 * Call with manage_mutex held. May nest a call to the
744 * lock_cpu_hotplug()/unlock_cpu_hotplug() pair.
747 static void update_cpu_domains(struct cpuset *cur)
749 struct cpuset *c, *par = cur->parent;
750 cpumask_t pspan, cspan;
752 if (par == NULL || cpus_empty(cur->cpus_allowed))
753 return;
756 * Get all cpus from parent's cpus_allowed not part of exclusive
757 * children
759 pspan = par->cpus_allowed;
760 list_for_each_entry(c, &par->children, sibling) {
761 if (is_cpu_exclusive(c))
762 cpus_andnot(pspan, pspan, c->cpus_allowed);
764 if (is_removed(cur) || !is_cpu_exclusive(cur)) {
765 cpus_or(pspan, pspan, cur->cpus_allowed);
766 if (cpus_equal(pspan, cur->cpus_allowed))
767 return;
768 cspan = CPU_MASK_NONE;
769 } else {
770 if (cpus_empty(pspan))
771 return;
772 cspan = cur->cpus_allowed;
774 * Get all cpus from current cpuset's cpus_allowed not part
775 * of exclusive children
777 list_for_each_entry(c, &cur->children, sibling) {
778 if (is_cpu_exclusive(c))
779 cpus_andnot(cspan, cspan, c->cpus_allowed);
783 lock_cpu_hotplug();
784 partition_sched_domains(&pspan, &cspan);
785 unlock_cpu_hotplug();
789 * Call with manage_mutex held. May take callback_mutex during call.
792 static int update_cpumask(struct cpuset *cs, char *buf)
794 struct cpuset trialcs;
795 int retval, cpus_unchanged;
797 trialcs = *cs;
798 retval = cpulist_parse(buf, trialcs.cpus_allowed);
799 if (retval < 0)
800 return retval;
801 cpus_and(trialcs.cpus_allowed, trialcs.cpus_allowed, cpu_online_map);
802 if (cpus_empty(trialcs.cpus_allowed))
803 return -ENOSPC;
804 retval = validate_change(cs, &trialcs);
805 if (retval < 0)
806 return retval;
807 cpus_unchanged = cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed);
808 mutex_lock(&callback_mutex);
809 cs->cpus_allowed = trialcs.cpus_allowed;
810 mutex_unlock(&callback_mutex);
811 if (is_cpu_exclusive(cs) && !cpus_unchanged)
812 update_cpu_domains(cs);
813 return 0;
817 * Handle user request to change the 'mems' memory placement
818 * of a cpuset. Needs to validate the request, update the
819 * cpusets mems_allowed and mems_generation, and for each
820 * task in the cpuset, rebind any vma mempolicies and if
821 * the cpuset is marked 'memory_migrate', migrate the tasks
822 * pages to the new memory.
824 * Call with manage_mutex held. May take callback_mutex during call.
825 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
826 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
827 * their mempolicies to the cpusets new mems_allowed.
830 static int update_nodemask(struct cpuset *cs, char *buf)
832 struct cpuset trialcs;
833 nodemask_t oldmem;
834 struct task_struct *g, *p;
835 struct mm_struct **mmarray;
836 int i, n, ntasks;
837 int migrate;
838 int fudge;
839 int retval;
841 trialcs = *cs;
842 retval = nodelist_parse(buf, trialcs.mems_allowed);
843 if (retval < 0)
844 goto done;
845 nodes_and(trialcs.mems_allowed, trialcs.mems_allowed, node_online_map);
846 oldmem = cs->mems_allowed;
847 if (nodes_equal(oldmem, trialcs.mems_allowed)) {
848 retval = 0; /* Too easy - nothing to do */
849 goto done;
851 if (nodes_empty(trialcs.mems_allowed)) {
852 retval = -ENOSPC;
853 goto done;
855 retval = validate_change(cs, &trialcs);
856 if (retval < 0)
857 goto done;
859 mutex_lock(&callback_mutex);
860 cs->mems_allowed = trialcs.mems_allowed;
861 atomic_inc(&cpuset_mems_generation);
862 cs->mems_generation = atomic_read(&cpuset_mems_generation);
863 mutex_unlock(&callback_mutex);
865 set_cpuset_being_rebound(cs); /* causes mpol_copy() rebind */
867 fudge = 10; /* spare mmarray[] slots */
868 fudge += cpus_weight(cs->cpus_allowed); /* imagine one fork-bomb/cpu */
869 retval = -ENOMEM;
872 * Allocate mmarray[] to hold mm reference for each task
873 * in cpuset cs. Can't kmalloc GFP_KERNEL while holding
874 * tasklist_lock. We could use GFP_ATOMIC, but with a
875 * few more lines of code, we can retry until we get a big
876 * enough mmarray[] w/o using GFP_ATOMIC.
878 while (1) {
879 ntasks = atomic_read(&cs->count); /* guess */
880 ntasks += fudge;
881 mmarray = kmalloc(ntasks * sizeof(*mmarray), GFP_KERNEL);
882 if (!mmarray)
883 goto done;
884 write_lock_irq(&tasklist_lock); /* block fork */
885 if (atomic_read(&cs->count) <= ntasks)
886 break; /* got enough */
887 write_unlock_irq(&tasklist_lock); /* try again */
888 kfree(mmarray);
891 n = 0;
893 /* Load up mmarray[] with mm reference for each task in cpuset. */
894 do_each_thread(g, p) {
895 struct mm_struct *mm;
897 if (n >= ntasks) {
898 printk(KERN_WARNING
899 "Cpuset mempolicy rebind incomplete.\n");
900 continue;
902 if (p->cpuset != cs)
903 continue;
904 mm = get_task_mm(p);
905 if (!mm)
906 continue;
907 mmarray[n++] = mm;
908 } while_each_thread(g, p);
909 write_unlock_irq(&tasklist_lock);
912 * Now that we've dropped the tasklist spinlock, we can
913 * rebind the vma mempolicies of each mm in mmarray[] to their
914 * new cpuset, and release that mm. The mpol_rebind_mm()
915 * call takes mmap_sem, which we couldn't take while holding
916 * tasklist_lock. Forks can happen again now - the mpol_copy()
917 * cpuset_being_rebound check will catch such forks, and rebind
918 * their vma mempolicies too. Because we still hold the global
919 * cpuset manage_mutex, we know that no other rebind effort will
920 * be contending for the global variable cpuset_being_rebound.
921 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
922 * is idempotent. Also migrate pages in each mm to new nodes.
924 migrate = is_memory_migrate(cs);
925 for (i = 0; i < n; i++) {
926 struct mm_struct *mm = mmarray[i];
928 mpol_rebind_mm(mm, &cs->mems_allowed);
929 if (migrate) {
930 do_migrate_pages(mm, &oldmem, &cs->mems_allowed,
931 MPOL_MF_MOVE_ALL);
933 mmput(mm);
936 /* We're done rebinding vma's to this cpusets new mems_allowed. */
937 kfree(mmarray);
938 set_cpuset_being_rebound(NULL);
939 retval = 0;
940 done:
941 return retval;
945 * Call with manage_mutex held.
948 static int update_memory_pressure_enabled(struct cpuset *cs, char *buf)
950 if (simple_strtoul(buf, NULL, 10) != 0)
951 cpuset_memory_pressure_enabled = 1;
952 else
953 cpuset_memory_pressure_enabled = 0;
954 return 0;
958 * update_flag - read a 0 or a 1 in a file and update associated flag
959 * bit: the bit to update (CS_CPU_EXCLUSIVE, CS_MEM_EXCLUSIVE,
960 * CS_NOTIFY_ON_RELEASE, CS_MEMORY_MIGRATE)
961 * cs: the cpuset to update
962 * buf: the buffer where we read the 0 or 1
964 * Call with manage_mutex held.
967 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, char *buf)
969 int turning_on;
970 struct cpuset trialcs;
971 int err, cpu_exclusive_changed;
973 turning_on = (simple_strtoul(buf, NULL, 10) != 0);
975 trialcs = *cs;
976 if (turning_on)
977 set_bit(bit, &trialcs.flags);
978 else
979 clear_bit(bit, &trialcs.flags);
981 err = validate_change(cs, &trialcs);
982 if (err < 0)
983 return err;
984 cpu_exclusive_changed =
985 (is_cpu_exclusive(cs) != is_cpu_exclusive(&trialcs));
986 mutex_lock(&callback_mutex);
987 if (turning_on)
988 set_bit(bit, &cs->flags);
989 else
990 clear_bit(bit, &cs->flags);
991 mutex_unlock(&callback_mutex);
993 if (cpu_exclusive_changed)
994 update_cpu_domains(cs);
995 return 0;
999 * Frequency meter - How fast is some event occuring?
1001 * These routines manage a digitally filtered, constant time based,
1002 * event frequency meter. There are four routines:
1003 * fmeter_init() - initialize a frequency meter.
1004 * fmeter_markevent() - called each time the event happens.
1005 * fmeter_getrate() - returns the recent rate of such events.
1006 * fmeter_update() - internal routine used to update fmeter.
1008 * A common data structure is passed to each of these routines,
1009 * which is used to keep track of the state required to manage the
1010 * frequency meter and its digital filter.
1012 * The filter works on the number of events marked per unit time.
1013 * The filter is single-pole low-pass recursive (IIR). The time unit
1014 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1015 * simulate 3 decimal digits of precision (multiplied by 1000).
1017 * With an FM_COEF of 933, and a time base of 1 second, the filter
1018 * has a half-life of 10 seconds, meaning that if the events quit
1019 * happening, then the rate returned from the fmeter_getrate()
1020 * will be cut in half each 10 seconds, until it converges to zero.
1022 * It is not worth doing a real infinitely recursive filter. If more
1023 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1024 * just compute FM_MAXTICKS ticks worth, by which point the level
1025 * will be stable.
1027 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1028 * arithmetic overflow in the fmeter_update() routine.
1030 * Given the simple 32 bit integer arithmetic used, this meter works
1031 * best for reporting rates between one per millisecond (msec) and
1032 * one per 32 (approx) seconds. At constant rates faster than one
1033 * per msec it maxes out at values just under 1,000,000. At constant
1034 * rates between one per msec, and one per second it will stabilize
1035 * to a value N*1000, where N is the rate of events per second.
1036 * At constant rates between one per second and one per 32 seconds,
1037 * it will be choppy, moving up on the seconds that have an event,
1038 * and then decaying until the next event. At rates slower than
1039 * about one in 32 seconds, it decays all the way back to zero between
1040 * each event.
1043 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
1044 #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1045 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1046 #define FM_SCALE 1000 /* faux fixed point scale */
1048 /* Initialize a frequency meter */
1049 static void fmeter_init(struct fmeter *fmp)
1051 fmp->cnt = 0;
1052 fmp->val = 0;
1053 fmp->time = 0;
1054 spin_lock_init(&fmp->lock);
1057 /* Internal meter update - process cnt events and update value */
1058 static void fmeter_update(struct fmeter *fmp)
1060 time_t now = get_seconds();
1061 time_t ticks = now - fmp->time;
1063 if (ticks == 0)
1064 return;
1066 ticks = min(FM_MAXTICKS, ticks);
1067 while (ticks-- > 0)
1068 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1069 fmp->time = now;
1071 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1072 fmp->cnt = 0;
1075 /* Process any previous ticks, then bump cnt by one (times scale). */
1076 static void fmeter_markevent(struct fmeter *fmp)
1078 spin_lock(&fmp->lock);
1079 fmeter_update(fmp);
1080 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1081 spin_unlock(&fmp->lock);
1084 /* Process any previous ticks, then return current value. */
1085 static int fmeter_getrate(struct fmeter *fmp)
1087 int val;
1089 spin_lock(&fmp->lock);
1090 fmeter_update(fmp);
1091 val = fmp->val;
1092 spin_unlock(&fmp->lock);
1093 return val;
1097 * Attack task specified by pid in 'pidbuf' to cpuset 'cs', possibly
1098 * writing the path of the old cpuset in 'ppathbuf' if it needs to be
1099 * notified on release.
1101 * Call holding manage_mutex. May take callback_mutex and task_lock of
1102 * the task 'pid' during call.
1105 static int attach_task(struct cpuset *cs, char *pidbuf, char **ppathbuf)
1107 pid_t pid;
1108 struct task_struct *tsk;
1109 struct cpuset *oldcs;
1110 cpumask_t cpus;
1111 nodemask_t from, to;
1112 struct mm_struct *mm;
1114 if (sscanf(pidbuf, "%d", &pid) != 1)
1115 return -EIO;
1116 if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1117 return -ENOSPC;
1119 if (pid) {
1120 read_lock(&tasklist_lock);
1122 tsk = find_task_by_pid(pid);
1123 if (!tsk || tsk->flags & PF_EXITING) {
1124 read_unlock(&tasklist_lock);
1125 return -ESRCH;
1128 get_task_struct(tsk);
1129 read_unlock(&tasklist_lock);
1131 if ((current->euid) && (current->euid != tsk->uid)
1132 && (current->euid != tsk->suid)) {
1133 put_task_struct(tsk);
1134 return -EACCES;
1136 } else {
1137 tsk = current;
1138 get_task_struct(tsk);
1141 mutex_lock(&callback_mutex);
1143 task_lock(tsk);
1144 oldcs = tsk->cpuset;
1145 if (!oldcs) {
1146 task_unlock(tsk);
1147 mutex_unlock(&callback_mutex);
1148 put_task_struct(tsk);
1149 return -ESRCH;
1151 atomic_inc(&cs->count);
1152 rcu_assign_pointer(tsk->cpuset, cs);
1153 task_unlock(tsk);
1155 guarantee_online_cpus(cs, &cpus);
1156 set_cpus_allowed(tsk, cpus);
1158 from = oldcs->mems_allowed;
1159 to = cs->mems_allowed;
1161 mutex_unlock(&callback_mutex);
1163 mm = get_task_mm(tsk);
1164 if (mm) {
1165 mpol_rebind_mm(mm, &to);
1166 mmput(mm);
1169 if (is_memory_migrate(cs))
1170 do_migrate_pages(tsk->mm, &from, &to, MPOL_MF_MOVE_ALL);
1171 put_task_struct(tsk);
1172 synchronize_rcu();
1173 if (atomic_dec_and_test(&oldcs->count))
1174 check_for_release(oldcs, ppathbuf);
1175 return 0;
1178 /* The various types of files and directories in a cpuset file system */
1180 typedef enum {
1181 FILE_ROOT,
1182 FILE_DIR,
1183 FILE_MEMORY_MIGRATE,
1184 FILE_CPULIST,
1185 FILE_MEMLIST,
1186 FILE_CPU_EXCLUSIVE,
1187 FILE_MEM_EXCLUSIVE,
1188 FILE_NOTIFY_ON_RELEASE,
1189 FILE_MEMORY_PRESSURE_ENABLED,
1190 FILE_MEMORY_PRESSURE,
1191 FILE_TASKLIST,
1192 } cpuset_filetype_t;
1194 static ssize_t cpuset_common_file_write(struct file *file, const char __user *userbuf,
1195 size_t nbytes, loff_t *unused_ppos)
1197 struct cpuset *cs = __d_cs(file->f_dentry->d_parent);
1198 struct cftype *cft = __d_cft(file->f_dentry);
1199 cpuset_filetype_t type = cft->private;
1200 char *buffer;
1201 char *pathbuf = NULL;
1202 int retval = 0;
1204 /* Crude upper limit on largest legitimate cpulist user might write. */
1205 if (nbytes > 100 + 6 * NR_CPUS)
1206 return -E2BIG;
1208 /* +1 for nul-terminator */
1209 if ((buffer = kmalloc(nbytes + 1, GFP_KERNEL)) == 0)
1210 return -ENOMEM;
1212 if (copy_from_user(buffer, userbuf, nbytes)) {
1213 retval = -EFAULT;
1214 goto out1;
1216 buffer[nbytes] = 0; /* nul-terminate */
1218 mutex_lock(&manage_mutex);
1220 if (is_removed(cs)) {
1221 retval = -ENODEV;
1222 goto out2;
1225 switch (type) {
1226 case FILE_CPULIST:
1227 retval = update_cpumask(cs, buffer);
1228 break;
1229 case FILE_MEMLIST:
1230 retval = update_nodemask(cs, buffer);
1231 break;
1232 case FILE_CPU_EXCLUSIVE:
1233 retval = update_flag(CS_CPU_EXCLUSIVE, cs, buffer);
1234 break;
1235 case FILE_MEM_EXCLUSIVE:
1236 retval = update_flag(CS_MEM_EXCLUSIVE, cs, buffer);
1237 break;
1238 case FILE_NOTIFY_ON_RELEASE:
1239 retval = update_flag(CS_NOTIFY_ON_RELEASE, cs, buffer);
1240 break;
1241 case FILE_MEMORY_MIGRATE:
1242 retval = update_flag(CS_MEMORY_MIGRATE, cs, buffer);
1243 break;
1244 case FILE_MEMORY_PRESSURE_ENABLED:
1245 retval = update_memory_pressure_enabled(cs, buffer);
1246 break;
1247 case FILE_MEMORY_PRESSURE:
1248 retval = -EACCES;
1249 break;
1250 case FILE_TASKLIST:
1251 retval = attach_task(cs, buffer, &pathbuf);
1252 break;
1253 default:
1254 retval = -EINVAL;
1255 goto out2;
1258 if (retval == 0)
1259 retval = nbytes;
1260 out2:
1261 mutex_unlock(&manage_mutex);
1262 cpuset_release_agent(pathbuf);
1263 out1:
1264 kfree(buffer);
1265 return retval;
1268 static ssize_t cpuset_file_write(struct file *file, const char __user *buf,
1269 size_t nbytes, loff_t *ppos)
1271 ssize_t retval = 0;
1272 struct cftype *cft = __d_cft(file->f_dentry);
1273 if (!cft)
1274 return -ENODEV;
1276 /* special function ? */
1277 if (cft->write)
1278 retval = cft->write(file, buf, nbytes, ppos);
1279 else
1280 retval = cpuset_common_file_write(file, buf, nbytes, ppos);
1282 return retval;
1286 * These ascii lists should be read in a single call, by using a user
1287 * buffer large enough to hold the entire map. If read in smaller
1288 * chunks, there is no guarantee of atomicity. Since the display format
1289 * used, list of ranges of sequential numbers, is variable length,
1290 * and since these maps can change value dynamically, one could read
1291 * gibberish by doing partial reads while a list was changing.
1292 * A single large read to a buffer that crosses a page boundary is
1293 * ok, because the result being copied to user land is not recomputed
1294 * across a page fault.
1297 static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1299 cpumask_t mask;
1301 mutex_lock(&callback_mutex);
1302 mask = cs->cpus_allowed;
1303 mutex_unlock(&callback_mutex);
1305 return cpulist_scnprintf(page, PAGE_SIZE, mask);
1308 static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1310 nodemask_t mask;
1312 mutex_lock(&callback_mutex);
1313 mask = cs->mems_allowed;
1314 mutex_unlock(&callback_mutex);
1316 return nodelist_scnprintf(page, PAGE_SIZE, mask);
1319 static ssize_t cpuset_common_file_read(struct file *file, char __user *buf,
1320 size_t nbytes, loff_t *ppos)
1322 struct cftype *cft = __d_cft(file->f_dentry);
1323 struct cpuset *cs = __d_cs(file->f_dentry->d_parent);
1324 cpuset_filetype_t type = cft->private;
1325 char *page;
1326 ssize_t retval = 0;
1327 char *s;
1329 if (!(page = (char *)__get_free_page(GFP_KERNEL)))
1330 return -ENOMEM;
1332 s = page;
1334 switch (type) {
1335 case FILE_CPULIST:
1336 s += cpuset_sprintf_cpulist(s, cs);
1337 break;
1338 case FILE_MEMLIST:
1339 s += cpuset_sprintf_memlist(s, cs);
1340 break;
1341 case FILE_CPU_EXCLUSIVE:
1342 *s++ = is_cpu_exclusive(cs) ? '1' : '0';
1343 break;
1344 case FILE_MEM_EXCLUSIVE:
1345 *s++ = is_mem_exclusive(cs) ? '1' : '0';
1346 break;
1347 case FILE_NOTIFY_ON_RELEASE:
1348 *s++ = notify_on_release(cs) ? '1' : '0';
1349 break;
1350 case FILE_MEMORY_MIGRATE:
1351 *s++ = is_memory_migrate(cs) ? '1' : '0';
1352 break;
1353 case FILE_MEMORY_PRESSURE_ENABLED:
1354 *s++ = cpuset_memory_pressure_enabled ? '1' : '0';
1355 break;
1356 case FILE_MEMORY_PRESSURE:
1357 s += sprintf(s, "%d", fmeter_getrate(&cs->fmeter));
1358 break;
1359 default:
1360 retval = -EINVAL;
1361 goto out;
1363 *s++ = '\n';
1365 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1366 out:
1367 free_page((unsigned long)page);
1368 return retval;
1371 static ssize_t cpuset_file_read(struct file *file, char __user *buf, size_t nbytes,
1372 loff_t *ppos)
1374 ssize_t retval = 0;
1375 struct cftype *cft = __d_cft(file->f_dentry);
1376 if (!cft)
1377 return -ENODEV;
1379 /* special function ? */
1380 if (cft->read)
1381 retval = cft->read(file, buf, nbytes, ppos);
1382 else
1383 retval = cpuset_common_file_read(file, buf, nbytes, ppos);
1385 return retval;
1388 static int cpuset_file_open(struct inode *inode, struct file *file)
1390 int err;
1391 struct cftype *cft;
1393 err = generic_file_open(inode, file);
1394 if (err)
1395 return err;
1397 cft = __d_cft(file->f_dentry);
1398 if (!cft)
1399 return -ENODEV;
1400 if (cft->open)
1401 err = cft->open(inode, file);
1402 else
1403 err = 0;
1405 return err;
1408 static int cpuset_file_release(struct inode *inode, struct file *file)
1410 struct cftype *cft = __d_cft(file->f_dentry);
1411 if (cft->release)
1412 return cft->release(inode, file);
1413 return 0;
1417 * cpuset_rename - Only allow simple rename of directories in place.
1419 static int cpuset_rename(struct inode *old_dir, struct dentry *old_dentry,
1420 struct inode *new_dir, struct dentry *new_dentry)
1422 if (!S_ISDIR(old_dentry->d_inode->i_mode))
1423 return -ENOTDIR;
1424 if (new_dentry->d_inode)
1425 return -EEXIST;
1426 if (old_dir != new_dir)
1427 return -EIO;
1428 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
1431 static struct file_operations cpuset_file_operations = {
1432 .read = cpuset_file_read,
1433 .write = cpuset_file_write,
1434 .llseek = generic_file_llseek,
1435 .open = cpuset_file_open,
1436 .release = cpuset_file_release,
1439 static struct inode_operations cpuset_dir_inode_operations = {
1440 .lookup = simple_lookup,
1441 .mkdir = cpuset_mkdir,
1442 .rmdir = cpuset_rmdir,
1443 .rename = cpuset_rename,
1446 static int cpuset_create_file(struct dentry *dentry, int mode)
1448 struct inode *inode;
1450 if (!dentry)
1451 return -ENOENT;
1452 if (dentry->d_inode)
1453 return -EEXIST;
1455 inode = cpuset_new_inode(mode);
1456 if (!inode)
1457 return -ENOMEM;
1459 if (S_ISDIR(mode)) {
1460 inode->i_op = &cpuset_dir_inode_operations;
1461 inode->i_fop = &simple_dir_operations;
1463 /* start off with i_nlink == 2 (for "." entry) */
1464 inode->i_nlink++;
1465 } else if (S_ISREG(mode)) {
1466 inode->i_size = 0;
1467 inode->i_fop = &cpuset_file_operations;
1470 d_instantiate(dentry, inode);
1471 dget(dentry); /* Extra count - pin the dentry in core */
1472 return 0;
1476 * cpuset_create_dir - create a directory for an object.
1477 * cs: the cpuset we create the directory for.
1478 * It must have a valid ->parent field
1479 * And we are going to fill its ->dentry field.
1480 * name: The name to give to the cpuset directory. Will be copied.
1481 * mode: mode to set on new directory.
1484 static int cpuset_create_dir(struct cpuset *cs, const char *name, int mode)
1486 struct dentry *dentry = NULL;
1487 struct dentry *parent;
1488 int error = 0;
1490 parent = cs->parent->dentry;
1491 dentry = cpuset_get_dentry(parent, name);
1492 if (IS_ERR(dentry))
1493 return PTR_ERR(dentry);
1494 error = cpuset_create_file(dentry, S_IFDIR | mode);
1495 if (!error) {
1496 dentry->d_fsdata = cs;
1497 parent->d_inode->i_nlink++;
1498 cs->dentry = dentry;
1500 dput(dentry);
1502 return error;
1505 static int cpuset_add_file(struct dentry *dir, const struct cftype *cft)
1507 struct dentry *dentry;
1508 int error;
1510 mutex_lock(&dir->d_inode->i_mutex);
1511 dentry = cpuset_get_dentry(dir, cft->name);
1512 if (!IS_ERR(dentry)) {
1513 error = cpuset_create_file(dentry, 0644 | S_IFREG);
1514 if (!error)
1515 dentry->d_fsdata = (void *)cft;
1516 dput(dentry);
1517 } else
1518 error = PTR_ERR(dentry);
1519 mutex_unlock(&dir->d_inode->i_mutex);
1520 return error;
1524 * Stuff for reading the 'tasks' file.
1526 * Reading this file can return large amounts of data if a cpuset has
1527 * *lots* of attached tasks. So it may need several calls to read(),
1528 * but we cannot guarantee that the information we produce is correct
1529 * unless we produce it entirely atomically.
1531 * Upon tasks file open(), a struct ctr_struct is allocated, that
1532 * will have a pointer to an array (also allocated here). The struct
1533 * ctr_struct * is stored in file->private_data. Its resources will
1534 * be freed by release() when the file is closed. The array is used
1535 * to sprintf the PIDs and then used by read().
1538 /* cpusets_tasks_read array */
1540 struct ctr_struct {
1541 char *buf;
1542 int bufsz;
1546 * Load into 'pidarray' up to 'npids' of the tasks using cpuset 'cs'.
1547 * Return actual number of pids loaded. No need to task_lock(p)
1548 * when reading out p->cpuset, as we don't really care if it changes
1549 * on the next cycle, and we are not going to try to dereference it.
1551 static int pid_array_load(pid_t *pidarray, int npids, struct cpuset *cs)
1553 int n = 0;
1554 struct task_struct *g, *p;
1556 read_lock(&tasklist_lock);
1558 do_each_thread(g, p) {
1559 if (p->cpuset == cs) {
1560 pidarray[n++] = p->pid;
1561 if (unlikely(n == npids))
1562 goto array_full;
1564 } while_each_thread(g, p);
1566 array_full:
1567 read_unlock(&tasklist_lock);
1568 return n;
1571 static int cmppid(const void *a, const void *b)
1573 return *(pid_t *)a - *(pid_t *)b;
1577 * Convert array 'a' of 'npids' pid_t's to a string of newline separated
1578 * decimal pids in 'buf'. Don't write more than 'sz' chars, but return
1579 * count 'cnt' of how many chars would be written if buf were large enough.
1581 static int pid_array_to_buf(char *buf, int sz, pid_t *a, int npids)
1583 int cnt = 0;
1584 int i;
1586 for (i = 0; i < npids; i++)
1587 cnt += snprintf(buf + cnt, max(sz - cnt, 0), "%d\n", a[i]);
1588 return cnt;
1592 * Handle an open on 'tasks' file. Prepare a buffer listing the
1593 * process id's of tasks currently attached to the cpuset being opened.
1595 * Does not require any specific cpuset mutexes, and does not take any.
1597 static int cpuset_tasks_open(struct inode *unused, struct file *file)
1599 struct cpuset *cs = __d_cs(file->f_dentry->d_parent);
1600 struct ctr_struct *ctr;
1601 pid_t *pidarray;
1602 int npids;
1603 char c;
1605 if (!(file->f_mode & FMODE_READ))
1606 return 0;
1608 ctr = kmalloc(sizeof(*ctr), GFP_KERNEL);
1609 if (!ctr)
1610 goto err0;
1613 * If cpuset gets more users after we read count, we won't have
1614 * enough space - tough. This race is indistinguishable to the
1615 * caller from the case that the additional cpuset users didn't
1616 * show up until sometime later on.
1618 npids = atomic_read(&cs->count);
1619 pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
1620 if (!pidarray)
1621 goto err1;
1623 npids = pid_array_load(pidarray, npids, cs);
1624 sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
1626 /* Call pid_array_to_buf() twice, first just to get bufsz */
1627 ctr->bufsz = pid_array_to_buf(&c, sizeof(c), pidarray, npids) + 1;
1628 ctr->buf = kmalloc(ctr->bufsz, GFP_KERNEL);
1629 if (!ctr->buf)
1630 goto err2;
1631 ctr->bufsz = pid_array_to_buf(ctr->buf, ctr->bufsz, pidarray, npids);
1633 kfree(pidarray);
1634 file->private_data = ctr;
1635 return 0;
1637 err2:
1638 kfree(pidarray);
1639 err1:
1640 kfree(ctr);
1641 err0:
1642 return -ENOMEM;
1645 static ssize_t cpuset_tasks_read(struct file *file, char __user *buf,
1646 size_t nbytes, loff_t *ppos)
1648 struct ctr_struct *ctr = file->private_data;
1650 if (*ppos + nbytes > ctr->bufsz)
1651 nbytes = ctr->bufsz - *ppos;
1652 if (copy_to_user(buf, ctr->buf + *ppos, nbytes))
1653 return -EFAULT;
1654 *ppos += nbytes;
1655 return nbytes;
1658 static int cpuset_tasks_release(struct inode *unused_inode, struct file *file)
1660 struct ctr_struct *ctr;
1662 if (file->f_mode & FMODE_READ) {
1663 ctr = file->private_data;
1664 kfree(ctr->buf);
1665 kfree(ctr);
1667 return 0;
1671 * for the common functions, 'private' gives the type of file
1674 static struct cftype cft_tasks = {
1675 .name = "tasks",
1676 .open = cpuset_tasks_open,
1677 .read = cpuset_tasks_read,
1678 .release = cpuset_tasks_release,
1679 .private = FILE_TASKLIST,
1682 static struct cftype cft_cpus = {
1683 .name = "cpus",
1684 .private = FILE_CPULIST,
1687 static struct cftype cft_mems = {
1688 .name = "mems",
1689 .private = FILE_MEMLIST,
1692 static struct cftype cft_cpu_exclusive = {
1693 .name = "cpu_exclusive",
1694 .private = FILE_CPU_EXCLUSIVE,
1697 static struct cftype cft_mem_exclusive = {
1698 .name = "mem_exclusive",
1699 .private = FILE_MEM_EXCLUSIVE,
1702 static struct cftype cft_notify_on_release = {
1703 .name = "notify_on_release",
1704 .private = FILE_NOTIFY_ON_RELEASE,
1707 static struct cftype cft_memory_migrate = {
1708 .name = "memory_migrate",
1709 .private = FILE_MEMORY_MIGRATE,
1712 static struct cftype cft_memory_pressure_enabled = {
1713 .name = "memory_pressure_enabled",
1714 .private = FILE_MEMORY_PRESSURE_ENABLED,
1717 static struct cftype cft_memory_pressure = {
1718 .name = "memory_pressure",
1719 .private = FILE_MEMORY_PRESSURE,
1722 static int cpuset_populate_dir(struct dentry *cs_dentry)
1724 int err;
1726 if ((err = cpuset_add_file(cs_dentry, &cft_cpus)) < 0)
1727 return err;
1728 if ((err = cpuset_add_file(cs_dentry, &cft_mems)) < 0)
1729 return err;
1730 if ((err = cpuset_add_file(cs_dentry, &cft_cpu_exclusive)) < 0)
1731 return err;
1732 if ((err = cpuset_add_file(cs_dentry, &cft_mem_exclusive)) < 0)
1733 return err;
1734 if ((err = cpuset_add_file(cs_dentry, &cft_notify_on_release)) < 0)
1735 return err;
1736 if ((err = cpuset_add_file(cs_dentry, &cft_memory_migrate)) < 0)
1737 return err;
1738 if ((err = cpuset_add_file(cs_dentry, &cft_memory_pressure)) < 0)
1739 return err;
1740 if ((err = cpuset_add_file(cs_dentry, &cft_tasks)) < 0)
1741 return err;
1742 return 0;
1746 * cpuset_create - create a cpuset
1747 * parent: cpuset that will be parent of the new cpuset.
1748 * name: name of the new cpuset. Will be strcpy'ed.
1749 * mode: mode to set on new inode
1751 * Must be called with the mutex on the parent inode held
1754 static long cpuset_create(struct cpuset *parent, const char *name, int mode)
1756 struct cpuset *cs;
1757 int err;
1759 cs = kmalloc(sizeof(*cs), GFP_KERNEL);
1760 if (!cs)
1761 return -ENOMEM;
1763 mutex_lock(&manage_mutex);
1764 cpuset_update_task_memory_state();
1765 cs->flags = 0;
1766 if (notify_on_release(parent))
1767 set_bit(CS_NOTIFY_ON_RELEASE, &cs->flags);
1768 cs->cpus_allowed = CPU_MASK_NONE;
1769 cs->mems_allowed = NODE_MASK_NONE;
1770 atomic_set(&cs->count, 0);
1771 INIT_LIST_HEAD(&cs->sibling);
1772 INIT_LIST_HEAD(&cs->children);
1773 atomic_inc(&cpuset_mems_generation);
1774 cs->mems_generation = atomic_read(&cpuset_mems_generation);
1775 fmeter_init(&cs->fmeter);
1777 cs->parent = parent;
1779 mutex_lock(&callback_mutex);
1780 list_add(&cs->sibling, &cs->parent->children);
1781 number_of_cpusets++;
1782 mutex_unlock(&callback_mutex);
1784 err = cpuset_create_dir(cs, name, mode);
1785 if (err < 0)
1786 goto err;
1789 * Release manage_mutex before cpuset_populate_dir() because it
1790 * will down() this new directory's i_mutex and if we race with
1791 * another mkdir, we might deadlock.
1793 mutex_unlock(&manage_mutex);
1795 err = cpuset_populate_dir(cs->dentry);
1796 /* If err < 0, we have a half-filled directory - oh well ;) */
1797 return 0;
1798 err:
1799 list_del(&cs->sibling);
1800 mutex_unlock(&manage_mutex);
1801 kfree(cs);
1802 return err;
1805 static int cpuset_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1807 struct cpuset *c_parent = dentry->d_parent->d_fsdata;
1809 /* the vfs holds inode->i_mutex already */
1810 return cpuset_create(c_parent, dentry->d_name.name, mode | S_IFDIR);
1813 static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry)
1815 struct cpuset *cs = dentry->d_fsdata;
1816 struct dentry *d;
1817 struct cpuset *parent;
1818 char *pathbuf = NULL;
1820 /* the vfs holds both inode->i_mutex already */
1822 mutex_lock(&manage_mutex);
1823 cpuset_update_task_memory_state();
1824 if (atomic_read(&cs->count) > 0) {
1825 mutex_unlock(&manage_mutex);
1826 return -EBUSY;
1828 if (!list_empty(&cs->children)) {
1829 mutex_unlock(&manage_mutex);
1830 return -EBUSY;
1832 parent = cs->parent;
1833 mutex_lock(&callback_mutex);
1834 set_bit(CS_REMOVED, &cs->flags);
1835 if (is_cpu_exclusive(cs))
1836 update_cpu_domains(cs);
1837 list_del(&cs->sibling); /* delete my sibling from parent->children */
1838 spin_lock(&cs->dentry->d_lock);
1839 d = dget(cs->dentry);
1840 cs->dentry = NULL;
1841 spin_unlock(&d->d_lock);
1842 cpuset_d_remove_dir(d);
1843 dput(d);
1844 number_of_cpusets--;
1845 mutex_unlock(&callback_mutex);
1846 if (list_empty(&parent->children))
1847 check_for_release(parent, &pathbuf);
1848 mutex_unlock(&manage_mutex);
1849 cpuset_release_agent(pathbuf);
1850 return 0;
1854 * cpuset_init_early - just enough so that the calls to
1855 * cpuset_update_task_memory_state() in early init code
1856 * are harmless.
1859 int __init cpuset_init_early(void)
1861 struct task_struct *tsk = current;
1863 tsk->cpuset = &top_cpuset;
1864 tsk->cpuset->mems_generation = atomic_read(&cpuset_mems_generation);
1865 return 0;
1869 * cpuset_init - initialize cpusets at system boot
1871 * Description: Initialize top_cpuset and the cpuset internal file system,
1874 int __init cpuset_init(void)
1876 struct dentry *root;
1877 int err;
1879 top_cpuset.cpus_allowed = CPU_MASK_ALL;
1880 top_cpuset.mems_allowed = NODE_MASK_ALL;
1882 fmeter_init(&top_cpuset.fmeter);
1883 atomic_inc(&cpuset_mems_generation);
1884 top_cpuset.mems_generation = atomic_read(&cpuset_mems_generation);
1886 init_task.cpuset = &top_cpuset;
1888 err = register_filesystem(&cpuset_fs_type);
1889 if (err < 0)
1890 goto out;
1891 cpuset_mount = kern_mount(&cpuset_fs_type);
1892 if (IS_ERR(cpuset_mount)) {
1893 printk(KERN_ERR "cpuset: could not mount!\n");
1894 err = PTR_ERR(cpuset_mount);
1895 cpuset_mount = NULL;
1896 goto out;
1898 root = cpuset_mount->mnt_sb->s_root;
1899 root->d_fsdata = &top_cpuset;
1900 root->d_inode->i_nlink++;
1901 top_cpuset.dentry = root;
1902 root->d_inode->i_op = &cpuset_dir_inode_operations;
1903 number_of_cpusets = 1;
1904 err = cpuset_populate_dir(root);
1905 /* memory_pressure_enabled is in root cpuset only */
1906 if (err == 0)
1907 err = cpuset_add_file(root, &cft_memory_pressure_enabled);
1908 out:
1909 return err;
1913 * cpuset_init_smp - initialize cpus_allowed
1915 * Description: Finish top cpuset after cpu, node maps are initialized
1918 void __init cpuset_init_smp(void)
1920 top_cpuset.cpus_allowed = cpu_online_map;
1921 top_cpuset.mems_allowed = node_online_map;
1925 * cpuset_fork - attach newly forked task to its parents cpuset.
1926 * @tsk: pointer to task_struct of forking parent process.
1928 * Description: A task inherits its parent's cpuset at fork().
1930 * A pointer to the shared cpuset was automatically copied in fork.c
1931 * by dup_task_struct(). However, we ignore that copy, since it was
1932 * not made under the protection of task_lock(), so might no longer be
1933 * a valid cpuset pointer. attach_task() might have already changed
1934 * current->cpuset, allowing the previously referenced cpuset to
1935 * be removed and freed. Instead, we task_lock(current) and copy
1936 * its present value of current->cpuset for our freshly forked child.
1938 * At the point that cpuset_fork() is called, 'current' is the parent
1939 * task, and the passed argument 'child' points to the child task.
1942 void cpuset_fork(struct task_struct *child)
1944 task_lock(current);
1945 child->cpuset = current->cpuset;
1946 atomic_inc(&child->cpuset->count);
1947 task_unlock(current);
1951 * cpuset_exit - detach cpuset from exiting task
1952 * @tsk: pointer to task_struct of exiting process
1954 * Description: Detach cpuset from @tsk and release it.
1956 * Note that cpusets marked notify_on_release force every task in
1957 * them to take the global manage_mutex mutex when exiting.
1958 * This could impact scaling on very large systems. Be reluctant to
1959 * use notify_on_release cpusets where very high task exit scaling
1960 * is required on large systems.
1962 * Don't even think about derefencing 'cs' after the cpuset use count
1963 * goes to zero, except inside a critical section guarded by manage_mutex
1964 * or callback_mutex. Otherwise a zero cpuset use count is a license to
1965 * any other task to nuke the cpuset immediately, via cpuset_rmdir().
1967 * This routine has to take manage_mutex, not callback_mutex, because
1968 * it is holding that mutex while calling check_for_release(),
1969 * which calls kmalloc(), so can't be called holding callback_mutex().
1971 * We don't need to task_lock() this reference to tsk->cpuset,
1972 * because tsk is already marked PF_EXITING, so attach_task() won't
1973 * mess with it, or task is a failed fork, never visible to attach_task.
1975 * Hack:
1977 * Set the exiting tasks cpuset to the root cpuset (top_cpuset).
1979 * Don't leave a task unable to allocate memory, as that is an
1980 * accident waiting to happen should someone add a callout in
1981 * do_exit() after the cpuset_exit() call that might allocate.
1982 * If a task tries to allocate memory with an invalid cpuset,
1983 * it will oops in cpuset_update_task_memory_state().
1985 * We call cpuset_exit() while the task is still competent to
1986 * handle notify_on_release(), then leave the task attached to
1987 * the root cpuset (top_cpuset) for the remainder of its exit.
1989 * To do this properly, we would increment the reference count on
1990 * top_cpuset, and near the very end of the kernel/exit.c do_exit()
1991 * code we would add a second cpuset function call, to drop that
1992 * reference. This would just create an unnecessary hot spot on
1993 * the top_cpuset reference count, to no avail.
1995 * Normally, holding a reference to a cpuset without bumping its
1996 * count is unsafe. The cpuset could go away, or someone could
1997 * attach us to a different cpuset, decrementing the count on
1998 * the first cpuset that we never incremented. But in this case,
1999 * top_cpuset isn't going away, and either task has PF_EXITING set,
2000 * which wards off any attach_task() attempts, or task is a failed
2001 * fork, never visible to attach_task.
2003 * Another way to do this would be to set the cpuset pointer
2004 * to NULL here, and check in cpuset_update_task_memory_state()
2005 * for a NULL pointer. This hack avoids that NULL check, for no
2006 * cost (other than this way too long comment ;).
2009 void cpuset_exit(struct task_struct *tsk)
2011 struct cpuset *cs;
2013 cs = tsk->cpuset;
2014 tsk->cpuset = &top_cpuset; /* Hack - see comment above */
2016 if (notify_on_release(cs)) {
2017 char *pathbuf = NULL;
2019 mutex_lock(&manage_mutex);
2020 if (atomic_dec_and_test(&cs->count))
2021 check_for_release(cs, &pathbuf);
2022 mutex_unlock(&manage_mutex);
2023 cpuset_release_agent(pathbuf);
2024 } else {
2025 atomic_dec(&cs->count);
2030 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2031 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2033 * Description: Returns the cpumask_t cpus_allowed of the cpuset
2034 * attached to the specified @tsk. Guaranteed to return some non-empty
2035 * subset of cpu_online_map, even if this means going outside the
2036 * tasks cpuset.
2039 cpumask_t cpuset_cpus_allowed(struct task_struct *tsk)
2041 cpumask_t mask;
2043 mutex_lock(&callback_mutex);
2044 task_lock(tsk);
2045 guarantee_online_cpus(tsk->cpuset, &mask);
2046 task_unlock(tsk);
2047 mutex_unlock(&callback_mutex);
2049 return mask;
2052 void cpuset_init_current_mems_allowed(void)
2054 current->mems_allowed = NODE_MASK_ALL;
2058 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2059 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2061 * Description: Returns the nodemask_t mems_allowed of the cpuset
2062 * attached to the specified @tsk. Guaranteed to return some non-empty
2063 * subset of node_online_map, even if this means going outside the
2064 * tasks cpuset.
2067 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2069 nodemask_t mask;
2071 mutex_lock(&callback_mutex);
2072 task_lock(tsk);
2073 guarantee_online_mems(tsk->cpuset, &mask);
2074 task_unlock(tsk);
2075 mutex_unlock(&callback_mutex);
2077 return mask;
2081 * cpuset_zonelist_valid_mems_allowed - check zonelist vs. curremt mems_allowed
2082 * @zl: the zonelist to be checked
2084 * Are any of the nodes on zonelist zl allowed in current->mems_allowed?
2086 int cpuset_zonelist_valid_mems_allowed(struct zonelist *zl)
2088 int i;
2090 for (i = 0; zl->zones[i]; i++) {
2091 int nid = zl->zones[i]->zone_pgdat->node_id;
2093 if (node_isset(nid, current->mems_allowed))
2094 return 1;
2096 return 0;
2100 * nearest_exclusive_ancestor() - Returns the nearest mem_exclusive
2101 * ancestor to the specified cpuset. Call holding callback_mutex.
2102 * If no ancestor is mem_exclusive (an unusual configuration), then
2103 * returns the root cpuset.
2105 static const struct cpuset *nearest_exclusive_ancestor(const struct cpuset *cs)
2107 while (!is_mem_exclusive(cs) && cs->parent)
2108 cs = cs->parent;
2109 return cs;
2113 * cpuset_zone_allowed - Can we allocate memory on zone z's memory node?
2114 * @z: is this zone on an allowed node?
2115 * @gfp_mask: memory allocation flags (we use __GFP_HARDWALL)
2117 * If we're in interrupt, yes, we can always allocate. If zone
2118 * z's node is in our tasks mems_allowed, yes. If it's not a
2119 * __GFP_HARDWALL request and this zone's nodes is in the nearest
2120 * mem_exclusive cpuset ancestor to this tasks cpuset, yes.
2121 * Otherwise, no.
2123 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2124 * and do not allow allocations outside the current tasks cpuset.
2125 * GFP_KERNEL allocations are not so marked, so can escape to the
2126 * nearest mem_exclusive ancestor cpuset.
2128 * Scanning up parent cpusets requires callback_mutex. The __alloc_pages()
2129 * routine only calls here with __GFP_HARDWALL bit _not_ set if
2130 * it's a GFP_KERNEL allocation, and all nodes in the current tasks
2131 * mems_allowed came up empty on the first pass over the zonelist.
2132 * So only GFP_KERNEL allocations, if all nodes in the cpuset are
2133 * short of memory, might require taking the callback_mutex mutex.
2135 * The first loop over the zonelist in mm/page_alloc.c:__alloc_pages()
2136 * calls here with __GFP_HARDWALL always set in gfp_mask, enforcing
2137 * hardwall cpusets - no allocation on a node outside the cpuset is
2138 * allowed (unless in interrupt, of course).
2140 * The second loop doesn't even call here for GFP_ATOMIC requests
2141 * (if the __alloc_pages() local variable 'wait' is set). That check
2142 * and the checks below have the combined affect in the second loop of
2143 * the __alloc_pages() routine that:
2144 * in_interrupt - any node ok (current task context irrelevant)
2145 * GFP_ATOMIC - any node ok
2146 * GFP_KERNEL - any node in enclosing mem_exclusive cpuset ok
2147 * GFP_USER - only nodes in current tasks mems allowed ok.
2150 int __cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask)
2152 int node; /* node that zone z is on */
2153 const struct cpuset *cs; /* current cpuset ancestors */
2154 int allowed = 1; /* is allocation in zone z allowed? */
2156 if (in_interrupt())
2157 return 1;
2158 node = z->zone_pgdat->node_id;
2159 if (node_isset(node, current->mems_allowed))
2160 return 1;
2161 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2162 return 0;
2164 if (current->flags & PF_EXITING) /* Let dying task have memory */
2165 return 1;
2167 /* Not hardwall and node outside mems_allowed: scan up cpusets */
2168 mutex_lock(&callback_mutex);
2170 task_lock(current);
2171 cs = nearest_exclusive_ancestor(current->cpuset);
2172 task_unlock(current);
2174 allowed = node_isset(node, cs->mems_allowed);
2175 mutex_unlock(&callback_mutex);
2176 return allowed;
2180 * cpuset_lock - lock out any changes to cpuset structures
2182 * The out of memory (oom) code needs to mutex_lock cpusets
2183 * from being changed while it scans the tasklist looking for a
2184 * task in an overlapping cpuset. Expose callback_mutex via this
2185 * cpuset_lock() routine, so the oom code can lock it, before
2186 * locking the task list. The tasklist_lock is a spinlock, so
2187 * must be taken inside callback_mutex.
2190 void cpuset_lock(void)
2192 mutex_lock(&callback_mutex);
2196 * cpuset_unlock - release lock on cpuset changes
2198 * Undo the lock taken in a previous cpuset_lock() call.
2201 void cpuset_unlock(void)
2203 mutex_unlock(&callback_mutex);
2207 * cpuset_excl_nodes_overlap - Do we overlap @p's mem_exclusive ancestors?
2208 * @p: pointer to task_struct of some other task.
2210 * Description: Return true if the nearest mem_exclusive ancestor
2211 * cpusets of tasks @p and current overlap. Used by oom killer to
2212 * determine if task @p's memory usage might impact the memory
2213 * available to the current task.
2215 * Call while holding callback_mutex.
2218 int cpuset_excl_nodes_overlap(const struct task_struct *p)
2220 const struct cpuset *cs1, *cs2; /* my and p's cpuset ancestors */
2221 int overlap = 0; /* do cpusets overlap? */
2223 task_lock(current);
2224 if (current->flags & PF_EXITING) {
2225 task_unlock(current);
2226 goto done;
2228 cs1 = nearest_exclusive_ancestor(current->cpuset);
2229 task_unlock(current);
2231 task_lock((struct task_struct *)p);
2232 if (p->flags & PF_EXITING) {
2233 task_unlock((struct task_struct *)p);
2234 goto done;
2236 cs2 = nearest_exclusive_ancestor(p->cpuset);
2237 task_unlock((struct task_struct *)p);
2239 overlap = nodes_intersects(cs1->mems_allowed, cs2->mems_allowed);
2240 done:
2241 return overlap;
2245 * Collection of memory_pressure is suppressed unless
2246 * this flag is enabled by writing "1" to the special
2247 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2250 int cpuset_memory_pressure_enabled __read_mostly;
2253 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2255 * Keep a running average of the rate of synchronous (direct)
2256 * page reclaim efforts initiated by tasks in each cpuset.
2258 * This represents the rate at which some task in the cpuset
2259 * ran low on memory on all nodes it was allowed to use, and
2260 * had to enter the kernels page reclaim code in an effort to
2261 * create more free memory by tossing clean pages or swapping
2262 * or writing dirty pages.
2264 * Display to user space in the per-cpuset read-only file
2265 * "memory_pressure". Value displayed is an integer
2266 * representing the recent rate of entry into the synchronous
2267 * (direct) page reclaim by any task attached to the cpuset.
2270 void __cpuset_memory_pressure_bump(void)
2272 struct cpuset *cs;
2274 task_lock(current);
2275 cs = current->cpuset;
2276 fmeter_markevent(&cs->fmeter);
2277 task_unlock(current);
2281 * proc_cpuset_show()
2282 * - Print tasks cpuset path into seq_file.
2283 * - Used for /proc/<pid>/cpuset.
2284 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2285 * doesn't really matter if tsk->cpuset changes after we read it,
2286 * and we take manage_mutex, keeping attach_task() from changing it
2287 * anyway.
2290 static int proc_cpuset_show(struct seq_file *m, void *v)
2292 struct cpuset *cs;
2293 struct task_struct *tsk;
2294 char *buf;
2295 int retval = 0;
2297 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2298 if (!buf)
2299 return -ENOMEM;
2301 tsk = m->private;
2302 mutex_lock(&manage_mutex);
2303 cs = tsk->cpuset;
2304 if (!cs) {
2305 retval = -EINVAL;
2306 goto out;
2309 retval = cpuset_path(cs, buf, PAGE_SIZE);
2310 if (retval < 0)
2311 goto out;
2312 seq_puts(m, buf);
2313 seq_putc(m, '\n');
2314 out:
2315 mutex_unlock(&manage_mutex);
2316 kfree(buf);
2317 return retval;
2320 static int cpuset_open(struct inode *inode, struct file *file)
2322 struct task_struct *tsk = PROC_I(inode)->task;
2323 return single_open(file, proc_cpuset_show, tsk);
2326 struct file_operations proc_cpuset_operations = {
2327 .open = cpuset_open,
2328 .read = seq_read,
2329 .llseek = seq_lseek,
2330 .release = single_release,
2333 /* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
2334 char *cpuset_task_status_allowed(struct task_struct *task, char *buffer)
2336 buffer += sprintf(buffer, "Cpus_allowed:\t");
2337 buffer += cpumask_scnprintf(buffer, PAGE_SIZE, task->cpus_allowed);
2338 buffer += sprintf(buffer, "\n");
2339 buffer += sprintf(buffer, "Mems_allowed:\t");
2340 buffer += nodemask_scnprintf(buffer, PAGE_SIZE, task->mems_allowed);
2341 buffer += sprintf(buffer, "\n");
2342 return buffer;