4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
45 * dcache->d_inode->i_lock protects:
46 * - i_dentry, d_alias, d_inode of aliases
47 * dcache_hash_bucket lock protects:
48 * - the dcache hash table
49 * s_anon bl list spinlock protects:
50 * - the s_anon list (see __d_drop)
51 * dcache_lru_lock protects:
52 * - the dcache lru lists and counters
59 * - d_parent and d_subdirs
60 * - childrens' d_child and d_parent
64 * dentry->d_inode->i_lock
67 * dcache_hash_bucket lock
70 * If there is an ancestor relationship:
71 * dentry->d_parent->...->d_parent->d_lock
73 * dentry->d_parent->d_lock
76 * If no ancestor relationship:
77 * if (dentry1 < dentry2)
81 int sysctl_vfs_cache_pressure __read_mostly
= 100;
82 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure
);
84 static __cacheline_aligned_in_smp
DEFINE_SPINLOCK(dcache_lru_lock
);
85 __cacheline_aligned_in_smp
DEFINE_SEQLOCK(rename_lock
);
87 EXPORT_SYMBOL(rename_lock
);
89 static struct kmem_cache
*dentry_cache __read_mostly
;
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
99 #define D_HASHBITS d_hash_shift
100 #define D_HASHMASK d_hash_mask
102 static unsigned int d_hash_mask __read_mostly
;
103 static unsigned int d_hash_shift __read_mostly
;
105 static struct hlist_bl_head
*dentry_hashtable __read_mostly
;
107 static inline struct hlist_bl_head
*d_hash(const struct dentry
*parent
,
110 hash
+= (unsigned long) parent
/ L1_CACHE_BYTES
;
111 hash
= hash
+ (hash
>> D_HASHBITS
);
112 return dentry_hashtable
+ (hash
& D_HASHMASK
);
115 /* Statistics gathering. */
116 struct dentry_stat_t dentry_stat
= {
120 static DEFINE_PER_CPU(unsigned int, nr_dentry
);
122 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
123 static int get_nr_dentry(void)
127 for_each_possible_cpu(i
)
128 sum
+= per_cpu(nr_dentry
, i
);
129 return sum
< 0 ? 0 : sum
;
132 int proc_nr_dentry(ctl_table
*table
, int write
, void __user
*buffer
,
133 size_t *lenp
, loff_t
*ppos
)
135 dentry_stat
.nr_dentry
= get_nr_dentry();
136 return proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
141 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
142 * The strings are both count bytes long, and count is non-zero.
144 #ifdef CONFIG_DCACHE_WORD_ACCESS
146 #include <asm/word-at-a-time.h>
148 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
149 * aligned allocation for this particular component. We don't
150 * strictly need the load_unaligned_zeropad() safety, but it
151 * doesn't hurt either.
153 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
154 * need the careful unaligned handling.
156 static inline int dentry_string_cmp(const unsigned char *cs
, const unsigned char *ct
, unsigned tcount
)
158 unsigned long a
,b
,mask
;
161 a
= *(unsigned long *)cs
;
162 b
= load_unaligned_zeropad(ct
);
163 if (tcount
< sizeof(unsigned long))
165 if (unlikely(a
!= b
))
167 cs
+= sizeof(unsigned long);
168 ct
+= sizeof(unsigned long);
169 tcount
-= sizeof(unsigned long);
173 mask
= ~(~0ul << tcount
*8);
174 return unlikely(!!((a
^ b
) & mask
));
179 static inline int dentry_string_cmp(const unsigned char *cs
, const unsigned char *ct
, unsigned tcount
)
193 static inline int dentry_cmp(const struct dentry
*dentry
, const unsigned char *ct
, unsigned tcount
)
195 const unsigned char *cs
;
197 * Be careful about RCU walk racing with rename:
198 * use ACCESS_ONCE to fetch the name pointer.
200 * NOTE! Even if a rename will mean that the length
201 * was not loaded atomically, we don't care. The
202 * RCU walk will check the sequence count eventually,
203 * and catch it. And we won't overrun the buffer,
204 * because we're reading the name pointer atomically,
205 * and a dentry name is guaranteed to be properly
206 * terminated with a NUL byte.
208 * End result: even if 'len' is wrong, we'll exit
209 * early because the data cannot match (there can
210 * be no NUL in the ct/tcount data)
212 cs
= ACCESS_ONCE(dentry
->d_name
.name
);
213 smp_read_barrier_depends();
214 return dentry_string_cmp(cs
, ct
, tcount
);
217 static void __d_free(struct rcu_head
*head
)
219 struct dentry
*dentry
= container_of(head
, struct dentry
, d_u
.d_rcu
);
221 WARN_ON(!hlist_unhashed(&dentry
->d_alias
));
222 if (dname_external(dentry
))
223 kfree(dentry
->d_name
.name
);
224 kmem_cache_free(dentry_cache
, dentry
);
230 static void d_free(struct dentry
*dentry
)
232 BUG_ON(dentry
->d_count
);
233 this_cpu_dec(nr_dentry
);
234 if (dentry
->d_op
&& dentry
->d_op
->d_release
)
235 dentry
->d_op
->d_release(dentry
);
237 /* if dentry was never visible to RCU, immediate free is OK */
238 if (!(dentry
->d_flags
& DCACHE_RCUACCESS
))
239 __d_free(&dentry
->d_u
.d_rcu
);
241 call_rcu(&dentry
->d_u
.d_rcu
, __d_free
);
245 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
246 * @dentry: the target dentry
247 * After this call, in-progress rcu-walk path lookup will fail. This
248 * should be called after unhashing, and after changing d_inode (if
249 * the dentry has not already been unhashed).
251 static inline void dentry_rcuwalk_barrier(struct dentry
*dentry
)
253 assert_spin_locked(&dentry
->d_lock
);
254 /* Go through a barrier */
255 write_seqcount_barrier(&dentry
->d_seq
);
259 * Release the dentry's inode, using the filesystem
260 * d_iput() operation if defined. Dentry has no refcount
263 static void dentry_iput(struct dentry
* dentry
)
264 __releases(dentry
->d_lock
)
265 __releases(dentry
->d_inode
->i_lock
)
267 struct inode
*inode
= dentry
->d_inode
;
269 dentry
->d_inode
= NULL
;
270 hlist_del_init(&dentry
->d_alias
);
271 spin_unlock(&dentry
->d_lock
);
272 spin_unlock(&inode
->i_lock
);
274 fsnotify_inoderemove(inode
);
275 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
276 dentry
->d_op
->d_iput(dentry
, inode
);
280 spin_unlock(&dentry
->d_lock
);
285 * Release the dentry's inode, using the filesystem
286 * d_iput() operation if defined. dentry remains in-use.
288 static void dentry_unlink_inode(struct dentry
* dentry
)
289 __releases(dentry
->d_lock
)
290 __releases(dentry
->d_inode
->i_lock
)
292 struct inode
*inode
= dentry
->d_inode
;
293 dentry
->d_inode
= NULL
;
294 hlist_del_init(&dentry
->d_alias
);
295 dentry_rcuwalk_barrier(dentry
);
296 spin_unlock(&dentry
->d_lock
);
297 spin_unlock(&inode
->i_lock
);
299 fsnotify_inoderemove(inode
);
300 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
301 dentry
->d_op
->d_iput(dentry
, inode
);
307 * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held.
309 static void dentry_lru_add(struct dentry
*dentry
)
311 if (list_empty(&dentry
->d_lru
)) {
312 spin_lock(&dcache_lru_lock
);
313 list_add(&dentry
->d_lru
, &dentry
->d_sb
->s_dentry_lru
);
314 dentry
->d_sb
->s_nr_dentry_unused
++;
315 dentry_stat
.nr_unused
++;
316 spin_unlock(&dcache_lru_lock
);
320 static void __dentry_lru_del(struct dentry
*dentry
)
322 list_del_init(&dentry
->d_lru
);
323 dentry
->d_flags
&= ~DCACHE_SHRINK_LIST
;
324 dentry
->d_sb
->s_nr_dentry_unused
--;
325 dentry_stat
.nr_unused
--;
329 * Remove a dentry with references from the LRU.
331 static void dentry_lru_del(struct dentry
*dentry
)
333 if (!list_empty(&dentry
->d_lru
)) {
334 spin_lock(&dcache_lru_lock
);
335 __dentry_lru_del(dentry
);
336 spin_unlock(&dcache_lru_lock
);
341 * Remove a dentry that is unreferenced and about to be pruned
342 * (unhashed and destroyed) from the LRU, and inform the file system.
343 * This wrapper should be called _prior_ to unhashing a victim dentry.
345 static void dentry_lru_prune(struct dentry
*dentry
)
347 if (!list_empty(&dentry
->d_lru
)) {
348 if (dentry
->d_flags
& DCACHE_OP_PRUNE
)
349 dentry
->d_op
->d_prune(dentry
);
351 spin_lock(&dcache_lru_lock
);
352 __dentry_lru_del(dentry
);
353 spin_unlock(&dcache_lru_lock
);
357 static void dentry_lru_move_list(struct dentry
*dentry
, struct list_head
*list
)
359 spin_lock(&dcache_lru_lock
);
360 if (list_empty(&dentry
->d_lru
)) {
361 list_add_tail(&dentry
->d_lru
, list
);
362 dentry
->d_sb
->s_nr_dentry_unused
++;
363 dentry_stat
.nr_unused
++;
365 list_move_tail(&dentry
->d_lru
, list
);
367 spin_unlock(&dcache_lru_lock
);
371 * d_kill - kill dentry and return parent
372 * @dentry: dentry to kill
373 * @parent: parent dentry
375 * The dentry must already be unhashed and removed from the LRU.
377 * If this is the root of the dentry tree, return NULL.
379 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
382 static struct dentry
*d_kill(struct dentry
*dentry
, struct dentry
*parent
)
383 __releases(dentry
->d_lock
)
384 __releases(parent
->d_lock
)
385 __releases(dentry
->d_inode
->i_lock
)
387 list_del(&dentry
->d_u
.d_child
);
389 * Inform try_to_ascend() that we are no longer attached to the
392 dentry
->d_flags
|= DCACHE_DISCONNECTED
;
394 spin_unlock(&parent
->d_lock
);
397 * dentry_iput drops the locks, at which point nobody (except
398 * transient RCU lookups) can reach this dentry.
405 * Unhash a dentry without inserting an RCU walk barrier or checking that
406 * dentry->d_lock is locked. The caller must take care of that, if
409 static void __d_shrink(struct dentry
*dentry
)
411 if (!d_unhashed(dentry
)) {
412 struct hlist_bl_head
*b
;
413 if (unlikely(dentry
->d_flags
& DCACHE_DISCONNECTED
))
414 b
= &dentry
->d_sb
->s_anon
;
416 b
= d_hash(dentry
->d_parent
, dentry
->d_name
.hash
);
419 __hlist_bl_del(&dentry
->d_hash
);
420 dentry
->d_hash
.pprev
= NULL
;
426 * d_drop - drop a dentry
427 * @dentry: dentry to drop
429 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
430 * be found through a VFS lookup any more. Note that this is different from
431 * deleting the dentry - d_delete will try to mark the dentry negative if
432 * possible, giving a successful _negative_ lookup, while d_drop will
433 * just make the cache lookup fail.
435 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
436 * reason (NFS timeouts or autofs deletes).
438 * __d_drop requires dentry->d_lock.
440 void __d_drop(struct dentry
*dentry
)
442 if (!d_unhashed(dentry
)) {
444 dentry_rcuwalk_barrier(dentry
);
447 EXPORT_SYMBOL(__d_drop
);
449 void d_drop(struct dentry
*dentry
)
451 spin_lock(&dentry
->d_lock
);
453 spin_unlock(&dentry
->d_lock
);
455 EXPORT_SYMBOL(d_drop
);
458 * d_clear_need_lookup - drop a dentry from cache and clear the need lookup flag
459 * @dentry: dentry to drop
461 * This is called when we do a lookup on a placeholder dentry that needed to be
462 * looked up. The dentry should have been hashed in order for it to be found by
463 * the lookup code, but now needs to be unhashed while we do the actual lookup
464 * and clear the DCACHE_NEED_LOOKUP flag.
466 void d_clear_need_lookup(struct dentry
*dentry
)
468 spin_lock(&dentry
->d_lock
);
470 dentry
->d_flags
&= ~DCACHE_NEED_LOOKUP
;
471 spin_unlock(&dentry
->d_lock
);
473 EXPORT_SYMBOL(d_clear_need_lookup
);
476 * Finish off a dentry we've decided to kill.
477 * dentry->d_lock must be held, returns with it unlocked.
478 * If ref is non-zero, then decrement the refcount too.
479 * Returns dentry requiring refcount drop, or NULL if we're done.
481 static inline struct dentry
*dentry_kill(struct dentry
*dentry
, int ref
)
482 __releases(dentry
->d_lock
)
485 struct dentry
*parent
;
487 inode
= dentry
->d_inode
;
488 if (inode
&& !spin_trylock(&inode
->i_lock
)) {
490 spin_unlock(&dentry
->d_lock
);
492 return dentry
; /* try again with same dentry */
497 parent
= dentry
->d_parent
;
498 if (parent
&& !spin_trylock(&parent
->d_lock
)) {
500 spin_unlock(&inode
->i_lock
);
507 * if dentry was on the d_lru list delete it from there.
508 * inform the fs via d_prune that this dentry is about to be
509 * unhashed and destroyed.
511 dentry_lru_prune(dentry
);
512 /* if it was on the hash then remove it */
514 return d_kill(dentry
, parent
);
520 * This is complicated by the fact that we do not want to put
521 * dentries that are no longer on any hash chain on the unused
522 * list: we'd much rather just get rid of them immediately.
524 * However, that implies that we have to traverse the dentry
525 * tree upwards to the parents which might _also_ now be
526 * scheduled for deletion (it may have been only waiting for
527 * its last child to go away).
529 * This tail recursion is done by hand as we don't want to depend
530 * on the compiler to always get this right (gcc generally doesn't).
531 * Real recursion would eat up our stack space.
535 * dput - release a dentry
536 * @dentry: dentry to release
538 * Release a dentry. This will drop the usage count and if appropriate
539 * call the dentry unlink method as well as removing it from the queues and
540 * releasing its resources. If the parent dentries were scheduled for release
541 * they too may now get deleted.
543 void dput(struct dentry
*dentry
)
549 if (dentry
->d_count
== 1)
551 spin_lock(&dentry
->d_lock
);
552 BUG_ON(!dentry
->d_count
);
553 if (dentry
->d_count
> 1) {
555 spin_unlock(&dentry
->d_lock
);
559 if (dentry
->d_flags
& DCACHE_OP_DELETE
) {
560 if (dentry
->d_op
->d_delete(dentry
))
564 /* Unreachable? Get rid of it */
565 if (d_unhashed(dentry
))
569 * If this dentry needs lookup, don't set the referenced flag so that it
570 * is more likely to be cleaned up by the dcache shrinker in case of
573 if (!d_need_lookup(dentry
))
574 dentry
->d_flags
|= DCACHE_REFERENCED
;
575 dentry_lru_add(dentry
);
578 spin_unlock(&dentry
->d_lock
);
582 dentry
= dentry_kill(dentry
, 1);
589 * d_invalidate - invalidate a dentry
590 * @dentry: dentry to invalidate
592 * Try to invalidate the dentry if it turns out to be
593 * possible. If there are other dentries that can be
594 * reached through this one we can't delete it and we
595 * return -EBUSY. On success we return 0.
600 int d_invalidate(struct dentry
* dentry
)
603 * If it's already been dropped, return OK.
605 spin_lock(&dentry
->d_lock
);
606 if (d_unhashed(dentry
)) {
607 spin_unlock(&dentry
->d_lock
);
611 * Check whether to do a partial shrink_dcache
612 * to get rid of unused child entries.
614 if (!list_empty(&dentry
->d_subdirs
)) {
615 spin_unlock(&dentry
->d_lock
);
616 shrink_dcache_parent(dentry
);
617 spin_lock(&dentry
->d_lock
);
621 * Somebody else still using it?
623 * If it's a directory, we can't drop it
624 * for fear of somebody re-populating it
625 * with children (even though dropping it
626 * would make it unreachable from the root,
627 * we might still populate it if it was a
628 * working directory or similar).
629 * We also need to leave mountpoints alone,
632 if (dentry
->d_count
> 1 && dentry
->d_inode
) {
633 if (S_ISDIR(dentry
->d_inode
->i_mode
) || d_mountpoint(dentry
)) {
634 spin_unlock(&dentry
->d_lock
);
640 spin_unlock(&dentry
->d_lock
);
643 EXPORT_SYMBOL(d_invalidate
);
645 /* This must be called with d_lock held */
646 static inline void __dget_dlock(struct dentry
*dentry
)
651 static inline void __dget(struct dentry
*dentry
)
653 spin_lock(&dentry
->d_lock
);
654 __dget_dlock(dentry
);
655 spin_unlock(&dentry
->d_lock
);
658 struct dentry
*dget_parent(struct dentry
*dentry
)
664 * Don't need rcu_dereference because we re-check it was correct under
668 ret
= dentry
->d_parent
;
669 spin_lock(&ret
->d_lock
);
670 if (unlikely(ret
!= dentry
->d_parent
)) {
671 spin_unlock(&ret
->d_lock
);
676 BUG_ON(!ret
->d_count
);
678 spin_unlock(&ret
->d_lock
);
681 EXPORT_SYMBOL(dget_parent
);
684 * d_find_alias - grab a hashed alias of inode
685 * @inode: inode in question
686 * @want_discon: flag, used by d_splice_alias, to request
687 * that only a DISCONNECTED alias be returned.
689 * If inode has a hashed alias, or is a directory and has any alias,
690 * acquire the reference to alias and return it. Otherwise return NULL.
691 * Notice that if inode is a directory there can be only one alias and
692 * it can be unhashed only if it has no children, or if it is the root
695 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
696 * any other hashed alias over that one unless @want_discon is set,
697 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
699 static struct dentry
*__d_find_alias(struct inode
*inode
, int want_discon
)
701 struct dentry
*alias
, *discon_alias
;
702 struct hlist_node
*p
;
706 hlist_for_each_entry(alias
, p
, &inode
->i_dentry
, d_alias
) {
707 spin_lock(&alias
->d_lock
);
708 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
709 if (IS_ROOT(alias
) &&
710 (alias
->d_flags
& DCACHE_DISCONNECTED
)) {
711 discon_alias
= alias
;
712 } else if (!want_discon
) {
714 spin_unlock(&alias
->d_lock
);
718 spin_unlock(&alias
->d_lock
);
721 alias
= discon_alias
;
722 spin_lock(&alias
->d_lock
);
723 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
724 if (IS_ROOT(alias
) &&
725 (alias
->d_flags
& DCACHE_DISCONNECTED
)) {
727 spin_unlock(&alias
->d_lock
);
731 spin_unlock(&alias
->d_lock
);
737 struct dentry
*d_find_alias(struct inode
*inode
)
739 struct dentry
*de
= NULL
;
741 if (!hlist_empty(&inode
->i_dentry
)) {
742 spin_lock(&inode
->i_lock
);
743 de
= __d_find_alias(inode
, 0);
744 spin_unlock(&inode
->i_lock
);
748 EXPORT_SYMBOL(d_find_alias
);
751 * Try to kill dentries associated with this inode.
752 * WARNING: you must own a reference to inode.
754 void d_prune_aliases(struct inode
*inode
)
756 struct dentry
*dentry
;
757 struct hlist_node
*p
;
759 spin_lock(&inode
->i_lock
);
760 hlist_for_each_entry(dentry
, p
, &inode
->i_dentry
, d_alias
) {
761 spin_lock(&dentry
->d_lock
);
762 if (!dentry
->d_count
) {
763 __dget_dlock(dentry
);
765 spin_unlock(&dentry
->d_lock
);
766 spin_unlock(&inode
->i_lock
);
770 spin_unlock(&dentry
->d_lock
);
772 spin_unlock(&inode
->i_lock
);
774 EXPORT_SYMBOL(d_prune_aliases
);
777 * Try to throw away a dentry - free the inode, dput the parent.
778 * Requires dentry->d_lock is held, and dentry->d_count == 0.
779 * Releases dentry->d_lock.
781 * This may fail if locks cannot be acquired no problem, just try again.
783 static void try_prune_one_dentry(struct dentry
*dentry
)
784 __releases(dentry
->d_lock
)
786 struct dentry
*parent
;
788 parent
= dentry_kill(dentry
, 0);
790 * If dentry_kill returns NULL, we have nothing more to do.
791 * if it returns the same dentry, trylocks failed. In either
792 * case, just loop again.
794 * Otherwise, we need to prune ancestors too. This is necessary
795 * to prevent quadratic behavior of shrink_dcache_parent(), but
796 * is also expected to be beneficial in reducing dentry cache
801 if (parent
== dentry
)
804 /* Prune ancestors. */
807 spin_lock(&dentry
->d_lock
);
808 if (dentry
->d_count
> 1) {
810 spin_unlock(&dentry
->d_lock
);
813 dentry
= dentry_kill(dentry
, 1);
817 static void shrink_dentry_list(struct list_head
*list
)
819 struct dentry
*dentry
;
823 dentry
= list_entry_rcu(list
->prev
, struct dentry
, d_lru
);
824 if (&dentry
->d_lru
== list
)
826 spin_lock(&dentry
->d_lock
);
827 if (dentry
!= list_entry(list
->prev
, struct dentry
, d_lru
)) {
828 spin_unlock(&dentry
->d_lock
);
833 * We found an inuse dentry which was not removed from
834 * the LRU because of laziness during lookup. Do not free
835 * it - just keep it off the LRU list.
837 if (dentry
->d_count
) {
838 dentry_lru_del(dentry
);
839 spin_unlock(&dentry
->d_lock
);
845 try_prune_one_dentry(dentry
);
853 * prune_dcache_sb - shrink the dcache
855 * @count: number of entries to try to free
857 * Attempt to shrink the superblock dcache LRU by @count entries. This is
858 * done when we need more memory an called from the superblock shrinker
861 * This function may fail to free any resources if all the dentries are in
864 void prune_dcache_sb(struct super_block
*sb
, int count
)
866 struct dentry
*dentry
;
867 LIST_HEAD(referenced
);
871 spin_lock(&dcache_lru_lock
);
872 while (!list_empty(&sb
->s_dentry_lru
)) {
873 dentry
= list_entry(sb
->s_dentry_lru
.prev
,
874 struct dentry
, d_lru
);
875 BUG_ON(dentry
->d_sb
!= sb
);
877 if (!spin_trylock(&dentry
->d_lock
)) {
878 spin_unlock(&dcache_lru_lock
);
883 if (dentry
->d_flags
& DCACHE_REFERENCED
) {
884 dentry
->d_flags
&= ~DCACHE_REFERENCED
;
885 list_move(&dentry
->d_lru
, &referenced
);
886 spin_unlock(&dentry
->d_lock
);
888 list_move_tail(&dentry
->d_lru
, &tmp
);
889 dentry
->d_flags
|= DCACHE_SHRINK_LIST
;
890 spin_unlock(&dentry
->d_lock
);
894 cond_resched_lock(&dcache_lru_lock
);
896 if (!list_empty(&referenced
))
897 list_splice(&referenced
, &sb
->s_dentry_lru
);
898 spin_unlock(&dcache_lru_lock
);
900 shrink_dentry_list(&tmp
);
904 * shrink_dcache_sb - shrink dcache for a superblock
907 * Shrink the dcache for the specified super block. This is used to free
908 * the dcache before unmounting a file system.
910 void shrink_dcache_sb(struct super_block
*sb
)
914 spin_lock(&dcache_lru_lock
);
915 while (!list_empty(&sb
->s_dentry_lru
)) {
916 list_splice_init(&sb
->s_dentry_lru
, &tmp
);
917 spin_unlock(&dcache_lru_lock
);
918 shrink_dentry_list(&tmp
);
919 spin_lock(&dcache_lru_lock
);
921 spin_unlock(&dcache_lru_lock
);
923 EXPORT_SYMBOL(shrink_dcache_sb
);
926 * destroy a single subtree of dentries for unmount
927 * - see the comments on shrink_dcache_for_umount() for a description of the
930 static void shrink_dcache_for_umount_subtree(struct dentry
*dentry
)
932 struct dentry
*parent
;
934 BUG_ON(!IS_ROOT(dentry
));
937 /* descend to the first leaf in the current subtree */
938 while (!list_empty(&dentry
->d_subdirs
))
939 dentry
= list_entry(dentry
->d_subdirs
.next
,
940 struct dentry
, d_u
.d_child
);
942 /* consume the dentries from this leaf up through its parents
943 * until we find one with children or run out altogether */
948 * remove the dentry from the lru, and inform
949 * the fs that this dentry is about to be
950 * unhashed and destroyed.
952 dentry_lru_prune(dentry
);
955 if (dentry
->d_count
!= 0) {
957 "BUG: Dentry %p{i=%lx,n=%s}"
959 " [unmount of %s %s]\n",
962 dentry
->d_inode
->i_ino
: 0UL,
965 dentry
->d_sb
->s_type
->name
,
970 if (IS_ROOT(dentry
)) {
972 list_del(&dentry
->d_u
.d_child
);
974 parent
= dentry
->d_parent
;
976 list_del(&dentry
->d_u
.d_child
);
979 inode
= dentry
->d_inode
;
981 dentry
->d_inode
= NULL
;
982 hlist_del_init(&dentry
->d_alias
);
983 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
984 dentry
->d_op
->d_iput(dentry
, inode
);
991 /* finished when we fall off the top of the tree,
992 * otherwise we ascend to the parent and move to the
993 * next sibling if there is one */
997 } while (list_empty(&dentry
->d_subdirs
));
999 dentry
= list_entry(dentry
->d_subdirs
.next
,
1000 struct dentry
, d_u
.d_child
);
1005 * destroy the dentries attached to a superblock on unmounting
1006 * - we don't need to use dentry->d_lock because:
1007 * - the superblock is detached from all mountings and open files, so the
1008 * dentry trees will not be rearranged by the VFS
1009 * - s_umount is write-locked, so the memory pressure shrinker will ignore
1010 * any dentries belonging to this superblock that it comes across
1011 * - the filesystem itself is no longer permitted to rearrange the dentries
1012 * in this superblock
1014 void shrink_dcache_for_umount(struct super_block
*sb
)
1016 struct dentry
*dentry
;
1018 if (down_read_trylock(&sb
->s_umount
))
1021 dentry
= sb
->s_root
;
1024 shrink_dcache_for_umount_subtree(dentry
);
1026 while (!hlist_bl_empty(&sb
->s_anon
)) {
1027 dentry
= hlist_bl_entry(hlist_bl_first(&sb
->s_anon
), struct dentry
, d_hash
);
1028 shrink_dcache_for_umount_subtree(dentry
);
1033 * This tries to ascend one level of parenthood, but
1034 * we can race with renaming, so we need to re-check
1035 * the parenthood after dropping the lock and check
1036 * that the sequence number still matches.
1038 static struct dentry
*try_to_ascend(struct dentry
*old
, int locked
, unsigned seq
)
1040 struct dentry
*new = old
->d_parent
;
1043 spin_unlock(&old
->d_lock
);
1044 spin_lock(&new->d_lock
);
1047 * might go back up the wrong parent if we have had a rename
1050 if (new != old
->d_parent
||
1051 (old
->d_flags
& DCACHE_DISCONNECTED
) ||
1052 (!locked
&& read_seqretry(&rename_lock
, seq
))) {
1053 spin_unlock(&new->d_lock
);
1062 * Search for at least 1 mount point in the dentry's subdirs.
1063 * We descend to the next level whenever the d_subdirs
1064 * list is non-empty and continue searching.
1068 * have_submounts - check for mounts over a dentry
1069 * @parent: dentry to check.
1071 * Return true if the parent or its subdirectories contain
1074 int have_submounts(struct dentry
*parent
)
1076 struct dentry
*this_parent
;
1077 struct list_head
*next
;
1081 seq
= read_seqbegin(&rename_lock
);
1083 this_parent
= parent
;
1085 if (d_mountpoint(parent
))
1087 spin_lock(&this_parent
->d_lock
);
1089 next
= this_parent
->d_subdirs
.next
;
1091 while (next
!= &this_parent
->d_subdirs
) {
1092 struct list_head
*tmp
= next
;
1093 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
1096 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1097 /* Have we found a mount point ? */
1098 if (d_mountpoint(dentry
)) {
1099 spin_unlock(&dentry
->d_lock
);
1100 spin_unlock(&this_parent
->d_lock
);
1103 if (!list_empty(&dentry
->d_subdirs
)) {
1104 spin_unlock(&this_parent
->d_lock
);
1105 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
1106 this_parent
= dentry
;
1107 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
1110 spin_unlock(&dentry
->d_lock
);
1113 * All done at this level ... ascend and resume the search.
1115 if (this_parent
!= parent
) {
1116 struct dentry
*child
= this_parent
;
1117 this_parent
= try_to_ascend(this_parent
, locked
, seq
);
1120 next
= child
->d_u
.d_child
.next
;
1123 spin_unlock(&this_parent
->d_lock
);
1124 if (!locked
&& read_seqretry(&rename_lock
, seq
))
1127 write_sequnlock(&rename_lock
);
1128 return 0; /* No mount points found in tree */
1130 if (!locked
&& read_seqretry(&rename_lock
, seq
))
1133 write_sequnlock(&rename_lock
);
1138 write_seqlock(&rename_lock
);
1141 EXPORT_SYMBOL(have_submounts
);
1144 * Search the dentry child list for the specified parent,
1145 * and move any unused dentries to the end of the unused
1146 * list for prune_dcache(). We descend to the next level
1147 * whenever the d_subdirs list is non-empty and continue
1150 * It returns zero iff there are no unused children,
1151 * otherwise it returns the number of children moved to
1152 * the end of the unused list. This may not be the total
1153 * number of unused children, because select_parent can
1154 * drop the lock and return early due to latency
1157 static int select_parent(struct dentry
*parent
, struct list_head
*dispose
)
1159 struct dentry
*this_parent
;
1160 struct list_head
*next
;
1165 seq
= read_seqbegin(&rename_lock
);
1167 this_parent
= parent
;
1168 spin_lock(&this_parent
->d_lock
);
1170 next
= this_parent
->d_subdirs
.next
;
1172 while (next
!= &this_parent
->d_subdirs
) {
1173 struct list_head
*tmp
= next
;
1174 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
1177 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1180 * move only zero ref count dentries to the dispose list.
1182 * Those which are presently on the shrink list, being processed
1183 * by shrink_dentry_list(), shouldn't be moved. Otherwise the
1184 * loop in shrink_dcache_parent() might not make any progress
1187 if (dentry
->d_count
) {
1188 dentry_lru_del(dentry
);
1189 } else if (!(dentry
->d_flags
& DCACHE_SHRINK_LIST
)) {
1190 dentry_lru_move_list(dentry
, dispose
);
1191 dentry
->d_flags
|= DCACHE_SHRINK_LIST
;
1195 * We can return to the caller if we have found some (this
1196 * ensures forward progress). We'll be coming back to find
1199 if (found
&& need_resched()) {
1200 spin_unlock(&dentry
->d_lock
);
1205 * Descend a level if the d_subdirs list is non-empty.
1207 if (!list_empty(&dentry
->d_subdirs
)) {
1208 spin_unlock(&this_parent
->d_lock
);
1209 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
1210 this_parent
= dentry
;
1211 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
1215 spin_unlock(&dentry
->d_lock
);
1218 * All done at this level ... ascend and resume the search.
1220 if (this_parent
!= parent
) {
1221 struct dentry
*child
= this_parent
;
1222 this_parent
= try_to_ascend(this_parent
, locked
, seq
);
1225 next
= child
->d_u
.d_child
.next
;
1229 spin_unlock(&this_parent
->d_lock
);
1230 if (!locked
&& read_seqretry(&rename_lock
, seq
))
1233 write_sequnlock(&rename_lock
);
1240 write_seqlock(&rename_lock
);
1245 * shrink_dcache_parent - prune dcache
1246 * @parent: parent of entries to prune
1248 * Prune the dcache to remove unused children of the parent dentry.
1250 void shrink_dcache_parent(struct dentry
* parent
)
1255 while ((found
= select_parent(parent
, &dispose
)) != 0)
1256 shrink_dentry_list(&dispose
);
1258 EXPORT_SYMBOL(shrink_dcache_parent
);
1261 * __d_alloc - allocate a dcache entry
1262 * @sb: filesystem it will belong to
1263 * @name: qstr of the name
1265 * Allocates a dentry. It returns %NULL if there is insufficient memory
1266 * available. On a success the dentry is returned. The name passed in is
1267 * copied and the copy passed in may be reused after this call.
1270 struct dentry
*__d_alloc(struct super_block
*sb
, const struct qstr
*name
)
1272 struct dentry
*dentry
;
1275 dentry
= kmem_cache_alloc(dentry_cache
, GFP_KERNEL
);
1280 * We guarantee that the inline name is always NUL-terminated.
1281 * This way the memcpy() done by the name switching in rename
1282 * will still always have a NUL at the end, even if we might
1283 * be overwriting an internal NUL character
1285 dentry
->d_iname
[DNAME_INLINE_LEN
-1] = 0;
1286 if (name
->len
> DNAME_INLINE_LEN
-1) {
1287 dname
= kmalloc(name
->len
+ 1, GFP_KERNEL
);
1289 kmem_cache_free(dentry_cache
, dentry
);
1293 dname
= dentry
->d_iname
;
1296 dentry
->d_name
.len
= name
->len
;
1297 dentry
->d_name
.hash
= name
->hash
;
1298 memcpy(dname
, name
->name
, name
->len
);
1299 dname
[name
->len
] = 0;
1301 /* Make sure we always see the terminating NUL character */
1303 dentry
->d_name
.name
= dname
;
1305 dentry
->d_count
= 1;
1306 dentry
->d_flags
= 0;
1307 spin_lock_init(&dentry
->d_lock
);
1308 seqcount_init(&dentry
->d_seq
);
1309 dentry
->d_inode
= NULL
;
1310 dentry
->d_parent
= dentry
;
1312 dentry
->d_op
= NULL
;
1313 dentry
->d_fsdata
= NULL
;
1314 INIT_HLIST_BL_NODE(&dentry
->d_hash
);
1315 INIT_LIST_HEAD(&dentry
->d_lru
);
1316 INIT_LIST_HEAD(&dentry
->d_subdirs
);
1317 INIT_HLIST_NODE(&dentry
->d_alias
);
1318 INIT_LIST_HEAD(&dentry
->d_u
.d_child
);
1319 d_set_d_op(dentry
, dentry
->d_sb
->s_d_op
);
1321 this_cpu_inc(nr_dentry
);
1327 * d_alloc - allocate a dcache entry
1328 * @parent: parent of entry to allocate
1329 * @name: qstr of the name
1331 * Allocates a dentry. It returns %NULL if there is insufficient memory
1332 * available. On a success the dentry is returned. The name passed in is
1333 * copied and the copy passed in may be reused after this call.
1335 struct dentry
*d_alloc(struct dentry
* parent
, const struct qstr
*name
)
1337 struct dentry
*dentry
= __d_alloc(parent
->d_sb
, name
);
1341 spin_lock(&parent
->d_lock
);
1343 * don't need child lock because it is not subject
1344 * to concurrency here
1346 __dget_dlock(parent
);
1347 dentry
->d_parent
= parent
;
1348 list_add(&dentry
->d_u
.d_child
, &parent
->d_subdirs
);
1349 spin_unlock(&parent
->d_lock
);
1353 EXPORT_SYMBOL(d_alloc
);
1355 struct dentry
*d_alloc_pseudo(struct super_block
*sb
, const struct qstr
*name
)
1357 struct dentry
*dentry
= __d_alloc(sb
, name
);
1359 dentry
->d_flags
|= DCACHE_DISCONNECTED
;
1362 EXPORT_SYMBOL(d_alloc_pseudo
);
1364 struct dentry
*d_alloc_name(struct dentry
*parent
, const char *name
)
1369 q
.len
= strlen(name
);
1370 q
.hash
= full_name_hash(q
.name
, q
.len
);
1371 return d_alloc(parent
, &q
);
1373 EXPORT_SYMBOL(d_alloc_name
);
1375 void d_set_d_op(struct dentry
*dentry
, const struct dentry_operations
*op
)
1377 WARN_ON_ONCE(dentry
->d_op
);
1378 WARN_ON_ONCE(dentry
->d_flags
& (DCACHE_OP_HASH
|
1380 DCACHE_OP_REVALIDATE
|
1381 DCACHE_OP_DELETE
));
1386 dentry
->d_flags
|= DCACHE_OP_HASH
;
1388 dentry
->d_flags
|= DCACHE_OP_COMPARE
;
1389 if (op
->d_revalidate
)
1390 dentry
->d_flags
|= DCACHE_OP_REVALIDATE
;
1392 dentry
->d_flags
|= DCACHE_OP_DELETE
;
1394 dentry
->d_flags
|= DCACHE_OP_PRUNE
;
1397 EXPORT_SYMBOL(d_set_d_op
);
1399 static void __d_instantiate(struct dentry
*dentry
, struct inode
*inode
)
1401 spin_lock(&dentry
->d_lock
);
1403 if (unlikely(IS_AUTOMOUNT(inode
)))
1404 dentry
->d_flags
|= DCACHE_NEED_AUTOMOUNT
;
1405 hlist_add_head(&dentry
->d_alias
, &inode
->i_dentry
);
1407 dentry
->d_inode
= inode
;
1408 dentry_rcuwalk_barrier(dentry
);
1409 spin_unlock(&dentry
->d_lock
);
1410 fsnotify_d_instantiate(dentry
, inode
);
1414 * d_instantiate - fill in inode information for a dentry
1415 * @entry: dentry to complete
1416 * @inode: inode to attach to this dentry
1418 * Fill in inode information in the entry.
1420 * This turns negative dentries into productive full members
1423 * NOTE! This assumes that the inode count has been incremented
1424 * (or otherwise set) by the caller to indicate that it is now
1425 * in use by the dcache.
1428 void d_instantiate(struct dentry
*entry
, struct inode
* inode
)
1430 BUG_ON(!hlist_unhashed(&entry
->d_alias
));
1432 spin_lock(&inode
->i_lock
);
1433 __d_instantiate(entry
, inode
);
1435 spin_unlock(&inode
->i_lock
);
1436 security_d_instantiate(entry
, inode
);
1438 EXPORT_SYMBOL(d_instantiate
);
1441 * d_instantiate_unique - instantiate a non-aliased dentry
1442 * @entry: dentry to instantiate
1443 * @inode: inode to attach to this dentry
1445 * Fill in inode information in the entry. On success, it returns NULL.
1446 * If an unhashed alias of "entry" already exists, then we return the
1447 * aliased dentry instead and drop one reference to inode.
1449 * Note that in order to avoid conflicts with rename() etc, the caller
1450 * had better be holding the parent directory semaphore.
1452 * This also assumes that the inode count has been incremented
1453 * (or otherwise set) by the caller to indicate that it is now
1454 * in use by the dcache.
1456 static struct dentry
*__d_instantiate_unique(struct dentry
*entry
,
1457 struct inode
*inode
)
1459 struct dentry
*alias
;
1460 int len
= entry
->d_name
.len
;
1461 const char *name
= entry
->d_name
.name
;
1462 unsigned int hash
= entry
->d_name
.hash
;
1463 struct hlist_node
*p
;
1466 __d_instantiate(entry
, NULL
);
1470 hlist_for_each_entry(alias
, p
, &inode
->i_dentry
, d_alias
) {
1472 * Don't need alias->d_lock here, because aliases with
1473 * d_parent == entry->d_parent are not subject to name or
1474 * parent changes, because the parent inode i_mutex is held.
1476 if (alias
->d_name
.hash
!= hash
)
1478 if (alias
->d_parent
!= entry
->d_parent
)
1480 if (alias
->d_name
.len
!= len
)
1482 if (dentry_cmp(alias
, name
, len
))
1488 __d_instantiate(entry
, inode
);
1492 struct dentry
*d_instantiate_unique(struct dentry
*entry
, struct inode
*inode
)
1494 struct dentry
*result
;
1496 BUG_ON(!hlist_unhashed(&entry
->d_alias
));
1499 spin_lock(&inode
->i_lock
);
1500 result
= __d_instantiate_unique(entry
, inode
);
1502 spin_unlock(&inode
->i_lock
);
1505 security_d_instantiate(entry
, inode
);
1509 BUG_ON(!d_unhashed(result
));
1514 EXPORT_SYMBOL(d_instantiate_unique
);
1516 struct dentry
*d_make_root(struct inode
*root_inode
)
1518 struct dentry
*res
= NULL
;
1521 static const struct qstr name
= QSTR_INIT("/", 1);
1523 res
= __d_alloc(root_inode
->i_sb
, &name
);
1525 d_instantiate(res
, root_inode
);
1531 EXPORT_SYMBOL(d_make_root
);
1533 static struct dentry
* __d_find_any_alias(struct inode
*inode
)
1535 struct dentry
*alias
;
1537 if (hlist_empty(&inode
->i_dentry
))
1539 alias
= hlist_entry(inode
->i_dentry
.first
, struct dentry
, d_alias
);
1545 * d_find_any_alias - find any alias for a given inode
1546 * @inode: inode to find an alias for
1548 * If any aliases exist for the given inode, take and return a
1549 * reference for one of them. If no aliases exist, return %NULL.
1551 struct dentry
*d_find_any_alias(struct inode
*inode
)
1555 spin_lock(&inode
->i_lock
);
1556 de
= __d_find_any_alias(inode
);
1557 spin_unlock(&inode
->i_lock
);
1560 EXPORT_SYMBOL(d_find_any_alias
);
1563 * d_obtain_alias - find or allocate a dentry for a given inode
1564 * @inode: inode to allocate the dentry for
1566 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1567 * similar open by handle operations. The returned dentry may be anonymous,
1568 * or may have a full name (if the inode was already in the cache).
1570 * When called on a directory inode, we must ensure that the inode only ever
1571 * has one dentry. If a dentry is found, that is returned instead of
1572 * allocating a new one.
1574 * On successful return, the reference to the inode has been transferred
1575 * to the dentry. In case of an error the reference on the inode is released.
1576 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1577 * be passed in and will be the error will be propagate to the return value,
1578 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1580 struct dentry
*d_obtain_alias(struct inode
*inode
)
1582 static const struct qstr anonstring
= { .name
= "" };
1587 return ERR_PTR(-ESTALE
);
1589 return ERR_CAST(inode
);
1591 res
= d_find_any_alias(inode
);
1595 tmp
= __d_alloc(inode
->i_sb
, &anonstring
);
1597 res
= ERR_PTR(-ENOMEM
);
1601 spin_lock(&inode
->i_lock
);
1602 res
= __d_find_any_alias(inode
);
1604 spin_unlock(&inode
->i_lock
);
1609 /* attach a disconnected dentry */
1610 spin_lock(&tmp
->d_lock
);
1611 tmp
->d_inode
= inode
;
1612 tmp
->d_flags
|= DCACHE_DISCONNECTED
;
1613 hlist_add_head(&tmp
->d_alias
, &inode
->i_dentry
);
1614 hlist_bl_lock(&tmp
->d_sb
->s_anon
);
1615 hlist_bl_add_head(&tmp
->d_hash
, &tmp
->d_sb
->s_anon
);
1616 hlist_bl_unlock(&tmp
->d_sb
->s_anon
);
1617 spin_unlock(&tmp
->d_lock
);
1618 spin_unlock(&inode
->i_lock
);
1619 security_d_instantiate(tmp
, inode
);
1624 if (res
&& !IS_ERR(res
))
1625 security_d_instantiate(res
, inode
);
1629 EXPORT_SYMBOL(d_obtain_alias
);
1632 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1633 * @inode: the inode which may have a disconnected dentry
1634 * @dentry: a negative dentry which we want to point to the inode.
1636 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1637 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1638 * and return it, else simply d_add the inode to the dentry and return NULL.
1640 * This is needed in the lookup routine of any filesystem that is exportable
1641 * (via knfsd) so that we can build dcache paths to directories effectively.
1643 * If a dentry was found and moved, then it is returned. Otherwise NULL
1644 * is returned. This matches the expected return value of ->lookup.
1647 struct dentry
*d_splice_alias(struct inode
*inode
, struct dentry
*dentry
)
1649 struct dentry
*new = NULL
;
1652 return ERR_CAST(inode
);
1654 if (inode
&& S_ISDIR(inode
->i_mode
)) {
1655 spin_lock(&inode
->i_lock
);
1656 new = __d_find_alias(inode
, 1);
1658 BUG_ON(!(new->d_flags
& DCACHE_DISCONNECTED
));
1659 spin_unlock(&inode
->i_lock
);
1660 security_d_instantiate(new, inode
);
1661 d_move(new, dentry
);
1664 /* already taking inode->i_lock, so d_add() by hand */
1665 __d_instantiate(dentry
, inode
);
1666 spin_unlock(&inode
->i_lock
);
1667 security_d_instantiate(dentry
, inode
);
1671 d_add(dentry
, inode
);
1674 EXPORT_SYMBOL(d_splice_alias
);
1677 * d_add_ci - lookup or allocate new dentry with case-exact name
1678 * @inode: the inode case-insensitive lookup has found
1679 * @dentry: the negative dentry that was passed to the parent's lookup func
1680 * @name: the case-exact name to be associated with the returned dentry
1682 * This is to avoid filling the dcache with case-insensitive names to the
1683 * same inode, only the actual correct case is stored in the dcache for
1684 * case-insensitive filesystems.
1686 * For a case-insensitive lookup match and if the the case-exact dentry
1687 * already exists in in the dcache, use it and return it.
1689 * If no entry exists with the exact case name, allocate new dentry with
1690 * the exact case, and return the spliced entry.
1692 struct dentry
*d_add_ci(struct dentry
*dentry
, struct inode
*inode
,
1696 struct dentry
*found
;
1700 * First check if a dentry matching the name already exists,
1701 * if not go ahead and create it now.
1703 found
= d_hash_and_lookup(dentry
->d_parent
, name
);
1705 new = d_alloc(dentry
->d_parent
, name
);
1711 found
= d_splice_alias(inode
, new);
1720 * If a matching dentry exists, and it's not negative use it.
1722 * Decrement the reference count to balance the iget() done
1725 if (found
->d_inode
) {
1726 if (unlikely(found
->d_inode
!= inode
)) {
1727 /* This can't happen because bad inodes are unhashed. */
1728 BUG_ON(!is_bad_inode(inode
));
1729 BUG_ON(!is_bad_inode(found
->d_inode
));
1736 * We are going to instantiate this dentry, unhash it and clear the
1737 * lookup flag so we can do that.
1739 if (unlikely(d_need_lookup(found
)))
1740 d_clear_need_lookup(found
);
1743 * Negative dentry: instantiate it unless the inode is a directory and
1744 * already has a dentry.
1746 new = d_splice_alias(inode
, found
);
1755 return ERR_PTR(error
);
1757 EXPORT_SYMBOL(d_add_ci
);
1760 * Do the slow-case of the dentry name compare.
1762 * Unlike the dentry_cmp() function, we need to atomically
1763 * load the name, length and inode information, so that the
1764 * filesystem can rely on them, and can use the 'name' and
1765 * 'len' information without worrying about walking off the
1766 * end of memory etc.
1768 * Thus the read_seqcount_retry() and the "duplicate" info
1769 * in arguments (the low-level filesystem should not look
1770 * at the dentry inode or name contents directly, since
1771 * rename can change them while we're in RCU mode).
1773 enum slow_d_compare
{
1779 static noinline
enum slow_d_compare
slow_dentry_cmp(
1780 const struct dentry
*parent
,
1781 struct inode
*inode
,
1782 struct dentry
*dentry
,
1784 const struct qstr
*name
)
1786 int tlen
= dentry
->d_name
.len
;
1787 const char *tname
= dentry
->d_name
.name
;
1788 struct inode
*i
= dentry
->d_inode
;
1790 if (read_seqcount_retry(&dentry
->d_seq
, seq
)) {
1792 return D_COMP_SEQRETRY
;
1794 if (parent
->d_op
->d_compare(parent
, inode
,
1797 return D_COMP_NOMATCH
;
1802 * __d_lookup_rcu - search for a dentry (racy, store-free)
1803 * @parent: parent dentry
1804 * @name: qstr of name we wish to find
1805 * @seqp: returns d_seq value at the point where the dentry was found
1806 * @inode: returns dentry->d_inode when the inode was found valid.
1807 * Returns: dentry, or NULL
1809 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1810 * resolution (store-free path walking) design described in
1811 * Documentation/filesystems/path-lookup.txt.
1813 * This is not to be used outside core vfs.
1815 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1816 * held, and rcu_read_lock held. The returned dentry must not be stored into
1817 * without taking d_lock and checking d_seq sequence count against @seq
1820 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1823 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1824 * the returned dentry, so long as its parent's seqlock is checked after the
1825 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1826 * is formed, giving integrity down the path walk.
1828 * NOTE! The caller *has* to check the resulting dentry against the sequence
1829 * number we've returned before using any of the resulting dentry state!
1831 struct dentry
*__d_lookup_rcu(const struct dentry
*parent
,
1832 const struct qstr
*name
,
1833 unsigned *seqp
, struct inode
*inode
)
1835 u64 hashlen
= name
->hash_len
;
1836 const unsigned char *str
= name
->name
;
1837 struct hlist_bl_head
*b
= d_hash(parent
, hashlen_hash(hashlen
));
1838 struct hlist_bl_node
*node
;
1839 struct dentry
*dentry
;
1842 * Note: There is significant duplication with __d_lookup_rcu which is
1843 * required to prevent single threaded performance regressions
1844 * especially on architectures where smp_rmb (in seqcounts) are costly.
1845 * Keep the two functions in sync.
1849 * The hash list is protected using RCU.
1851 * Carefully use d_seq when comparing a candidate dentry, to avoid
1852 * races with d_move().
1854 * It is possible that concurrent renames can mess up our list
1855 * walk here and result in missing our dentry, resulting in the
1856 * false-negative result. d_lookup() protects against concurrent
1857 * renames using rename_lock seqlock.
1859 * See Documentation/filesystems/path-lookup.txt for more details.
1861 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
1866 * The dentry sequence count protects us from concurrent
1867 * renames, and thus protects inode, parent and name fields.
1869 * The caller must perform a seqcount check in order
1870 * to do anything useful with the returned dentry,
1871 * including using the 'd_inode' pointer.
1873 * NOTE! We do a "raw" seqcount_begin here. That means that
1874 * we don't wait for the sequence count to stabilize if it
1875 * is in the middle of a sequence change. If we do the slow
1876 * dentry compare, we will do seqretries until it is stable,
1877 * and if we end up with a successful lookup, we actually
1878 * want to exit RCU lookup anyway.
1880 seq
= raw_seqcount_begin(&dentry
->d_seq
);
1881 if (dentry
->d_parent
!= parent
)
1883 if (d_unhashed(dentry
))
1887 if (unlikely(parent
->d_flags
& DCACHE_OP_COMPARE
)) {
1888 if (dentry
->d_name
.hash
!= hashlen_hash(hashlen
))
1890 switch (slow_dentry_cmp(parent
, inode
, dentry
, seq
, name
)) {
1893 case D_COMP_NOMATCH
:
1900 if (dentry
->d_name
.hash_len
!= hashlen
)
1902 if (!dentry_cmp(dentry
, str
, hashlen_len(hashlen
)))
1909 * d_lookup - search for a dentry
1910 * @parent: parent dentry
1911 * @name: qstr of name we wish to find
1912 * Returns: dentry, or NULL
1914 * d_lookup searches the children of the parent dentry for the name in
1915 * question. If the dentry is found its reference count is incremented and the
1916 * dentry is returned. The caller must use dput to free the entry when it has
1917 * finished using it. %NULL is returned if the dentry does not exist.
1919 struct dentry
*d_lookup(struct dentry
*parent
, struct qstr
*name
)
1921 struct dentry
*dentry
;
1925 seq
= read_seqbegin(&rename_lock
);
1926 dentry
= __d_lookup(parent
, name
);
1929 } while (read_seqretry(&rename_lock
, seq
));
1932 EXPORT_SYMBOL(d_lookup
);
1935 * __d_lookup - search for a dentry (racy)
1936 * @parent: parent dentry
1937 * @name: qstr of name we wish to find
1938 * Returns: dentry, or NULL
1940 * __d_lookup is like d_lookup, however it may (rarely) return a
1941 * false-negative result due to unrelated rename activity.
1943 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1944 * however it must be used carefully, eg. with a following d_lookup in
1945 * the case of failure.
1947 * __d_lookup callers must be commented.
1949 struct dentry
*__d_lookup(struct dentry
*parent
, struct qstr
*name
)
1951 unsigned int len
= name
->len
;
1952 unsigned int hash
= name
->hash
;
1953 const unsigned char *str
= name
->name
;
1954 struct hlist_bl_head
*b
= d_hash(parent
, hash
);
1955 struct hlist_bl_node
*node
;
1956 struct dentry
*found
= NULL
;
1957 struct dentry
*dentry
;
1960 * Note: There is significant duplication with __d_lookup_rcu which is
1961 * required to prevent single threaded performance regressions
1962 * especially on architectures where smp_rmb (in seqcounts) are costly.
1963 * Keep the two functions in sync.
1967 * The hash list is protected using RCU.
1969 * Take d_lock when comparing a candidate dentry, to avoid races
1972 * It is possible that concurrent renames can mess up our list
1973 * walk here and result in missing our dentry, resulting in the
1974 * false-negative result. d_lookup() protects against concurrent
1975 * renames using rename_lock seqlock.
1977 * See Documentation/filesystems/path-lookup.txt for more details.
1981 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
1983 if (dentry
->d_name
.hash
!= hash
)
1986 spin_lock(&dentry
->d_lock
);
1987 if (dentry
->d_parent
!= parent
)
1989 if (d_unhashed(dentry
))
1993 * It is safe to compare names since d_move() cannot
1994 * change the qstr (protected by d_lock).
1996 if (parent
->d_flags
& DCACHE_OP_COMPARE
) {
1997 int tlen
= dentry
->d_name
.len
;
1998 const char *tname
= dentry
->d_name
.name
;
1999 if (parent
->d_op
->d_compare(parent
, parent
->d_inode
,
2000 dentry
, dentry
->d_inode
,
2004 if (dentry
->d_name
.len
!= len
)
2006 if (dentry_cmp(dentry
, str
, len
))
2012 spin_unlock(&dentry
->d_lock
);
2015 spin_unlock(&dentry
->d_lock
);
2023 * d_hash_and_lookup - hash the qstr then search for a dentry
2024 * @dir: Directory to search in
2025 * @name: qstr of name we wish to find
2027 * On hash failure or on lookup failure NULL is returned.
2029 struct dentry
*d_hash_and_lookup(struct dentry
*dir
, struct qstr
*name
)
2031 struct dentry
*dentry
= NULL
;
2034 * Check for a fs-specific hash function. Note that we must
2035 * calculate the standard hash first, as the d_op->d_hash()
2036 * routine may choose to leave the hash value unchanged.
2038 name
->hash
= full_name_hash(name
->name
, name
->len
);
2039 if (dir
->d_flags
& DCACHE_OP_HASH
) {
2040 if (dir
->d_op
->d_hash(dir
, dir
->d_inode
, name
) < 0)
2043 dentry
= d_lookup(dir
, name
);
2049 * d_validate - verify dentry provided from insecure source (deprecated)
2050 * @dentry: The dentry alleged to be valid child of @dparent
2051 * @dparent: The parent dentry (known to be valid)
2053 * An insecure source has sent us a dentry, here we verify it and dget() it.
2054 * This is used by ncpfs in its readdir implementation.
2055 * Zero is returned in the dentry is invalid.
2057 * This function is slow for big directories, and deprecated, do not use it.
2059 int d_validate(struct dentry
*dentry
, struct dentry
*dparent
)
2061 struct dentry
*child
;
2063 spin_lock(&dparent
->d_lock
);
2064 list_for_each_entry(child
, &dparent
->d_subdirs
, d_u
.d_child
) {
2065 if (dentry
== child
) {
2066 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
2067 __dget_dlock(dentry
);
2068 spin_unlock(&dentry
->d_lock
);
2069 spin_unlock(&dparent
->d_lock
);
2073 spin_unlock(&dparent
->d_lock
);
2077 EXPORT_SYMBOL(d_validate
);
2080 * When a file is deleted, we have two options:
2081 * - turn this dentry into a negative dentry
2082 * - unhash this dentry and free it.
2084 * Usually, we want to just turn this into
2085 * a negative dentry, but if anybody else is
2086 * currently using the dentry or the inode
2087 * we can't do that and we fall back on removing
2088 * it from the hash queues and waiting for
2089 * it to be deleted later when it has no users
2093 * d_delete - delete a dentry
2094 * @dentry: The dentry to delete
2096 * Turn the dentry into a negative dentry if possible, otherwise
2097 * remove it from the hash queues so it can be deleted later
2100 void d_delete(struct dentry
* dentry
)
2102 struct inode
*inode
;
2105 * Are we the only user?
2108 spin_lock(&dentry
->d_lock
);
2109 inode
= dentry
->d_inode
;
2110 isdir
= S_ISDIR(inode
->i_mode
);
2111 if (dentry
->d_count
== 1) {
2112 if (inode
&& !spin_trylock(&inode
->i_lock
)) {
2113 spin_unlock(&dentry
->d_lock
);
2117 dentry
->d_flags
&= ~DCACHE_CANT_MOUNT
;
2118 dentry_unlink_inode(dentry
);
2119 fsnotify_nameremove(dentry
, isdir
);
2123 if (!d_unhashed(dentry
))
2126 spin_unlock(&dentry
->d_lock
);
2128 fsnotify_nameremove(dentry
, isdir
);
2130 EXPORT_SYMBOL(d_delete
);
2132 static void __d_rehash(struct dentry
* entry
, struct hlist_bl_head
*b
)
2134 BUG_ON(!d_unhashed(entry
));
2136 entry
->d_flags
|= DCACHE_RCUACCESS
;
2137 hlist_bl_add_head_rcu(&entry
->d_hash
, b
);
2141 static void _d_rehash(struct dentry
* entry
)
2143 __d_rehash(entry
, d_hash(entry
->d_parent
, entry
->d_name
.hash
));
2147 * d_rehash - add an entry back to the hash
2148 * @entry: dentry to add to the hash
2150 * Adds a dentry to the hash according to its name.
2153 void d_rehash(struct dentry
* entry
)
2155 spin_lock(&entry
->d_lock
);
2157 spin_unlock(&entry
->d_lock
);
2159 EXPORT_SYMBOL(d_rehash
);
2162 * dentry_update_name_case - update case insensitive dentry with a new name
2163 * @dentry: dentry to be updated
2166 * Update a case insensitive dentry with new case of name.
2168 * dentry must have been returned by d_lookup with name @name. Old and new
2169 * name lengths must match (ie. no d_compare which allows mismatched name
2172 * Parent inode i_mutex must be held over d_lookup and into this call (to
2173 * keep renames and concurrent inserts, and readdir(2) away).
2175 void dentry_update_name_case(struct dentry
*dentry
, struct qstr
*name
)
2177 BUG_ON(!mutex_is_locked(&dentry
->d_parent
->d_inode
->i_mutex
));
2178 BUG_ON(dentry
->d_name
.len
!= name
->len
); /* d_lookup gives this */
2180 spin_lock(&dentry
->d_lock
);
2181 write_seqcount_begin(&dentry
->d_seq
);
2182 memcpy((unsigned char *)dentry
->d_name
.name
, name
->name
, name
->len
);
2183 write_seqcount_end(&dentry
->d_seq
);
2184 spin_unlock(&dentry
->d_lock
);
2186 EXPORT_SYMBOL(dentry_update_name_case
);
2188 static void switch_names(struct dentry
*dentry
, struct dentry
*target
)
2190 if (dname_external(target
)) {
2191 if (dname_external(dentry
)) {
2193 * Both external: swap the pointers
2195 swap(target
->d_name
.name
, dentry
->d_name
.name
);
2198 * dentry:internal, target:external. Steal target's
2199 * storage and make target internal.
2201 memcpy(target
->d_iname
, dentry
->d_name
.name
,
2202 dentry
->d_name
.len
+ 1);
2203 dentry
->d_name
.name
= target
->d_name
.name
;
2204 target
->d_name
.name
= target
->d_iname
;
2207 if (dname_external(dentry
)) {
2209 * dentry:external, target:internal. Give dentry's
2210 * storage to target and make dentry internal
2212 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2213 target
->d_name
.len
+ 1);
2214 target
->d_name
.name
= dentry
->d_name
.name
;
2215 dentry
->d_name
.name
= dentry
->d_iname
;
2218 * Both are internal. Just copy target to dentry
2220 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2221 target
->d_name
.len
+ 1);
2222 dentry
->d_name
.len
= target
->d_name
.len
;
2226 swap(dentry
->d_name
.len
, target
->d_name
.len
);
2229 static void dentry_lock_for_move(struct dentry
*dentry
, struct dentry
*target
)
2232 * XXXX: do we really need to take target->d_lock?
2234 if (IS_ROOT(dentry
) || dentry
->d_parent
== target
->d_parent
)
2235 spin_lock(&target
->d_parent
->d_lock
);
2237 if (d_ancestor(dentry
->d_parent
, target
->d_parent
)) {
2238 spin_lock(&dentry
->d_parent
->d_lock
);
2239 spin_lock_nested(&target
->d_parent
->d_lock
,
2240 DENTRY_D_LOCK_NESTED
);
2242 spin_lock(&target
->d_parent
->d_lock
);
2243 spin_lock_nested(&dentry
->d_parent
->d_lock
,
2244 DENTRY_D_LOCK_NESTED
);
2247 if (target
< dentry
) {
2248 spin_lock_nested(&target
->d_lock
, 2);
2249 spin_lock_nested(&dentry
->d_lock
, 3);
2251 spin_lock_nested(&dentry
->d_lock
, 2);
2252 spin_lock_nested(&target
->d_lock
, 3);
2256 static void dentry_unlock_parents_for_move(struct dentry
*dentry
,
2257 struct dentry
*target
)
2259 if (target
->d_parent
!= dentry
->d_parent
)
2260 spin_unlock(&dentry
->d_parent
->d_lock
);
2261 if (target
->d_parent
!= target
)
2262 spin_unlock(&target
->d_parent
->d_lock
);
2266 * When switching names, the actual string doesn't strictly have to
2267 * be preserved in the target - because we're dropping the target
2268 * anyway. As such, we can just do a simple memcpy() to copy over
2269 * the new name before we switch.
2271 * Note that we have to be a lot more careful about getting the hash
2272 * switched - we have to switch the hash value properly even if it
2273 * then no longer matches the actual (corrupted) string of the target.
2274 * The hash value has to match the hash queue that the dentry is on..
2277 * __d_move - move a dentry
2278 * @dentry: entry to move
2279 * @target: new dentry
2281 * Update the dcache to reflect the move of a file name. Negative
2282 * dcache entries should not be moved in this way. Caller must hold
2283 * rename_lock, the i_mutex of the source and target directories,
2284 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2286 static void __d_move(struct dentry
* dentry
, struct dentry
* target
)
2288 if (!dentry
->d_inode
)
2289 printk(KERN_WARNING
"VFS: moving negative dcache entry\n");
2291 BUG_ON(d_ancestor(dentry
, target
));
2292 BUG_ON(d_ancestor(target
, dentry
));
2294 dentry_lock_for_move(dentry
, target
);
2296 write_seqcount_begin(&dentry
->d_seq
);
2297 write_seqcount_begin(&target
->d_seq
);
2299 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2302 * Move the dentry to the target hash queue. Don't bother checking
2303 * for the same hash queue because of how unlikely it is.
2306 __d_rehash(dentry
, d_hash(target
->d_parent
, target
->d_name
.hash
));
2308 /* Unhash the target: dput() will then get rid of it */
2311 list_del(&dentry
->d_u
.d_child
);
2312 list_del(&target
->d_u
.d_child
);
2314 /* Switch the names.. */
2315 switch_names(dentry
, target
);
2316 swap(dentry
->d_name
.hash
, target
->d_name
.hash
);
2318 /* ... and switch the parents */
2319 if (IS_ROOT(dentry
)) {
2320 dentry
->d_parent
= target
->d_parent
;
2321 target
->d_parent
= target
;
2322 INIT_LIST_HEAD(&target
->d_u
.d_child
);
2324 swap(dentry
->d_parent
, target
->d_parent
);
2326 /* And add them back to the (new) parent lists */
2327 list_add(&target
->d_u
.d_child
, &target
->d_parent
->d_subdirs
);
2330 list_add(&dentry
->d_u
.d_child
, &dentry
->d_parent
->d_subdirs
);
2332 write_seqcount_end(&target
->d_seq
);
2333 write_seqcount_end(&dentry
->d_seq
);
2335 dentry_unlock_parents_for_move(dentry
, target
);
2336 spin_unlock(&target
->d_lock
);
2337 fsnotify_d_move(dentry
);
2338 spin_unlock(&dentry
->d_lock
);
2342 * d_move - move a dentry
2343 * @dentry: entry to move
2344 * @target: new dentry
2346 * Update the dcache to reflect the move of a file name. Negative
2347 * dcache entries should not be moved in this way. See the locking
2348 * requirements for __d_move.
2350 void d_move(struct dentry
*dentry
, struct dentry
*target
)
2352 write_seqlock(&rename_lock
);
2353 __d_move(dentry
, target
);
2354 write_sequnlock(&rename_lock
);
2356 EXPORT_SYMBOL(d_move
);
2359 * d_ancestor - search for an ancestor
2360 * @p1: ancestor dentry
2363 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2364 * an ancestor of p2, else NULL.
2366 struct dentry
*d_ancestor(struct dentry
*p1
, struct dentry
*p2
)
2370 for (p
= p2
; !IS_ROOT(p
); p
= p
->d_parent
) {
2371 if (p
->d_parent
== p1
)
2378 * This helper attempts to cope with remotely renamed directories
2380 * It assumes that the caller is already holding
2381 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2383 * Note: If ever the locking in lock_rename() changes, then please
2384 * remember to update this too...
2386 static struct dentry
*__d_unalias(struct inode
*inode
,
2387 struct dentry
*dentry
, struct dentry
*alias
)
2389 struct mutex
*m1
= NULL
, *m2
= NULL
;
2390 struct dentry
*ret
= ERR_PTR(-EBUSY
);
2392 /* If alias and dentry share a parent, then no extra locks required */
2393 if (alias
->d_parent
== dentry
->d_parent
)
2396 /* See lock_rename() */
2397 if (!mutex_trylock(&dentry
->d_sb
->s_vfs_rename_mutex
))
2399 m1
= &dentry
->d_sb
->s_vfs_rename_mutex
;
2400 if (!mutex_trylock(&alias
->d_parent
->d_inode
->i_mutex
))
2402 m2
= &alias
->d_parent
->d_inode
->i_mutex
;
2404 if (likely(!d_mountpoint(alias
))) {
2405 __d_move(alias
, dentry
);
2409 spin_unlock(&inode
->i_lock
);
2418 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2419 * named dentry in place of the dentry to be replaced.
2420 * returns with anon->d_lock held!
2422 static void __d_materialise_dentry(struct dentry
*dentry
, struct dentry
*anon
)
2424 struct dentry
*dparent
, *aparent
;
2426 dentry_lock_for_move(anon
, dentry
);
2428 write_seqcount_begin(&dentry
->d_seq
);
2429 write_seqcount_begin(&anon
->d_seq
);
2431 dparent
= dentry
->d_parent
;
2432 aparent
= anon
->d_parent
;
2434 switch_names(dentry
, anon
);
2435 swap(dentry
->d_name
.hash
, anon
->d_name
.hash
);
2437 dentry
->d_parent
= (aparent
== anon
) ? dentry
: aparent
;
2438 list_del(&dentry
->d_u
.d_child
);
2439 if (!IS_ROOT(dentry
))
2440 list_add(&dentry
->d_u
.d_child
, &dentry
->d_parent
->d_subdirs
);
2442 INIT_LIST_HEAD(&dentry
->d_u
.d_child
);
2444 anon
->d_parent
= (dparent
== dentry
) ? anon
: dparent
;
2445 list_del(&anon
->d_u
.d_child
);
2447 list_add(&anon
->d_u
.d_child
, &anon
->d_parent
->d_subdirs
);
2449 INIT_LIST_HEAD(&anon
->d_u
.d_child
);
2451 write_seqcount_end(&dentry
->d_seq
);
2452 write_seqcount_end(&anon
->d_seq
);
2454 dentry_unlock_parents_for_move(anon
, dentry
);
2455 spin_unlock(&dentry
->d_lock
);
2457 /* anon->d_lock still locked, returns locked */
2458 anon
->d_flags
&= ~DCACHE_DISCONNECTED
;
2462 * d_materialise_unique - introduce an inode into the tree
2463 * @dentry: candidate dentry
2464 * @inode: inode to bind to the dentry, to which aliases may be attached
2466 * Introduces an dentry into the tree, substituting an extant disconnected
2467 * root directory alias in its place if there is one. Caller must hold the
2468 * i_mutex of the parent directory.
2470 struct dentry
*d_materialise_unique(struct dentry
*dentry
, struct inode
*inode
)
2472 struct dentry
*actual
;
2474 BUG_ON(!d_unhashed(dentry
));
2478 __d_instantiate(dentry
, NULL
);
2483 spin_lock(&inode
->i_lock
);
2485 if (S_ISDIR(inode
->i_mode
)) {
2486 struct dentry
*alias
;
2488 /* Does an aliased dentry already exist? */
2489 alias
= __d_find_alias(inode
, 0);
2492 write_seqlock(&rename_lock
);
2494 if (d_ancestor(alias
, dentry
)) {
2495 /* Check for loops */
2496 actual
= ERR_PTR(-ELOOP
);
2497 spin_unlock(&inode
->i_lock
);
2498 } else if (IS_ROOT(alias
)) {
2499 /* Is this an anonymous mountpoint that we
2500 * could splice into our tree? */
2501 __d_materialise_dentry(dentry
, alias
);
2502 write_sequnlock(&rename_lock
);
2506 /* Nope, but we must(!) avoid directory
2507 * aliasing. This drops inode->i_lock */
2508 actual
= __d_unalias(inode
, dentry
, alias
);
2510 write_sequnlock(&rename_lock
);
2511 if (IS_ERR(actual
)) {
2512 if (PTR_ERR(actual
) == -ELOOP
)
2513 pr_warn_ratelimited(
2514 "VFS: Lookup of '%s' in %s %s"
2515 " would have caused loop\n",
2516 dentry
->d_name
.name
,
2517 inode
->i_sb
->s_type
->name
,
2525 /* Add a unique reference */
2526 actual
= __d_instantiate_unique(dentry
, inode
);
2530 BUG_ON(!d_unhashed(actual
));
2532 spin_lock(&actual
->d_lock
);
2535 spin_unlock(&actual
->d_lock
);
2536 spin_unlock(&inode
->i_lock
);
2538 if (actual
== dentry
) {
2539 security_d_instantiate(dentry
, inode
);
2546 EXPORT_SYMBOL_GPL(d_materialise_unique
);
2548 static int prepend(char **buffer
, int *buflen
, const char *str
, int namelen
)
2552 return -ENAMETOOLONG
;
2554 memcpy(*buffer
, str
, namelen
);
2558 static int prepend_name(char **buffer
, int *buflen
, struct qstr
*name
)
2560 return prepend(buffer
, buflen
, name
->name
, name
->len
);
2564 * prepend_path - Prepend path string to a buffer
2565 * @path: the dentry/vfsmount to report
2566 * @root: root vfsmnt/dentry
2567 * @buffer: pointer to the end of the buffer
2568 * @buflen: pointer to buffer length
2570 * Caller holds the rename_lock.
2572 static int prepend_path(const struct path
*path
,
2573 const struct path
*root
,
2574 char **buffer
, int *buflen
)
2576 struct dentry
*dentry
= path
->dentry
;
2577 struct vfsmount
*vfsmnt
= path
->mnt
;
2578 struct mount
*mnt
= real_mount(vfsmnt
);
2582 br_read_lock(&vfsmount_lock
);
2583 while (dentry
!= root
->dentry
|| vfsmnt
!= root
->mnt
) {
2584 struct dentry
* parent
;
2586 if (dentry
== vfsmnt
->mnt_root
|| IS_ROOT(dentry
)) {
2588 if (!mnt_has_parent(mnt
))
2590 dentry
= mnt
->mnt_mountpoint
;
2591 mnt
= mnt
->mnt_parent
;
2595 parent
= dentry
->d_parent
;
2597 spin_lock(&dentry
->d_lock
);
2598 error
= prepend_name(buffer
, buflen
, &dentry
->d_name
);
2599 spin_unlock(&dentry
->d_lock
);
2601 error
= prepend(buffer
, buflen
, "/", 1);
2609 if (!error
&& !slash
)
2610 error
= prepend(buffer
, buflen
, "/", 1);
2613 br_read_unlock(&vfsmount_lock
);
2618 * Filesystems needing to implement special "root names"
2619 * should do so with ->d_dname()
2621 if (IS_ROOT(dentry
) &&
2622 (dentry
->d_name
.len
!= 1 || dentry
->d_name
.name
[0] != '/')) {
2623 WARN(1, "Root dentry has weird name <%.*s>\n",
2624 (int) dentry
->d_name
.len
, dentry
->d_name
.name
);
2627 error
= prepend(buffer
, buflen
, "/", 1);
2629 error
= is_mounted(vfsmnt
) ? 1 : 2;
2634 * __d_path - return the path of a dentry
2635 * @path: the dentry/vfsmount to report
2636 * @root: root vfsmnt/dentry
2637 * @buf: buffer to return value in
2638 * @buflen: buffer length
2640 * Convert a dentry into an ASCII path name.
2642 * Returns a pointer into the buffer or an error code if the
2643 * path was too long.
2645 * "buflen" should be positive.
2647 * If the path is not reachable from the supplied root, return %NULL.
2649 char *__d_path(const struct path
*path
,
2650 const struct path
*root
,
2651 char *buf
, int buflen
)
2653 char *res
= buf
+ buflen
;
2656 prepend(&res
, &buflen
, "\0", 1);
2657 write_seqlock(&rename_lock
);
2658 error
= prepend_path(path
, root
, &res
, &buflen
);
2659 write_sequnlock(&rename_lock
);
2662 return ERR_PTR(error
);
2668 char *d_absolute_path(const struct path
*path
,
2669 char *buf
, int buflen
)
2671 struct path root
= {};
2672 char *res
= buf
+ buflen
;
2675 prepend(&res
, &buflen
, "\0", 1);
2676 write_seqlock(&rename_lock
);
2677 error
= prepend_path(path
, &root
, &res
, &buflen
);
2678 write_sequnlock(&rename_lock
);
2683 return ERR_PTR(error
);
2688 * same as __d_path but appends "(deleted)" for unlinked files.
2690 static int path_with_deleted(const struct path
*path
,
2691 const struct path
*root
,
2692 char **buf
, int *buflen
)
2694 prepend(buf
, buflen
, "\0", 1);
2695 if (d_unlinked(path
->dentry
)) {
2696 int error
= prepend(buf
, buflen
, " (deleted)", 10);
2701 return prepend_path(path
, root
, buf
, buflen
);
2704 static int prepend_unreachable(char **buffer
, int *buflen
)
2706 return prepend(buffer
, buflen
, "(unreachable)", 13);
2710 * d_path - return the path of a dentry
2711 * @path: path to report
2712 * @buf: buffer to return value in
2713 * @buflen: buffer length
2715 * Convert a dentry into an ASCII path name. If the entry has been deleted
2716 * the string " (deleted)" is appended. Note that this is ambiguous.
2718 * Returns a pointer into the buffer or an error code if the path was
2719 * too long. Note: Callers should use the returned pointer, not the passed
2720 * in buffer, to use the name! The implementation often starts at an offset
2721 * into the buffer, and may leave 0 bytes at the start.
2723 * "buflen" should be positive.
2725 char *d_path(const struct path
*path
, char *buf
, int buflen
)
2727 char *res
= buf
+ buflen
;
2732 * We have various synthetic filesystems that never get mounted. On
2733 * these filesystems dentries are never used for lookup purposes, and
2734 * thus don't need to be hashed. They also don't need a name until a
2735 * user wants to identify the object in /proc/pid/fd/. The little hack
2736 * below allows us to generate a name for these objects on demand:
2738 if (path
->dentry
->d_op
&& path
->dentry
->d_op
->d_dname
)
2739 return path
->dentry
->d_op
->d_dname(path
->dentry
, buf
, buflen
);
2741 get_fs_root(current
->fs
, &root
);
2742 write_seqlock(&rename_lock
);
2743 error
= path_with_deleted(path
, &root
, &res
, &buflen
);
2745 res
= ERR_PTR(error
);
2746 write_sequnlock(&rename_lock
);
2750 EXPORT_SYMBOL(d_path
);
2753 * d_path_with_unreachable - return the path of a dentry
2754 * @path: path to report
2755 * @buf: buffer to return value in
2756 * @buflen: buffer length
2758 * The difference from d_path() is that this prepends "(unreachable)"
2759 * to paths which are unreachable from the current process' root.
2761 char *d_path_with_unreachable(const struct path
*path
, char *buf
, int buflen
)
2763 char *res
= buf
+ buflen
;
2767 if (path
->dentry
->d_op
&& path
->dentry
->d_op
->d_dname
)
2768 return path
->dentry
->d_op
->d_dname(path
->dentry
, buf
, buflen
);
2770 get_fs_root(current
->fs
, &root
);
2771 write_seqlock(&rename_lock
);
2772 error
= path_with_deleted(path
, &root
, &res
, &buflen
);
2774 error
= prepend_unreachable(&res
, &buflen
);
2775 write_sequnlock(&rename_lock
);
2778 res
= ERR_PTR(error
);
2784 * Helper function for dentry_operations.d_dname() members
2786 char *dynamic_dname(struct dentry
*dentry
, char *buffer
, int buflen
,
2787 const char *fmt
, ...)
2793 va_start(args
, fmt
);
2794 sz
= vsnprintf(temp
, sizeof(temp
), fmt
, args
) + 1;
2797 if (sz
> sizeof(temp
) || sz
> buflen
)
2798 return ERR_PTR(-ENAMETOOLONG
);
2800 buffer
+= buflen
- sz
;
2801 return memcpy(buffer
, temp
, sz
);
2805 * Write full pathname from the root of the filesystem into the buffer.
2807 static char *__dentry_path(struct dentry
*dentry
, char *buf
, int buflen
)
2809 char *end
= buf
+ buflen
;
2812 prepend(&end
, &buflen
, "\0", 1);
2819 while (!IS_ROOT(dentry
)) {
2820 struct dentry
*parent
= dentry
->d_parent
;
2824 spin_lock(&dentry
->d_lock
);
2825 error
= prepend_name(&end
, &buflen
, &dentry
->d_name
);
2826 spin_unlock(&dentry
->d_lock
);
2827 if (error
!= 0 || prepend(&end
, &buflen
, "/", 1) != 0)
2835 return ERR_PTR(-ENAMETOOLONG
);
2838 char *dentry_path_raw(struct dentry
*dentry
, char *buf
, int buflen
)
2842 write_seqlock(&rename_lock
);
2843 retval
= __dentry_path(dentry
, buf
, buflen
);
2844 write_sequnlock(&rename_lock
);
2848 EXPORT_SYMBOL(dentry_path_raw
);
2850 char *dentry_path(struct dentry
*dentry
, char *buf
, int buflen
)
2855 write_seqlock(&rename_lock
);
2856 if (d_unlinked(dentry
)) {
2858 if (prepend(&p
, &buflen
, "//deleted", 10) != 0)
2862 retval
= __dentry_path(dentry
, buf
, buflen
);
2863 write_sequnlock(&rename_lock
);
2864 if (!IS_ERR(retval
) && p
)
2865 *p
= '/'; /* restore '/' overriden with '\0' */
2868 return ERR_PTR(-ENAMETOOLONG
);
2872 * NOTE! The user-level library version returns a
2873 * character pointer. The kernel system call just
2874 * returns the length of the buffer filled (which
2875 * includes the ending '\0' character), or a negative
2876 * error value. So libc would do something like
2878 * char *getcwd(char * buf, size_t size)
2882 * retval = sys_getcwd(buf, size);
2889 SYSCALL_DEFINE2(getcwd
, char __user
*, buf
, unsigned long, size
)
2892 struct path pwd
, root
;
2893 char *page
= (char *) __get_free_page(GFP_USER
);
2898 get_fs_root_and_pwd(current
->fs
, &root
, &pwd
);
2901 write_seqlock(&rename_lock
);
2902 if (!d_unlinked(pwd
.dentry
)) {
2904 char *cwd
= page
+ PAGE_SIZE
;
2905 int buflen
= PAGE_SIZE
;
2907 prepend(&cwd
, &buflen
, "\0", 1);
2908 error
= prepend_path(&pwd
, &root
, &cwd
, &buflen
);
2909 write_sequnlock(&rename_lock
);
2914 /* Unreachable from current root */
2916 error
= prepend_unreachable(&cwd
, &buflen
);
2922 len
= PAGE_SIZE
+ page
- cwd
;
2925 if (copy_to_user(buf
, cwd
, len
))
2929 write_sequnlock(&rename_lock
);
2935 free_page((unsigned long) page
);
2940 * Test whether new_dentry is a subdirectory of old_dentry.
2942 * Trivially implemented using the dcache structure
2946 * is_subdir - is new dentry a subdirectory of old_dentry
2947 * @new_dentry: new dentry
2948 * @old_dentry: old dentry
2950 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2951 * Returns 0 otherwise.
2952 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2955 int is_subdir(struct dentry
*new_dentry
, struct dentry
*old_dentry
)
2960 if (new_dentry
== old_dentry
)
2964 /* for restarting inner loop in case of seq retry */
2965 seq
= read_seqbegin(&rename_lock
);
2967 * Need rcu_readlock to protect against the d_parent trashing
2971 if (d_ancestor(old_dentry
, new_dentry
))
2976 } while (read_seqretry(&rename_lock
, seq
));
2981 void d_genocide(struct dentry
*root
)
2983 struct dentry
*this_parent
;
2984 struct list_head
*next
;
2988 seq
= read_seqbegin(&rename_lock
);
2991 spin_lock(&this_parent
->d_lock
);
2993 next
= this_parent
->d_subdirs
.next
;
2995 while (next
!= &this_parent
->d_subdirs
) {
2996 struct list_head
*tmp
= next
;
2997 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
3000 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
3001 if (d_unhashed(dentry
) || !dentry
->d_inode
) {
3002 spin_unlock(&dentry
->d_lock
);
3005 if (!list_empty(&dentry
->d_subdirs
)) {
3006 spin_unlock(&this_parent
->d_lock
);
3007 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
3008 this_parent
= dentry
;
3009 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
3012 if (!(dentry
->d_flags
& DCACHE_GENOCIDE
)) {
3013 dentry
->d_flags
|= DCACHE_GENOCIDE
;
3016 spin_unlock(&dentry
->d_lock
);
3018 if (this_parent
!= root
) {
3019 struct dentry
*child
= this_parent
;
3020 if (!(this_parent
->d_flags
& DCACHE_GENOCIDE
)) {
3021 this_parent
->d_flags
|= DCACHE_GENOCIDE
;
3022 this_parent
->d_count
--;
3024 this_parent
= try_to_ascend(this_parent
, locked
, seq
);
3027 next
= child
->d_u
.d_child
.next
;
3030 spin_unlock(&this_parent
->d_lock
);
3031 if (!locked
&& read_seqretry(&rename_lock
, seq
))
3034 write_sequnlock(&rename_lock
);
3039 write_seqlock(&rename_lock
);
3044 * find_inode_number - check for dentry with name
3045 * @dir: directory to check
3046 * @name: Name to find.
3048 * Check whether a dentry already exists for the given name,
3049 * and return the inode number if it has an inode. Otherwise
3052 * This routine is used to post-process directory listings for
3053 * filesystems using synthetic inode numbers, and is necessary
3054 * to keep getcwd() working.
3057 ino_t
find_inode_number(struct dentry
*dir
, struct qstr
*name
)
3059 struct dentry
* dentry
;
3062 dentry
= d_hash_and_lookup(dir
, name
);
3064 if (dentry
->d_inode
)
3065 ino
= dentry
->d_inode
->i_ino
;
3070 EXPORT_SYMBOL(find_inode_number
);
3072 static __initdata
unsigned long dhash_entries
;
3073 static int __init
set_dhash_entries(char *str
)
3077 dhash_entries
= simple_strtoul(str
, &str
, 0);
3080 __setup("dhash_entries=", set_dhash_entries
);
3082 static void __init
dcache_init_early(void)
3086 /* If hashes are distributed across NUMA nodes, defer
3087 * hash allocation until vmalloc space is available.
3093 alloc_large_system_hash("Dentry cache",
3094 sizeof(struct hlist_bl_head
),
3103 for (loop
= 0; loop
< (1U << d_hash_shift
); loop
++)
3104 INIT_HLIST_BL_HEAD(dentry_hashtable
+ loop
);
3107 static void __init
dcache_init(void)
3112 * A constructor could be added for stable state like the lists,
3113 * but it is probably not worth it because of the cache nature
3116 dentry_cache
= KMEM_CACHE(dentry
,
3117 SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|SLAB_MEM_SPREAD
);
3119 /* Hash may have been set up in dcache_init_early */
3124 alloc_large_system_hash("Dentry cache",
3125 sizeof(struct hlist_bl_head
),
3134 for (loop
= 0; loop
< (1U << d_hash_shift
); loop
++)
3135 INIT_HLIST_BL_HEAD(dentry_hashtable
+ loop
);
3138 /* SLAB cache for __getname() consumers */
3139 struct kmem_cache
*names_cachep __read_mostly
;
3140 EXPORT_SYMBOL(names_cachep
);
3142 EXPORT_SYMBOL(d_genocide
);
3144 void __init
vfs_caches_init_early(void)
3146 dcache_init_early();
3150 void __init
vfs_caches_init(unsigned long mempages
)
3152 unsigned long reserve
;
3154 /* Base hash sizes on available memory, with a reserve equal to
3155 150% of current kernel size */
3157 reserve
= min((mempages
- nr_free_pages()) * 3/2, mempages
- 1);
3158 mempages
-= reserve
;
3160 names_cachep
= kmem_cache_create("names_cache", PATH_MAX
, 0,
3161 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
3165 files_init(mempages
);