Merge tag 'dt-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[linux-2.6.git] / ipc / sem.c
blob70480a3aa69891b6ebc6c998e2202c3197a443ec
1 /*
2 * linux/ipc/sem.c
3 * Copyright (C) 1992 Krishna Balasubramanian
4 * Copyright (C) 1995 Eric Schenk, Bruno Haible
6 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
8 * SMP-threaded, sysctl's added
9 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
10 * Enforced range limit on SEM_UNDO
11 * (c) 2001 Red Hat Inc
12 * Lockless wakeup
13 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
14 * Further wakeup optimizations, documentation
15 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
17 * support for audit of ipc object properties and permission changes
18 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
20 * namespaces support
21 * OpenVZ, SWsoft Inc.
22 * Pavel Emelianov <xemul@openvz.org>
24 * Implementation notes: (May 2010)
25 * This file implements System V semaphores.
27 * User space visible behavior:
28 * - FIFO ordering for semop() operations (just FIFO, not starvation
29 * protection)
30 * - multiple semaphore operations that alter the same semaphore in
31 * one semop() are handled.
32 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
33 * SETALL calls.
34 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
35 * - undo adjustments at process exit are limited to 0..SEMVMX.
36 * - namespace are supported.
37 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
38 * to /proc/sys/kernel/sem.
39 * - statistics about the usage are reported in /proc/sysvipc/sem.
41 * Internals:
42 * - scalability:
43 * - all global variables are read-mostly.
44 * - semop() calls and semctl(RMID) are synchronized by RCU.
45 * - most operations do write operations (actually: spin_lock calls) to
46 * the per-semaphore array structure.
47 * Thus: Perfect SMP scaling between independent semaphore arrays.
48 * If multiple semaphores in one array are used, then cache line
49 * trashing on the semaphore array spinlock will limit the scaling.
50 * - semncnt and semzcnt are calculated on demand in count_semncnt() and
51 * count_semzcnt()
52 * - the task that performs a successful semop() scans the list of all
53 * sleeping tasks and completes any pending operations that can be fulfilled.
54 * Semaphores are actively given to waiting tasks (necessary for FIFO).
55 * (see update_queue())
56 * - To improve the scalability, the actual wake-up calls are performed after
57 * dropping all locks. (see wake_up_sem_queue_prepare(),
58 * wake_up_sem_queue_do())
59 * - All work is done by the waker, the woken up task does not have to do
60 * anything - not even acquiring a lock or dropping a refcount.
61 * - A woken up task may not even touch the semaphore array anymore, it may
62 * have been destroyed already by a semctl(RMID).
63 * - The synchronizations between wake-ups due to a timeout/signal and a
64 * wake-up due to a completed semaphore operation is achieved by using an
65 * intermediate state (IN_WAKEUP).
66 * - UNDO values are stored in an array (one per process and per
67 * semaphore array, lazily allocated). For backwards compatibility, multiple
68 * modes for the UNDO variables are supported (per process, per thread)
69 * (see copy_semundo, CLONE_SYSVSEM)
70 * - There are two lists of the pending operations: a per-array list
71 * and per-semaphore list (stored in the array). This allows to achieve FIFO
72 * ordering without always scanning all pending operations.
73 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
76 #include <linux/slab.h>
77 #include <linux/spinlock.h>
78 #include <linux/init.h>
79 #include <linux/proc_fs.h>
80 #include <linux/time.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/audit.h>
84 #include <linux/capability.h>
85 #include <linux/seq_file.h>
86 #include <linux/rwsem.h>
87 #include <linux/nsproxy.h>
88 #include <linux/ipc_namespace.h>
90 #include <asm/uaccess.h>
91 #include "util.h"
93 /* One semaphore structure for each semaphore in the system. */
94 struct sem {
95 int semval; /* current value */
96 int sempid; /* pid of last operation */
97 spinlock_t lock; /* spinlock for fine-grained semtimedop */
98 struct list_head sem_pending; /* pending single-sop operations */
101 /* One queue for each sleeping process in the system. */
102 struct sem_queue {
103 struct list_head list; /* queue of pending operations */
104 struct task_struct *sleeper; /* this process */
105 struct sem_undo *undo; /* undo structure */
106 int pid; /* process id of requesting process */
107 int status; /* completion status of operation */
108 struct sembuf *sops; /* array of pending operations */
109 int nsops; /* number of operations */
110 int alter; /* does *sops alter the array? */
113 /* Each task has a list of undo requests. They are executed automatically
114 * when the process exits.
116 struct sem_undo {
117 struct list_head list_proc; /* per-process list: *
118 * all undos from one process
119 * rcu protected */
120 struct rcu_head rcu; /* rcu struct for sem_undo */
121 struct sem_undo_list *ulp; /* back ptr to sem_undo_list */
122 struct list_head list_id; /* per semaphore array list:
123 * all undos for one array */
124 int semid; /* semaphore set identifier */
125 short *semadj; /* array of adjustments */
126 /* one per semaphore */
129 /* sem_undo_list controls shared access to the list of sem_undo structures
130 * that may be shared among all a CLONE_SYSVSEM task group.
132 struct sem_undo_list {
133 atomic_t refcnt;
134 spinlock_t lock;
135 struct list_head list_proc;
139 #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
141 #define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid)
143 static int newary(struct ipc_namespace *, struct ipc_params *);
144 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
145 #ifdef CONFIG_PROC_FS
146 static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
147 #endif
149 #define SEMMSL_FAST 256 /* 512 bytes on stack */
150 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
153 * linked list protection:
154 * sem_undo.id_next,
155 * sem_array.sem_pending{,last},
156 * sem_array.sem_undo: sem_lock() for read/write
157 * sem_undo.proc_next: only "current" is allowed to read/write that field.
161 #define sc_semmsl sem_ctls[0]
162 #define sc_semmns sem_ctls[1]
163 #define sc_semopm sem_ctls[2]
164 #define sc_semmni sem_ctls[3]
166 void sem_init_ns(struct ipc_namespace *ns)
168 ns->sc_semmsl = SEMMSL;
169 ns->sc_semmns = SEMMNS;
170 ns->sc_semopm = SEMOPM;
171 ns->sc_semmni = SEMMNI;
172 ns->used_sems = 0;
173 ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
176 #ifdef CONFIG_IPC_NS
177 void sem_exit_ns(struct ipc_namespace *ns)
179 free_ipcs(ns, &sem_ids(ns), freeary);
180 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
182 #endif
184 void __init sem_init (void)
186 sem_init_ns(&init_ipc_ns);
187 ipc_init_proc_interface("sysvipc/sem",
188 " key semid perms nsems uid gid cuid cgid otime ctime\n",
189 IPC_SEM_IDS, sysvipc_sem_proc_show);
193 * If the request contains only one semaphore operation, and there are
194 * no complex transactions pending, lock only the semaphore involved.
195 * Otherwise, lock the entire semaphore array, since we either have
196 * multiple semaphores in our own semops, or we need to look at
197 * semaphores from other pending complex operations.
199 * Carefully guard against sma->complex_count changing between zero
200 * and non-zero while we are spinning for the lock. The value of
201 * sma->complex_count cannot change while we are holding the lock,
202 * so sem_unlock should be fine.
204 * The global lock path checks that all the local locks have been released,
205 * checking each local lock once. This means that the local lock paths
206 * cannot start their critical sections while the global lock is held.
208 static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
209 int nsops)
211 int locknum;
212 again:
213 if (nsops == 1 && !sma->complex_count) {
214 struct sem *sem = sma->sem_base + sops->sem_num;
216 /* Lock just the semaphore we are interested in. */
217 spin_lock(&sem->lock);
220 * If sma->complex_count was set while we were spinning,
221 * we may need to look at things we did not lock here.
223 if (unlikely(sma->complex_count)) {
224 spin_unlock(&sem->lock);
225 goto lock_array;
229 * Another process is holding the global lock on the
230 * sem_array; we cannot enter our critical section,
231 * but have to wait for the global lock to be released.
233 if (unlikely(spin_is_locked(&sma->sem_perm.lock))) {
234 spin_unlock(&sem->lock);
235 spin_unlock_wait(&sma->sem_perm.lock);
236 goto again;
239 locknum = sops->sem_num;
240 } else {
241 int i;
243 * Lock the semaphore array, and wait for all of the
244 * individual semaphore locks to go away. The code
245 * above ensures no new single-lock holders will enter
246 * their critical section while the array lock is held.
248 lock_array:
249 spin_lock(&sma->sem_perm.lock);
250 for (i = 0; i < sma->sem_nsems; i++) {
251 struct sem *sem = sma->sem_base + i;
252 spin_unlock_wait(&sem->lock);
254 locknum = -1;
256 return locknum;
259 static inline void sem_unlock(struct sem_array *sma, int locknum)
261 if (locknum == -1) {
262 spin_unlock(&sma->sem_perm.lock);
263 } else {
264 struct sem *sem = sma->sem_base + locknum;
265 spin_unlock(&sem->lock);
270 * sem_lock_(check_) routines are called in the paths where the rw_mutex
271 * is not held.
273 * The caller holds the RCU read lock.
275 static inline struct sem_array *sem_obtain_lock(struct ipc_namespace *ns,
276 int id, struct sembuf *sops, int nsops, int *locknum)
278 struct kern_ipc_perm *ipcp;
279 struct sem_array *sma;
281 ipcp = ipc_obtain_object(&sem_ids(ns), id);
282 if (IS_ERR(ipcp))
283 return ERR_CAST(ipcp);
285 sma = container_of(ipcp, struct sem_array, sem_perm);
286 *locknum = sem_lock(sma, sops, nsops);
288 /* ipc_rmid() may have already freed the ID while sem_lock
289 * was spinning: verify that the structure is still valid
291 if (!ipcp->deleted)
292 return container_of(ipcp, struct sem_array, sem_perm);
294 sem_unlock(sma, *locknum);
295 return ERR_PTR(-EINVAL);
298 static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
300 struct kern_ipc_perm *ipcp = ipc_obtain_object(&sem_ids(ns), id);
302 if (IS_ERR(ipcp))
303 return ERR_CAST(ipcp);
305 return container_of(ipcp, struct sem_array, sem_perm);
308 static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
309 int id)
311 struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
313 if (IS_ERR(ipcp))
314 return ERR_CAST(ipcp);
316 return container_of(ipcp, struct sem_array, sem_perm);
319 static inline void sem_lock_and_putref(struct sem_array *sma)
321 sem_lock(sma, NULL, -1);
322 ipc_rcu_putref(sma);
325 static inline void sem_putref(struct sem_array *sma)
327 ipc_rcu_putref(sma);
330 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
332 ipc_rmid(&sem_ids(ns), &s->sem_perm);
336 * Lockless wakeup algorithm:
337 * Without the check/retry algorithm a lockless wakeup is possible:
338 * - queue.status is initialized to -EINTR before blocking.
339 * - wakeup is performed by
340 * * unlinking the queue entry from sma->sem_pending
341 * * setting queue.status to IN_WAKEUP
342 * This is the notification for the blocked thread that a
343 * result value is imminent.
344 * * call wake_up_process
345 * * set queue.status to the final value.
346 * - the previously blocked thread checks queue.status:
347 * * if it's IN_WAKEUP, then it must wait until the value changes
348 * * if it's not -EINTR, then the operation was completed by
349 * update_queue. semtimedop can return queue.status without
350 * performing any operation on the sem array.
351 * * otherwise it must acquire the spinlock and check what's up.
353 * The two-stage algorithm is necessary to protect against the following
354 * races:
355 * - if queue.status is set after wake_up_process, then the woken up idle
356 * thread could race forward and try (and fail) to acquire sma->lock
357 * before update_queue had a chance to set queue.status
358 * - if queue.status is written before wake_up_process and if the
359 * blocked process is woken up by a signal between writing
360 * queue.status and the wake_up_process, then the woken up
361 * process could return from semtimedop and die by calling
362 * sys_exit before wake_up_process is called. Then wake_up_process
363 * will oops, because the task structure is already invalid.
364 * (yes, this happened on s390 with sysv msg).
367 #define IN_WAKEUP 1
370 * newary - Create a new semaphore set
371 * @ns: namespace
372 * @params: ptr to the structure that contains key, semflg and nsems
374 * Called with sem_ids.rw_mutex held (as a writer)
377 static int newary(struct ipc_namespace *ns, struct ipc_params *params)
379 int id;
380 int retval;
381 struct sem_array *sma;
382 int size;
383 key_t key = params->key;
384 int nsems = params->u.nsems;
385 int semflg = params->flg;
386 int i;
388 if (!nsems)
389 return -EINVAL;
390 if (ns->used_sems + nsems > ns->sc_semmns)
391 return -ENOSPC;
393 size = sizeof (*sma) + nsems * sizeof (struct sem);
394 sma = ipc_rcu_alloc(size);
395 if (!sma) {
396 return -ENOMEM;
398 memset (sma, 0, size);
400 sma->sem_perm.mode = (semflg & S_IRWXUGO);
401 sma->sem_perm.key = key;
403 sma->sem_perm.security = NULL;
404 retval = security_sem_alloc(sma);
405 if (retval) {
406 ipc_rcu_putref(sma);
407 return retval;
410 id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
411 if (id < 0) {
412 security_sem_free(sma);
413 ipc_rcu_putref(sma);
414 return id;
416 ns->used_sems += nsems;
418 sma->sem_base = (struct sem *) &sma[1];
420 for (i = 0; i < nsems; i++) {
421 INIT_LIST_HEAD(&sma->sem_base[i].sem_pending);
422 spin_lock_init(&sma->sem_base[i].lock);
425 sma->complex_count = 0;
426 INIT_LIST_HEAD(&sma->sem_pending);
427 INIT_LIST_HEAD(&sma->list_id);
428 sma->sem_nsems = nsems;
429 sma->sem_ctime = get_seconds();
430 sem_unlock(sma, -1);
431 rcu_read_unlock();
433 return sma->sem_perm.id;
438 * Called with sem_ids.rw_mutex and ipcp locked.
440 static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
442 struct sem_array *sma;
444 sma = container_of(ipcp, struct sem_array, sem_perm);
445 return security_sem_associate(sma, semflg);
449 * Called with sem_ids.rw_mutex and ipcp locked.
451 static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
452 struct ipc_params *params)
454 struct sem_array *sma;
456 sma = container_of(ipcp, struct sem_array, sem_perm);
457 if (params->u.nsems > sma->sem_nsems)
458 return -EINVAL;
460 return 0;
463 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
465 struct ipc_namespace *ns;
466 struct ipc_ops sem_ops;
467 struct ipc_params sem_params;
469 ns = current->nsproxy->ipc_ns;
471 if (nsems < 0 || nsems > ns->sc_semmsl)
472 return -EINVAL;
474 sem_ops.getnew = newary;
475 sem_ops.associate = sem_security;
476 sem_ops.more_checks = sem_more_checks;
478 sem_params.key = key;
479 sem_params.flg = semflg;
480 sem_params.u.nsems = nsems;
482 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
486 * Determine whether a sequence of semaphore operations would succeed
487 * all at once. Return 0 if yes, 1 if need to sleep, else return error code.
490 static int try_atomic_semop (struct sem_array * sma, struct sembuf * sops,
491 int nsops, struct sem_undo *un, int pid)
493 int result, sem_op;
494 struct sembuf *sop;
495 struct sem * curr;
497 for (sop = sops; sop < sops + nsops; sop++) {
498 curr = sma->sem_base + sop->sem_num;
499 sem_op = sop->sem_op;
500 result = curr->semval;
502 if (!sem_op && result)
503 goto would_block;
505 result += sem_op;
506 if (result < 0)
507 goto would_block;
508 if (result > SEMVMX)
509 goto out_of_range;
510 if (sop->sem_flg & SEM_UNDO) {
511 int undo = un->semadj[sop->sem_num] - sem_op;
513 * Exceeding the undo range is an error.
515 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
516 goto out_of_range;
518 curr->semval = result;
521 sop--;
522 while (sop >= sops) {
523 sma->sem_base[sop->sem_num].sempid = pid;
524 if (sop->sem_flg & SEM_UNDO)
525 un->semadj[sop->sem_num] -= sop->sem_op;
526 sop--;
529 return 0;
531 out_of_range:
532 result = -ERANGE;
533 goto undo;
535 would_block:
536 if (sop->sem_flg & IPC_NOWAIT)
537 result = -EAGAIN;
538 else
539 result = 1;
541 undo:
542 sop--;
543 while (sop >= sops) {
544 sma->sem_base[sop->sem_num].semval -= sop->sem_op;
545 sop--;
548 return result;
551 /** wake_up_sem_queue_prepare(q, error): Prepare wake-up
552 * @q: queue entry that must be signaled
553 * @error: Error value for the signal
555 * Prepare the wake-up of the queue entry q.
557 static void wake_up_sem_queue_prepare(struct list_head *pt,
558 struct sem_queue *q, int error)
560 if (list_empty(pt)) {
562 * Hold preempt off so that we don't get preempted and have the
563 * wakee busy-wait until we're scheduled back on.
565 preempt_disable();
567 q->status = IN_WAKEUP;
568 q->pid = error;
570 list_add_tail(&q->list, pt);
574 * wake_up_sem_queue_do(pt) - do the actual wake-up
575 * @pt: list of tasks to be woken up
577 * Do the actual wake-up.
578 * The function is called without any locks held, thus the semaphore array
579 * could be destroyed already and the tasks can disappear as soon as the
580 * status is set to the actual return code.
582 static void wake_up_sem_queue_do(struct list_head *pt)
584 struct sem_queue *q, *t;
585 int did_something;
587 did_something = !list_empty(pt);
588 list_for_each_entry_safe(q, t, pt, list) {
589 wake_up_process(q->sleeper);
590 /* q can disappear immediately after writing q->status. */
591 smp_wmb();
592 q->status = q->pid;
594 if (did_something)
595 preempt_enable();
598 static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
600 list_del(&q->list);
601 if (q->nsops > 1)
602 sma->complex_count--;
605 /** check_restart(sma, q)
606 * @sma: semaphore array
607 * @q: the operation that just completed
609 * update_queue is O(N^2) when it restarts scanning the whole queue of
610 * waiting operations. Therefore this function checks if the restart is
611 * really necessary. It is called after a previously waiting operation
612 * was completed.
614 static int check_restart(struct sem_array *sma, struct sem_queue *q)
616 struct sem *curr;
617 struct sem_queue *h;
619 /* if the operation didn't modify the array, then no restart */
620 if (q->alter == 0)
621 return 0;
623 /* pending complex operations are too difficult to analyse */
624 if (sma->complex_count)
625 return 1;
627 /* we were a sleeping complex operation. Too difficult */
628 if (q->nsops > 1)
629 return 1;
631 curr = sma->sem_base + q->sops[0].sem_num;
633 /* No-one waits on this queue */
634 if (list_empty(&curr->sem_pending))
635 return 0;
637 /* the new semaphore value */
638 if (curr->semval) {
639 /* It is impossible that someone waits for the new value:
640 * - q is a previously sleeping simple operation that
641 * altered the array. It must be a decrement, because
642 * simple increments never sleep.
643 * - The value is not 0, thus wait-for-zero won't proceed.
644 * - If there are older (higher priority) decrements
645 * in the queue, then they have observed the original
646 * semval value and couldn't proceed. The operation
647 * decremented to value - thus they won't proceed either.
649 BUG_ON(q->sops[0].sem_op >= 0);
650 return 0;
653 * semval is 0. Check if there are wait-for-zero semops.
654 * They must be the first entries in the per-semaphore queue
656 h = list_first_entry(&curr->sem_pending, struct sem_queue, list);
657 BUG_ON(h->nsops != 1);
658 BUG_ON(h->sops[0].sem_num != q->sops[0].sem_num);
660 /* Yes, there is a wait-for-zero semop. Restart */
661 if (h->sops[0].sem_op == 0)
662 return 1;
664 /* Again - no-one is waiting for the new value. */
665 return 0;
670 * update_queue(sma, semnum): Look for tasks that can be completed.
671 * @sma: semaphore array.
672 * @semnum: semaphore that was modified.
673 * @pt: list head for the tasks that must be woken up.
675 * update_queue must be called after a semaphore in a semaphore array
676 * was modified. If multiple semaphores were modified, update_queue must
677 * be called with semnum = -1, as well as with the number of each modified
678 * semaphore.
679 * The tasks that must be woken up are added to @pt. The return code
680 * is stored in q->pid.
681 * The function return 1 if at least one semop was completed successfully.
683 static int update_queue(struct sem_array *sma, int semnum, struct list_head *pt)
685 struct sem_queue *q;
686 struct list_head *walk;
687 struct list_head *pending_list;
688 int semop_completed = 0;
690 if (semnum == -1)
691 pending_list = &sma->sem_pending;
692 else
693 pending_list = &sma->sem_base[semnum].sem_pending;
695 again:
696 walk = pending_list->next;
697 while (walk != pending_list) {
698 int error, restart;
700 q = container_of(walk, struct sem_queue, list);
701 walk = walk->next;
703 /* If we are scanning the single sop, per-semaphore list of
704 * one semaphore and that semaphore is 0, then it is not
705 * necessary to scan the "alter" entries: simple increments
706 * that affect only one entry succeed immediately and cannot
707 * be in the per semaphore pending queue, and decrements
708 * cannot be successful if the value is already 0.
710 if (semnum != -1 && sma->sem_base[semnum].semval == 0 &&
711 q->alter)
712 break;
714 error = try_atomic_semop(sma, q->sops, q->nsops,
715 q->undo, q->pid);
717 /* Does q->sleeper still need to sleep? */
718 if (error > 0)
719 continue;
721 unlink_queue(sma, q);
723 if (error) {
724 restart = 0;
725 } else {
726 semop_completed = 1;
727 restart = check_restart(sma, q);
730 wake_up_sem_queue_prepare(pt, q, error);
731 if (restart)
732 goto again;
734 return semop_completed;
738 * do_smart_update(sma, sops, nsops, otime, pt) - optimized update_queue
739 * @sma: semaphore array
740 * @sops: operations that were performed
741 * @nsops: number of operations
742 * @otime: force setting otime
743 * @pt: list head of the tasks that must be woken up.
745 * do_smart_update() does the required called to update_queue, based on the
746 * actual changes that were performed on the semaphore array.
747 * Note that the function does not do the actual wake-up: the caller is
748 * responsible for calling wake_up_sem_queue_do(@pt).
749 * It is safe to perform this call after dropping all locks.
751 static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
752 int otime, struct list_head *pt)
754 int i;
755 int progress;
757 progress = 1;
758 retry_global:
759 if (sma->complex_count) {
760 if (update_queue(sma, -1, pt)) {
761 progress = 1;
762 otime = 1;
763 sops = NULL;
766 if (!progress)
767 goto done;
769 if (!sops) {
770 /* No semops; something special is going on. */
771 for (i = 0; i < sma->sem_nsems; i++) {
772 if (update_queue(sma, i, pt)) {
773 otime = 1;
774 progress = 1;
777 goto done_checkretry;
780 /* Check the semaphores that were modified. */
781 for (i = 0; i < nsops; i++) {
782 if (sops[i].sem_op > 0 ||
783 (sops[i].sem_op < 0 &&
784 sma->sem_base[sops[i].sem_num].semval == 0))
785 if (update_queue(sma, sops[i].sem_num, pt)) {
786 otime = 1;
787 progress = 1;
790 done_checkretry:
791 if (progress) {
792 progress = 0;
793 goto retry_global;
795 done:
796 if (otime)
797 sma->sem_otime = get_seconds();
801 /* The following counts are associated to each semaphore:
802 * semncnt number of tasks waiting on semval being nonzero
803 * semzcnt number of tasks waiting on semval being zero
804 * This model assumes that a task waits on exactly one semaphore.
805 * Since semaphore operations are to be performed atomically, tasks actually
806 * wait on a whole sequence of semaphores simultaneously.
807 * The counts we return here are a rough approximation, but still
808 * warrant that semncnt+semzcnt>0 if the task is on the pending queue.
810 static int count_semncnt (struct sem_array * sma, ushort semnum)
812 int semncnt;
813 struct sem_queue * q;
815 semncnt = 0;
816 list_for_each_entry(q, &sma->sem_base[semnum].sem_pending, list) {
817 struct sembuf * sops = q->sops;
818 BUG_ON(sops->sem_num != semnum);
819 if ((sops->sem_op < 0) && !(sops->sem_flg & IPC_NOWAIT))
820 semncnt++;
823 list_for_each_entry(q, &sma->sem_pending, list) {
824 struct sembuf * sops = q->sops;
825 int nsops = q->nsops;
826 int i;
827 for (i = 0; i < nsops; i++)
828 if (sops[i].sem_num == semnum
829 && (sops[i].sem_op < 0)
830 && !(sops[i].sem_flg & IPC_NOWAIT))
831 semncnt++;
833 return semncnt;
836 static int count_semzcnt (struct sem_array * sma, ushort semnum)
838 int semzcnt;
839 struct sem_queue * q;
841 semzcnt = 0;
842 list_for_each_entry(q, &sma->sem_base[semnum].sem_pending, list) {
843 struct sembuf * sops = q->sops;
844 BUG_ON(sops->sem_num != semnum);
845 if ((sops->sem_op == 0) && !(sops->sem_flg & IPC_NOWAIT))
846 semzcnt++;
849 list_for_each_entry(q, &sma->sem_pending, list) {
850 struct sembuf * sops = q->sops;
851 int nsops = q->nsops;
852 int i;
853 for (i = 0; i < nsops; i++)
854 if (sops[i].sem_num == semnum
855 && (sops[i].sem_op == 0)
856 && !(sops[i].sem_flg & IPC_NOWAIT))
857 semzcnt++;
859 return semzcnt;
862 /* Free a semaphore set. freeary() is called with sem_ids.rw_mutex locked
863 * as a writer and the spinlock for this semaphore set hold. sem_ids.rw_mutex
864 * remains locked on exit.
866 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
868 struct sem_undo *un, *tu;
869 struct sem_queue *q, *tq;
870 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
871 struct list_head tasks;
872 int i;
874 /* Free the existing undo structures for this semaphore set. */
875 assert_spin_locked(&sma->sem_perm.lock);
876 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
877 list_del(&un->list_id);
878 spin_lock(&un->ulp->lock);
879 un->semid = -1;
880 list_del_rcu(&un->list_proc);
881 spin_unlock(&un->ulp->lock);
882 kfree_rcu(un, rcu);
885 /* Wake up all pending processes and let them fail with EIDRM. */
886 INIT_LIST_HEAD(&tasks);
887 list_for_each_entry_safe(q, tq, &sma->sem_pending, list) {
888 unlink_queue(sma, q);
889 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
891 for (i = 0; i < sma->sem_nsems; i++) {
892 struct sem *sem = sma->sem_base + i;
893 list_for_each_entry_safe(q, tq, &sem->sem_pending, list) {
894 unlink_queue(sma, q);
895 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
899 /* Remove the semaphore set from the IDR */
900 sem_rmid(ns, sma);
901 sem_unlock(sma, -1);
902 rcu_read_unlock();
904 wake_up_sem_queue_do(&tasks);
905 ns->used_sems -= sma->sem_nsems;
906 security_sem_free(sma);
907 ipc_rcu_putref(sma);
910 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
912 switch(version) {
913 case IPC_64:
914 return copy_to_user(buf, in, sizeof(*in));
915 case IPC_OLD:
917 struct semid_ds out;
919 memset(&out, 0, sizeof(out));
921 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
923 out.sem_otime = in->sem_otime;
924 out.sem_ctime = in->sem_ctime;
925 out.sem_nsems = in->sem_nsems;
927 return copy_to_user(buf, &out, sizeof(out));
929 default:
930 return -EINVAL;
934 static int semctl_nolock(struct ipc_namespace *ns, int semid,
935 int cmd, int version, void __user *p)
937 int err;
938 struct sem_array *sma;
940 switch(cmd) {
941 case IPC_INFO:
942 case SEM_INFO:
944 struct seminfo seminfo;
945 int max_id;
947 err = security_sem_semctl(NULL, cmd);
948 if (err)
949 return err;
951 memset(&seminfo,0,sizeof(seminfo));
952 seminfo.semmni = ns->sc_semmni;
953 seminfo.semmns = ns->sc_semmns;
954 seminfo.semmsl = ns->sc_semmsl;
955 seminfo.semopm = ns->sc_semopm;
956 seminfo.semvmx = SEMVMX;
957 seminfo.semmnu = SEMMNU;
958 seminfo.semmap = SEMMAP;
959 seminfo.semume = SEMUME;
960 down_read(&sem_ids(ns).rw_mutex);
961 if (cmd == SEM_INFO) {
962 seminfo.semusz = sem_ids(ns).in_use;
963 seminfo.semaem = ns->used_sems;
964 } else {
965 seminfo.semusz = SEMUSZ;
966 seminfo.semaem = SEMAEM;
968 max_id = ipc_get_maxid(&sem_ids(ns));
969 up_read(&sem_ids(ns).rw_mutex);
970 if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
971 return -EFAULT;
972 return (max_id < 0) ? 0: max_id;
974 case IPC_STAT:
975 case SEM_STAT:
977 struct semid64_ds tbuf;
978 int id = 0;
980 memset(&tbuf, 0, sizeof(tbuf));
982 rcu_read_lock();
983 if (cmd == SEM_STAT) {
984 sma = sem_obtain_object(ns, semid);
985 if (IS_ERR(sma)) {
986 err = PTR_ERR(sma);
987 goto out_unlock;
989 id = sma->sem_perm.id;
990 } else {
991 sma = sem_obtain_object_check(ns, semid);
992 if (IS_ERR(sma)) {
993 err = PTR_ERR(sma);
994 goto out_unlock;
998 err = -EACCES;
999 if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1000 goto out_unlock;
1002 err = security_sem_semctl(sma, cmd);
1003 if (err)
1004 goto out_unlock;
1006 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
1007 tbuf.sem_otime = sma->sem_otime;
1008 tbuf.sem_ctime = sma->sem_ctime;
1009 tbuf.sem_nsems = sma->sem_nsems;
1010 rcu_read_unlock();
1011 if (copy_semid_to_user(p, &tbuf, version))
1012 return -EFAULT;
1013 return id;
1015 default:
1016 return -EINVAL;
1018 out_unlock:
1019 rcu_read_unlock();
1020 return err;
1023 static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1024 unsigned long arg)
1026 struct sem_undo *un;
1027 struct sem_array *sma;
1028 struct sem* curr;
1029 int err;
1030 struct list_head tasks;
1031 int val;
1032 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1033 /* big-endian 64bit */
1034 val = arg >> 32;
1035 #else
1036 /* 32bit or little-endian 64bit */
1037 val = arg;
1038 #endif
1040 if (val > SEMVMX || val < 0)
1041 return -ERANGE;
1043 INIT_LIST_HEAD(&tasks);
1045 rcu_read_lock();
1046 sma = sem_obtain_object_check(ns, semid);
1047 if (IS_ERR(sma)) {
1048 rcu_read_unlock();
1049 return PTR_ERR(sma);
1052 if (semnum < 0 || semnum >= sma->sem_nsems) {
1053 rcu_read_unlock();
1054 return -EINVAL;
1058 if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1059 rcu_read_unlock();
1060 return -EACCES;
1063 err = security_sem_semctl(sma, SETVAL);
1064 if (err) {
1065 rcu_read_unlock();
1066 return -EACCES;
1069 sem_lock(sma, NULL, -1);
1071 curr = &sma->sem_base[semnum];
1073 assert_spin_locked(&sma->sem_perm.lock);
1074 list_for_each_entry(un, &sma->list_id, list_id)
1075 un->semadj[semnum] = 0;
1077 curr->semval = val;
1078 curr->sempid = task_tgid_vnr(current);
1079 sma->sem_ctime = get_seconds();
1080 /* maybe some queued-up processes were waiting for this */
1081 do_smart_update(sma, NULL, 0, 0, &tasks);
1082 sem_unlock(sma, -1);
1083 rcu_read_unlock();
1084 wake_up_sem_queue_do(&tasks);
1085 return 0;
1088 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
1089 int cmd, void __user *p)
1091 struct sem_array *sma;
1092 struct sem* curr;
1093 int err, nsems;
1094 ushort fast_sem_io[SEMMSL_FAST];
1095 ushort* sem_io = fast_sem_io;
1096 struct list_head tasks;
1098 INIT_LIST_HEAD(&tasks);
1100 rcu_read_lock();
1101 sma = sem_obtain_object_check(ns, semid);
1102 if (IS_ERR(sma)) {
1103 rcu_read_unlock();
1104 return PTR_ERR(sma);
1107 nsems = sma->sem_nsems;
1109 err = -EACCES;
1110 if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1111 goto out_rcu_wakeup;
1113 err = security_sem_semctl(sma, cmd);
1114 if (err)
1115 goto out_rcu_wakeup;
1117 err = -EACCES;
1118 switch (cmd) {
1119 case GETALL:
1121 ushort __user *array = p;
1122 int i;
1124 sem_lock(sma, NULL, -1);
1125 if(nsems > SEMMSL_FAST) {
1126 if (!ipc_rcu_getref(sma)) {
1127 sem_unlock(sma, -1);
1128 rcu_read_unlock();
1129 err = -EIDRM;
1130 goto out_free;
1132 sem_unlock(sma, -1);
1133 rcu_read_unlock();
1134 sem_io = ipc_alloc(sizeof(ushort)*nsems);
1135 if(sem_io == NULL) {
1136 sem_putref(sma);
1137 return -ENOMEM;
1140 rcu_read_lock();
1141 sem_lock_and_putref(sma);
1142 if (sma->sem_perm.deleted) {
1143 sem_unlock(sma, -1);
1144 rcu_read_unlock();
1145 err = -EIDRM;
1146 goto out_free;
1149 for (i = 0; i < sma->sem_nsems; i++)
1150 sem_io[i] = sma->sem_base[i].semval;
1151 sem_unlock(sma, -1);
1152 rcu_read_unlock();
1153 err = 0;
1154 if(copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1155 err = -EFAULT;
1156 goto out_free;
1158 case SETALL:
1160 int i;
1161 struct sem_undo *un;
1163 if (!ipc_rcu_getref(sma)) {
1164 rcu_read_unlock();
1165 return -EIDRM;
1167 rcu_read_unlock();
1169 if(nsems > SEMMSL_FAST) {
1170 sem_io = ipc_alloc(sizeof(ushort)*nsems);
1171 if(sem_io == NULL) {
1172 sem_putref(sma);
1173 return -ENOMEM;
1177 if (copy_from_user (sem_io, p, nsems*sizeof(ushort))) {
1178 sem_putref(sma);
1179 err = -EFAULT;
1180 goto out_free;
1183 for (i = 0; i < nsems; i++) {
1184 if (sem_io[i] > SEMVMX) {
1185 sem_putref(sma);
1186 err = -ERANGE;
1187 goto out_free;
1190 rcu_read_lock();
1191 sem_lock_and_putref(sma);
1192 if (sma->sem_perm.deleted) {
1193 sem_unlock(sma, -1);
1194 rcu_read_unlock();
1195 err = -EIDRM;
1196 goto out_free;
1199 for (i = 0; i < nsems; i++)
1200 sma->sem_base[i].semval = sem_io[i];
1202 assert_spin_locked(&sma->sem_perm.lock);
1203 list_for_each_entry(un, &sma->list_id, list_id) {
1204 for (i = 0; i < nsems; i++)
1205 un->semadj[i] = 0;
1207 sma->sem_ctime = get_seconds();
1208 /* maybe some queued-up processes were waiting for this */
1209 do_smart_update(sma, NULL, 0, 0, &tasks);
1210 err = 0;
1211 goto out_unlock;
1213 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1215 err = -EINVAL;
1216 if (semnum < 0 || semnum >= nsems)
1217 goto out_rcu_wakeup;
1219 sem_lock(sma, NULL, -1);
1220 curr = &sma->sem_base[semnum];
1222 switch (cmd) {
1223 case GETVAL:
1224 err = curr->semval;
1225 goto out_unlock;
1226 case GETPID:
1227 err = curr->sempid;
1228 goto out_unlock;
1229 case GETNCNT:
1230 err = count_semncnt(sma,semnum);
1231 goto out_unlock;
1232 case GETZCNT:
1233 err = count_semzcnt(sma,semnum);
1234 goto out_unlock;
1237 out_unlock:
1238 sem_unlock(sma, -1);
1239 out_rcu_wakeup:
1240 rcu_read_unlock();
1241 wake_up_sem_queue_do(&tasks);
1242 out_free:
1243 if(sem_io != fast_sem_io)
1244 ipc_free(sem_io, sizeof(ushort)*nsems);
1245 return err;
1248 static inline unsigned long
1249 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1251 switch(version) {
1252 case IPC_64:
1253 if (copy_from_user(out, buf, sizeof(*out)))
1254 return -EFAULT;
1255 return 0;
1256 case IPC_OLD:
1258 struct semid_ds tbuf_old;
1260 if(copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1261 return -EFAULT;
1263 out->sem_perm.uid = tbuf_old.sem_perm.uid;
1264 out->sem_perm.gid = tbuf_old.sem_perm.gid;
1265 out->sem_perm.mode = tbuf_old.sem_perm.mode;
1267 return 0;
1269 default:
1270 return -EINVAL;
1275 * This function handles some semctl commands which require the rw_mutex
1276 * to be held in write mode.
1277 * NOTE: no locks must be held, the rw_mutex is taken inside this function.
1279 static int semctl_down(struct ipc_namespace *ns, int semid,
1280 int cmd, int version, void __user *p)
1282 struct sem_array *sma;
1283 int err;
1284 struct semid64_ds semid64;
1285 struct kern_ipc_perm *ipcp;
1287 if(cmd == IPC_SET) {
1288 if (copy_semid_from_user(&semid64, p, version))
1289 return -EFAULT;
1292 ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
1293 &semid64.sem_perm, 0);
1294 if (IS_ERR(ipcp))
1295 return PTR_ERR(ipcp);
1297 sma = container_of(ipcp, struct sem_array, sem_perm);
1299 err = security_sem_semctl(sma, cmd);
1300 if (err) {
1301 rcu_read_unlock();
1302 goto out_up;
1305 switch(cmd){
1306 case IPC_RMID:
1307 sem_lock(sma, NULL, -1);
1308 freeary(ns, ipcp);
1309 goto out_up;
1310 case IPC_SET:
1311 sem_lock(sma, NULL, -1);
1312 err = ipc_update_perm(&semid64.sem_perm, ipcp);
1313 if (err)
1314 goto out_unlock;
1315 sma->sem_ctime = get_seconds();
1316 break;
1317 default:
1318 rcu_read_unlock();
1319 err = -EINVAL;
1320 goto out_up;
1323 out_unlock:
1324 sem_unlock(sma, -1);
1325 rcu_read_unlock();
1326 out_up:
1327 up_write(&sem_ids(ns).rw_mutex);
1328 return err;
1331 SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1333 int version;
1334 struct ipc_namespace *ns;
1335 void __user *p = (void __user *)arg;
1337 if (semid < 0)
1338 return -EINVAL;
1340 version = ipc_parse_version(&cmd);
1341 ns = current->nsproxy->ipc_ns;
1343 switch(cmd) {
1344 case IPC_INFO:
1345 case SEM_INFO:
1346 case IPC_STAT:
1347 case SEM_STAT:
1348 return semctl_nolock(ns, semid, cmd, version, p);
1349 case GETALL:
1350 case GETVAL:
1351 case GETPID:
1352 case GETNCNT:
1353 case GETZCNT:
1354 case SETALL:
1355 return semctl_main(ns, semid, semnum, cmd, p);
1356 case SETVAL:
1357 return semctl_setval(ns, semid, semnum, arg);
1358 case IPC_RMID:
1359 case IPC_SET:
1360 return semctl_down(ns, semid, cmd, version, p);
1361 default:
1362 return -EINVAL;
1366 /* If the task doesn't already have a undo_list, then allocate one
1367 * here. We guarantee there is only one thread using this undo list,
1368 * and current is THE ONE
1370 * If this allocation and assignment succeeds, but later
1371 * portions of this code fail, there is no need to free the sem_undo_list.
1372 * Just let it stay associated with the task, and it'll be freed later
1373 * at exit time.
1375 * This can block, so callers must hold no locks.
1377 static inline int get_undo_list(struct sem_undo_list **undo_listp)
1379 struct sem_undo_list *undo_list;
1381 undo_list = current->sysvsem.undo_list;
1382 if (!undo_list) {
1383 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1384 if (undo_list == NULL)
1385 return -ENOMEM;
1386 spin_lock_init(&undo_list->lock);
1387 atomic_set(&undo_list->refcnt, 1);
1388 INIT_LIST_HEAD(&undo_list->list_proc);
1390 current->sysvsem.undo_list = undo_list;
1392 *undo_listp = undo_list;
1393 return 0;
1396 static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1398 struct sem_undo *un;
1400 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1401 if (un->semid == semid)
1402 return un;
1404 return NULL;
1407 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1409 struct sem_undo *un;
1411 assert_spin_locked(&ulp->lock);
1413 un = __lookup_undo(ulp, semid);
1414 if (un) {
1415 list_del_rcu(&un->list_proc);
1416 list_add_rcu(&un->list_proc, &ulp->list_proc);
1418 return un;
1422 * find_alloc_undo - Lookup (and if not present create) undo array
1423 * @ns: namespace
1424 * @semid: semaphore array id
1426 * The function looks up (and if not present creates) the undo structure.
1427 * The size of the undo structure depends on the size of the semaphore
1428 * array, thus the alloc path is not that straightforward.
1429 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1430 * performs a rcu_read_lock().
1432 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1434 struct sem_array *sma;
1435 struct sem_undo_list *ulp;
1436 struct sem_undo *un, *new;
1437 int nsems, error;
1439 error = get_undo_list(&ulp);
1440 if (error)
1441 return ERR_PTR(error);
1443 rcu_read_lock();
1444 spin_lock(&ulp->lock);
1445 un = lookup_undo(ulp, semid);
1446 spin_unlock(&ulp->lock);
1447 if (likely(un!=NULL))
1448 goto out;
1450 /* no undo structure around - allocate one. */
1451 /* step 1: figure out the size of the semaphore array */
1452 sma = sem_obtain_object_check(ns, semid);
1453 if (IS_ERR(sma)) {
1454 rcu_read_unlock();
1455 return ERR_CAST(sma);
1458 nsems = sma->sem_nsems;
1459 if (!ipc_rcu_getref(sma)) {
1460 rcu_read_unlock();
1461 un = ERR_PTR(-EIDRM);
1462 goto out;
1464 rcu_read_unlock();
1466 /* step 2: allocate new undo structure */
1467 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1468 if (!new) {
1469 sem_putref(sma);
1470 return ERR_PTR(-ENOMEM);
1473 /* step 3: Acquire the lock on semaphore array */
1474 rcu_read_lock();
1475 sem_lock_and_putref(sma);
1476 if (sma->sem_perm.deleted) {
1477 sem_unlock(sma, -1);
1478 rcu_read_unlock();
1479 kfree(new);
1480 un = ERR_PTR(-EIDRM);
1481 goto out;
1483 spin_lock(&ulp->lock);
1486 * step 4: check for races: did someone else allocate the undo struct?
1488 un = lookup_undo(ulp, semid);
1489 if (un) {
1490 kfree(new);
1491 goto success;
1493 /* step 5: initialize & link new undo structure */
1494 new->semadj = (short *) &new[1];
1495 new->ulp = ulp;
1496 new->semid = semid;
1497 assert_spin_locked(&ulp->lock);
1498 list_add_rcu(&new->list_proc, &ulp->list_proc);
1499 assert_spin_locked(&sma->sem_perm.lock);
1500 list_add(&new->list_id, &sma->list_id);
1501 un = new;
1503 success:
1504 spin_unlock(&ulp->lock);
1505 sem_unlock(sma, -1);
1506 out:
1507 return un;
1512 * get_queue_result - Retrieve the result code from sem_queue
1513 * @q: Pointer to queue structure
1515 * Retrieve the return code from the pending queue. If IN_WAKEUP is found in
1516 * q->status, then we must loop until the value is replaced with the final
1517 * value: This may happen if a task is woken up by an unrelated event (e.g.
1518 * signal) and in parallel the task is woken up by another task because it got
1519 * the requested semaphores.
1521 * The function can be called with or without holding the semaphore spinlock.
1523 static int get_queue_result(struct sem_queue *q)
1525 int error;
1527 error = q->status;
1528 while (unlikely(error == IN_WAKEUP)) {
1529 cpu_relax();
1530 error = q->status;
1533 return error;
1537 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
1538 unsigned, nsops, const struct timespec __user *, timeout)
1540 int error = -EINVAL;
1541 struct sem_array *sma;
1542 struct sembuf fast_sops[SEMOPM_FAST];
1543 struct sembuf* sops = fast_sops, *sop;
1544 struct sem_undo *un;
1545 int undos = 0, alter = 0, max, locknum;
1546 struct sem_queue queue;
1547 unsigned long jiffies_left = 0;
1548 struct ipc_namespace *ns;
1549 struct list_head tasks;
1551 ns = current->nsproxy->ipc_ns;
1553 if (nsops < 1 || semid < 0)
1554 return -EINVAL;
1555 if (nsops > ns->sc_semopm)
1556 return -E2BIG;
1557 if(nsops > SEMOPM_FAST) {
1558 sops = kmalloc(sizeof(*sops)*nsops,GFP_KERNEL);
1559 if(sops==NULL)
1560 return -ENOMEM;
1562 if (copy_from_user (sops, tsops, nsops * sizeof(*tsops))) {
1563 error=-EFAULT;
1564 goto out_free;
1566 if (timeout) {
1567 struct timespec _timeout;
1568 if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1569 error = -EFAULT;
1570 goto out_free;
1572 if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1573 _timeout.tv_nsec >= 1000000000L) {
1574 error = -EINVAL;
1575 goto out_free;
1577 jiffies_left = timespec_to_jiffies(&_timeout);
1579 max = 0;
1580 for (sop = sops; sop < sops + nsops; sop++) {
1581 if (sop->sem_num >= max)
1582 max = sop->sem_num;
1583 if (sop->sem_flg & SEM_UNDO)
1584 undos = 1;
1585 if (sop->sem_op != 0)
1586 alter = 1;
1589 INIT_LIST_HEAD(&tasks);
1591 if (undos) {
1592 /* On success, find_alloc_undo takes the rcu_read_lock */
1593 un = find_alloc_undo(ns, semid);
1594 if (IS_ERR(un)) {
1595 error = PTR_ERR(un);
1596 goto out_free;
1598 } else {
1599 un = NULL;
1600 rcu_read_lock();
1603 sma = sem_obtain_object_check(ns, semid);
1604 if (IS_ERR(sma)) {
1605 rcu_read_unlock();
1606 error = PTR_ERR(sma);
1607 goto out_free;
1610 error = -EFBIG;
1611 if (max >= sma->sem_nsems)
1612 goto out_rcu_wakeup;
1614 error = -EACCES;
1615 if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
1616 goto out_rcu_wakeup;
1618 error = security_sem_semop(sma, sops, nsops, alter);
1619 if (error)
1620 goto out_rcu_wakeup;
1623 * semid identifiers are not unique - find_alloc_undo may have
1624 * allocated an undo structure, it was invalidated by an RMID
1625 * and now a new array with received the same id. Check and fail.
1626 * This case can be detected checking un->semid. The existence of
1627 * "un" itself is guaranteed by rcu.
1629 error = -EIDRM;
1630 locknum = sem_lock(sma, sops, nsops);
1631 if (un && un->semid == -1)
1632 goto out_unlock_free;
1634 error = try_atomic_semop (sma, sops, nsops, un, task_tgid_vnr(current));
1635 if (error <= 0) {
1636 if (alter && error == 0)
1637 do_smart_update(sma, sops, nsops, 1, &tasks);
1639 goto out_unlock_free;
1642 /* We need to sleep on this operation, so we put the current
1643 * task into the pending queue and go to sleep.
1646 queue.sops = sops;
1647 queue.nsops = nsops;
1648 queue.undo = un;
1649 queue.pid = task_tgid_vnr(current);
1650 queue.alter = alter;
1652 if (nsops == 1) {
1653 struct sem *curr;
1654 curr = &sma->sem_base[sops->sem_num];
1656 if (alter)
1657 list_add_tail(&queue.list, &curr->sem_pending);
1658 else
1659 list_add(&queue.list, &curr->sem_pending);
1660 } else {
1661 if (alter)
1662 list_add_tail(&queue.list, &sma->sem_pending);
1663 else
1664 list_add(&queue.list, &sma->sem_pending);
1665 sma->complex_count++;
1668 queue.status = -EINTR;
1669 queue.sleeper = current;
1671 sleep_again:
1672 current->state = TASK_INTERRUPTIBLE;
1673 sem_unlock(sma, locknum);
1674 rcu_read_unlock();
1676 if (timeout)
1677 jiffies_left = schedule_timeout(jiffies_left);
1678 else
1679 schedule();
1681 error = get_queue_result(&queue);
1683 if (error != -EINTR) {
1684 /* fast path: update_queue already obtained all requested
1685 * resources.
1686 * Perform a smp_mb(): User space could assume that semop()
1687 * is a memory barrier: Without the mb(), the cpu could
1688 * speculatively read in user space stale data that was
1689 * overwritten by the previous owner of the semaphore.
1691 smp_mb();
1693 goto out_free;
1696 rcu_read_lock();
1697 sma = sem_obtain_lock(ns, semid, sops, nsops, &locknum);
1700 * Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing.
1702 error = get_queue_result(&queue);
1705 * Array removed? If yes, leave without sem_unlock().
1707 if (IS_ERR(sma)) {
1708 rcu_read_unlock();
1709 goto out_free;
1714 * If queue.status != -EINTR we are woken up by another process.
1715 * Leave without unlink_queue(), but with sem_unlock().
1718 if (error != -EINTR) {
1719 goto out_unlock_free;
1723 * If an interrupt occurred we have to clean up the queue
1725 if (timeout && jiffies_left == 0)
1726 error = -EAGAIN;
1729 * If the wakeup was spurious, just retry
1731 if (error == -EINTR && !signal_pending(current))
1732 goto sleep_again;
1734 unlink_queue(sma, &queue);
1736 out_unlock_free:
1737 sem_unlock(sma, locknum);
1738 out_rcu_wakeup:
1739 rcu_read_unlock();
1740 wake_up_sem_queue_do(&tasks);
1741 out_free:
1742 if(sops != fast_sops)
1743 kfree(sops);
1744 return error;
1747 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
1748 unsigned, nsops)
1750 return sys_semtimedop(semid, tsops, nsops, NULL);
1753 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
1754 * parent and child tasks.
1757 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
1759 struct sem_undo_list *undo_list;
1760 int error;
1762 if (clone_flags & CLONE_SYSVSEM) {
1763 error = get_undo_list(&undo_list);
1764 if (error)
1765 return error;
1766 atomic_inc(&undo_list->refcnt);
1767 tsk->sysvsem.undo_list = undo_list;
1768 } else
1769 tsk->sysvsem.undo_list = NULL;
1771 return 0;
1775 * add semadj values to semaphores, free undo structures.
1776 * undo structures are not freed when semaphore arrays are destroyed
1777 * so some of them may be out of date.
1778 * IMPLEMENTATION NOTE: There is some confusion over whether the
1779 * set of adjustments that needs to be done should be done in an atomic
1780 * manner or not. That is, if we are attempting to decrement the semval
1781 * should we queue up and wait until we can do so legally?
1782 * The original implementation attempted to do this (queue and wait).
1783 * The current implementation does not do so. The POSIX standard
1784 * and SVID should be consulted to determine what behavior is mandated.
1786 void exit_sem(struct task_struct *tsk)
1788 struct sem_undo_list *ulp;
1790 ulp = tsk->sysvsem.undo_list;
1791 if (!ulp)
1792 return;
1793 tsk->sysvsem.undo_list = NULL;
1795 if (!atomic_dec_and_test(&ulp->refcnt))
1796 return;
1798 for (;;) {
1799 struct sem_array *sma;
1800 struct sem_undo *un;
1801 struct list_head tasks;
1802 int semid, i;
1804 rcu_read_lock();
1805 un = list_entry_rcu(ulp->list_proc.next,
1806 struct sem_undo, list_proc);
1807 if (&un->list_proc == &ulp->list_proc)
1808 semid = -1;
1809 else
1810 semid = un->semid;
1812 if (semid == -1) {
1813 rcu_read_unlock();
1814 break;
1817 sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, un->semid);
1818 /* exit_sem raced with IPC_RMID, nothing to do */
1819 if (IS_ERR(sma)) {
1820 rcu_read_unlock();
1821 continue;
1824 sem_lock(sma, NULL, -1);
1825 un = __lookup_undo(ulp, semid);
1826 if (un == NULL) {
1827 /* exit_sem raced with IPC_RMID+semget() that created
1828 * exactly the same semid. Nothing to do.
1830 sem_unlock(sma, -1);
1831 rcu_read_unlock();
1832 continue;
1835 /* remove un from the linked lists */
1836 assert_spin_locked(&sma->sem_perm.lock);
1837 list_del(&un->list_id);
1839 spin_lock(&ulp->lock);
1840 list_del_rcu(&un->list_proc);
1841 spin_unlock(&ulp->lock);
1843 /* perform adjustments registered in un */
1844 for (i = 0; i < sma->sem_nsems; i++) {
1845 struct sem * semaphore = &sma->sem_base[i];
1846 if (un->semadj[i]) {
1847 semaphore->semval += un->semadj[i];
1849 * Range checks of the new semaphore value,
1850 * not defined by sus:
1851 * - Some unices ignore the undo entirely
1852 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
1853 * - some cap the value (e.g. FreeBSD caps
1854 * at 0, but doesn't enforce SEMVMX)
1856 * Linux caps the semaphore value, both at 0
1857 * and at SEMVMX.
1859 * Manfred <manfred@colorfullife.com>
1861 if (semaphore->semval < 0)
1862 semaphore->semval = 0;
1863 if (semaphore->semval > SEMVMX)
1864 semaphore->semval = SEMVMX;
1865 semaphore->sempid = task_tgid_vnr(current);
1868 /* maybe some queued-up processes were waiting for this */
1869 INIT_LIST_HEAD(&tasks);
1870 do_smart_update(sma, NULL, 0, 1, &tasks);
1871 sem_unlock(sma, -1);
1872 rcu_read_unlock();
1873 wake_up_sem_queue_do(&tasks);
1875 kfree_rcu(un, rcu);
1877 kfree(ulp);
1880 #ifdef CONFIG_PROC_FS
1881 static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
1883 struct user_namespace *user_ns = seq_user_ns(s);
1884 struct sem_array *sma = it;
1886 return seq_printf(s,
1887 "%10d %10d %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
1888 sma->sem_perm.key,
1889 sma->sem_perm.id,
1890 sma->sem_perm.mode,
1891 sma->sem_nsems,
1892 from_kuid_munged(user_ns, sma->sem_perm.uid),
1893 from_kgid_munged(user_ns, sma->sem_perm.gid),
1894 from_kuid_munged(user_ns, sma->sem_perm.cuid),
1895 from_kgid_munged(user_ns, sma->sem_perm.cgid),
1896 sma->sem_otime,
1897 sma->sem_ctime);
1899 #endif