Merge branch 'parisc-3.11-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/delle...
[linux-2.6.git] / net / bluetooth / hci_core.c
blobe3a349977595f2aff6bd27f49e2ee9ee00164470
1 /*
2 BlueZ - Bluetooth protocol stack for Linux
3 Copyright (C) 2000-2001 Qualcomm Incorporated
4 Copyright (C) 2011 ProFUSION Embedded Systems
6 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License version 2 as
10 published by the Free Software Foundation;
12 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23 SOFTWARE IS DISCLAIMED.
26 /* Bluetooth HCI core. */
28 #include <linux/export.h>
29 #include <linux/idr.h>
31 #include <linux/rfkill.h>
33 #include <net/bluetooth/bluetooth.h>
34 #include <net/bluetooth/hci_core.h>
36 static void hci_rx_work(struct work_struct *work);
37 static void hci_cmd_work(struct work_struct *work);
38 static void hci_tx_work(struct work_struct *work);
40 /* HCI device list */
41 LIST_HEAD(hci_dev_list);
42 DEFINE_RWLOCK(hci_dev_list_lock);
44 /* HCI callback list */
45 LIST_HEAD(hci_cb_list);
46 DEFINE_RWLOCK(hci_cb_list_lock);
48 /* HCI ID Numbering */
49 static DEFINE_IDA(hci_index_ida);
51 /* ---- HCI notifications ---- */
53 static void hci_notify(struct hci_dev *hdev, int event)
55 hci_sock_dev_event(hdev, event);
58 /* ---- HCI requests ---- */
60 static void hci_req_sync_complete(struct hci_dev *hdev, u8 result)
62 BT_DBG("%s result 0x%2.2x", hdev->name, result);
64 if (hdev->req_status == HCI_REQ_PEND) {
65 hdev->req_result = result;
66 hdev->req_status = HCI_REQ_DONE;
67 wake_up_interruptible(&hdev->req_wait_q);
71 static void hci_req_cancel(struct hci_dev *hdev, int err)
73 BT_DBG("%s err 0x%2.2x", hdev->name, err);
75 if (hdev->req_status == HCI_REQ_PEND) {
76 hdev->req_result = err;
77 hdev->req_status = HCI_REQ_CANCELED;
78 wake_up_interruptible(&hdev->req_wait_q);
82 static struct sk_buff *hci_get_cmd_complete(struct hci_dev *hdev, u16 opcode,
83 u8 event)
85 struct hci_ev_cmd_complete *ev;
86 struct hci_event_hdr *hdr;
87 struct sk_buff *skb;
89 hci_dev_lock(hdev);
91 skb = hdev->recv_evt;
92 hdev->recv_evt = NULL;
94 hci_dev_unlock(hdev);
96 if (!skb)
97 return ERR_PTR(-ENODATA);
99 if (skb->len < sizeof(*hdr)) {
100 BT_ERR("Too short HCI event");
101 goto failed;
104 hdr = (void *) skb->data;
105 skb_pull(skb, HCI_EVENT_HDR_SIZE);
107 if (event) {
108 if (hdr->evt != event)
109 goto failed;
110 return skb;
113 if (hdr->evt != HCI_EV_CMD_COMPLETE) {
114 BT_DBG("Last event is not cmd complete (0x%2.2x)", hdr->evt);
115 goto failed;
118 if (skb->len < sizeof(*ev)) {
119 BT_ERR("Too short cmd_complete event");
120 goto failed;
123 ev = (void *) skb->data;
124 skb_pull(skb, sizeof(*ev));
126 if (opcode == __le16_to_cpu(ev->opcode))
127 return skb;
129 BT_DBG("opcode doesn't match (0x%2.2x != 0x%2.2x)", opcode,
130 __le16_to_cpu(ev->opcode));
132 failed:
133 kfree_skb(skb);
134 return ERR_PTR(-ENODATA);
137 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
138 const void *param, u8 event, u32 timeout)
140 DECLARE_WAITQUEUE(wait, current);
141 struct hci_request req;
142 int err = 0;
144 BT_DBG("%s", hdev->name);
146 hci_req_init(&req, hdev);
148 hci_req_add_ev(&req, opcode, plen, param, event);
150 hdev->req_status = HCI_REQ_PEND;
152 err = hci_req_run(&req, hci_req_sync_complete);
153 if (err < 0)
154 return ERR_PTR(err);
156 add_wait_queue(&hdev->req_wait_q, &wait);
157 set_current_state(TASK_INTERRUPTIBLE);
159 schedule_timeout(timeout);
161 remove_wait_queue(&hdev->req_wait_q, &wait);
163 if (signal_pending(current))
164 return ERR_PTR(-EINTR);
166 switch (hdev->req_status) {
167 case HCI_REQ_DONE:
168 err = -bt_to_errno(hdev->req_result);
169 break;
171 case HCI_REQ_CANCELED:
172 err = -hdev->req_result;
173 break;
175 default:
176 err = -ETIMEDOUT;
177 break;
180 hdev->req_status = hdev->req_result = 0;
182 BT_DBG("%s end: err %d", hdev->name, err);
184 if (err < 0)
185 return ERR_PTR(err);
187 return hci_get_cmd_complete(hdev, opcode, event);
189 EXPORT_SYMBOL(__hci_cmd_sync_ev);
191 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
192 const void *param, u32 timeout)
194 return __hci_cmd_sync_ev(hdev, opcode, plen, param, 0, timeout);
196 EXPORT_SYMBOL(__hci_cmd_sync);
198 /* Execute request and wait for completion. */
199 static int __hci_req_sync(struct hci_dev *hdev,
200 void (*func)(struct hci_request *req,
201 unsigned long opt),
202 unsigned long opt, __u32 timeout)
204 struct hci_request req;
205 DECLARE_WAITQUEUE(wait, current);
206 int err = 0;
208 BT_DBG("%s start", hdev->name);
210 hci_req_init(&req, hdev);
212 hdev->req_status = HCI_REQ_PEND;
214 func(&req, opt);
216 err = hci_req_run(&req, hci_req_sync_complete);
217 if (err < 0) {
218 hdev->req_status = 0;
220 /* ENODATA means the HCI request command queue is empty.
221 * This can happen when a request with conditionals doesn't
222 * trigger any commands to be sent. This is normal behavior
223 * and should not trigger an error return.
225 if (err == -ENODATA)
226 return 0;
228 return err;
231 add_wait_queue(&hdev->req_wait_q, &wait);
232 set_current_state(TASK_INTERRUPTIBLE);
234 schedule_timeout(timeout);
236 remove_wait_queue(&hdev->req_wait_q, &wait);
238 if (signal_pending(current))
239 return -EINTR;
241 switch (hdev->req_status) {
242 case HCI_REQ_DONE:
243 err = -bt_to_errno(hdev->req_result);
244 break;
246 case HCI_REQ_CANCELED:
247 err = -hdev->req_result;
248 break;
250 default:
251 err = -ETIMEDOUT;
252 break;
255 hdev->req_status = hdev->req_result = 0;
257 BT_DBG("%s end: err %d", hdev->name, err);
259 return err;
262 static int hci_req_sync(struct hci_dev *hdev,
263 void (*req)(struct hci_request *req,
264 unsigned long opt),
265 unsigned long opt, __u32 timeout)
267 int ret;
269 if (!test_bit(HCI_UP, &hdev->flags))
270 return -ENETDOWN;
272 /* Serialize all requests */
273 hci_req_lock(hdev);
274 ret = __hci_req_sync(hdev, req, opt, timeout);
275 hci_req_unlock(hdev);
277 return ret;
280 static void hci_reset_req(struct hci_request *req, unsigned long opt)
282 BT_DBG("%s %ld", req->hdev->name, opt);
284 /* Reset device */
285 set_bit(HCI_RESET, &req->hdev->flags);
286 hci_req_add(req, HCI_OP_RESET, 0, NULL);
289 static void bredr_init(struct hci_request *req)
291 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
293 /* Read Local Supported Features */
294 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
296 /* Read Local Version */
297 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
299 /* Read BD Address */
300 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
303 static void amp_init(struct hci_request *req)
305 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
307 /* Read Local Version */
308 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
310 /* Read Local AMP Info */
311 hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
313 /* Read Data Blk size */
314 hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
317 static void hci_init1_req(struct hci_request *req, unsigned long opt)
319 struct hci_dev *hdev = req->hdev;
321 BT_DBG("%s %ld", hdev->name, opt);
323 /* Reset */
324 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
325 hci_reset_req(req, 0);
327 switch (hdev->dev_type) {
328 case HCI_BREDR:
329 bredr_init(req);
330 break;
332 case HCI_AMP:
333 amp_init(req);
334 break;
336 default:
337 BT_ERR("Unknown device type %d", hdev->dev_type);
338 break;
342 static void bredr_setup(struct hci_request *req)
344 __le16 param;
345 __u8 flt_type;
347 /* Read Buffer Size (ACL mtu, max pkt, etc.) */
348 hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
350 /* Read Class of Device */
351 hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
353 /* Read Local Name */
354 hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
356 /* Read Voice Setting */
357 hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
359 /* Clear Event Filters */
360 flt_type = HCI_FLT_CLEAR_ALL;
361 hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
363 /* Connection accept timeout ~20 secs */
364 param = __constant_cpu_to_le16(0x7d00);
365 hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
367 /* Read page scan parameters */
368 if (req->hdev->hci_ver > BLUETOOTH_VER_1_1) {
369 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
370 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
374 static void le_setup(struct hci_request *req)
376 struct hci_dev *hdev = req->hdev;
378 /* Read LE Buffer Size */
379 hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
381 /* Read LE Local Supported Features */
382 hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
384 /* Read LE Advertising Channel TX Power */
385 hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
387 /* Read LE White List Size */
388 hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE, 0, NULL);
390 /* Read LE Supported States */
391 hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
393 /* LE-only controllers have LE implicitly enabled */
394 if (!lmp_bredr_capable(hdev))
395 set_bit(HCI_LE_ENABLED, &hdev->dev_flags);
398 static u8 hci_get_inquiry_mode(struct hci_dev *hdev)
400 if (lmp_ext_inq_capable(hdev))
401 return 0x02;
403 if (lmp_inq_rssi_capable(hdev))
404 return 0x01;
406 if (hdev->manufacturer == 11 && hdev->hci_rev == 0x00 &&
407 hdev->lmp_subver == 0x0757)
408 return 0x01;
410 if (hdev->manufacturer == 15) {
411 if (hdev->hci_rev == 0x03 && hdev->lmp_subver == 0x6963)
412 return 0x01;
413 if (hdev->hci_rev == 0x09 && hdev->lmp_subver == 0x6963)
414 return 0x01;
415 if (hdev->hci_rev == 0x00 && hdev->lmp_subver == 0x6965)
416 return 0x01;
419 if (hdev->manufacturer == 31 && hdev->hci_rev == 0x2005 &&
420 hdev->lmp_subver == 0x1805)
421 return 0x01;
423 return 0x00;
426 static void hci_setup_inquiry_mode(struct hci_request *req)
428 u8 mode;
430 mode = hci_get_inquiry_mode(req->hdev);
432 hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
435 static void hci_setup_event_mask(struct hci_request *req)
437 struct hci_dev *hdev = req->hdev;
439 /* The second byte is 0xff instead of 0x9f (two reserved bits
440 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
441 * command otherwise.
443 u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
445 /* CSR 1.1 dongles does not accept any bitfield so don't try to set
446 * any event mask for pre 1.2 devices.
448 if (hdev->hci_ver < BLUETOOTH_VER_1_2)
449 return;
451 if (lmp_bredr_capable(hdev)) {
452 events[4] |= 0x01; /* Flow Specification Complete */
453 events[4] |= 0x02; /* Inquiry Result with RSSI */
454 events[4] |= 0x04; /* Read Remote Extended Features Complete */
455 events[5] |= 0x08; /* Synchronous Connection Complete */
456 events[5] |= 0x10; /* Synchronous Connection Changed */
459 if (lmp_inq_rssi_capable(hdev))
460 events[4] |= 0x02; /* Inquiry Result with RSSI */
462 if (lmp_sniffsubr_capable(hdev))
463 events[5] |= 0x20; /* Sniff Subrating */
465 if (lmp_pause_enc_capable(hdev))
466 events[5] |= 0x80; /* Encryption Key Refresh Complete */
468 if (lmp_ext_inq_capable(hdev))
469 events[5] |= 0x40; /* Extended Inquiry Result */
471 if (lmp_no_flush_capable(hdev))
472 events[7] |= 0x01; /* Enhanced Flush Complete */
474 if (lmp_lsto_capable(hdev))
475 events[6] |= 0x80; /* Link Supervision Timeout Changed */
477 if (lmp_ssp_capable(hdev)) {
478 events[6] |= 0x01; /* IO Capability Request */
479 events[6] |= 0x02; /* IO Capability Response */
480 events[6] |= 0x04; /* User Confirmation Request */
481 events[6] |= 0x08; /* User Passkey Request */
482 events[6] |= 0x10; /* Remote OOB Data Request */
483 events[6] |= 0x20; /* Simple Pairing Complete */
484 events[7] |= 0x04; /* User Passkey Notification */
485 events[7] |= 0x08; /* Keypress Notification */
486 events[7] |= 0x10; /* Remote Host Supported
487 * Features Notification
491 if (lmp_le_capable(hdev))
492 events[7] |= 0x20; /* LE Meta-Event */
494 hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
496 if (lmp_le_capable(hdev)) {
497 memset(events, 0, sizeof(events));
498 events[0] = 0x1f;
499 hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK,
500 sizeof(events), events);
504 static void hci_init2_req(struct hci_request *req, unsigned long opt)
506 struct hci_dev *hdev = req->hdev;
508 if (lmp_bredr_capable(hdev))
509 bredr_setup(req);
511 if (lmp_le_capable(hdev))
512 le_setup(req);
514 hci_setup_event_mask(req);
516 if (hdev->hci_ver > BLUETOOTH_VER_1_1)
517 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
519 if (lmp_ssp_capable(hdev)) {
520 if (test_bit(HCI_SSP_ENABLED, &hdev->dev_flags)) {
521 u8 mode = 0x01;
522 hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
523 sizeof(mode), &mode);
524 } else {
525 struct hci_cp_write_eir cp;
527 memset(hdev->eir, 0, sizeof(hdev->eir));
528 memset(&cp, 0, sizeof(cp));
530 hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
534 if (lmp_inq_rssi_capable(hdev))
535 hci_setup_inquiry_mode(req);
537 if (lmp_inq_tx_pwr_capable(hdev))
538 hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
540 if (lmp_ext_feat_capable(hdev)) {
541 struct hci_cp_read_local_ext_features cp;
543 cp.page = 0x01;
544 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
545 sizeof(cp), &cp);
548 if (test_bit(HCI_LINK_SECURITY, &hdev->dev_flags)) {
549 u8 enable = 1;
550 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
551 &enable);
555 static void hci_setup_link_policy(struct hci_request *req)
557 struct hci_dev *hdev = req->hdev;
558 struct hci_cp_write_def_link_policy cp;
559 u16 link_policy = 0;
561 if (lmp_rswitch_capable(hdev))
562 link_policy |= HCI_LP_RSWITCH;
563 if (lmp_hold_capable(hdev))
564 link_policy |= HCI_LP_HOLD;
565 if (lmp_sniff_capable(hdev))
566 link_policy |= HCI_LP_SNIFF;
567 if (lmp_park_capable(hdev))
568 link_policy |= HCI_LP_PARK;
570 cp.policy = cpu_to_le16(link_policy);
571 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
574 static void hci_set_le_support(struct hci_request *req)
576 struct hci_dev *hdev = req->hdev;
577 struct hci_cp_write_le_host_supported cp;
579 /* LE-only devices do not support explicit enablement */
580 if (!lmp_bredr_capable(hdev))
581 return;
583 memset(&cp, 0, sizeof(cp));
585 if (test_bit(HCI_LE_ENABLED, &hdev->dev_flags)) {
586 cp.le = 0x01;
587 cp.simul = lmp_le_br_capable(hdev);
590 if (cp.le != lmp_host_le_capable(hdev))
591 hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
592 &cp);
595 static void hci_init3_req(struct hci_request *req, unsigned long opt)
597 struct hci_dev *hdev = req->hdev;
598 u8 p;
600 /* Some Broadcom based Bluetooth controllers do not support the
601 * Delete Stored Link Key command. They are clearly indicating its
602 * absence in the bit mask of supported commands.
604 * Check the supported commands and only if the the command is marked
605 * as supported send it. If not supported assume that the controller
606 * does not have actual support for stored link keys which makes this
607 * command redundant anyway.
609 if (hdev->commands[6] & 0x80) {
610 struct hci_cp_delete_stored_link_key cp;
612 bacpy(&cp.bdaddr, BDADDR_ANY);
613 cp.delete_all = 0x01;
614 hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
615 sizeof(cp), &cp);
618 if (hdev->commands[5] & 0x10)
619 hci_setup_link_policy(req);
621 if (lmp_le_capable(hdev)) {
622 hci_set_le_support(req);
623 hci_update_ad(req);
626 /* Read features beyond page 1 if available */
627 for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
628 struct hci_cp_read_local_ext_features cp;
630 cp.page = p;
631 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
632 sizeof(cp), &cp);
636 static int __hci_init(struct hci_dev *hdev)
638 int err;
640 err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT);
641 if (err < 0)
642 return err;
644 /* HCI_BREDR covers both single-mode LE, BR/EDR and dual-mode
645 * BR/EDR/LE type controllers. AMP controllers only need the
646 * first stage init.
648 if (hdev->dev_type != HCI_BREDR)
649 return 0;
651 err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT);
652 if (err < 0)
653 return err;
655 return __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT);
658 static void hci_scan_req(struct hci_request *req, unsigned long opt)
660 __u8 scan = opt;
662 BT_DBG("%s %x", req->hdev->name, scan);
664 /* Inquiry and Page scans */
665 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
668 static void hci_auth_req(struct hci_request *req, unsigned long opt)
670 __u8 auth = opt;
672 BT_DBG("%s %x", req->hdev->name, auth);
674 /* Authentication */
675 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
678 static void hci_encrypt_req(struct hci_request *req, unsigned long opt)
680 __u8 encrypt = opt;
682 BT_DBG("%s %x", req->hdev->name, encrypt);
684 /* Encryption */
685 hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
688 static void hci_linkpol_req(struct hci_request *req, unsigned long opt)
690 __le16 policy = cpu_to_le16(opt);
692 BT_DBG("%s %x", req->hdev->name, policy);
694 /* Default link policy */
695 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
698 /* Get HCI device by index.
699 * Device is held on return. */
700 struct hci_dev *hci_dev_get(int index)
702 struct hci_dev *hdev = NULL, *d;
704 BT_DBG("%d", index);
706 if (index < 0)
707 return NULL;
709 read_lock(&hci_dev_list_lock);
710 list_for_each_entry(d, &hci_dev_list, list) {
711 if (d->id == index) {
712 hdev = hci_dev_hold(d);
713 break;
716 read_unlock(&hci_dev_list_lock);
717 return hdev;
720 /* ---- Inquiry support ---- */
722 bool hci_discovery_active(struct hci_dev *hdev)
724 struct discovery_state *discov = &hdev->discovery;
726 switch (discov->state) {
727 case DISCOVERY_FINDING:
728 case DISCOVERY_RESOLVING:
729 return true;
731 default:
732 return false;
736 void hci_discovery_set_state(struct hci_dev *hdev, int state)
738 BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
740 if (hdev->discovery.state == state)
741 return;
743 switch (state) {
744 case DISCOVERY_STOPPED:
745 if (hdev->discovery.state != DISCOVERY_STARTING)
746 mgmt_discovering(hdev, 0);
747 break;
748 case DISCOVERY_STARTING:
749 break;
750 case DISCOVERY_FINDING:
751 mgmt_discovering(hdev, 1);
752 break;
753 case DISCOVERY_RESOLVING:
754 break;
755 case DISCOVERY_STOPPING:
756 break;
759 hdev->discovery.state = state;
762 void hci_inquiry_cache_flush(struct hci_dev *hdev)
764 struct discovery_state *cache = &hdev->discovery;
765 struct inquiry_entry *p, *n;
767 list_for_each_entry_safe(p, n, &cache->all, all) {
768 list_del(&p->all);
769 kfree(p);
772 INIT_LIST_HEAD(&cache->unknown);
773 INIT_LIST_HEAD(&cache->resolve);
776 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
777 bdaddr_t *bdaddr)
779 struct discovery_state *cache = &hdev->discovery;
780 struct inquiry_entry *e;
782 BT_DBG("cache %p, %pMR", cache, bdaddr);
784 list_for_each_entry(e, &cache->all, all) {
785 if (!bacmp(&e->data.bdaddr, bdaddr))
786 return e;
789 return NULL;
792 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
793 bdaddr_t *bdaddr)
795 struct discovery_state *cache = &hdev->discovery;
796 struct inquiry_entry *e;
798 BT_DBG("cache %p, %pMR", cache, bdaddr);
800 list_for_each_entry(e, &cache->unknown, list) {
801 if (!bacmp(&e->data.bdaddr, bdaddr))
802 return e;
805 return NULL;
808 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
809 bdaddr_t *bdaddr,
810 int state)
812 struct discovery_state *cache = &hdev->discovery;
813 struct inquiry_entry *e;
815 BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
817 list_for_each_entry(e, &cache->resolve, list) {
818 if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
819 return e;
820 if (!bacmp(&e->data.bdaddr, bdaddr))
821 return e;
824 return NULL;
827 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
828 struct inquiry_entry *ie)
830 struct discovery_state *cache = &hdev->discovery;
831 struct list_head *pos = &cache->resolve;
832 struct inquiry_entry *p;
834 list_del(&ie->list);
836 list_for_each_entry(p, &cache->resolve, list) {
837 if (p->name_state != NAME_PENDING &&
838 abs(p->data.rssi) >= abs(ie->data.rssi))
839 break;
840 pos = &p->list;
843 list_add(&ie->list, pos);
846 bool hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
847 bool name_known, bool *ssp)
849 struct discovery_state *cache = &hdev->discovery;
850 struct inquiry_entry *ie;
852 BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
854 hci_remove_remote_oob_data(hdev, &data->bdaddr);
856 if (ssp)
857 *ssp = data->ssp_mode;
859 ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
860 if (ie) {
861 if (ie->data.ssp_mode && ssp)
862 *ssp = true;
864 if (ie->name_state == NAME_NEEDED &&
865 data->rssi != ie->data.rssi) {
866 ie->data.rssi = data->rssi;
867 hci_inquiry_cache_update_resolve(hdev, ie);
870 goto update;
873 /* Entry not in the cache. Add new one. */
874 ie = kzalloc(sizeof(struct inquiry_entry), GFP_ATOMIC);
875 if (!ie)
876 return false;
878 list_add(&ie->all, &cache->all);
880 if (name_known) {
881 ie->name_state = NAME_KNOWN;
882 } else {
883 ie->name_state = NAME_NOT_KNOWN;
884 list_add(&ie->list, &cache->unknown);
887 update:
888 if (name_known && ie->name_state != NAME_KNOWN &&
889 ie->name_state != NAME_PENDING) {
890 ie->name_state = NAME_KNOWN;
891 list_del(&ie->list);
894 memcpy(&ie->data, data, sizeof(*data));
895 ie->timestamp = jiffies;
896 cache->timestamp = jiffies;
898 if (ie->name_state == NAME_NOT_KNOWN)
899 return false;
901 return true;
904 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
906 struct discovery_state *cache = &hdev->discovery;
907 struct inquiry_info *info = (struct inquiry_info *) buf;
908 struct inquiry_entry *e;
909 int copied = 0;
911 list_for_each_entry(e, &cache->all, all) {
912 struct inquiry_data *data = &e->data;
914 if (copied >= num)
915 break;
917 bacpy(&info->bdaddr, &data->bdaddr);
918 info->pscan_rep_mode = data->pscan_rep_mode;
919 info->pscan_period_mode = data->pscan_period_mode;
920 info->pscan_mode = data->pscan_mode;
921 memcpy(info->dev_class, data->dev_class, 3);
922 info->clock_offset = data->clock_offset;
924 info++;
925 copied++;
928 BT_DBG("cache %p, copied %d", cache, copied);
929 return copied;
932 static void hci_inq_req(struct hci_request *req, unsigned long opt)
934 struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
935 struct hci_dev *hdev = req->hdev;
936 struct hci_cp_inquiry cp;
938 BT_DBG("%s", hdev->name);
940 if (test_bit(HCI_INQUIRY, &hdev->flags))
941 return;
943 /* Start Inquiry */
944 memcpy(&cp.lap, &ir->lap, 3);
945 cp.length = ir->length;
946 cp.num_rsp = ir->num_rsp;
947 hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
950 static int wait_inquiry(void *word)
952 schedule();
953 return signal_pending(current);
956 int hci_inquiry(void __user *arg)
958 __u8 __user *ptr = arg;
959 struct hci_inquiry_req ir;
960 struct hci_dev *hdev;
961 int err = 0, do_inquiry = 0, max_rsp;
962 long timeo;
963 __u8 *buf;
965 if (copy_from_user(&ir, ptr, sizeof(ir)))
966 return -EFAULT;
968 hdev = hci_dev_get(ir.dev_id);
969 if (!hdev)
970 return -ENODEV;
972 hci_dev_lock(hdev);
973 if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
974 inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
975 hci_inquiry_cache_flush(hdev);
976 do_inquiry = 1;
978 hci_dev_unlock(hdev);
980 timeo = ir.length * msecs_to_jiffies(2000);
982 if (do_inquiry) {
983 err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
984 timeo);
985 if (err < 0)
986 goto done;
988 /* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
989 * cleared). If it is interrupted by a signal, return -EINTR.
991 if (wait_on_bit(&hdev->flags, HCI_INQUIRY, wait_inquiry,
992 TASK_INTERRUPTIBLE))
993 return -EINTR;
996 /* for unlimited number of responses we will use buffer with
997 * 255 entries
999 max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
1001 /* cache_dump can't sleep. Therefore we allocate temp buffer and then
1002 * copy it to the user space.
1004 buf = kmalloc(sizeof(struct inquiry_info) * max_rsp, GFP_KERNEL);
1005 if (!buf) {
1006 err = -ENOMEM;
1007 goto done;
1010 hci_dev_lock(hdev);
1011 ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
1012 hci_dev_unlock(hdev);
1014 BT_DBG("num_rsp %d", ir.num_rsp);
1016 if (!copy_to_user(ptr, &ir, sizeof(ir))) {
1017 ptr += sizeof(ir);
1018 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
1019 ir.num_rsp))
1020 err = -EFAULT;
1021 } else
1022 err = -EFAULT;
1024 kfree(buf);
1026 done:
1027 hci_dev_put(hdev);
1028 return err;
1031 static u8 create_ad(struct hci_dev *hdev, u8 *ptr)
1033 u8 ad_len = 0, flags = 0;
1034 size_t name_len;
1036 if (test_bit(HCI_LE_PERIPHERAL, &hdev->dev_flags))
1037 flags |= LE_AD_GENERAL;
1039 if (!lmp_bredr_capable(hdev))
1040 flags |= LE_AD_NO_BREDR;
1042 if (lmp_le_br_capable(hdev))
1043 flags |= LE_AD_SIM_LE_BREDR_CTRL;
1045 if (lmp_host_le_br_capable(hdev))
1046 flags |= LE_AD_SIM_LE_BREDR_HOST;
1048 if (flags) {
1049 BT_DBG("adv flags 0x%02x", flags);
1051 ptr[0] = 2;
1052 ptr[1] = EIR_FLAGS;
1053 ptr[2] = flags;
1055 ad_len += 3;
1056 ptr += 3;
1059 if (hdev->adv_tx_power != HCI_TX_POWER_INVALID) {
1060 ptr[0] = 2;
1061 ptr[1] = EIR_TX_POWER;
1062 ptr[2] = (u8) hdev->adv_tx_power;
1064 ad_len += 3;
1065 ptr += 3;
1068 name_len = strlen(hdev->dev_name);
1069 if (name_len > 0) {
1070 size_t max_len = HCI_MAX_AD_LENGTH - ad_len - 2;
1072 if (name_len > max_len) {
1073 name_len = max_len;
1074 ptr[1] = EIR_NAME_SHORT;
1075 } else
1076 ptr[1] = EIR_NAME_COMPLETE;
1078 ptr[0] = name_len + 1;
1080 memcpy(ptr + 2, hdev->dev_name, name_len);
1082 ad_len += (name_len + 2);
1083 ptr += (name_len + 2);
1086 return ad_len;
1089 void hci_update_ad(struct hci_request *req)
1091 struct hci_dev *hdev = req->hdev;
1092 struct hci_cp_le_set_adv_data cp;
1093 u8 len;
1095 if (!lmp_le_capable(hdev))
1096 return;
1098 memset(&cp, 0, sizeof(cp));
1100 len = create_ad(hdev, cp.data);
1102 if (hdev->adv_data_len == len &&
1103 memcmp(cp.data, hdev->adv_data, len) == 0)
1104 return;
1106 memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
1107 hdev->adv_data_len = len;
1109 cp.length = len;
1111 hci_req_add(req, HCI_OP_LE_SET_ADV_DATA, sizeof(cp), &cp);
1114 /* ---- HCI ioctl helpers ---- */
1116 int hci_dev_open(__u16 dev)
1118 struct hci_dev *hdev;
1119 int ret = 0;
1121 hdev = hci_dev_get(dev);
1122 if (!hdev)
1123 return -ENODEV;
1125 BT_DBG("%s %p", hdev->name, hdev);
1127 hci_req_lock(hdev);
1129 if (test_bit(HCI_UNREGISTER, &hdev->dev_flags)) {
1130 ret = -ENODEV;
1131 goto done;
1134 if (hdev->rfkill && rfkill_blocked(hdev->rfkill)) {
1135 ret = -ERFKILL;
1136 goto done;
1139 if (test_bit(HCI_UP, &hdev->flags)) {
1140 ret = -EALREADY;
1141 goto done;
1144 if (hdev->open(hdev)) {
1145 ret = -EIO;
1146 goto done;
1149 atomic_set(&hdev->cmd_cnt, 1);
1150 set_bit(HCI_INIT, &hdev->flags);
1152 if (hdev->setup && test_bit(HCI_SETUP, &hdev->dev_flags))
1153 ret = hdev->setup(hdev);
1155 if (!ret) {
1156 /* Treat all non BR/EDR controllers as raw devices if
1157 * enable_hs is not set.
1159 if (hdev->dev_type != HCI_BREDR && !enable_hs)
1160 set_bit(HCI_RAW, &hdev->flags);
1162 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
1163 set_bit(HCI_RAW, &hdev->flags);
1165 if (!test_bit(HCI_RAW, &hdev->flags))
1166 ret = __hci_init(hdev);
1169 clear_bit(HCI_INIT, &hdev->flags);
1171 if (!ret) {
1172 hci_dev_hold(hdev);
1173 set_bit(HCI_UP, &hdev->flags);
1174 hci_notify(hdev, HCI_DEV_UP);
1175 if (!test_bit(HCI_SETUP, &hdev->dev_flags) &&
1176 mgmt_valid_hdev(hdev)) {
1177 hci_dev_lock(hdev);
1178 mgmt_powered(hdev, 1);
1179 hci_dev_unlock(hdev);
1181 } else {
1182 /* Init failed, cleanup */
1183 flush_work(&hdev->tx_work);
1184 flush_work(&hdev->cmd_work);
1185 flush_work(&hdev->rx_work);
1187 skb_queue_purge(&hdev->cmd_q);
1188 skb_queue_purge(&hdev->rx_q);
1190 if (hdev->flush)
1191 hdev->flush(hdev);
1193 if (hdev->sent_cmd) {
1194 kfree_skb(hdev->sent_cmd);
1195 hdev->sent_cmd = NULL;
1198 hdev->close(hdev);
1199 hdev->flags = 0;
1202 done:
1203 hci_req_unlock(hdev);
1204 hci_dev_put(hdev);
1205 return ret;
1208 static int hci_dev_do_close(struct hci_dev *hdev)
1210 BT_DBG("%s %p", hdev->name, hdev);
1212 cancel_delayed_work(&hdev->power_off);
1214 hci_req_cancel(hdev, ENODEV);
1215 hci_req_lock(hdev);
1217 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
1218 del_timer_sync(&hdev->cmd_timer);
1219 hci_req_unlock(hdev);
1220 return 0;
1223 /* Flush RX and TX works */
1224 flush_work(&hdev->tx_work);
1225 flush_work(&hdev->rx_work);
1227 if (hdev->discov_timeout > 0) {
1228 cancel_delayed_work(&hdev->discov_off);
1229 hdev->discov_timeout = 0;
1230 clear_bit(HCI_DISCOVERABLE, &hdev->dev_flags);
1233 if (test_and_clear_bit(HCI_SERVICE_CACHE, &hdev->dev_flags))
1234 cancel_delayed_work(&hdev->service_cache);
1236 cancel_delayed_work_sync(&hdev->le_scan_disable);
1238 hci_dev_lock(hdev);
1239 hci_inquiry_cache_flush(hdev);
1240 hci_conn_hash_flush(hdev);
1241 hci_dev_unlock(hdev);
1243 hci_notify(hdev, HCI_DEV_DOWN);
1245 if (hdev->flush)
1246 hdev->flush(hdev);
1248 /* Reset device */
1249 skb_queue_purge(&hdev->cmd_q);
1250 atomic_set(&hdev->cmd_cnt, 1);
1251 if (!test_bit(HCI_RAW, &hdev->flags) &&
1252 test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) {
1253 set_bit(HCI_INIT, &hdev->flags);
1254 __hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT);
1255 clear_bit(HCI_INIT, &hdev->flags);
1258 /* flush cmd work */
1259 flush_work(&hdev->cmd_work);
1261 /* Drop queues */
1262 skb_queue_purge(&hdev->rx_q);
1263 skb_queue_purge(&hdev->cmd_q);
1264 skb_queue_purge(&hdev->raw_q);
1266 /* Drop last sent command */
1267 if (hdev->sent_cmd) {
1268 del_timer_sync(&hdev->cmd_timer);
1269 kfree_skb(hdev->sent_cmd);
1270 hdev->sent_cmd = NULL;
1273 kfree_skb(hdev->recv_evt);
1274 hdev->recv_evt = NULL;
1276 /* After this point our queues are empty
1277 * and no tasks are scheduled. */
1278 hdev->close(hdev);
1280 /* Clear flags */
1281 hdev->flags = 0;
1282 hdev->dev_flags &= ~HCI_PERSISTENT_MASK;
1284 if (!test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags) &&
1285 mgmt_valid_hdev(hdev)) {
1286 hci_dev_lock(hdev);
1287 mgmt_powered(hdev, 0);
1288 hci_dev_unlock(hdev);
1291 /* Controller radio is available but is currently powered down */
1292 hdev->amp_status = 0;
1294 memset(hdev->eir, 0, sizeof(hdev->eir));
1295 memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
1297 hci_req_unlock(hdev);
1299 hci_dev_put(hdev);
1300 return 0;
1303 int hci_dev_close(__u16 dev)
1305 struct hci_dev *hdev;
1306 int err;
1308 hdev = hci_dev_get(dev);
1309 if (!hdev)
1310 return -ENODEV;
1312 if (test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags))
1313 cancel_delayed_work(&hdev->power_off);
1315 err = hci_dev_do_close(hdev);
1317 hci_dev_put(hdev);
1318 return err;
1321 int hci_dev_reset(__u16 dev)
1323 struct hci_dev *hdev;
1324 int ret = 0;
1326 hdev = hci_dev_get(dev);
1327 if (!hdev)
1328 return -ENODEV;
1330 hci_req_lock(hdev);
1332 if (!test_bit(HCI_UP, &hdev->flags))
1333 goto done;
1335 /* Drop queues */
1336 skb_queue_purge(&hdev->rx_q);
1337 skb_queue_purge(&hdev->cmd_q);
1339 hci_dev_lock(hdev);
1340 hci_inquiry_cache_flush(hdev);
1341 hci_conn_hash_flush(hdev);
1342 hci_dev_unlock(hdev);
1344 if (hdev->flush)
1345 hdev->flush(hdev);
1347 atomic_set(&hdev->cmd_cnt, 1);
1348 hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
1350 if (!test_bit(HCI_RAW, &hdev->flags))
1351 ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT);
1353 done:
1354 hci_req_unlock(hdev);
1355 hci_dev_put(hdev);
1356 return ret;
1359 int hci_dev_reset_stat(__u16 dev)
1361 struct hci_dev *hdev;
1362 int ret = 0;
1364 hdev = hci_dev_get(dev);
1365 if (!hdev)
1366 return -ENODEV;
1368 memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1370 hci_dev_put(hdev);
1372 return ret;
1375 int hci_dev_cmd(unsigned int cmd, void __user *arg)
1377 struct hci_dev *hdev;
1378 struct hci_dev_req dr;
1379 int err = 0;
1381 if (copy_from_user(&dr, arg, sizeof(dr)))
1382 return -EFAULT;
1384 hdev = hci_dev_get(dr.dev_id);
1385 if (!hdev)
1386 return -ENODEV;
1388 switch (cmd) {
1389 case HCISETAUTH:
1390 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1391 HCI_INIT_TIMEOUT);
1392 break;
1394 case HCISETENCRYPT:
1395 if (!lmp_encrypt_capable(hdev)) {
1396 err = -EOPNOTSUPP;
1397 break;
1400 if (!test_bit(HCI_AUTH, &hdev->flags)) {
1401 /* Auth must be enabled first */
1402 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1403 HCI_INIT_TIMEOUT);
1404 if (err)
1405 break;
1408 err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
1409 HCI_INIT_TIMEOUT);
1410 break;
1412 case HCISETSCAN:
1413 err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
1414 HCI_INIT_TIMEOUT);
1415 break;
1417 case HCISETLINKPOL:
1418 err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
1419 HCI_INIT_TIMEOUT);
1420 break;
1422 case HCISETLINKMODE:
1423 hdev->link_mode = ((__u16) dr.dev_opt) &
1424 (HCI_LM_MASTER | HCI_LM_ACCEPT);
1425 break;
1427 case HCISETPTYPE:
1428 hdev->pkt_type = (__u16) dr.dev_opt;
1429 break;
1431 case HCISETACLMTU:
1432 hdev->acl_mtu = *((__u16 *) &dr.dev_opt + 1);
1433 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
1434 break;
1436 case HCISETSCOMTU:
1437 hdev->sco_mtu = *((__u16 *) &dr.dev_opt + 1);
1438 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
1439 break;
1441 default:
1442 err = -EINVAL;
1443 break;
1446 hci_dev_put(hdev);
1447 return err;
1450 int hci_get_dev_list(void __user *arg)
1452 struct hci_dev *hdev;
1453 struct hci_dev_list_req *dl;
1454 struct hci_dev_req *dr;
1455 int n = 0, size, err;
1456 __u16 dev_num;
1458 if (get_user(dev_num, (__u16 __user *) arg))
1459 return -EFAULT;
1461 if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
1462 return -EINVAL;
1464 size = sizeof(*dl) + dev_num * sizeof(*dr);
1466 dl = kzalloc(size, GFP_KERNEL);
1467 if (!dl)
1468 return -ENOMEM;
1470 dr = dl->dev_req;
1472 read_lock(&hci_dev_list_lock);
1473 list_for_each_entry(hdev, &hci_dev_list, list) {
1474 if (test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags))
1475 cancel_delayed_work(&hdev->power_off);
1477 if (!test_bit(HCI_MGMT, &hdev->dev_flags))
1478 set_bit(HCI_PAIRABLE, &hdev->dev_flags);
1480 (dr + n)->dev_id = hdev->id;
1481 (dr + n)->dev_opt = hdev->flags;
1483 if (++n >= dev_num)
1484 break;
1486 read_unlock(&hci_dev_list_lock);
1488 dl->dev_num = n;
1489 size = sizeof(*dl) + n * sizeof(*dr);
1491 err = copy_to_user(arg, dl, size);
1492 kfree(dl);
1494 return err ? -EFAULT : 0;
1497 int hci_get_dev_info(void __user *arg)
1499 struct hci_dev *hdev;
1500 struct hci_dev_info di;
1501 int err = 0;
1503 if (copy_from_user(&di, arg, sizeof(di)))
1504 return -EFAULT;
1506 hdev = hci_dev_get(di.dev_id);
1507 if (!hdev)
1508 return -ENODEV;
1510 if (test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags))
1511 cancel_delayed_work_sync(&hdev->power_off);
1513 if (!test_bit(HCI_MGMT, &hdev->dev_flags))
1514 set_bit(HCI_PAIRABLE, &hdev->dev_flags);
1516 strcpy(di.name, hdev->name);
1517 di.bdaddr = hdev->bdaddr;
1518 di.type = (hdev->bus & 0x0f) | (hdev->dev_type << 4);
1519 di.flags = hdev->flags;
1520 di.pkt_type = hdev->pkt_type;
1521 if (lmp_bredr_capable(hdev)) {
1522 di.acl_mtu = hdev->acl_mtu;
1523 di.acl_pkts = hdev->acl_pkts;
1524 di.sco_mtu = hdev->sco_mtu;
1525 di.sco_pkts = hdev->sco_pkts;
1526 } else {
1527 di.acl_mtu = hdev->le_mtu;
1528 di.acl_pkts = hdev->le_pkts;
1529 di.sco_mtu = 0;
1530 di.sco_pkts = 0;
1532 di.link_policy = hdev->link_policy;
1533 di.link_mode = hdev->link_mode;
1535 memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
1536 memcpy(&di.features, &hdev->features, sizeof(di.features));
1538 if (copy_to_user(arg, &di, sizeof(di)))
1539 err = -EFAULT;
1541 hci_dev_put(hdev);
1543 return err;
1546 /* ---- Interface to HCI drivers ---- */
1548 static int hci_rfkill_set_block(void *data, bool blocked)
1550 struct hci_dev *hdev = data;
1552 BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
1554 if (!blocked)
1555 return 0;
1557 hci_dev_do_close(hdev);
1559 return 0;
1562 static const struct rfkill_ops hci_rfkill_ops = {
1563 .set_block = hci_rfkill_set_block,
1566 static void hci_power_on(struct work_struct *work)
1568 struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
1569 int err;
1571 BT_DBG("%s", hdev->name);
1573 err = hci_dev_open(hdev->id);
1574 if (err < 0) {
1575 mgmt_set_powered_failed(hdev, err);
1576 return;
1579 if (test_bit(HCI_AUTO_OFF, &hdev->dev_flags))
1580 queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
1581 HCI_AUTO_OFF_TIMEOUT);
1583 if (test_and_clear_bit(HCI_SETUP, &hdev->dev_flags))
1584 mgmt_index_added(hdev);
1587 static void hci_power_off(struct work_struct *work)
1589 struct hci_dev *hdev = container_of(work, struct hci_dev,
1590 power_off.work);
1592 BT_DBG("%s", hdev->name);
1594 hci_dev_do_close(hdev);
1597 static void hci_discov_off(struct work_struct *work)
1599 struct hci_dev *hdev;
1600 u8 scan = SCAN_PAGE;
1602 hdev = container_of(work, struct hci_dev, discov_off.work);
1604 BT_DBG("%s", hdev->name);
1606 hci_dev_lock(hdev);
1608 hci_send_cmd(hdev, HCI_OP_WRITE_SCAN_ENABLE, sizeof(scan), &scan);
1610 hdev->discov_timeout = 0;
1612 hci_dev_unlock(hdev);
1615 int hci_uuids_clear(struct hci_dev *hdev)
1617 struct bt_uuid *uuid, *tmp;
1619 list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
1620 list_del(&uuid->list);
1621 kfree(uuid);
1624 return 0;
1627 int hci_link_keys_clear(struct hci_dev *hdev)
1629 struct list_head *p, *n;
1631 list_for_each_safe(p, n, &hdev->link_keys) {
1632 struct link_key *key;
1634 key = list_entry(p, struct link_key, list);
1636 list_del(p);
1637 kfree(key);
1640 return 0;
1643 int hci_smp_ltks_clear(struct hci_dev *hdev)
1645 struct smp_ltk *k, *tmp;
1647 list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1648 list_del(&k->list);
1649 kfree(k);
1652 return 0;
1655 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1657 struct link_key *k;
1659 list_for_each_entry(k, &hdev->link_keys, list)
1660 if (bacmp(bdaddr, &k->bdaddr) == 0)
1661 return k;
1663 return NULL;
1666 static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
1667 u8 key_type, u8 old_key_type)
1669 /* Legacy key */
1670 if (key_type < 0x03)
1671 return true;
1673 /* Debug keys are insecure so don't store them persistently */
1674 if (key_type == HCI_LK_DEBUG_COMBINATION)
1675 return false;
1677 /* Changed combination key and there's no previous one */
1678 if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
1679 return false;
1681 /* Security mode 3 case */
1682 if (!conn)
1683 return true;
1685 /* Neither local nor remote side had no-bonding as requirement */
1686 if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
1687 return true;
1689 /* Local side had dedicated bonding as requirement */
1690 if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
1691 return true;
1693 /* Remote side had dedicated bonding as requirement */
1694 if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
1695 return true;
1697 /* If none of the above criteria match, then don't store the key
1698 * persistently */
1699 return false;
1702 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, __le16 ediv, u8 rand[8])
1704 struct smp_ltk *k;
1706 list_for_each_entry(k, &hdev->long_term_keys, list) {
1707 if (k->ediv != ediv ||
1708 memcmp(rand, k->rand, sizeof(k->rand)))
1709 continue;
1711 return k;
1714 return NULL;
1717 struct smp_ltk *hci_find_ltk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
1718 u8 addr_type)
1720 struct smp_ltk *k;
1722 list_for_each_entry(k, &hdev->long_term_keys, list)
1723 if (addr_type == k->bdaddr_type &&
1724 bacmp(bdaddr, &k->bdaddr) == 0)
1725 return k;
1727 return NULL;
1730 int hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn, int new_key,
1731 bdaddr_t *bdaddr, u8 *val, u8 type, u8 pin_len)
1733 struct link_key *key, *old_key;
1734 u8 old_key_type;
1735 bool persistent;
1737 old_key = hci_find_link_key(hdev, bdaddr);
1738 if (old_key) {
1739 old_key_type = old_key->type;
1740 key = old_key;
1741 } else {
1742 old_key_type = conn ? conn->key_type : 0xff;
1743 key = kzalloc(sizeof(*key), GFP_ATOMIC);
1744 if (!key)
1745 return -ENOMEM;
1746 list_add(&key->list, &hdev->link_keys);
1749 BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
1751 /* Some buggy controller combinations generate a changed
1752 * combination key for legacy pairing even when there's no
1753 * previous key */
1754 if (type == HCI_LK_CHANGED_COMBINATION &&
1755 (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
1756 type = HCI_LK_COMBINATION;
1757 if (conn)
1758 conn->key_type = type;
1761 bacpy(&key->bdaddr, bdaddr);
1762 memcpy(key->val, val, HCI_LINK_KEY_SIZE);
1763 key->pin_len = pin_len;
1765 if (type == HCI_LK_CHANGED_COMBINATION)
1766 key->type = old_key_type;
1767 else
1768 key->type = type;
1770 if (!new_key)
1771 return 0;
1773 persistent = hci_persistent_key(hdev, conn, type, old_key_type);
1775 mgmt_new_link_key(hdev, key, persistent);
1777 if (conn)
1778 conn->flush_key = !persistent;
1780 return 0;
1783 int hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type, u8 type,
1784 int new_key, u8 authenticated, u8 tk[16], u8 enc_size, __le16
1785 ediv, u8 rand[8])
1787 struct smp_ltk *key, *old_key;
1789 if (!(type & HCI_SMP_STK) && !(type & HCI_SMP_LTK))
1790 return 0;
1792 old_key = hci_find_ltk_by_addr(hdev, bdaddr, addr_type);
1793 if (old_key)
1794 key = old_key;
1795 else {
1796 key = kzalloc(sizeof(*key), GFP_ATOMIC);
1797 if (!key)
1798 return -ENOMEM;
1799 list_add(&key->list, &hdev->long_term_keys);
1802 bacpy(&key->bdaddr, bdaddr);
1803 key->bdaddr_type = addr_type;
1804 memcpy(key->val, tk, sizeof(key->val));
1805 key->authenticated = authenticated;
1806 key->ediv = ediv;
1807 key->enc_size = enc_size;
1808 key->type = type;
1809 memcpy(key->rand, rand, sizeof(key->rand));
1811 if (!new_key)
1812 return 0;
1814 if (type & HCI_SMP_LTK)
1815 mgmt_new_ltk(hdev, key, 1);
1817 return 0;
1820 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1822 struct link_key *key;
1824 key = hci_find_link_key(hdev, bdaddr);
1825 if (!key)
1826 return -ENOENT;
1828 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1830 list_del(&key->list);
1831 kfree(key);
1833 return 0;
1836 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr)
1838 struct smp_ltk *k, *tmp;
1840 list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1841 if (bacmp(bdaddr, &k->bdaddr))
1842 continue;
1844 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1846 list_del(&k->list);
1847 kfree(k);
1850 return 0;
1853 /* HCI command timer function */
1854 static void hci_cmd_timeout(unsigned long arg)
1856 struct hci_dev *hdev = (void *) arg;
1858 if (hdev->sent_cmd) {
1859 struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
1860 u16 opcode = __le16_to_cpu(sent->opcode);
1862 BT_ERR("%s command 0x%4.4x tx timeout", hdev->name, opcode);
1863 } else {
1864 BT_ERR("%s command tx timeout", hdev->name);
1867 atomic_set(&hdev->cmd_cnt, 1);
1868 queue_work(hdev->workqueue, &hdev->cmd_work);
1871 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
1872 bdaddr_t *bdaddr)
1874 struct oob_data *data;
1876 list_for_each_entry(data, &hdev->remote_oob_data, list)
1877 if (bacmp(bdaddr, &data->bdaddr) == 0)
1878 return data;
1880 return NULL;
1883 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr)
1885 struct oob_data *data;
1887 data = hci_find_remote_oob_data(hdev, bdaddr);
1888 if (!data)
1889 return -ENOENT;
1891 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1893 list_del(&data->list);
1894 kfree(data);
1896 return 0;
1899 int hci_remote_oob_data_clear(struct hci_dev *hdev)
1901 struct oob_data *data, *n;
1903 list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
1904 list_del(&data->list);
1905 kfree(data);
1908 return 0;
1911 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 *hash,
1912 u8 *randomizer)
1914 struct oob_data *data;
1916 data = hci_find_remote_oob_data(hdev, bdaddr);
1918 if (!data) {
1919 data = kmalloc(sizeof(*data), GFP_ATOMIC);
1920 if (!data)
1921 return -ENOMEM;
1923 bacpy(&data->bdaddr, bdaddr);
1924 list_add(&data->list, &hdev->remote_oob_data);
1927 memcpy(data->hash, hash, sizeof(data->hash));
1928 memcpy(data->randomizer, randomizer, sizeof(data->randomizer));
1930 BT_DBG("%s for %pMR", hdev->name, bdaddr);
1932 return 0;
1935 struct bdaddr_list *hci_blacklist_lookup(struct hci_dev *hdev, bdaddr_t *bdaddr)
1937 struct bdaddr_list *b;
1939 list_for_each_entry(b, &hdev->blacklist, list)
1940 if (bacmp(bdaddr, &b->bdaddr) == 0)
1941 return b;
1943 return NULL;
1946 int hci_blacklist_clear(struct hci_dev *hdev)
1948 struct list_head *p, *n;
1950 list_for_each_safe(p, n, &hdev->blacklist) {
1951 struct bdaddr_list *b;
1953 b = list_entry(p, struct bdaddr_list, list);
1955 list_del(p);
1956 kfree(b);
1959 return 0;
1962 int hci_blacklist_add(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
1964 struct bdaddr_list *entry;
1966 if (bacmp(bdaddr, BDADDR_ANY) == 0)
1967 return -EBADF;
1969 if (hci_blacklist_lookup(hdev, bdaddr))
1970 return -EEXIST;
1972 entry = kzalloc(sizeof(struct bdaddr_list), GFP_KERNEL);
1973 if (!entry)
1974 return -ENOMEM;
1976 bacpy(&entry->bdaddr, bdaddr);
1978 list_add(&entry->list, &hdev->blacklist);
1980 return mgmt_device_blocked(hdev, bdaddr, type);
1983 int hci_blacklist_del(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
1985 struct bdaddr_list *entry;
1987 if (bacmp(bdaddr, BDADDR_ANY) == 0)
1988 return hci_blacklist_clear(hdev);
1990 entry = hci_blacklist_lookup(hdev, bdaddr);
1991 if (!entry)
1992 return -ENOENT;
1994 list_del(&entry->list);
1995 kfree(entry);
1997 return mgmt_device_unblocked(hdev, bdaddr, type);
2000 static void inquiry_complete(struct hci_dev *hdev, u8 status)
2002 if (status) {
2003 BT_ERR("Failed to start inquiry: status %d", status);
2005 hci_dev_lock(hdev);
2006 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2007 hci_dev_unlock(hdev);
2008 return;
2012 static void le_scan_disable_work_complete(struct hci_dev *hdev, u8 status)
2014 /* General inquiry access code (GIAC) */
2015 u8 lap[3] = { 0x33, 0x8b, 0x9e };
2016 struct hci_request req;
2017 struct hci_cp_inquiry cp;
2018 int err;
2020 if (status) {
2021 BT_ERR("Failed to disable LE scanning: status %d", status);
2022 return;
2025 switch (hdev->discovery.type) {
2026 case DISCOV_TYPE_LE:
2027 hci_dev_lock(hdev);
2028 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2029 hci_dev_unlock(hdev);
2030 break;
2032 case DISCOV_TYPE_INTERLEAVED:
2033 hci_req_init(&req, hdev);
2035 memset(&cp, 0, sizeof(cp));
2036 memcpy(&cp.lap, lap, sizeof(cp.lap));
2037 cp.length = DISCOV_INTERLEAVED_INQUIRY_LEN;
2038 hci_req_add(&req, HCI_OP_INQUIRY, sizeof(cp), &cp);
2040 hci_dev_lock(hdev);
2042 hci_inquiry_cache_flush(hdev);
2044 err = hci_req_run(&req, inquiry_complete);
2045 if (err) {
2046 BT_ERR("Inquiry request failed: err %d", err);
2047 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2050 hci_dev_unlock(hdev);
2051 break;
2055 static void le_scan_disable_work(struct work_struct *work)
2057 struct hci_dev *hdev = container_of(work, struct hci_dev,
2058 le_scan_disable.work);
2059 struct hci_cp_le_set_scan_enable cp;
2060 struct hci_request req;
2061 int err;
2063 BT_DBG("%s", hdev->name);
2065 hci_req_init(&req, hdev);
2067 memset(&cp, 0, sizeof(cp));
2068 cp.enable = LE_SCAN_DISABLE;
2069 hci_req_add(&req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
2071 err = hci_req_run(&req, le_scan_disable_work_complete);
2072 if (err)
2073 BT_ERR("Disable LE scanning request failed: err %d", err);
2076 /* Alloc HCI device */
2077 struct hci_dev *hci_alloc_dev(void)
2079 struct hci_dev *hdev;
2081 hdev = kzalloc(sizeof(struct hci_dev), GFP_KERNEL);
2082 if (!hdev)
2083 return NULL;
2085 hdev->pkt_type = (HCI_DM1 | HCI_DH1 | HCI_HV1);
2086 hdev->esco_type = (ESCO_HV1);
2087 hdev->link_mode = (HCI_LM_ACCEPT);
2088 hdev->io_capability = 0x03; /* No Input No Output */
2089 hdev->inq_tx_power = HCI_TX_POWER_INVALID;
2090 hdev->adv_tx_power = HCI_TX_POWER_INVALID;
2092 hdev->sniff_max_interval = 800;
2093 hdev->sniff_min_interval = 80;
2095 mutex_init(&hdev->lock);
2096 mutex_init(&hdev->req_lock);
2098 INIT_LIST_HEAD(&hdev->mgmt_pending);
2099 INIT_LIST_HEAD(&hdev->blacklist);
2100 INIT_LIST_HEAD(&hdev->uuids);
2101 INIT_LIST_HEAD(&hdev->link_keys);
2102 INIT_LIST_HEAD(&hdev->long_term_keys);
2103 INIT_LIST_HEAD(&hdev->remote_oob_data);
2104 INIT_LIST_HEAD(&hdev->conn_hash.list);
2106 INIT_WORK(&hdev->rx_work, hci_rx_work);
2107 INIT_WORK(&hdev->cmd_work, hci_cmd_work);
2108 INIT_WORK(&hdev->tx_work, hci_tx_work);
2109 INIT_WORK(&hdev->power_on, hci_power_on);
2111 INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
2112 INIT_DELAYED_WORK(&hdev->discov_off, hci_discov_off);
2113 INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work);
2115 skb_queue_head_init(&hdev->rx_q);
2116 skb_queue_head_init(&hdev->cmd_q);
2117 skb_queue_head_init(&hdev->raw_q);
2119 init_waitqueue_head(&hdev->req_wait_q);
2121 setup_timer(&hdev->cmd_timer, hci_cmd_timeout, (unsigned long) hdev);
2123 hci_init_sysfs(hdev);
2124 discovery_init(hdev);
2126 return hdev;
2128 EXPORT_SYMBOL(hci_alloc_dev);
2130 /* Free HCI device */
2131 void hci_free_dev(struct hci_dev *hdev)
2133 /* will free via device release */
2134 put_device(&hdev->dev);
2136 EXPORT_SYMBOL(hci_free_dev);
2138 /* Register HCI device */
2139 int hci_register_dev(struct hci_dev *hdev)
2141 int id, error;
2143 if (!hdev->open || !hdev->close)
2144 return -EINVAL;
2146 /* Do not allow HCI_AMP devices to register at index 0,
2147 * so the index can be used as the AMP controller ID.
2149 switch (hdev->dev_type) {
2150 case HCI_BREDR:
2151 id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
2152 break;
2153 case HCI_AMP:
2154 id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
2155 break;
2156 default:
2157 return -EINVAL;
2160 if (id < 0)
2161 return id;
2163 sprintf(hdev->name, "hci%d", id);
2164 hdev->id = id;
2166 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2168 write_lock(&hci_dev_list_lock);
2169 list_add(&hdev->list, &hci_dev_list);
2170 write_unlock(&hci_dev_list_lock);
2172 hdev->workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
2173 WQ_MEM_RECLAIM, 1, hdev->name);
2174 if (!hdev->workqueue) {
2175 error = -ENOMEM;
2176 goto err;
2179 hdev->req_workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
2180 WQ_MEM_RECLAIM, 1, hdev->name);
2181 if (!hdev->req_workqueue) {
2182 destroy_workqueue(hdev->workqueue);
2183 error = -ENOMEM;
2184 goto err;
2187 error = hci_add_sysfs(hdev);
2188 if (error < 0)
2189 goto err_wqueue;
2191 hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
2192 RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
2193 hdev);
2194 if (hdev->rfkill) {
2195 if (rfkill_register(hdev->rfkill) < 0) {
2196 rfkill_destroy(hdev->rfkill);
2197 hdev->rfkill = NULL;
2201 set_bit(HCI_SETUP, &hdev->dev_flags);
2203 if (hdev->dev_type != HCI_AMP)
2204 set_bit(HCI_AUTO_OFF, &hdev->dev_flags);
2206 hci_notify(hdev, HCI_DEV_REG);
2207 hci_dev_hold(hdev);
2209 queue_work(hdev->req_workqueue, &hdev->power_on);
2211 return id;
2213 err_wqueue:
2214 destroy_workqueue(hdev->workqueue);
2215 destroy_workqueue(hdev->req_workqueue);
2216 err:
2217 ida_simple_remove(&hci_index_ida, hdev->id);
2218 write_lock(&hci_dev_list_lock);
2219 list_del(&hdev->list);
2220 write_unlock(&hci_dev_list_lock);
2222 return error;
2224 EXPORT_SYMBOL(hci_register_dev);
2226 /* Unregister HCI device */
2227 void hci_unregister_dev(struct hci_dev *hdev)
2229 int i, id;
2231 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2233 set_bit(HCI_UNREGISTER, &hdev->dev_flags);
2235 id = hdev->id;
2237 write_lock(&hci_dev_list_lock);
2238 list_del(&hdev->list);
2239 write_unlock(&hci_dev_list_lock);
2241 hci_dev_do_close(hdev);
2243 for (i = 0; i < NUM_REASSEMBLY; i++)
2244 kfree_skb(hdev->reassembly[i]);
2246 cancel_work_sync(&hdev->power_on);
2248 if (!test_bit(HCI_INIT, &hdev->flags) &&
2249 !test_bit(HCI_SETUP, &hdev->dev_flags)) {
2250 hci_dev_lock(hdev);
2251 mgmt_index_removed(hdev);
2252 hci_dev_unlock(hdev);
2255 /* mgmt_index_removed should take care of emptying the
2256 * pending list */
2257 BUG_ON(!list_empty(&hdev->mgmt_pending));
2259 hci_notify(hdev, HCI_DEV_UNREG);
2261 if (hdev->rfkill) {
2262 rfkill_unregister(hdev->rfkill);
2263 rfkill_destroy(hdev->rfkill);
2266 hci_del_sysfs(hdev);
2268 destroy_workqueue(hdev->workqueue);
2269 destroy_workqueue(hdev->req_workqueue);
2271 hci_dev_lock(hdev);
2272 hci_blacklist_clear(hdev);
2273 hci_uuids_clear(hdev);
2274 hci_link_keys_clear(hdev);
2275 hci_smp_ltks_clear(hdev);
2276 hci_remote_oob_data_clear(hdev);
2277 hci_dev_unlock(hdev);
2279 hci_dev_put(hdev);
2281 ida_simple_remove(&hci_index_ida, id);
2283 EXPORT_SYMBOL(hci_unregister_dev);
2285 /* Suspend HCI device */
2286 int hci_suspend_dev(struct hci_dev *hdev)
2288 hci_notify(hdev, HCI_DEV_SUSPEND);
2289 return 0;
2291 EXPORT_SYMBOL(hci_suspend_dev);
2293 /* Resume HCI device */
2294 int hci_resume_dev(struct hci_dev *hdev)
2296 hci_notify(hdev, HCI_DEV_RESUME);
2297 return 0;
2299 EXPORT_SYMBOL(hci_resume_dev);
2301 /* Receive frame from HCI drivers */
2302 int hci_recv_frame(struct sk_buff *skb)
2304 struct hci_dev *hdev = (struct hci_dev *) skb->dev;
2305 if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
2306 && !test_bit(HCI_INIT, &hdev->flags))) {
2307 kfree_skb(skb);
2308 return -ENXIO;
2311 /* Incoming skb */
2312 bt_cb(skb)->incoming = 1;
2314 /* Time stamp */
2315 __net_timestamp(skb);
2317 skb_queue_tail(&hdev->rx_q, skb);
2318 queue_work(hdev->workqueue, &hdev->rx_work);
2320 return 0;
2322 EXPORT_SYMBOL(hci_recv_frame);
2324 static int hci_reassembly(struct hci_dev *hdev, int type, void *data,
2325 int count, __u8 index)
2327 int len = 0;
2328 int hlen = 0;
2329 int remain = count;
2330 struct sk_buff *skb;
2331 struct bt_skb_cb *scb;
2333 if ((type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT) ||
2334 index >= NUM_REASSEMBLY)
2335 return -EILSEQ;
2337 skb = hdev->reassembly[index];
2339 if (!skb) {
2340 switch (type) {
2341 case HCI_ACLDATA_PKT:
2342 len = HCI_MAX_FRAME_SIZE;
2343 hlen = HCI_ACL_HDR_SIZE;
2344 break;
2345 case HCI_EVENT_PKT:
2346 len = HCI_MAX_EVENT_SIZE;
2347 hlen = HCI_EVENT_HDR_SIZE;
2348 break;
2349 case HCI_SCODATA_PKT:
2350 len = HCI_MAX_SCO_SIZE;
2351 hlen = HCI_SCO_HDR_SIZE;
2352 break;
2355 skb = bt_skb_alloc(len, GFP_ATOMIC);
2356 if (!skb)
2357 return -ENOMEM;
2359 scb = (void *) skb->cb;
2360 scb->expect = hlen;
2361 scb->pkt_type = type;
2363 skb->dev = (void *) hdev;
2364 hdev->reassembly[index] = skb;
2367 while (count) {
2368 scb = (void *) skb->cb;
2369 len = min_t(uint, scb->expect, count);
2371 memcpy(skb_put(skb, len), data, len);
2373 count -= len;
2374 data += len;
2375 scb->expect -= len;
2376 remain = count;
2378 switch (type) {
2379 case HCI_EVENT_PKT:
2380 if (skb->len == HCI_EVENT_HDR_SIZE) {
2381 struct hci_event_hdr *h = hci_event_hdr(skb);
2382 scb->expect = h->plen;
2384 if (skb_tailroom(skb) < scb->expect) {
2385 kfree_skb(skb);
2386 hdev->reassembly[index] = NULL;
2387 return -ENOMEM;
2390 break;
2392 case HCI_ACLDATA_PKT:
2393 if (skb->len == HCI_ACL_HDR_SIZE) {
2394 struct hci_acl_hdr *h = hci_acl_hdr(skb);
2395 scb->expect = __le16_to_cpu(h->dlen);
2397 if (skb_tailroom(skb) < scb->expect) {
2398 kfree_skb(skb);
2399 hdev->reassembly[index] = NULL;
2400 return -ENOMEM;
2403 break;
2405 case HCI_SCODATA_PKT:
2406 if (skb->len == HCI_SCO_HDR_SIZE) {
2407 struct hci_sco_hdr *h = hci_sco_hdr(skb);
2408 scb->expect = h->dlen;
2410 if (skb_tailroom(skb) < scb->expect) {
2411 kfree_skb(skb);
2412 hdev->reassembly[index] = NULL;
2413 return -ENOMEM;
2416 break;
2419 if (scb->expect == 0) {
2420 /* Complete frame */
2422 bt_cb(skb)->pkt_type = type;
2423 hci_recv_frame(skb);
2425 hdev->reassembly[index] = NULL;
2426 return remain;
2430 return remain;
2433 int hci_recv_fragment(struct hci_dev *hdev, int type, void *data, int count)
2435 int rem = 0;
2437 if (type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT)
2438 return -EILSEQ;
2440 while (count) {
2441 rem = hci_reassembly(hdev, type, data, count, type - 1);
2442 if (rem < 0)
2443 return rem;
2445 data += (count - rem);
2446 count = rem;
2449 return rem;
2451 EXPORT_SYMBOL(hci_recv_fragment);
2453 #define STREAM_REASSEMBLY 0
2455 int hci_recv_stream_fragment(struct hci_dev *hdev, void *data, int count)
2457 int type;
2458 int rem = 0;
2460 while (count) {
2461 struct sk_buff *skb = hdev->reassembly[STREAM_REASSEMBLY];
2463 if (!skb) {
2464 struct { char type; } *pkt;
2466 /* Start of the frame */
2467 pkt = data;
2468 type = pkt->type;
2470 data++;
2471 count--;
2472 } else
2473 type = bt_cb(skb)->pkt_type;
2475 rem = hci_reassembly(hdev, type, data, count,
2476 STREAM_REASSEMBLY);
2477 if (rem < 0)
2478 return rem;
2480 data += (count - rem);
2481 count = rem;
2484 return rem;
2486 EXPORT_SYMBOL(hci_recv_stream_fragment);
2488 /* ---- Interface to upper protocols ---- */
2490 int hci_register_cb(struct hci_cb *cb)
2492 BT_DBG("%p name %s", cb, cb->name);
2494 write_lock(&hci_cb_list_lock);
2495 list_add(&cb->list, &hci_cb_list);
2496 write_unlock(&hci_cb_list_lock);
2498 return 0;
2500 EXPORT_SYMBOL(hci_register_cb);
2502 int hci_unregister_cb(struct hci_cb *cb)
2504 BT_DBG("%p name %s", cb, cb->name);
2506 write_lock(&hci_cb_list_lock);
2507 list_del(&cb->list);
2508 write_unlock(&hci_cb_list_lock);
2510 return 0;
2512 EXPORT_SYMBOL(hci_unregister_cb);
2514 static int hci_send_frame(struct sk_buff *skb)
2516 struct hci_dev *hdev = (struct hci_dev *) skb->dev;
2518 if (!hdev) {
2519 kfree_skb(skb);
2520 return -ENODEV;
2523 BT_DBG("%s type %d len %d", hdev->name, bt_cb(skb)->pkt_type, skb->len);
2525 /* Time stamp */
2526 __net_timestamp(skb);
2528 /* Send copy to monitor */
2529 hci_send_to_monitor(hdev, skb);
2531 if (atomic_read(&hdev->promisc)) {
2532 /* Send copy to the sockets */
2533 hci_send_to_sock(hdev, skb);
2536 /* Get rid of skb owner, prior to sending to the driver. */
2537 skb_orphan(skb);
2539 return hdev->send(skb);
2542 void hci_req_init(struct hci_request *req, struct hci_dev *hdev)
2544 skb_queue_head_init(&req->cmd_q);
2545 req->hdev = hdev;
2546 req->err = 0;
2549 int hci_req_run(struct hci_request *req, hci_req_complete_t complete)
2551 struct hci_dev *hdev = req->hdev;
2552 struct sk_buff *skb;
2553 unsigned long flags;
2555 BT_DBG("length %u", skb_queue_len(&req->cmd_q));
2557 /* If an error occured during request building, remove all HCI
2558 * commands queued on the HCI request queue.
2560 if (req->err) {
2561 skb_queue_purge(&req->cmd_q);
2562 return req->err;
2565 /* Do not allow empty requests */
2566 if (skb_queue_empty(&req->cmd_q))
2567 return -ENODATA;
2569 skb = skb_peek_tail(&req->cmd_q);
2570 bt_cb(skb)->req.complete = complete;
2572 spin_lock_irqsave(&hdev->cmd_q.lock, flags);
2573 skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
2574 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
2576 queue_work(hdev->workqueue, &hdev->cmd_work);
2578 return 0;
2581 static struct sk_buff *hci_prepare_cmd(struct hci_dev *hdev, u16 opcode,
2582 u32 plen, const void *param)
2584 int len = HCI_COMMAND_HDR_SIZE + plen;
2585 struct hci_command_hdr *hdr;
2586 struct sk_buff *skb;
2588 skb = bt_skb_alloc(len, GFP_ATOMIC);
2589 if (!skb)
2590 return NULL;
2592 hdr = (struct hci_command_hdr *) skb_put(skb, HCI_COMMAND_HDR_SIZE);
2593 hdr->opcode = cpu_to_le16(opcode);
2594 hdr->plen = plen;
2596 if (plen)
2597 memcpy(skb_put(skb, plen), param, plen);
2599 BT_DBG("skb len %d", skb->len);
2601 bt_cb(skb)->pkt_type = HCI_COMMAND_PKT;
2602 skb->dev = (void *) hdev;
2604 return skb;
2607 /* Send HCI command */
2608 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
2609 const void *param)
2611 struct sk_buff *skb;
2613 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
2615 skb = hci_prepare_cmd(hdev, opcode, plen, param);
2616 if (!skb) {
2617 BT_ERR("%s no memory for command", hdev->name);
2618 return -ENOMEM;
2621 /* Stand-alone HCI commands must be flaged as
2622 * single-command requests.
2624 bt_cb(skb)->req.start = true;
2626 skb_queue_tail(&hdev->cmd_q, skb);
2627 queue_work(hdev->workqueue, &hdev->cmd_work);
2629 return 0;
2632 /* Queue a command to an asynchronous HCI request */
2633 void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen,
2634 const void *param, u8 event)
2636 struct hci_dev *hdev = req->hdev;
2637 struct sk_buff *skb;
2639 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
2641 /* If an error occured during request building, there is no point in
2642 * queueing the HCI command. We can simply return.
2644 if (req->err)
2645 return;
2647 skb = hci_prepare_cmd(hdev, opcode, plen, param);
2648 if (!skb) {
2649 BT_ERR("%s no memory for command (opcode 0x%4.4x)",
2650 hdev->name, opcode);
2651 req->err = -ENOMEM;
2652 return;
2655 if (skb_queue_empty(&req->cmd_q))
2656 bt_cb(skb)->req.start = true;
2658 bt_cb(skb)->req.event = event;
2660 skb_queue_tail(&req->cmd_q, skb);
2663 void hci_req_add(struct hci_request *req, u16 opcode, u32 plen,
2664 const void *param)
2666 hci_req_add_ev(req, opcode, plen, param, 0);
2669 /* Get data from the previously sent command */
2670 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
2672 struct hci_command_hdr *hdr;
2674 if (!hdev->sent_cmd)
2675 return NULL;
2677 hdr = (void *) hdev->sent_cmd->data;
2679 if (hdr->opcode != cpu_to_le16(opcode))
2680 return NULL;
2682 BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
2684 return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
2687 /* Send ACL data */
2688 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
2690 struct hci_acl_hdr *hdr;
2691 int len = skb->len;
2693 skb_push(skb, HCI_ACL_HDR_SIZE);
2694 skb_reset_transport_header(skb);
2695 hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
2696 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
2697 hdr->dlen = cpu_to_le16(len);
2700 static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
2701 struct sk_buff *skb, __u16 flags)
2703 struct hci_conn *conn = chan->conn;
2704 struct hci_dev *hdev = conn->hdev;
2705 struct sk_buff *list;
2707 skb->len = skb_headlen(skb);
2708 skb->data_len = 0;
2710 bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
2712 switch (hdev->dev_type) {
2713 case HCI_BREDR:
2714 hci_add_acl_hdr(skb, conn->handle, flags);
2715 break;
2716 case HCI_AMP:
2717 hci_add_acl_hdr(skb, chan->handle, flags);
2718 break;
2719 default:
2720 BT_ERR("%s unknown dev_type %d", hdev->name, hdev->dev_type);
2721 return;
2724 list = skb_shinfo(skb)->frag_list;
2725 if (!list) {
2726 /* Non fragmented */
2727 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
2729 skb_queue_tail(queue, skb);
2730 } else {
2731 /* Fragmented */
2732 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
2734 skb_shinfo(skb)->frag_list = NULL;
2736 /* Queue all fragments atomically */
2737 spin_lock(&queue->lock);
2739 __skb_queue_tail(queue, skb);
2741 flags &= ~ACL_START;
2742 flags |= ACL_CONT;
2743 do {
2744 skb = list; list = list->next;
2746 skb->dev = (void *) hdev;
2747 bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
2748 hci_add_acl_hdr(skb, conn->handle, flags);
2750 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
2752 __skb_queue_tail(queue, skb);
2753 } while (list);
2755 spin_unlock(&queue->lock);
2759 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
2761 struct hci_dev *hdev = chan->conn->hdev;
2763 BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
2765 skb->dev = (void *) hdev;
2767 hci_queue_acl(chan, &chan->data_q, skb, flags);
2769 queue_work(hdev->workqueue, &hdev->tx_work);
2772 /* Send SCO data */
2773 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
2775 struct hci_dev *hdev = conn->hdev;
2776 struct hci_sco_hdr hdr;
2778 BT_DBG("%s len %d", hdev->name, skb->len);
2780 hdr.handle = cpu_to_le16(conn->handle);
2781 hdr.dlen = skb->len;
2783 skb_push(skb, HCI_SCO_HDR_SIZE);
2784 skb_reset_transport_header(skb);
2785 memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
2787 skb->dev = (void *) hdev;
2788 bt_cb(skb)->pkt_type = HCI_SCODATA_PKT;
2790 skb_queue_tail(&conn->data_q, skb);
2791 queue_work(hdev->workqueue, &hdev->tx_work);
2794 /* ---- HCI TX task (outgoing data) ---- */
2796 /* HCI Connection scheduler */
2797 static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
2798 int *quote)
2800 struct hci_conn_hash *h = &hdev->conn_hash;
2801 struct hci_conn *conn = NULL, *c;
2802 unsigned int num = 0, min = ~0;
2804 /* We don't have to lock device here. Connections are always
2805 * added and removed with TX task disabled. */
2807 rcu_read_lock();
2809 list_for_each_entry_rcu(c, &h->list, list) {
2810 if (c->type != type || skb_queue_empty(&c->data_q))
2811 continue;
2813 if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
2814 continue;
2816 num++;
2818 if (c->sent < min) {
2819 min = c->sent;
2820 conn = c;
2823 if (hci_conn_num(hdev, type) == num)
2824 break;
2827 rcu_read_unlock();
2829 if (conn) {
2830 int cnt, q;
2832 switch (conn->type) {
2833 case ACL_LINK:
2834 cnt = hdev->acl_cnt;
2835 break;
2836 case SCO_LINK:
2837 case ESCO_LINK:
2838 cnt = hdev->sco_cnt;
2839 break;
2840 case LE_LINK:
2841 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
2842 break;
2843 default:
2844 cnt = 0;
2845 BT_ERR("Unknown link type");
2848 q = cnt / num;
2849 *quote = q ? q : 1;
2850 } else
2851 *quote = 0;
2853 BT_DBG("conn %p quote %d", conn, *quote);
2854 return conn;
2857 static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
2859 struct hci_conn_hash *h = &hdev->conn_hash;
2860 struct hci_conn *c;
2862 BT_ERR("%s link tx timeout", hdev->name);
2864 rcu_read_lock();
2866 /* Kill stalled connections */
2867 list_for_each_entry_rcu(c, &h->list, list) {
2868 if (c->type == type && c->sent) {
2869 BT_ERR("%s killing stalled connection %pMR",
2870 hdev->name, &c->dst);
2871 hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
2875 rcu_read_unlock();
2878 static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
2879 int *quote)
2881 struct hci_conn_hash *h = &hdev->conn_hash;
2882 struct hci_chan *chan = NULL;
2883 unsigned int num = 0, min = ~0, cur_prio = 0;
2884 struct hci_conn *conn;
2885 int cnt, q, conn_num = 0;
2887 BT_DBG("%s", hdev->name);
2889 rcu_read_lock();
2891 list_for_each_entry_rcu(conn, &h->list, list) {
2892 struct hci_chan *tmp;
2894 if (conn->type != type)
2895 continue;
2897 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
2898 continue;
2900 conn_num++;
2902 list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
2903 struct sk_buff *skb;
2905 if (skb_queue_empty(&tmp->data_q))
2906 continue;
2908 skb = skb_peek(&tmp->data_q);
2909 if (skb->priority < cur_prio)
2910 continue;
2912 if (skb->priority > cur_prio) {
2913 num = 0;
2914 min = ~0;
2915 cur_prio = skb->priority;
2918 num++;
2920 if (conn->sent < min) {
2921 min = conn->sent;
2922 chan = tmp;
2926 if (hci_conn_num(hdev, type) == conn_num)
2927 break;
2930 rcu_read_unlock();
2932 if (!chan)
2933 return NULL;
2935 switch (chan->conn->type) {
2936 case ACL_LINK:
2937 cnt = hdev->acl_cnt;
2938 break;
2939 case AMP_LINK:
2940 cnt = hdev->block_cnt;
2941 break;
2942 case SCO_LINK:
2943 case ESCO_LINK:
2944 cnt = hdev->sco_cnt;
2945 break;
2946 case LE_LINK:
2947 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
2948 break;
2949 default:
2950 cnt = 0;
2951 BT_ERR("Unknown link type");
2954 q = cnt / num;
2955 *quote = q ? q : 1;
2956 BT_DBG("chan %p quote %d", chan, *quote);
2957 return chan;
2960 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
2962 struct hci_conn_hash *h = &hdev->conn_hash;
2963 struct hci_conn *conn;
2964 int num = 0;
2966 BT_DBG("%s", hdev->name);
2968 rcu_read_lock();
2970 list_for_each_entry_rcu(conn, &h->list, list) {
2971 struct hci_chan *chan;
2973 if (conn->type != type)
2974 continue;
2976 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
2977 continue;
2979 num++;
2981 list_for_each_entry_rcu(chan, &conn->chan_list, list) {
2982 struct sk_buff *skb;
2984 if (chan->sent) {
2985 chan->sent = 0;
2986 continue;
2989 if (skb_queue_empty(&chan->data_q))
2990 continue;
2992 skb = skb_peek(&chan->data_q);
2993 if (skb->priority >= HCI_PRIO_MAX - 1)
2994 continue;
2996 skb->priority = HCI_PRIO_MAX - 1;
2998 BT_DBG("chan %p skb %p promoted to %d", chan, skb,
2999 skb->priority);
3002 if (hci_conn_num(hdev, type) == num)
3003 break;
3006 rcu_read_unlock();
3010 static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
3012 /* Calculate count of blocks used by this packet */
3013 return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
3016 static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
3018 if (!test_bit(HCI_RAW, &hdev->flags)) {
3019 /* ACL tx timeout must be longer than maximum
3020 * link supervision timeout (40.9 seconds) */
3021 if (!cnt && time_after(jiffies, hdev->acl_last_tx +
3022 HCI_ACL_TX_TIMEOUT))
3023 hci_link_tx_to(hdev, ACL_LINK);
3027 static void hci_sched_acl_pkt(struct hci_dev *hdev)
3029 unsigned int cnt = hdev->acl_cnt;
3030 struct hci_chan *chan;
3031 struct sk_buff *skb;
3032 int quote;
3034 __check_timeout(hdev, cnt);
3036 while (hdev->acl_cnt &&
3037 (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
3038 u32 priority = (skb_peek(&chan->data_q))->priority;
3039 while (quote-- && (skb = skb_peek(&chan->data_q))) {
3040 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3041 skb->len, skb->priority);
3043 /* Stop if priority has changed */
3044 if (skb->priority < priority)
3045 break;
3047 skb = skb_dequeue(&chan->data_q);
3049 hci_conn_enter_active_mode(chan->conn,
3050 bt_cb(skb)->force_active);
3052 hci_send_frame(skb);
3053 hdev->acl_last_tx = jiffies;
3055 hdev->acl_cnt--;
3056 chan->sent++;
3057 chan->conn->sent++;
3061 if (cnt != hdev->acl_cnt)
3062 hci_prio_recalculate(hdev, ACL_LINK);
3065 static void hci_sched_acl_blk(struct hci_dev *hdev)
3067 unsigned int cnt = hdev->block_cnt;
3068 struct hci_chan *chan;
3069 struct sk_buff *skb;
3070 int quote;
3071 u8 type;
3073 __check_timeout(hdev, cnt);
3075 BT_DBG("%s", hdev->name);
3077 if (hdev->dev_type == HCI_AMP)
3078 type = AMP_LINK;
3079 else
3080 type = ACL_LINK;
3082 while (hdev->block_cnt > 0 &&
3083 (chan = hci_chan_sent(hdev, type, &quote))) {
3084 u32 priority = (skb_peek(&chan->data_q))->priority;
3085 while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
3086 int blocks;
3088 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3089 skb->len, skb->priority);
3091 /* Stop if priority has changed */
3092 if (skb->priority < priority)
3093 break;
3095 skb = skb_dequeue(&chan->data_q);
3097 blocks = __get_blocks(hdev, skb);
3098 if (blocks > hdev->block_cnt)
3099 return;
3101 hci_conn_enter_active_mode(chan->conn,
3102 bt_cb(skb)->force_active);
3104 hci_send_frame(skb);
3105 hdev->acl_last_tx = jiffies;
3107 hdev->block_cnt -= blocks;
3108 quote -= blocks;
3110 chan->sent += blocks;
3111 chan->conn->sent += blocks;
3115 if (cnt != hdev->block_cnt)
3116 hci_prio_recalculate(hdev, type);
3119 static void hci_sched_acl(struct hci_dev *hdev)
3121 BT_DBG("%s", hdev->name);
3123 /* No ACL link over BR/EDR controller */
3124 if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_BREDR)
3125 return;
3127 /* No AMP link over AMP controller */
3128 if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
3129 return;
3131 switch (hdev->flow_ctl_mode) {
3132 case HCI_FLOW_CTL_MODE_PACKET_BASED:
3133 hci_sched_acl_pkt(hdev);
3134 break;
3136 case HCI_FLOW_CTL_MODE_BLOCK_BASED:
3137 hci_sched_acl_blk(hdev);
3138 break;
3142 /* Schedule SCO */
3143 static void hci_sched_sco(struct hci_dev *hdev)
3145 struct hci_conn *conn;
3146 struct sk_buff *skb;
3147 int quote;
3149 BT_DBG("%s", hdev->name);
3151 if (!hci_conn_num(hdev, SCO_LINK))
3152 return;
3154 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
3155 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3156 BT_DBG("skb %p len %d", skb, skb->len);
3157 hci_send_frame(skb);
3159 conn->sent++;
3160 if (conn->sent == ~0)
3161 conn->sent = 0;
3166 static void hci_sched_esco(struct hci_dev *hdev)
3168 struct hci_conn *conn;
3169 struct sk_buff *skb;
3170 int quote;
3172 BT_DBG("%s", hdev->name);
3174 if (!hci_conn_num(hdev, ESCO_LINK))
3175 return;
3177 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
3178 &quote))) {
3179 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3180 BT_DBG("skb %p len %d", skb, skb->len);
3181 hci_send_frame(skb);
3183 conn->sent++;
3184 if (conn->sent == ~0)
3185 conn->sent = 0;
3190 static void hci_sched_le(struct hci_dev *hdev)
3192 struct hci_chan *chan;
3193 struct sk_buff *skb;
3194 int quote, cnt, tmp;
3196 BT_DBG("%s", hdev->name);
3198 if (!hci_conn_num(hdev, LE_LINK))
3199 return;
3201 if (!test_bit(HCI_RAW, &hdev->flags)) {
3202 /* LE tx timeout must be longer than maximum
3203 * link supervision timeout (40.9 seconds) */
3204 if (!hdev->le_cnt && hdev->le_pkts &&
3205 time_after(jiffies, hdev->le_last_tx + HZ * 45))
3206 hci_link_tx_to(hdev, LE_LINK);
3209 cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
3210 tmp = cnt;
3211 while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
3212 u32 priority = (skb_peek(&chan->data_q))->priority;
3213 while (quote-- && (skb = skb_peek(&chan->data_q))) {
3214 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3215 skb->len, skb->priority);
3217 /* Stop if priority has changed */
3218 if (skb->priority < priority)
3219 break;
3221 skb = skb_dequeue(&chan->data_q);
3223 hci_send_frame(skb);
3224 hdev->le_last_tx = jiffies;
3226 cnt--;
3227 chan->sent++;
3228 chan->conn->sent++;
3232 if (hdev->le_pkts)
3233 hdev->le_cnt = cnt;
3234 else
3235 hdev->acl_cnt = cnt;
3237 if (cnt != tmp)
3238 hci_prio_recalculate(hdev, LE_LINK);
3241 static void hci_tx_work(struct work_struct *work)
3243 struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
3244 struct sk_buff *skb;
3246 BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
3247 hdev->sco_cnt, hdev->le_cnt);
3249 /* Schedule queues and send stuff to HCI driver */
3251 hci_sched_acl(hdev);
3253 hci_sched_sco(hdev);
3255 hci_sched_esco(hdev);
3257 hci_sched_le(hdev);
3259 /* Send next queued raw (unknown type) packet */
3260 while ((skb = skb_dequeue(&hdev->raw_q)))
3261 hci_send_frame(skb);
3264 /* ----- HCI RX task (incoming data processing) ----- */
3266 /* ACL data packet */
3267 static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3269 struct hci_acl_hdr *hdr = (void *) skb->data;
3270 struct hci_conn *conn;
3271 __u16 handle, flags;
3273 skb_pull(skb, HCI_ACL_HDR_SIZE);
3275 handle = __le16_to_cpu(hdr->handle);
3276 flags = hci_flags(handle);
3277 handle = hci_handle(handle);
3279 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
3280 handle, flags);
3282 hdev->stat.acl_rx++;
3284 hci_dev_lock(hdev);
3285 conn = hci_conn_hash_lookup_handle(hdev, handle);
3286 hci_dev_unlock(hdev);
3288 if (conn) {
3289 hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
3291 /* Send to upper protocol */
3292 l2cap_recv_acldata(conn, skb, flags);
3293 return;
3294 } else {
3295 BT_ERR("%s ACL packet for unknown connection handle %d",
3296 hdev->name, handle);
3299 kfree_skb(skb);
3302 /* SCO data packet */
3303 static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3305 struct hci_sco_hdr *hdr = (void *) skb->data;
3306 struct hci_conn *conn;
3307 __u16 handle;
3309 skb_pull(skb, HCI_SCO_HDR_SIZE);
3311 handle = __le16_to_cpu(hdr->handle);
3313 BT_DBG("%s len %d handle 0x%4.4x", hdev->name, skb->len, handle);
3315 hdev->stat.sco_rx++;
3317 hci_dev_lock(hdev);
3318 conn = hci_conn_hash_lookup_handle(hdev, handle);
3319 hci_dev_unlock(hdev);
3321 if (conn) {
3322 /* Send to upper protocol */
3323 sco_recv_scodata(conn, skb);
3324 return;
3325 } else {
3326 BT_ERR("%s SCO packet for unknown connection handle %d",
3327 hdev->name, handle);
3330 kfree_skb(skb);
3333 static bool hci_req_is_complete(struct hci_dev *hdev)
3335 struct sk_buff *skb;
3337 skb = skb_peek(&hdev->cmd_q);
3338 if (!skb)
3339 return true;
3341 return bt_cb(skb)->req.start;
3344 static void hci_resend_last(struct hci_dev *hdev)
3346 struct hci_command_hdr *sent;
3347 struct sk_buff *skb;
3348 u16 opcode;
3350 if (!hdev->sent_cmd)
3351 return;
3353 sent = (void *) hdev->sent_cmd->data;
3354 opcode = __le16_to_cpu(sent->opcode);
3355 if (opcode == HCI_OP_RESET)
3356 return;
3358 skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
3359 if (!skb)
3360 return;
3362 skb_queue_head(&hdev->cmd_q, skb);
3363 queue_work(hdev->workqueue, &hdev->cmd_work);
3366 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status)
3368 hci_req_complete_t req_complete = NULL;
3369 struct sk_buff *skb;
3370 unsigned long flags;
3372 BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
3374 /* If the completed command doesn't match the last one that was
3375 * sent we need to do special handling of it.
3377 if (!hci_sent_cmd_data(hdev, opcode)) {
3378 /* Some CSR based controllers generate a spontaneous
3379 * reset complete event during init and any pending
3380 * command will never be completed. In such a case we
3381 * need to resend whatever was the last sent
3382 * command.
3384 if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
3385 hci_resend_last(hdev);
3387 return;
3390 /* If the command succeeded and there's still more commands in
3391 * this request the request is not yet complete.
3393 if (!status && !hci_req_is_complete(hdev))
3394 return;
3396 /* If this was the last command in a request the complete
3397 * callback would be found in hdev->sent_cmd instead of the
3398 * command queue (hdev->cmd_q).
3400 if (hdev->sent_cmd) {
3401 req_complete = bt_cb(hdev->sent_cmd)->req.complete;
3402 if (req_complete)
3403 goto call_complete;
3406 /* Remove all pending commands belonging to this request */
3407 spin_lock_irqsave(&hdev->cmd_q.lock, flags);
3408 while ((skb = __skb_dequeue(&hdev->cmd_q))) {
3409 if (bt_cb(skb)->req.start) {
3410 __skb_queue_head(&hdev->cmd_q, skb);
3411 break;
3414 req_complete = bt_cb(skb)->req.complete;
3415 kfree_skb(skb);
3417 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
3419 call_complete:
3420 if (req_complete)
3421 req_complete(hdev, status);
3424 static void hci_rx_work(struct work_struct *work)
3426 struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
3427 struct sk_buff *skb;
3429 BT_DBG("%s", hdev->name);
3431 while ((skb = skb_dequeue(&hdev->rx_q))) {
3432 /* Send copy to monitor */
3433 hci_send_to_monitor(hdev, skb);
3435 if (atomic_read(&hdev->promisc)) {
3436 /* Send copy to the sockets */
3437 hci_send_to_sock(hdev, skb);
3440 if (test_bit(HCI_RAW, &hdev->flags)) {
3441 kfree_skb(skb);
3442 continue;
3445 if (test_bit(HCI_INIT, &hdev->flags)) {
3446 /* Don't process data packets in this states. */
3447 switch (bt_cb(skb)->pkt_type) {
3448 case HCI_ACLDATA_PKT:
3449 case HCI_SCODATA_PKT:
3450 kfree_skb(skb);
3451 continue;
3455 /* Process frame */
3456 switch (bt_cb(skb)->pkt_type) {
3457 case HCI_EVENT_PKT:
3458 BT_DBG("%s Event packet", hdev->name);
3459 hci_event_packet(hdev, skb);
3460 break;
3462 case HCI_ACLDATA_PKT:
3463 BT_DBG("%s ACL data packet", hdev->name);
3464 hci_acldata_packet(hdev, skb);
3465 break;
3467 case HCI_SCODATA_PKT:
3468 BT_DBG("%s SCO data packet", hdev->name);
3469 hci_scodata_packet(hdev, skb);
3470 break;
3472 default:
3473 kfree_skb(skb);
3474 break;
3479 static void hci_cmd_work(struct work_struct *work)
3481 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
3482 struct sk_buff *skb;
3484 BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
3485 atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
3487 /* Send queued commands */
3488 if (atomic_read(&hdev->cmd_cnt)) {
3489 skb = skb_dequeue(&hdev->cmd_q);
3490 if (!skb)
3491 return;
3493 kfree_skb(hdev->sent_cmd);
3495 hdev->sent_cmd = skb_clone(skb, GFP_ATOMIC);
3496 if (hdev->sent_cmd) {
3497 atomic_dec(&hdev->cmd_cnt);
3498 hci_send_frame(skb);
3499 if (test_bit(HCI_RESET, &hdev->flags))
3500 del_timer(&hdev->cmd_timer);
3501 else
3502 mod_timer(&hdev->cmd_timer,
3503 jiffies + HCI_CMD_TIMEOUT);
3504 } else {
3505 skb_queue_head(&hdev->cmd_q, skb);
3506 queue_work(hdev->workqueue, &hdev->cmd_work);
3511 u8 bdaddr_to_le(u8 bdaddr_type)
3513 switch (bdaddr_type) {
3514 case BDADDR_LE_PUBLIC:
3515 return ADDR_LE_DEV_PUBLIC;
3517 default:
3518 /* Fallback to LE Random address type */
3519 return ADDR_LE_DEV_RANDOM;