1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <linux/atomic.h>
49 #include <linux/namei.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/mount.h>
54 #include <linux/socket.h>
55 #include <linux/mqueue.h>
56 #include <linux/audit.h>
57 #include <linux/personality.h>
58 #include <linux/time.h>
59 #include <linux/netlink.h>
60 #include <linux/compiler.h>
61 #include <asm/unistd.h>
62 #include <linux/security.h>
63 #include <linux/list.h>
64 #include <linux/tty.h>
65 #include <linux/binfmts.h>
66 #include <linux/highmem.h>
67 #include <linux/syscalls.h>
68 #include <linux/capability.h>
69 #include <linux/fs_struct.h>
73 /* flags stating the success for a syscall */
74 #define AUDITSC_INVALID 0
75 #define AUDITSC_SUCCESS 1
76 #define AUDITSC_FAILURE 2
78 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
79 * for saving names from getname(). If we get more names we will allocate
80 * a name dynamically and also add those to the list anchored by names_list. */
83 /* Indicates that audit should log the full pathname. */
84 #define AUDIT_NAME_FULL -1
86 /* no execve audit message should be longer than this (userspace limits) */
87 #define MAX_EXECVE_AUDIT_LEN 7500
89 /* number of audit rules */
92 /* determines whether we collect data for signals sent */
95 struct audit_cap_data
{
96 kernel_cap_t permitted
;
97 kernel_cap_t inheritable
;
99 unsigned int fE
; /* effective bit of a file capability */
100 kernel_cap_t effective
; /* effective set of a process */
104 /* When fs/namei.c:getname() is called, we store the pointer in name and
105 * we don't let putname() free it (instead we free all of the saved
106 * pointers at syscall exit time).
108 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
110 struct list_head list
; /* audit_context->names_list */
119 struct audit_cap_data fcap
;
120 unsigned int fcap_ver
;
121 int name_len
; /* number of name's characters to log */
122 bool name_put
; /* call __putname() for this name */
124 * This was an allocated audit_names and not from the array of
125 * names allocated in the task audit context. Thus this name
126 * should be freed on syscall exit
131 struct audit_aux_data
{
132 struct audit_aux_data
*next
;
136 #define AUDIT_AUX_IPCPERM 0
138 /* Number of target pids per aux struct. */
139 #define AUDIT_AUX_PIDS 16
141 struct audit_aux_data_execve
{
142 struct audit_aux_data d
;
145 struct mm_struct
*mm
;
148 struct audit_aux_data_pids
{
149 struct audit_aux_data d
;
150 pid_t target_pid
[AUDIT_AUX_PIDS
];
151 uid_t target_auid
[AUDIT_AUX_PIDS
];
152 uid_t target_uid
[AUDIT_AUX_PIDS
];
153 unsigned int target_sessionid
[AUDIT_AUX_PIDS
];
154 u32 target_sid
[AUDIT_AUX_PIDS
];
155 char target_comm
[AUDIT_AUX_PIDS
][TASK_COMM_LEN
];
159 struct audit_aux_data_bprm_fcaps
{
160 struct audit_aux_data d
;
161 struct audit_cap_data fcap
;
162 unsigned int fcap_ver
;
163 struct audit_cap_data old_pcap
;
164 struct audit_cap_data new_pcap
;
167 struct audit_aux_data_capset
{
168 struct audit_aux_data d
;
170 struct audit_cap_data cap
;
173 struct audit_tree_refs
{
174 struct audit_tree_refs
*next
;
175 struct audit_chunk
*c
[31];
178 /* The per-task audit context. */
179 struct audit_context
{
180 int dummy
; /* must be the first element */
181 int in_syscall
; /* 1 if task is in a syscall */
182 enum audit_state state
, current_state
;
183 unsigned int serial
; /* serial number for record */
184 int major
; /* syscall number */
185 struct timespec ctime
; /* time of syscall entry */
186 unsigned long argv
[4]; /* syscall arguments */
187 long return_code
;/* syscall return code */
189 int return_valid
; /* return code is valid */
191 * The names_list is the list of all audit_names collected during this
192 * syscall. The first AUDIT_NAMES entries in the names_list will
193 * actually be from the preallocated_names array for performance
194 * reasons. Except during allocation they should never be referenced
195 * through the preallocated_names array and should only be found/used
196 * by running the names_list.
198 struct audit_names preallocated_names
[AUDIT_NAMES
];
199 int name_count
; /* total records in names_list */
200 struct list_head names_list
; /* anchor for struct audit_names->list */
201 char * filterkey
; /* key for rule that triggered record */
203 struct audit_context
*previous
; /* For nested syscalls */
204 struct audit_aux_data
*aux
;
205 struct audit_aux_data
*aux_pids
;
206 struct sockaddr_storage
*sockaddr
;
208 /* Save things to print about task_struct */
210 uid_t uid
, euid
, suid
, fsuid
;
211 gid_t gid
, egid
, sgid
, fsgid
;
212 unsigned long personality
;
218 unsigned int target_sessionid
;
220 char target_comm
[TASK_COMM_LEN
];
222 struct audit_tree_refs
*trees
, *first_trees
;
223 struct list_head killed_trees
;
241 unsigned long qbytes
;
245 struct mq_attr mqstat
;
254 unsigned int msg_prio
;
255 struct timespec abs_timeout
;
264 struct audit_cap_data cap
;
279 static inline int open_arg(int flags
, int mask
)
281 int n
= ACC_MODE(flags
);
282 if (flags
& (O_TRUNC
| O_CREAT
))
283 n
|= AUDIT_PERM_WRITE
;
287 static int audit_match_perm(struct audit_context
*ctx
, int mask
)
294 switch (audit_classify_syscall(ctx
->arch
, n
)) {
296 if ((mask
& AUDIT_PERM_WRITE
) &&
297 audit_match_class(AUDIT_CLASS_WRITE
, n
))
299 if ((mask
& AUDIT_PERM_READ
) &&
300 audit_match_class(AUDIT_CLASS_READ
, n
))
302 if ((mask
& AUDIT_PERM_ATTR
) &&
303 audit_match_class(AUDIT_CLASS_CHATTR
, n
))
306 case 1: /* 32bit on biarch */
307 if ((mask
& AUDIT_PERM_WRITE
) &&
308 audit_match_class(AUDIT_CLASS_WRITE_32
, n
))
310 if ((mask
& AUDIT_PERM_READ
) &&
311 audit_match_class(AUDIT_CLASS_READ_32
, n
))
313 if ((mask
& AUDIT_PERM_ATTR
) &&
314 audit_match_class(AUDIT_CLASS_CHATTR_32
, n
))
318 return mask
& ACC_MODE(ctx
->argv
[1]);
320 return mask
& ACC_MODE(ctx
->argv
[2]);
321 case 4: /* socketcall */
322 return ((mask
& AUDIT_PERM_WRITE
) && ctx
->argv
[0] == SYS_BIND
);
324 return mask
& AUDIT_PERM_EXEC
;
330 static int audit_match_filetype(struct audit_context
*ctx
, int val
)
332 struct audit_names
*n
;
333 umode_t mode
= (umode_t
)val
;
338 list_for_each_entry(n
, &ctx
->names_list
, list
) {
339 if ((n
->ino
!= -1) &&
340 ((n
->mode
& S_IFMT
) == mode
))
348 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
349 * ->first_trees points to its beginning, ->trees - to the current end of data.
350 * ->tree_count is the number of free entries in array pointed to by ->trees.
351 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
352 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
353 * it's going to remain 1-element for almost any setup) until we free context itself.
354 * References in it _are_ dropped - at the same time we free/drop aux stuff.
357 #ifdef CONFIG_AUDIT_TREE
358 static void audit_set_auditable(struct audit_context
*ctx
)
362 ctx
->current_state
= AUDIT_RECORD_CONTEXT
;
366 static int put_tree_ref(struct audit_context
*ctx
, struct audit_chunk
*chunk
)
368 struct audit_tree_refs
*p
= ctx
->trees
;
369 int left
= ctx
->tree_count
;
371 p
->c
[--left
] = chunk
;
372 ctx
->tree_count
= left
;
381 ctx
->tree_count
= 30;
387 static int grow_tree_refs(struct audit_context
*ctx
)
389 struct audit_tree_refs
*p
= ctx
->trees
;
390 ctx
->trees
= kzalloc(sizeof(struct audit_tree_refs
), GFP_KERNEL
);
396 p
->next
= ctx
->trees
;
398 ctx
->first_trees
= ctx
->trees
;
399 ctx
->tree_count
= 31;
404 static void unroll_tree_refs(struct audit_context
*ctx
,
405 struct audit_tree_refs
*p
, int count
)
407 #ifdef CONFIG_AUDIT_TREE
408 struct audit_tree_refs
*q
;
411 /* we started with empty chain */
412 p
= ctx
->first_trees
;
414 /* if the very first allocation has failed, nothing to do */
419 for (q
= p
; q
!= ctx
->trees
; q
= q
->next
, n
= 31) {
421 audit_put_chunk(q
->c
[n
]);
425 while (n
-- > ctx
->tree_count
) {
426 audit_put_chunk(q
->c
[n
]);
430 ctx
->tree_count
= count
;
434 static void free_tree_refs(struct audit_context
*ctx
)
436 struct audit_tree_refs
*p
, *q
;
437 for (p
= ctx
->first_trees
; p
; p
= q
) {
443 static int match_tree_refs(struct audit_context
*ctx
, struct audit_tree
*tree
)
445 #ifdef CONFIG_AUDIT_TREE
446 struct audit_tree_refs
*p
;
451 for (p
= ctx
->first_trees
; p
!= ctx
->trees
; p
= p
->next
) {
452 for (n
= 0; n
< 31; n
++)
453 if (audit_tree_match(p
->c
[n
], tree
))
458 for (n
= ctx
->tree_count
; n
< 31; n
++)
459 if (audit_tree_match(p
->c
[n
], tree
))
466 static int audit_compare_id(uid_t uid1
,
467 struct audit_names
*name
,
468 unsigned long name_offset
,
469 struct audit_field
*f
,
470 struct audit_context
*ctx
)
472 struct audit_names
*n
;
477 BUILD_BUG_ON(sizeof(uid_t
) != sizeof(gid_t
));
480 addr
= (unsigned long)name
;
483 uid2
= *(uid_t
*)addr
;
484 rc
= audit_comparator(uid1
, f
->op
, uid2
);
490 list_for_each_entry(n
, &ctx
->names_list
, list
) {
491 addr
= (unsigned long)n
;
494 uid2
= *(uid_t
*)addr
;
496 rc
= audit_comparator(uid1
, f
->op
, uid2
);
504 static int audit_field_compare(struct task_struct
*tsk
,
505 const struct cred
*cred
,
506 struct audit_field
*f
,
507 struct audit_context
*ctx
,
508 struct audit_names
*name
)
511 /* process to file object comparisons */
512 case AUDIT_COMPARE_UID_TO_OBJ_UID
:
513 return audit_compare_id(cred
->uid
,
514 name
, offsetof(struct audit_names
, uid
),
516 case AUDIT_COMPARE_GID_TO_OBJ_GID
:
517 return audit_compare_id(cred
->gid
,
518 name
, offsetof(struct audit_names
, gid
),
520 case AUDIT_COMPARE_EUID_TO_OBJ_UID
:
521 return audit_compare_id(cred
->euid
,
522 name
, offsetof(struct audit_names
, uid
),
524 case AUDIT_COMPARE_EGID_TO_OBJ_GID
:
525 return audit_compare_id(cred
->egid
,
526 name
, offsetof(struct audit_names
, gid
),
528 case AUDIT_COMPARE_AUID_TO_OBJ_UID
:
529 return audit_compare_id(tsk
->loginuid
,
530 name
, offsetof(struct audit_names
, uid
),
532 case AUDIT_COMPARE_SUID_TO_OBJ_UID
:
533 return audit_compare_id(cred
->suid
,
534 name
, offsetof(struct audit_names
, uid
),
536 case AUDIT_COMPARE_SGID_TO_OBJ_GID
:
537 return audit_compare_id(cred
->sgid
,
538 name
, offsetof(struct audit_names
, gid
),
540 case AUDIT_COMPARE_FSUID_TO_OBJ_UID
:
541 return audit_compare_id(cred
->fsuid
,
542 name
, offsetof(struct audit_names
, uid
),
544 case AUDIT_COMPARE_FSGID_TO_OBJ_GID
:
545 return audit_compare_id(cred
->fsgid
,
546 name
, offsetof(struct audit_names
, gid
),
548 /* uid comparisons */
549 case AUDIT_COMPARE_UID_TO_AUID
:
550 return audit_comparator(cred
->uid
, f
->op
, tsk
->loginuid
);
551 case AUDIT_COMPARE_UID_TO_EUID
:
552 return audit_comparator(cred
->uid
, f
->op
, cred
->euid
);
553 case AUDIT_COMPARE_UID_TO_SUID
:
554 return audit_comparator(cred
->uid
, f
->op
, cred
->suid
);
555 case AUDIT_COMPARE_UID_TO_FSUID
:
556 return audit_comparator(cred
->uid
, f
->op
, cred
->fsuid
);
557 /* auid comparisons */
558 case AUDIT_COMPARE_AUID_TO_EUID
:
559 return audit_comparator(tsk
->loginuid
, f
->op
, cred
->euid
);
560 case AUDIT_COMPARE_AUID_TO_SUID
:
561 return audit_comparator(tsk
->loginuid
, f
->op
, cred
->suid
);
562 case AUDIT_COMPARE_AUID_TO_FSUID
:
563 return audit_comparator(tsk
->loginuid
, f
->op
, cred
->fsuid
);
564 /* euid comparisons */
565 case AUDIT_COMPARE_EUID_TO_SUID
:
566 return audit_comparator(cred
->euid
, f
->op
, cred
->suid
);
567 case AUDIT_COMPARE_EUID_TO_FSUID
:
568 return audit_comparator(cred
->euid
, f
->op
, cred
->fsuid
);
569 /* suid comparisons */
570 case AUDIT_COMPARE_SUID_TO_FSUID
:
571 return audit_comparator(cred
->suid
, f
->op
, cred
->fsuid
);
572 /* gid comparisons */
573 case AUDIT_COMPARE_GID_TO_EGID
:
574 return audit_comparator(cred
->gid
, f
->op
, cred
->egid
);
575 case AUDIT_COMPARE_GID_TO_SGID
:
576 return audit_comparator(cred
->gid
, f
->op
, cred
->sgid
);
577 case AUDIT_COMPARE_GID_TO_FSGID
:
578 return audit_comparator(cred
->gid
, f
->op
, cred
->fsgid
);
579 /* egid comparisons */
580 case AUDIT_COMPARE_EGID_TO_SGID
:
581 return audit_comparator(cred
->egid
, f
->op
, cred
->sgid
);
582 case AUDIT_COMPARE_EGID_TO_FSGID
:
583 return audit_comparator(cred
->egid
, f
->op
, cred
->fsgid
);
584 /* sgid comparison */
585 case AUDIT_COMPARE_SGID_TO_FSGID
:
586 return audit_comparator(cred
->sgid
, f
->op
, cred
->fsgid
);
588 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
594 /* Determine if any context name data matches a rule's watch data */
595 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
598 * If task_creation is true, this is an explicit indication that we are
599 * filtering a task rule at task creation time. This and tsk == current are
600 * the only situations where tsk->cred may be accessed without an rcu read lock.
602 static int audit_filter_rules(struct task_struct
*tsk
,
603 struct audit_krule
*rule
,
604 struct audit_context
*ctx
,
605 struct audit_names
*name
,
606 enum audit_state
*state
,
609 const struct cred
*cred
;
613 cred
= rcu_dereference_check(tsk
->cred
, tsk
== current
|| task_creation
);
615 for (i
= 0; i
< rule
->field_count
; i
++) {
616 struct audit_field
*f
= &rule
->fields
[i
];
617 struct audit_names
*n
;
622 result
= audit_comparator(tsk
->pid
, f
->op
, f
->val
);
627 ctx
->ppid
= sys_getppid();
628 result
= audit_comparator(ctx
->ppid
, f
->op
, f
->val
);
632 result
= audit_comparator(cred
->uid
, f
->op
, f
->val
);
635 result
= audit_comparator(cred
->euid
, f
->op
, f
->val
);
638 result
= audit_comparator(cred
->suid
, f
->op
, f
->val
);
641 result
= audit_comparator(cred
->fsuid
, f
->op
, f
->val
);
644 result
= audit_comparator(cred
->gid
, f
->op
, f
->val
);
647 result
= audit_comparator(cred
->egid
, f
->op
, f
->val
);
650 result
= audit_comparator(cred
->sgid
, f
->op
, f
->val
);
653 result
= audit_comparator(cred
->fsgid
, f
->op
, f
->val
);
656 result
= audit_comparator(tsk
->personality
, f
->op
, f
->val
);
660 result
= audit_comparator(ctx
->arch
, f
->op
, f
->val
);
664 if (ctx
&& ctx
->return_valid
)
665 result
= audit_comparator(ctx
->return_code
, f
->op
, f
->val
);
668 if (ctx
&& ctx
->return_valid
) {
670 result
= audit_comparator(ctx
->return_valid
, f
->op
, AUDITSC_SUCCESS
);
672 result
= audit_comparator(ctx
->return_valid
, f
->op
, AUDITSC_FAILURE
);
677 if (audit_comparator(MAJOR(name
->dev
), f
->op
, f
->val
) ||
678 audit_comparator(MAJOR(name
->rdev
), f
->op
, f
->val
))
681 list_for_each_entry(n
, &ctx
->names_list
, list
) {
682 if (audit_comparator(MAJOR(n
->dev
), f
->op
, f
->val
) ||
683 audit_comparator(MAJOR(n
->rdev
), f
->op
, f
->val
)) {
692 if (audit_comparator(MINOR(name
->dev
), f
->op
, f
->val
) ||
693 audit_comparator(MINOR(name
->rdev
), f
->op
, f
->val
))
696 list_for_each_entry(n
, &ctx
->names_list
, list
) {
697 if (audit_comparator(MINOR(n
->dev
), f
->op
, f
->val
) ||
698 audit_comparator(MINOR(n
->rdev
), f
->op
, f
->val
)) {
707 result
= (name
->ino
== f
->val
);
709 list_for_each_entry(n
, &ctx
->names_list
, list
) {
710 if (audit_comparator(n
->ino
, f
->op
, f
->val
)) {
719 result
= audit_comparator(name
->uid
, f
->op
, f
->val
);
721 list_for_each_entry(n
, &ctx
->names_list
, list
) {
722 if (audit_comparator(n
->uid
, f
->op
, f
->val
)) {
731 result
= audit_comparator(name
->gid
, f
->op
, f
->val
);
733 list_for_each_entry(n
, &ctx
->names_list
, list
) {
734 if (audit_comparator(n
->gid
, f
->op
, f
->val
)) {
743 result
= audit_watch_compare(rule
->watch
, name
->ino
, name
->dev
);
747 result
= match_tree_refs(ctx
, rule
->tree
);
752 result
= audit_comparator(tsk
->loginuid
, f
->op
, f
->val
);
754 case AUDIT_SUBJ_USER
:
755 case AUDIT_SUBJ_ROLE
:
756 case AUDIT_SUBJ_TYPE
:
759 /* NOTE: this may return negative values indicating
760 a temporary error. We simply treat this as a
761 match for now to avoid losing information that
762 may be wanted. An error message will also be
766 security_task_getsecid(tsk
, &sid
);
769 result
= security_audit_rule_match(sid
, f
->type
,
778 case AUDIT_OBJ_LEV_LOW
:
779 case AUDIT_OBJ_LEV_HIGH
:
780 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
783 /* Find files that match */
785 result
= security_audit_rule_match(
786 name
->osid
, f
->type
, f
->op
,
789 list_for_each_entry(n
, &ctx
->names_list
, list
) {
790 if (security_audit_rule_match(n
->osid
, f
->type
,
798 /* Find ipc objects that match */
799 if (!ctx
|| ctx
->type
!= AUDIT_IPC
)
801 if (security_audit_rule_match(ctx
->ipc
.osid
,
812 result
= audit_comparator(ctx
->argv
[f
->type
-AUDIT_ARG0
], f
->op
, f
->val
);
814 case AUDIT_FILTERKEY
:
815 /* ignore this field for filtering */
819 result
= audit_match_perm(ctx
, f
->val
);
822 result
= audit_match_filetype(ctx
, f
->val
);
824 case AUDIT_FIELD_COMPARE
:
825 result
= audit_field_compare(tsk
, cred
, f
, ctx
, name
);
833 if (rule
->prio
<= ctx
->prio
)
835 if (rule
->filterkey
) {
836 kfree(ctx
->filterkey
);
837 ctx
->filterkey
= kstrdup(rule
->filterkey
, GFP_ATOMIC
);
839 ctx
->prio
= rule
->prio
;
841 switch (rule
->action
) {
842 case AUDIT_NEVER
: *state
= AUDIT_DISABLED
; break;
843 case AUDIT_ALWAYS
: *state
= AUDIT_RECORD_CONTEXT
; break;
848 /* At process creation time, we can determine if system-call auditing is
849 * completely disabled for this task. Since we only have the task
850 * structure at this point, we can only check uid and gid.
852 static enum audit_state
audit_filter_task(struct task_struct
*tsk
, char **key
)
854 struct audit_entry
*e
;
855 enum audit_state state
;
858 list_for_each_entry_rcu(e
, &audit_filter_list
[AUDIT_FILTER_TASK
], list
) {
859 if (audit_filter_rules(tsk
, &e
->rule
, NULL
, NULL
,
861 if (state
== AUDIT_RECORD_CONTEXT
)
862 *key
= kstrdup(e
->rule
.filterkey
, GFP_ATOMIC
);
868 return AUDIT_BUILD_CONTEXT
;
871 /* At syscall entry and exit time, this filter is called if the
872 * audit_state is not low enough that auditing cannot take place, but is
873 * also not high enough that we already know we have to write an audit
874 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
876 static enum audit_state
audit_filter_syscall(struct task_struct
*tsk
,
877 struct audit_context
*ctx
,
878 struct list_head
*list
)
880 struct audit_entry
*e
;
881 enum audit_state state
;
883 if (audit_pid
&& tsk
->tgid
== audit_pid
)
884 return AUDIT_DISABLED
;
887 if (!list_empty(list
)) {
888 int word
= AUDIT_WORD(ctx
->major
);
889 int bit
= AUDIT_BIT(ctx
->major
);
891 list_for_each_entry_rcu(e
, list
, list
) {
892 if ((e
->rule
.mask
[word
] & bit
) == bit
&&
893 audit_filter_rules(tsk
, &e
->rule
, ctx
, NULL
,
896 ctx
->current_state
= state
;
902 return AUDIT_BUILD_CONTEXT
;
906 * Given an audit_name check the inode hash table to see if they match.
907 * Called holding the rcu read lock to protect the use of audit_inode_hash
909 static int audit_filter_inode_name(struct task_struct
*tsk
,
910 struct audit_names
*n
,
911 struct audit_context
*ctx
) {
913 int h
= audit_hash_ino((u32
)n
->ino
);
914 struct list_head
*list
= &audit_inode_hash
[h
];
915 struct audit_entry
*e
;
916 enum audit_state state
;
918 word
= AUDIT_WORD(ctx
->major
);
919 bit
= AUDIT_BIT(ctx
->major
);
921 if (list_empty(list
))
924 list_for_each_entry_rcu(e
, list
, list
) {
925 if ((e
->rule
.mask
[word
] & bit
) == bit
&&
926 audit_filter_rules(tsk
, &e
->rule
, ctx
, n
, &state
, false)) {
927 ctx
->current_state
= state
;
935 /* At syscall exit time, this filter is called if any audit_names have been
936 * collected during syscall processing. We only check rules in sublists at hash
937 * buckets applicable to the inode numbers in audit_names.
938 * Regarding audit_state, same rules apply as for audit_filter_syscall().
940 void audit_filter_inodes(struct task_struct
*tsk
, struct audit_context
*ctx
)
942 struct audit_names
*n
;
944 if (audit_pid
&& tsk
->tgid
== audit_pid
)
949 list_for_each_entry(n
, &ctx
->names_list
, list
) {
950 if (audit_filter_inode_name(tsk
, n
, ctx
))
956 static inline struct audit_context
*audit_get_context(struct task_struct
*tsk
,
960 struct audit_context
*context
= tsk
->audit_context
;
964 context
->return_valid
= return_valid
;
967 * we need to fix up the return code in the audit logs if the actual
968 * return codes are later going to be fixed up by the arch specific
971 * This is actually a test for:
972 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
973 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
975 * but is faster than a bunch of ||
977 if (unlikely(return_code
<= -ERESTARTSYS
) &&
978 (return_code
>= -ERESTART_RESTARTBLOCK
) &&
979 (return_code
!= -ENOIOCTLCMD
))
980 context
->return_code
= -EINTR
;
982 context
->return_code
= return_code
;
984 if (context
->in_syscall
&& !context
->dummy
) {
985 audit_filter_syscall(tsk
, context
, &audit_filter_list
[AUDIT_FILTER_EXIT
]);
986 audit_filter_inodes(tsk
, context
);
989 tsk
->audit_context
= NULL
;
993 static inline void audit_free_names(struct audit_context
*context
)
995 struct audit_names
*n
, *next
;
998 if (context
->put_count
+ context
->ino_count
!= context
->name_count
) {
999 printk(KERN_ERR
"%s:%d(:%d): major=%d in_syscall=%d"
1000 " name_count=%d put_count=%d"
1001 " ino_count=%d [NOT freeing]\n",
1003 context
->serial
, context
->major
, context
->in_syscall
,
1004 context
->name_count
, context
->put_count
,
1005 context
->ino_count
);
1006 list_for_each_entry(n
, &context
->names_list
, list
) {
1007 printk(KERN_ERR
"names[%d] = %p = %s\n", i
,
1008 n
->name
, n
->name
?: "(null)");
1015 context
->put_count
= 0;
1016 context
->ino_count
= 0;
1019 list_for_each_entry_safe(n
, next
, &context
->names_list
, list
) {
1021 if (n
->name
&& n
->name_put
)
1026 context
->name_count
= 0;
1027 path_put(&context
->pwd
);
1028 context
->pwd
.dentry
= NULL
;
1029 context
->pwd
.mnt
= NULL
;
1032 static inline void audit_free_aux(struct audit_context
*context
)
1034 struct audit_aux_data
*aux
;
1036 while ((aux
= context
->aux
)) {
1037 context
->aux
= aux
->next
;
1040 while ((aux
= context
->aux_pids
)) {
1041 context
->aux_pids
= aux
->next
;
1046 static inline void audit_zero_context(struct audit_context
*context
,
1047 enum audit_state state
)
1049 memset(context
, 0, sizeof(*context
));
1050 context
->state
= state
;
1051 context
->prio
= state
== AUDIT_RECORD_CONTEXT
? ~0ULL : 0;
1054 static inline struct audit_context
*audit_alloc_context(enum audit_state state
)
1056 struct audit_context
*context
;
1058 if (!(context
= kmalloc(sizeof(*context
), GFP_KERNEL
)))
1060 audit_zero_context(context
, state
);
1061 INIT_LIST_HEAD(&context
->killed_trees
);
1062 INIT_LIST_HEAD(&context
->names_list
);
1067 * audit_alloc - allocate an audit context block for a task
1070 * Filter on the task information and allocate a per-task audit context
1071 * if necessary. Doing so turns on system call auditing for the
1072 * specified task. This is called from copy_process, so no lock is
1075 int audit_alloc(struct task_struct
*tsk
)
1077 struct audit_context
*context
;
1078 enum audit_state state
;
1081 if (likely(!audit_ever_enabled
))
1082 return 0; /* Return if not auditing. */
1084 state
= audit_filter_task(tsk
, &key
);
1085 if (state
== AUDIT_DISABLED
)
1088 if (!(context
= audit_alloc_context(state
))) {
1090 audit_log_lost("out of memory in audit_alloc");
1093 context
->filterkey
= key
;
1095 tsk
->audit_context
= context
;
1096 set_tsk_thread_flag(tsk
, TIF_SYSCALL_AUDIT
);
1100 static inline void audit_free_context(struct audit_context
*context
)
1102 struct audit_context
*previous
;
1106 previous
= context
->previous
;
1107 if (previous
|| (count
&& count
< 10)) {
1109 printk(KERN_ERR
"audit(:%d): major=%d name_count=%d:"
1110 " freeing multiple contexts (%d)\n",
1111 context
->serial
, context
->major
,
1112 context
->name_count
, count
);
1114 audit_free_names(context
);
1115 unroll_tree_refs(context
, NULL
, 0);
1116 free_tree_refs(context
);
1117 audit_free_aux(context
);
1118 kfree(context
->filterkey
);
1119 kfree(context
->sockaddr
);
1124 printk(KERN_ERR
"audit: freed %d contexts\n", count
);
1127 void audit_log_task_context(struct audit_buffer
*ab
)
1134 security_task_getsecid(current
, &sid
);
1138 error
= security_secid_to_secctx(sid
, &ctx
, &len
);
1140 if (error
!= -EINVAL
)
1145 audit_log_format(ab
, " subj=%s", ctx
);
1146 security_release_secctx(ctx
, len
);
1150 audit_panic("error in audit_log_task_context");
1154 EXPORT_SYMBOL(audit_log_task_context
);
1156 static void audit_log_task_info(struct audit_buffer
*ab
, struct task_struct
*tsk
)
1158 char name
[sizeof(tsk
->comm
)];
1159 struct mm_struct
*mm
= tsk
->mm
;
1160 struct vm_area_struct
*vma
;
1162 /* tsk == current */
1164 get_task_comm(name
, tsk
);
1165 audit_log_format(ab
, " comm=");
1166 audit_log_untrustedstring(ab
, name
);
1169 down_read(&mm
->mmap_sem
);
1172 if ((vma
->vm_flags
& VM_EXECUTABLE
) &&
1174 audit_log_d_path(ab
, " exe=",
1175 &vma
->vm_file
->f_path
);
1180 up_read(&mm
->mmap_sem
);
1182 audit_log_task_context(ab
);
1185 static int audit_log_pid_context(struct audit_context
*context
, pid_t pid
,
1186 uid_t auid
, uid_t uid
, unsigned int sessionid
,
1187 u32 sid
, char *comm
)
1189 struct audit_buffer
*ab
;
1194 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_OBJ_PID
);
1198 audit_log_format(ab
, "opid=%d oauid=%d ouid=%d oses=%d", pid
, auid
,
1200 if (security_secid_to_secctx(sid
, &ctx
, &len
)) {
1201 audit_log_format(ab
, " obj=(none)");
1204 audit_log_format(ab
, " obj=%s", ctx
);
1205 security_release_secctx(ctx
, len
);
1207 audit_log_format(ab
, " ocomm=");
1208 audit_log_untrustedstring(ab
, comm
);
1215 * to_send and len_sent accounting are very loose estimates. We aren't
1216 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1217 * within about 500 bytes (next page boundary)
1219 * why snprintf? an int is up to 12 digits long. if we just assumed when
1220 * logging that a[%d]= was going to be 16 characters long we would be wasting
1221 * space in every audit message. In one 7500 byte message we can log up to
1222 * about 1000 min size arguments. That comes down to about 50% waste of space
1223 * if we didn't do the snprintf to find out how long arg_num_len was.
1225 static int audit_log_single_execve_arg(struct audit_context
*context
,
1226 struct audit_buffer
**ab
,
1229 const char __user
*p
,
1232 char arg_num_len_buf
[12];
1233 const char __user
*tmp_p
= p
;
1234 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1235 size_t arg_num_len
= snprintf(arg_num_len_buf
, 12, "%d", arg_num
) + 5;
1236 size_t len
, len_left
, to_send
;
1237 size_t max_execve_audit_len
= MAX_EXECVE_AUDIT_LEN
;
1238 unsigned int i
, has_cntl
= 0, too_long
= 0;
1241 /* strnlen_user includes the null we don't want to send */
1242 len_left
= len
= strnlen_user(p
, MAX_ARG_STRLEN
) - 1;
1245 * We just created this mm, if we can't find the strings
1246 * we just copied into it something is _very_ wrong. Similar
1247 * for strings that are too long, we should not have created
1250 if (unlikely((len
== -1) || len
> MAX_ARG_STRLEN
- 1)) {
1252 send_sig(SIGKILL
, current
, 0);
1256 /* walk the whole argument looking for non-ascii chars */
1258 if (len_left
> MAX_EXECVE_AUDIT_LEN
)
1259 to_send
= MAX_EXECVE_AUDIT_LEN
;
1262 ret
= copy_from_user(buf
, tmp_p
, to_send
);
1264 * There is no reason for this copy to be short. We just
1265 * copied them here, and the mm hasn't been exposed to user-
1270 send_sig(SIGKILL
, current
, 0);
1273 buf
[to_send
] = '\0';
1274 has_cntl
= audit_string_contains_control(buf
, to_send
);
1277 * hex messages get logged as 2 bytes, so we can only
1278 * send half as much in each message
1280 max_execve_audit_len
= MAX_EXECVE_AUDIT_LEN
/ 2;
1283 len_left
-= to_send
;
1285 } while (len_left
> 0);
1289 if (len
> max_execve_audit_len
)
1292 /* rewalk the argument actually logging the message */
1293 for (i
= 0; len_left
> 0; i
++) {
1296 if (len_left
> max_execve_audit_len
)
1297 to_send
= max_execve_audit_len
;
1301 /* do we have space left to send this argument in this ab? */
1302 room_left
= MAX_EXECVE_AUDIT_LEN
- arg_num_len
- *len_sent
;
1304 room_left
-= (to_send
* 2);
1306 room_left
-= to_send
;
1307 if (room_left
< 0) {
1310 *ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_EXECVE
);
1316 * first record needs to say how long the original string was
1317 * so we can be sure nothing was lost.
1319 if ((i
== 0) && (too_long
))
1320 audit_log_format(*ab
, " a%d_len=%zu", arg_num
,
1321 has_cntl
? 2*len
: len
);
1324 * normally arguments are small enough to fit and we already
1325 * filled buf above when we checked for control characters
1326 * so don't bother with another copy_from_user
1328 if (len
>= max_execve_audit_len
)
1329 ret
= copy_from_user(buf
, p
, to_send
);
1334 send_sig(SIGKILL
, current
, 0);
1337 buf
[to_send
] = '\0';
1339 /* actually log it */
1340 audit_log_format(*ab
, " a%d", arg_num
);
1342 audit_log_format(*ab
, "[%d]", i
);
1343 audit_log_format(*ab
, "=");
1345 audit_log_n_hex(*ab
, buf
, to_send
);
1347 audit_log_string(*ab
, buf
);
1350 len_left
-= to_send
;
1351 *len_sent
+= arg_num_len
;
1353 *len_sent
+= to_send
* 2;
1355 *len_sent
+= to_send
;
1357 /* include the null we didn't log */
1361 static void audit_log_execve_info(struct audit_context
*context
,
1362 struct audit_buffer
**ab
,
1363 struct audit_aux_data_execve
*axi
)
1366 size_t len_sent
= 0;
1367 const char __user
*p
;
1370 if (axi
->mm
!= current
->mm
)
1371 return; /* execve failed, no additional info */
1373 p
= (const char __user
*)axi
->mm
->arg_start
;
1375 audit_log_format(*ab
, "argc=%d", axi
->argc
);
1378 * we need some kernel buffer to hold the userspace args. Just
1379 * allocate one big one rather than allocating one of the right size
1380 * for every single argument inside audit_log_single_execve_arg()
1381 * should be <8k allocation so should be pretty safe.
1383 buf
= kmalloc(MAX_EXECVE_AUDIT_LEN
+ 1, GFP_KERNEL
);
1385 audit_panic("out of memory for argv string\n");
1389 for (i
= 0; i
< axi
->argc
; i
++) {
1390 len
= audit_log_single_execve_arg(context
, ab
, i
,
1399 static void audit_log_cap(struct audit_buffer
*ab
, char *prefix
, kernel_cap_t
*cap
)
1403 audit_log_format(ab
, " %s=", prefix
);
1404 CAP_FOR_EACH_U32(i
) {
1405 audit_log_format(ab
, "%08x", cap
->cap
[(_KERNEL_CAPABILITY_U32S
-1) - i
]);
1409 static void audit_log_fcaps(struct audit_buffer
*ab
, struct audit_names
*name
)
1411 kernel_cap_t
*perm
= &name
->fcap
.permitted
;
1412 kernel_cap_t
*inh
= &name
->fcap
.inheritable
;
1415 if (!cap_isclear(*perm
)) {
1416 audit_log_cap(ab
, "cap_fp", perm
);
1419 if (!cap_isclear(*inh
)) {
1420 audit_log_cap(ab
, "cap_fi", inh
);
1425 audit_log_format(ab
, " cap_fe=%d cap_fver=%x", name
->fcap
.fE
, name
->fcap_ver
);
1428 static void show_special(struct audit_context
*context
, int *call_panic
)
1430 struct audit_buffer
*ab
;
1433 ab
= audit_log_start(context
, GFP_KERNEL
, context
->type
);
1437 switch (context
->type
) {
1438 case AUDIT_SOCKETCALL
: {
1439 int nargs
= context
->socketcall
.nargs
;
1440 audit_log_format(ab
, "nargs=%d", nargs
);
1441 for (i
= 0; i
< nargs
; i
++)
1442 audit_log_format(ab
, " a%d=%lx", i
,
1443 context
->socketcall
.args
[i
]);
1446 u32 osid
= context
->ipc
.osid
;
1448 audit_log_format(ab
, "ouid=%u ogid=%u mode=%#ho",
1449 context
->ipc
.uid
, context
->ipc
.gid
, context
->ipc
.mode
);
1453 if (security_secid_to_secctx(osid
, &ctx
, &len
)) {
1454 audit_log_format(ab
, " osid=%u", osid
);
1457 audit_log_format(ab
, " obj=%s", ctx
);
1458 security_release_secctx(ctx
, len
);
1461 if (context
->ipc
.has_perm
) {
1463 ab
= audit_log_start(context
, GFP_KERNEL
,
1464 AUDIT_IPC_SET_PERM
);
1465 audit_log_format(ab
,
1466 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1467 context
->ipc
.qbytes
,
1468 context
->ipc
.perm_uid
,
1469 context
->ipc
.perm_gid
,
1470 context
->ipc
.perm_mode
);
1475 case AUDIT_MQ_OPEN
: {
1476 audit_log_format(ab
,
1477 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1478 "mq_msgsize=%ld mq_curmsgs=%ld",
1479 context
->mq_open
.oflag
, context
->mq_open
.mode
,
1480 context
->mq_open
.attr
.mq_flags
,
1481 context
->mq_open
.attr
.mq_maxmsg
,
1482 context
->mq_open
.attr
.mq_msgsize
,
1483 context
->mq_open
.attr
.mq_curmsgs
);
1485 case AUDIT_MQ_SENDRECV
: {
1486 audit_log_format(ab
,
1487 "mqdes=%d msg_len=%zd msg_prio=%u "
1488 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1489 context
->mq_sendrecv
.mqdes
,
1490 context
->mq_sendrecv
.msg_len
,
1491 context
->mq_sendrecv
.msg_prio
,
1492 context
->mq_sendrecv
.abs_timeout
.tv_sec
,
1493 context
->mq_sendrecv
.abs_timeout
.tv_nsec
);
1495 case AUDIT_MQ_NOTIFY
: {
1496 audit_log_format(ab
, "mqdes=%d sigev_signo=%d",
1497 context
->mq_notify
.mqdes
,
1498 context
->mq_notify
.sigev_signo
);
1500 case AUDIT_MQ_GETSETATTR
: {
1501 struct mq_attr
*attr
= &context
->mq_getsetattr
.mqstat
;
1502 audit_log_format(ab
,
1503 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1505 context
->mq_getsetattr
.mqdes
,
1506 attr
->mq_flags
, attr
->mq_maxmsg
,
1507 attr
->mq_msgsize
, attr
->mq_curmsgs
);
1509 case AUDIT_CAPSET
: {
1510 audit_log_format(ab
, "pid=%d", context
->capset
.pid
);
1511 audit_log_cap(ab
, "cap_pi", &context
->capset
.cap
.inheritable
);
1512 audit_log_cap(ab
, "cap_pp", &context
->capset
.cap
.permitted
);
1513 audit_log_cap(ab
, "cap_pe", &context
->capset
.cap
.effective
);
1516 audit_log_format(ab
, "fd=%d flags=0x%x", context
->mmap
.fd
,
1517 context
->mmap
.flags
);
1523 static void audit_log_name(struct audit_context
*context
, struct audit_names
*n
,
1524 int record_num
, int *call_panic
)
1526 struct audit_buffer
*ab
;
1527 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_PATH
);
1529 return; /* audit_panic has been called */
1531 audit_log_format(ab
, "item=%d", record_num
);
1534 switch (n
->name_len
) {
1535 case AUDIT_NAME_FULL
:
1536 /* log the full path */
1537 audit_log_format(ab
, " name=");
1538 audit_log_untrustedstring(ab
, n
->name
);
1541 /* name was specified as a relative path and the
1542 * directory component is the cwd */
1543 audit_log_d_path(ab
, " name=", &context
->pwd
);
1546 /* log the name's directory component */
1547 audit_log_format(ab
, " name=");
1548 audit_log_n_untrustedstring(ab
, n
->name
,
1552 audit_log_format(ab
, " name=(null)");
1554 if (n
->ino
!= (unsigned long)-1) {
1555 audit_log_format(ab
, " inode=%lu"
1556 " dev=%02x:%02x mode=%#ho"
1557 " ouid=%u ogid=%u rdev=%02x:%02x",
1570 if (security_secid_to_secctx(
1571 n
->osid
, &ctx
, &len
)) {
1572 audit_log_format(ab
, " osid=%u", n
->osid
);
1575 audit_log_format(ab
, " obj=%s", ctx
);
1576 security_release_secctx(ctx
, len
);
1580 audit_log_fcaps(ab
, n
);
1585 static void audit_log_exit(struct audit_context
*context
, struct task_struct
*tsk
)
1587 const struct cred
*cred
;
1588 int i
, call_panic
= 0;
1589 struct audit_buffer
*ab
;
1590 struct audit_aux_data
*aux
;
1592 struct audit_names
*n
;
1594 /* tsk == current */
1595 context
->pid
= tsk
->pid
;
1597 context
->ppid
= sys_getppid();
1598 cred
= current_cred();
1599 context
->uid
= cred
->uid
;
1600 context
->gid
= cred
->gid
;
1601 context
->euid
= cred
->euid
;
1602 context
->suid
= cred
->suid
;
1603 context
->fsuid
= cred
->fsuid
;
1604 context
->egid
= cred
->egid
;
1605 context
->sgid
= cred
->sgid
;
1606 context
->fsgid
= cred
->fsgid
;
1607 context
->personality
= tsk
->personality
;
1609 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_SYSCALL
);
1611 return; /* audit_panic has been called */
1612 audit_log_format(ab
, "arch=%x syscall=%d",
1613 context
->arch
, context
->major
);
1614 if (context
->personality
!= PER_LINUX
)
1615 audit_log_format(ab
, " per=%lx", context
->personality
);
1616 if (context
->return_valid
)
1617 audit_log_format(ab
, " success=%s exit=%ld",
1618 (context
->return_valid
==AUDITSC_SUCCESS
)?"yes":"no",
1619 context
->return_code
);
1621 spin_lock_irq(&tsk
->sighand
->siglock
);
1622 if (tsk
->signal
&& tsk
->signal
->tty
&& tsk
->signal
->tty
->name
)
1623 tty
= tsk
->signal
->tty
->name
;
1626 spin_unlock_irq(&tsk
->sighand
->siglock
);
1628 audit_log_format(ab
,
1629 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1630 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1631 " euid=%u suid=%u fsuid=%u"
1632 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1637 context
->name_count
,
1643 context
->euid
, context
->suid
, context
->fsuid
,
1644 context
->egid
, context
->sgid
, context
->fsgid
, tty
,
1648 audit_log_task_info(ab
, tsk
);
1649 audit_log_key(ab
, context
->filterkey
);
1652 for (aux
= context
->aux
; aux
; aux
= aux
->next
) {
1654 ab
= audit_log_start(context
, GFP_KERNEL
, aux
->type
);
1656 continue; /* audit_panic has been called */
1658 switch (aux
->type
) {
1660 case AUDIT_EXECVE
: {
1661 struct audit_aux_data_execve
*axi
= (void *)aux
;
1662 audit_log_execve_info(context
, &ab
, axi
);
1665 case AUDIT_BPRM_FCAPS
: {
1666 struct audit_aux_data_bprm_fcaps
*axs
= (void *)aux
;
1667 audit_log_format(ab
, "fver=%x", axs
->fcap_ver
);
1668 audit_log_cap(ab
, "fp", &axs
->fcap
.permitted
);
1669 audit_log_cap(ab
, "fi", &axs
->fcap
.inheritable
);
1670 audit_log_format(ab
, " fe=%d", axs
->fcap
.fE
);
1671 audit_log_cap(ab
, "old_pp", &axs
->old_pcap
.permitted
);
1672 audit_log_cap(ab
, "old_pi", &axs
->old_pcap
.inheritable
);
1673 audit_log_cap(ab
, "old_pe", &axs
->old_pcap
.effective
);
1674 audit_log_cap(ab
, "new_pp", &axs
->new_pcap
.permitted
);
1675 audit_log_cap(ab
, "new_pi", &axs
->new_pcap
.inheritable
);
1676 audit_log_cap(ab
, "new_pe", &axs
->new_pcap
.effective
);
1684 show_special(context
, &call_panic
);
1686 if (context
->fds
[0] >= 0) {
1687 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_FD_PAIR
);
1689 audit_log_format(ab
, "fd0=%d fd1=%d",
1690 context
->fds
[0], context
->fds
[1]);
1695 if (context
->sockaddr_len
) {
1696 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_SOCKADDR
);
1698 audit_log_format(ab
, "saddr=");
1699 audit_log_n_hex(ab
, (void *)context
->sockaddr
,
1700 context
->sockaddr_len
);
1705 for (aux
= context
->aux_pids
; aux
; aux
= aux
->next
) {
1706 struct audit_aux_data_pids
*axs
= (void *)aux
;
1708 for (i
= 0; i
< axs
->pid_count
; i
++)
1709 if (audit_log_pid_context(context
, axs
->target_pid
[i
],
1710 axs
->target_auid
[i
],
1712 axs
->target_sessionid
[i
],
1714 axs
->target_comm
[i
]))
1718 if (context
->target_pid
&&
1719 audit_log_pid_context(context
, context
->target_pid
,
1720 context
->target_auid
, context
->target_uid
,
1721 context
->target_sessionid
,
1722 context
->target_sid
, context
->target_comm
))
1725 if (context
->pwd
.dentry
&& context
->pwd
.mnt
) {
1726 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_CWD
);
1728 audit_log_d_path(ab
, " cwd=", &context
->pwd
);
1734 list_for_each_entry(n
, &context
->names_list
, list
)
1735 audit_log_name(context
, n
, i
++, &call_panic
);
1737 /* Send end of event record to help user space know we are finished */
1738 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_EOE
);
1742 audit_panic("error converting sid to string");
1746 * audit_free - free a per-task audit context
1747 * @tsk: task whose audit context block to free
1749 * Called from copy_process and do_exit
1751 void __audit_free(struct task_struct
*tsk
)
1753 struct audit_context
*context
;
1755 context
= audit_get_context(tsk
, 0, 0);
1759 /* Check for system calls that do not go through the exit
1760 * function (e.g., exit_group), then free context block.
1761 * We use GFP_ATOMIC here because we might be doing this
1762 * in the context of the idle thread */
1763 /* that can happen only if we are called from do_exit() */
1764 if (context
->in_syscall
&& context
->current_state
== AUDIT_RECORD_CONTEXT
)
1765 audit_log_exit(context
, tsk
);
1766 if (!list_empty(&context
->killed_trees
))
1767 audit_kill_trees(&context
->killed_trees
);
1769 audit_free_context(context
);
1773 * audit_syscall_entry - fill in an audit record at syscall entry
1774 * @arch: architecture type
1775 * @major: major syscall type (function)
1776 * @a1: additional syscall register 1
1777 * @a2: additional syscall register 2
1778 * @a3: additional syscall register 3
1779 * @a4: additional syscall register 4
1781 * Fill in audit context at syscall entry. This only happens if the
1782 * audit context was created when the task was created and the state or
1783 * filters demand the audit context be built. If the state from the
1784 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1785 * then the record will be written at syscall exit time (otherwise, it
1786 * will only be written if another part of the kernel requests that it
1789 void __audit_syscall_entry(int arch
, int major
,
1790 unsigned long a1
, unsigned long a2
,
1791 unsigned long a3
, unsigned long a4
)
1793 struct task_struct
*tsk
= current
;
1794 struct audit_context
*context
= tsk
->audit_context
;
1795 enum audit_state state
;
1801 * This happens only on certain architectures that make system
1802 * calls in kernel_thread via the entry.S interface, instead of
1803 * with direct calls. (If you are porting to a new
1804 * architecture, hitting this condition can indicate that you
1805 * got the _exit/_leave calls backward in entry.S.)
1809 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1811 * This also happens with vm86 emulation in a non-nested manner
1812 * (entries without exits), so this case must be caught.
1814 if (context
->in_syscall
) {
1815 struct audit_context
*newctx
;
1819 "audit(:%d) pid=%d in syscall=%d;"
1820 " entering syscall=%d\n",
1821 context
->serial
, tsk
->pid
, context
->major
, major
);
1823 newctx
= audit_alloc_context(context
->state
);
1825 newctx
->previous
= context
;
1827 tsk
->audit_context
= newctx
;
1829 /* If we can't alloc a new context, the best we
1830 * can do is to leak memory (any pending putname
1831 * will be lost). The only other alternative is
1832 * to abandon auditing. */
1833 audit_zero_context(context
, context
->state
);
1836 BUG_ON(context
->in_syscall
|| context
->name_count
);
1841 context
->arch
= arch
;
1842 context
->major
= major
;
1843 context
->argv
[0] = a1
;
1844 context
->argv
[1] = a2
;
1845 context
->argv
[2] = a3
;
1846 context
->argv
[3] = a4
;
1848 state
= context
->state
;
1849 context
->dummy
= !audit_n_rules
;
1850 if (!context
->dummy
&& state
== AUDIT_BUILD_CONTEXT
) {
1852 state
= audit_filter_syscall(tsk
, context
, &audit_filter_list
[AUDIT_FILTER_ENTRY
]);
1854 if (state
== AUDIT_DISABLED
)
1857 context
->serial
= 0;
1858 context
->ctime
= CURRENT_TIME
;
1859 context
->in_syscall
= 1;
1860 context
->current_state
= state
;
1865 * audit_syscall_exit - deallocate audit context after a system call
1866 * @success: success value of the syscall
1867 * @return_code: return value of the syscall
1869 * Tear down after system call. If the audit context has been marked as
1870 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1871 * filtering, or because some other part of the kernel wrote an audit
1872 * message), then write out the syscall information. In call cases,
1873 * free the names stored from getname().
1875 void __audit_syscall_exit(int success
, long return_code
)
1877 struct task_struct
*tsk
= current
;
1878 struct audit_context
*context
;
1881 success
= AUDITSC_SUCCESS
;
1883 success
= AUDITSC_FAILURE
;
1885 context
= audit_get_context(tsk
, success
, return_code
);
1889 if (context
->in_syscall
&& context
->current_state
== AUDIT_RECORD_CONTEXT
)
1890 audit_log_exit(context
, tsk
);
1892 context
->in_syscall
= 0;
1893 context
->prio
= context
->state
== AUDIT_RECORD_CONTEXT
? ~0ULL : 0;
1895 if (!list_empty(&context
->killed_trees
))
1896 audit_kill_trees(&context
->killed_trees
);
1898 if (context
->previous
) {
1899 struct audit_context
*new_context
= context
->previous
;
1900 context
->previous
= NULL
;
1901 audit_free_context(context
);
1902 tsk
->audit_context
= new_context
;
1904 audit_free_names(context
);
1905 unroll_tree_refs(context
, NULL
, 0);
1906 audit_free_aux(context
);
1907 context
->aux
= NULL
;
1908 context
->aux_pids
= NULL
;
1909 context
->target_pid
= 0;
1910 context
->target_sid
= 0;
1911 context
->sockaddr_len
= 0;
1913 context
->fds
[0] = -1;
1914 if (context
->state
!= AUDIT_RECORD_CONTEXT
) {
1915 kfree(context
->filterkey
);
1916 context
->filterkey
= NULL
;
1918 tsk
->audit_context
= context
;
1922 static inline void handle_one(const struct inode
*inode
)
1924 #ifdef CONFIG_AUDIT_TREE
1925 struct audit_context
*context
;
1926 struct audit_tree_refs
*p
;
1927 struct audit_chunk
*chunk
;
1929 if (likely(hlist_empty(&inode
->i_fsnotify_marks
)))
1931 context
= current
->audit_context
;
1933 count
= context
->tree_count
;
1935 chunk
= audit_tree_lookup(inode
);
1939 if (likely(put_tree_ref(context
, chunk
)))
1941 if (unlikely(!grow_tree_refs(context
))) {
1942 printk(KERN_WARNING
"out of memory, audit has lost a tree reference\n");
1943 audit_set_auditable(context
);
1944 audit_put_chunk(chunk
);
1945 unroll_tree_refs(context
, p
, count
);
1948 put_tree_ref(context
, chunk
);
1952 static void handle_path(const struct dentry
*dentry
)
1954 #ifdef CONFIG_AUDIT_TREE
1955 struct audit_context
*context
;
1956 struct audit_tree_refs
*p
;
1957 const struct dentry
*d
, *parent
;
1958 struct audit_chunk
*drop
;
1962 context
= current
->audit_context
;
1964 count
= context
->tree_count
;
1969 seq
= read_seqbegin(&rename_lock
);
1971 struct inode
*inode
= d
->d_inode
;
1972 if (inode
&& unlikely(!hlist_empty(&inode
->i_fsnotify_marks
))) {
1973 struct audit_chunk
*chunk
;
1974 chunk
= audit_tree_lookup(inode
);
1976 if (unlikely(!put_tree_ref(context
, chunk
))) {
1982 parent
= d
->d_parent
;
1987 if (unlikely(read_seqretry(&rename_lock
, seq
) || drop
)) { /* in this order */
1990 /* just a race with rename */
1991 unroll_tree_refs(context
, p
, count
);
1994 audit_put_chunk(drop
);
1995 if (grow_tree_refs(context
)) {
1996 /* OK, got more space */
1997 unroll_tree_refs(context
, p
, count
);
2002 "out of memory, audit has lost a tree reference\n");
2003 unroll_tree_refs(context
, p
, count
);
2004 audit_set_auditable(context
);
2011 static struct audit_names
*audit_alloc_name(struct audit_context
*context
)
2013 struct audit_names
*aname
;
2015 if (context
->name_count
< AUDIT_NAMES
) {
2016 aname
= &context
->preallocated_names
[context
->name_count
];
2017 memset(aname
, 0, sizeof(*aname
));
2019 aname
= kzalloc(sizeof(*aname
), GFP_NOFS
);
2022 aname
->should_free
= true;
2025 aname
->ino
= (unsigned long)-1;
2026 list_add_tail(&aname
->list
, &context
->names_list
);
2028 context
->name_count
++;
2030 context
->ino_count
++;
2036 * audit_getname - add a name to the list
2037 * @name: name to add
2039 * Add a name to the list of audit names for this context.
2040 * Called from fs/namei.c:getname().
2042 void __audit_getname(const char *name
)
2044 struct audit_context
*context
= current
->audit_context
;
2045 struct audit_names
*n
;
2047 if (!context
->in_syscall
) {
2048 #if AUDIT_DEBUG == 2
2049 printk(KERN_ERR
"%s:%d(:%d): ignoring getname(%p)\n",
2050 __FILE__
, __LINE__
, context
->serial
, name
);
2056 n
= audit_alloc_name(context
);
2061 n
->name_len
= AUDIT_NAME_FULL
;
2064 if (!context
->pwd
.dentry
)
2065 get_fs_pwd(current
->fs
, &context
->pwd
);
2068 /* audit_putname - intercept a putname request
2069 * @name: name to intercept and delay for putname
2071 * If we have stored the name from getname in the audit context,
2072 * then we delay the putname until syscall exit.
2073 * Called from include/linux/fs.h:putname().
2075 void audit_putname(const char *name
)
2077 struct audit_context
*context
= current
->audit_context
;
2080 if (!context
->in_syscall
) {
2081 #if AUDIT_DEBUG == 2
2082 printk(KERN_ERR
"%s:%d(:%d): __putname(%p)\n",
2083 __FILE__
, __LINE__
, context
->serial
, name
);
2084 if (context
->name_count
) {
2085 struct audit_names
*n
;
2088 list_for_each_entry(n
, &context
->names_list
, list
)
2089 printk(KERN_ERR
"name[%d] = %p = %s\n", i
,
2090 n
->name
, n
->name
?: "(null)");
2097 ++context
->put_count
;
2098 if (context
->put_count
> context
->name_count
) {
2099 printk(KERN_ERR
"%s:%d(:%d): major=%d"
2100 " in_syscall=%d putname(%p) name_count=%d"
2103 context
->serial
, context
->major
,
2104 context
->in_syscall
, name
, context
->name_count
,
2105 context
->put_count
);
2112 static inline int audit_copy_fcaps(struct audit_names
*name
, const struct dentry
*dentry
)
2114 struct cpu_vfs_cap_data caps
;
2120 rc
= get_vfs_caps_from_disk(dentry
, &caps
);
2124 name
->fcap
.permitted
= caps
.permitted
;
2125 name
->fcap
.inheritable
= caps
.inheritable
;
2126 name
->fcap
.fE
= !!(caps
.magic_etc
& VFS_CAP_FLAGS_EFFECTIVE
);
2127 name
->fcap_ver
= (caps
.magic_etc
& VFS_CAP_REVISION_MASK
) >> VFS_CAP_REVISION_SHIFT
;
2133 /* Copy inode data into an audit_names. */
2134 static void audit_copy_inode(struct audit_names
*name
, const struct dentry
*dentry
,
2135 const struct inode
*inode
)
2137 name
->ino
= inode
->i_ino
;
2138 name
->dev
= inode
->i_sb
->s_dev
;
2139 name
->mode
= inode
->i_mode
;
2140 name
->uid
= inode
->i_uid
;
2141 name
->gid
= inode
->i_gid
;
2142 name
->rdev
= inode
->i_rdev
;
2143 security_inode_getsecid(inode
, &name
->osid
);
2144 audit_copy_fcaps(name
, dentry
);
2148 * audit_inode - store the inode and device from a lookup
2149 * @name: name being audited
2150 * @dentry: dentry being audited
2152 * Called from fs/namei.c:path_lookup().
2154 void __audit_inode(const char *name
, const struct dentry
*dentry
)
2156 struct audit_context
*context
= current
->audit_context
;
2157 const struct inode
*inode
= dentry
->d_inode
;
2158 struct audit_names
*n
;
2160 if (!context
->in_syscall
)
2163 list_for_each_entry_reverse(n
, &context
->names_list
, list
) {
2164 if (n
->name
&& (n
->name
== name
))
2168 /* unable to find the name from a previous getname() */
2169 n
= audit_alloc_name(context
);
2173 handle_path(dentry
);
2174 audit_copy_inode(n
, dentry
, inode
);
2178 * audit_inode_child - collect inode info for created/removed objects
2179 * @dentry: dentry being audited
2180 * @parent: inode of dentry parent
2182 * For syscalls that create or remove filesystem objects, audit_inode
2183 * can only collect information for the filesystem object's parent.
2184 * This call updates the audit context with the child's information.
2185 * Syscalls that create a new filesystem object must be hooked after
2186 * the object is created. Syscalls that remove a filesystem object
2187 * must be hooked prior, in order to capture the target inode during
2188 * unsuccessful attempts.
2190 void __audit_inode_child(const struct dentry
*dentry
,
2191 const struct inode
*parent
)
2193 struct audit_context
*context
= current
->audit_context
;
2194 const char *found_parent
= NULL
, *found_child
= NULL
;
2195 const struct inode
*inode
= dentry
->d_inode
;
2196 const char *dname
= dentry
->d_name
.name
;
2197 struct audit_names
*n
;
2200 if (!context
->in_syscall
)
2206 /* parent is more likely, look for it first */
2207 list_for_each_entry(n
, &context
->names_list
, list
) {
2211 if (n
->ino
== parent
->i_ino
&&
2212 !audit_compare_dname_path(dname
, n
->name
, &dirlen
)) {
2213 n
->name_len
= dirlen
; /* update parent data in place */
2214 found_parent
= n
->name
;
2219 /* no matching parent, look for matching child */
2220 list_for_each_entry(n
, &context
->names_list
, list
) {
2224 /* strcmp() is the more likely scenario */
2225 if (!strcmp(dname
, n
->name
) ||
2226 !audit_compare_dname_path(dname
, n
->name
, &dirlen
)) {
2228 audit_copy_inode(n
, NULL
, inode
);
2230 n
->ino
= (unsigned long)-1;
2231 found_child
= n
->name
;
2237 if (!found_parent
) {
2238 n
= audit_alloc_name(context
);
2241 audit_copy_inode(n
, NULL
, parent
);
2245 n
= audit_alloc_name(context
);
2249 /* Re-use the name belonging to the slot for a matching parent
2250 * directory. All names for this context are relinquished in
2251 * audit_free_names() */
2253 n
->name
= found_parent
;
2254 n
->name_len
= AUDIT_NAME_FULL
;
2255 /* don't call __putname() */
2256 n
->name_put
= false;
2260 audit_copy_inode(n
, NULL
, inode
);
2263 EXPORT_SYMBOL_GPL(__audit_inode_child
);
2266 * auditsc_get_stamp - get local copies of audit_context values
2267 * @ctx: audit_context for the task
2268 * @t: timespec to store time recorded in the audit_context
2269 * @serial: serial value that is recorded in the audit_context
2271 * Also sets the context as auditable.
2273 int auditsc_get_stamp(struct audit_context
*ctx
,
2274 struct timespec
*t
, unsigned int *serial
)
2276 if (!ctx
->in_syscall
)
2279 ctx
->serial
= audit_serial();
2280 t
->tv_sec
= ctx
->ctime
.tv_sec
;
2281 t
->tv_nsec
= ctx
->ctime
.tv_nsec
;
2282 *serial
= ctx
->serial
;
2285 ctx
->current_state
= AUDIT_RECORD_CONTEXT
;
2290 /* global counter which is incremented every time something logs in */
2291 static atomic_t session_id
= ATOMIC_INIT(0);
2294 * audit_set_loginuid - set current task's audit_context loginuid
2295 * @loginuid: loginuid value
2299 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2301 int audit_set_loginuid(uid_t loginuid
)
2303 struct task_struct
*task
= current
;
2304 struct audit_context
*context
= task
->audit_context
;
2305 unsigned int sessionid
;
2307 #ifdef CONFIG_AUDIT_LOGINUID_IMMUTABLE
2308 if (task
->loginuid
!= -1)
2310 #else /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2311 if (!capable(CAP_AUDIT_CONTROL
))
2313 #endif /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2315 sessionid
= atomic_inc_return(&session_id
);
2316 if (context
&& context
->in_syscall
) {
2317 struct audit_buffer
*ab
;
2319 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_LOGIN
);
2321 audit_log_format(ab
, "login pid=%d uid=%u "
2322 "old auid=%u new auid=%u"
2323 " old ses=%u new ses=%u",
2324 task
->pid
, task_uid(task
),
2325 task
->loginuid
, loginuid
,
2326 task
->sessionid
, sessionid
);
2330 task
->sessionid
= sessionid
;
2331 task
->loginuid
= loginuid
;
2336 * __audit_mq_open - record audit data for a POSIX MQ open
2339 * @attr: queue attributes
2342 void __audit_mq_open(int oflag
, umode_t mode
, struct mq_attr
*attr
)
2344 struct audit_context
*context
= current
->audit_context
;
2347 memcpy(&context
->mq_open
.attr
, attr
, sizeof(struct mq_attr
));
2349 memset(&context
->mq_open
.attr
, 0, sizeof(struct mq_attr
));
2351 context
->mq_open
.oflag
= oflag
;
2352 context
->mq_open
.mode
= mode
;
2354 context
->type
= AUDIT_MQ_OPEN
;
2358 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2359 * @mqdes: MQ descriptor
2360 * @msg_len: Message length
2361 * @msg_prio: Message priority
2362 * @abs_timeout: Message timeout in absolute time
2365 void __audit_mq_sendrecv(mqd_t mqdes
, size_t msg_len
, unsigned int msg_prio
,
2366 const struct timespec
*abs_timeout
)
2368 struct audit_context
*context
= current
->audit_context
;
2369 struct timespec
*p
= &context
->mq_sendrecv
.abs_timeout
;
2372 memcpy(p
, abs_timeout
, sizeof(struct timespec
));
2374 memset(p
, 0, sizeof(struct timespec
));
2376 context
->mq_sendrecv
.mqdes
= mqdes
;
2377 context
->mq_sendrecv
.msg_len
= msg_len
;
2378 context
->mq_sendrecv
.msg_prio
= msg_prio
;
2380 context
->type
= AUDIT_MQ_SENDRECV
;
2384 * __audit_mq_notify - record audit data for a POSIX MQ notify
2385 * @mqdes: MQ descriptor
2386 * @notification: Notification event
2390 void __audit_mq_notify(mqd_t mqdes
, const struct sigevent
*notification
)
2392 struct audit_context
*context
= current
->audit_context
;
2395 context
->mq_notify
.sigev_signo
= notification
->sigev_signo
;
2397 context
->mq_notify
.sigev_signo
= 0;
2399 context
->mq_notify
.mqdes
= mqdes
;
2400 context
->type
= AUDIT_MQ_NOTIFY
;
2404 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2405 * @mqdes: MQ descriptor
2409 void __audit_mq_getsetattr(mqd_t mqdes
, struct mq_attr
*mqstat
)
2411 struct audit_context
*context
= current
->audit_context
;
2412 context
->mq_getsetattr
.mqdes
= mqdes
;
2413 context
->mq_getsetattr
.mqstat
= *mqstat
;
2414 context
->type
= AUDIT_MQ_GETSETATTR
;
2418 * audit_ipc_obj - record audit data for ipc object
2419 * @ipcp: ipc permissions
2422 void __audit_ipc_obj(struct kern_ipc_perm
*ipcp
)
2424 struct audit_context
*context
= current
->audit_context
;
2425 context
->ipc
.uid
= ipcp
->uid
;
2426 context
->ipc
.gid
= ipcp
->gid
;
2427 context
->ipc
.mode
= ipcp
->mode
;
2428 context
->ipc
.has_perm
= 0;
2429 security_ipc_getsecid(ipcp
, &context
->ipc
.osid
);
2430 context
->type
= AUDIT_IPC
;
2434 * audit_ipc_set_perm - record audit data for new ipc permissions
2435 * @qbytes: msgq bytes
2436 * @uid: msgq user id
2437 * @gid: msgq group id
2438 * @mode: msgq mode (permissions)
2440 * Called only after audit_ipc_obj().
2442 void __audit_ipc_set_perm(unsigned long qbytes
, uid_t uid
, gid_t gid
, umode_t mode
)
2444 struct audit_context
*context
= current
->audit_context
;
2446 context
->ipc
.qbytes
= qbytes
;
2447 context
->ipc
.perm_uid
= uid
;
2448 context
->ipc
.perm_gid
= gid
;
2449 context
->ipc
.perm_mode
= mode
;
2450 context
->ipc
.has_perm
= 1;
2453 int __audit_bprm(struct linux_binprm
*bprm
)
2455 struct audit_aux_data_execve
*ax
;
2456 struct audit_context
*context
= current
->audit_context
;
2458 ax
= kmalloc(sizeof(*ax
), GFP_KERNEL
);
2462 ax
->argc
= bprm
->argc
;
2463 ax
->envc
= bprm
->envc
;
2465 ax
->d
.type
= AUDIT_EXECVE
;
2466 ax
->d
.next
= context
->aux
;
2467 context
->aux
= (void *)ax
;
2473 * audit_socketcall - record audit data for sys_socketcall
2474 * @nargs: number of args
2478 void __audit_socketcall(int nargs
, unsigned long *args
)
2480 struct audit_context
*context
= current
->audit_context
;
2482 context
->type
= AUDIT_SOCKETCALL
;
2483 context
->socketcall
.nargs
= nargs
;
2484 memcpy(context
->socketcall
.args
, args
, nargs
* sizeof(unsigned long));
2488 * __audit_fd_pair - record audit data for pipe and socketpair
2489 * @fd1: the first file descriptor
2490 * @fd2: the second file descriptor
2493 void __audit_fd_pair(int fd1
, int fd2
)
2495 struct audit_context
*context
= current
->audit_context
;
2496 context
->fds
[0] = fd1
;
2497 context
->fds
[1] = fd2
;
2501 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2502 * @len: data length in user space
2503 * @a: data address in kernel space
2505 * Returns 0 for success or NULL context or < 0 on error.
2507 int __audit_sockaddr(int len
, void *a
)
2509 struct audit_context
*context
= current
->audit_context
;
2511 if (!context
->sockaddr
) {
2512 void *p
= kmalloc(sizeof(struct sockaddr_storage
), GFP_KERNEL
);
2515 context
->sockaddr
= p
;
2518 context
->sockaddr_len
= len
;
2519 memcpy(context
->sockaddr
, a
, len
);
2523 void __audit_ptrace(struct task_struct
*t
)
2525 struct audit_context
*context
= current
->audit_context
;
2527 context
->target_pid
= t
->pid
;
2528 context
->target_auid
= audit_get_loginuid(t
);
2529 context
->target_uid
= task_uid(t
);
2530 context
->target_sessionid
= audit_get_sessionid(t
);
2531 security_task_getsecid(t
, &context
->target_sid
);
2532 memcpy(context
->target_comm
, t
->comm
, TASK_COMM_LEN
);
2536 * audit_signal_info - record signal info for shutting down audit subsystem
2537 * @sig: signal value
2538 * @t: task being signaled
2540 * If the audit subsystem is being terminated, record the task (pid)
2541 * and uid that is doing that.
2543 int __audit_signal_info(int sig
, struct task_struct
*t
)
2545 struct audit_aux_data_pids
*axp
;
2546 struct task_struct
*tsk
= current
;
2547 struct audit_context
*ctx
= tsk
->audit_context
;
2548 uid_t uid
= current_uid(), t_uid
= task_uid(t
);
2550 if (audit_pid
&& t
->tgid
== audit_pid
) {
2551 if (sig
== SIGTERM
|| sig
== SIGHUP
|| sig
== SIGUSR1
|| sig
== SIGUSR2
) {
2552 audit_sig_pid
= tsk
->pid
;
2553 if (tsk
->loginuid
!= -1)
2554 audit_sig_uid
= tsk
->loginuid
;
2556 audit_sig_uid
= uid
;
2557 security_task_getsecid(tsk
, &audit_sig_sid
);
2559 if (!audit_signals
|| audit_dummy_context())
2563 /* optimize the common case by putting first signal recipient directly
2564 * in audit_context */
2565 if (!ctx
->target_pid
) {
2566 ctx
->target_pid
= t
->tgid
;
2567 ctx
->target_auid
= audit_get_loginuid(t
);
2568 ctx
->target_uid
= t_uid
;
2569 ctx
->target_sessionid
= audit_get_sessionid(t
);
2570 security_task_getsecid(t
, &ctx
->target_sid
);
2571 memcpy(ctx
->target_comm
, t
->comm
, TASK_COMM_LEN
);
2575 axp
= (void *)ctx
->aux_pids
;
2576 if (!axp
|| axp
->pid_count
== AUDIT_AUX_PIDS
) {
2577 axp
= kzalloc(sizeof(*axp
), GFP_ATOMIC
);
2581 axp
->d
.type
= AUDIT_OBJ_PID
;
2582 axp
->d
.next
= ctx
->aux_pids
;
2583 ctx
->aux_pids
= (void *)axp
;
2585 BUG_ON(axp
->pid_count
>= AUDIT_AUX_PIDS
);
2587 axp
->target_pid
[axp
->pid_count
] = t
->tgid
;
2588 axp
->target_auid
[axp
->pid_count
] = audit_get_loginuid(t
);
2589 axp
->target_uid
[axp
->pid_count
] = t_uid
;
2590 axp
->target_sessionid
[axp
->pid_count
] = audit_get_sessionid(t
);
2591 security_task_getsecid(t
, &axp
->target_sid
[axp
->pid_count
]);
2592 memcpy(axp
->target_comm
[axp
->pid_count
], t
->comm
, TASK_COMM_LEN
);
2599 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2600 * @bprm: pointer to the bprm being processed
2601 * @new: the proposed new credentials
2602 * @old: the old credentials
2604 * Simply check if the proc already has the caps given by the file and if not
2605 * store the priv escalation info for later auditing at the end of the syscall
2609 int __audit_log_bprm_fcaps(struct linux_binprm
*bprm
,
2610 const struct cred
*new, const struct cred
*old
)
2612 struct audit_aux_data_bprm_fcaps
*ax
;
2613 struct audit_context
*context
= current
->audit_context
;
2614 struct cpu_vfs_cap_data vcaps
;
2615 struct dentry
*dentry
;
2617 ax
= kmalloc(sizeof(*ax
), GFP_KERNEL
);
2621 ax
->d
.type
= AUDIT_BPRM_FCAPS
;
2622 ax
->d
.next
= context
->aux
;
2623 context
->aux
= (void *)ax
;
2625 dentry
= dget(bprm
->file
->f_dentry
);
2626 get_vfs_caps_from_disk(dentry
, &vcaps
);
2629 ax
->fcap
.permitted
= vcaps
.permitted
;
2630 ax
->fcap
.inheritable
= vcaps
.inheritable
;
2631 ax
->fcap
.fE
= !!(vcaps
.magic_etc
& VFS_CAP_FLAGS_EFFECTIVE
);
2632 ax
->fcap_ver
= (vcaps
.magic_etc
& VFS_CAP_REVISION_MASK
) >> VFS_CAP_REVISION_SHIFT
;
2634 ax
->old_pcap
.permitted
= old
->cap_permitted
;
2635 ax
->old_pcap
.inheritable
= old
->cap_inheritable
;
2636 ax
->old_pcap
.effective
= old
->cap_effective
;
2638 ax
->new_pcap
.permitted
= new->cap_permitted
;
2639 ax
->new_pcap
.inheritable
= new->cap_inheritable
;
2640 ax
->new_pcap
.effective
= new->cap_effective
;
2645 * __audit_log_capset - store information about the arguments to the capset syscall
2646 * @pid: target pid of the capset call
2647 * @new: the new credentials
2648 * @old: the old (current) credentials
2650 * Record the aguments userspace sent to sys_capset for later printing by the
2651 * audit system if applicable
2653 void __audit_log_capset(pid_t pid
,
2654 const struct cred
*new, const struct cred
*old
)
2656 struct audit_context
*context
= current
->audit_context
;
2657 context
->capset
.pid
= pid
;
2658 context
->capset
.cap
.effective
= new->cap_effective
;
2659 context
->capset
.cap
.inheritable
= new->cap_effective
;
2660 context
->capset
.cap
.permitted
= new->cap_permitted
;
2661 context
->type
= AUDIT_CAPSET
;
2664 void __audit_mmap_fd(int fd
, int flags
)
2666 struct audit_context
*context
= current
->audit_context
;
2667 context
->mmap
.fd
= fd
;
2668 context
->mmap
.flags
= flags
;
2669 context
->type
= AUDIT_MMAP
;
2672 static void audit_log_abend(struct audit_buffer
*ab
, char *reason
, long signr
)
2676 unsigned int sessionid
;
2678 auid
= audit_get_loginuid(current
);
2679 sessionid
= audit_get_sessionid(current
);
2680 current_uid_gid(&uid
, &gid
);
2682 audit_log_format(ab
, "auid=%u uid=%u gid=%u ses=%u",
2683 auid
, uid
, gid
, sessionid
);
2684 audit_log_task_context(ab
);
2685 audit_log_format(ab
, " pid=%d comm=", current
->pid
);
2686 audit_log_untrustedstring(ab
, current
->comm
);
2687 audit_log_format(ab
, " reason=");
2688 audit_log_string(ab
, reason
);
2689 audit_log_format(ab
, " sig=%ld", signr
);
2692 * audit_core_dumps - record information about processes that end abnormally
2693 * @signr: signal value
2695 * If a process ends with a core dump, something fishy is going on and we
2696 * should record the event for investigation.
2698 void audit_core_dumps(long signr
)
2700 struct audit_buffer
*ab
;
2705 if (signr
== SIGQUIT
) /* don't care for those */
2708 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_ANOM_ABEND
);
2709 audit_log_abend(ab
, "memory violation", signr
);
2713 void __audit_seccomp(unsigned long syscall
)
2715 struct audit_buffer
*ab
;
2717 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_ANOM_ABEND
);
2718 audit_log_abend(ab
, "seccomp", SIGKILL
);
2719 audit_log_format(ab
, " syscall=%ld", syscall
);
2723 struct list_head
*audit_killed_trees(void)
2725 struct audit_context
*ctx
= current
->audit_context
;
2726 if (likely(!ctx
|| !ctx
->in_syscall
))
2728 return &ctx
->killed_trees
;