3 * Copyright (C) 1992 Krishna Balasubramanian
4 * Copyright (C) 1995 Eric Schenk, Bruno Haible
6 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
8 * SMP-threaded, sysctl's added
9 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
10 * Enforced range limit on SEM_UNDO
11 * (c) 2001 Red Hat Inc
13 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
14 * Further wakeup optimizations, documentation
15 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
17 * support for audit of ipc object properties and permission changes
18 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
22 * Pavel Emelianov <xemul@openvz.org>
24 * Implementation notes: (May 2010)
25 * This file implements System V semaphores.
27 * User space visible behavior:
28 * - FIFO ordering for semop() operations (just FIFO, not starvation
30 * - multiple semaphore operations that alter the same semaphore in
31 * one semop() are handled.
32 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
34 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
35 * - undo adjustments at process exit are limited to 0..SEMVMX.
36 * - namespace are supported.
37 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
38 * to /proc/sys/kernel/sem.
39 * - statistics about the usage are reported in /proc/sysvipc/sem.
43 * - all global variables are read-mostly.
44 * - semop() calls and semctl(RMID) are synchronized by RCU.
45 * - most operations do write operations (actually: spin_lock calls) to
46 * the per-semaphore array structure.
47 * Thus: Perfect SMP scaling between independent semaphore arrays.
48 * If multiple semaphores in one array are used, then cache line
49 * trashing on the semaphore array spinlock will limit the scaling.
50 * - semncnt and semzcnt are calculated on demand in count_semncnt() and
52 * - the task that performs a successful semop() scans the list of all
53 * sleeping tasks and completes any pending operations that can be fulfilled.
54 * Semaphores are actively given to waiting tasks (necessary for FIFO).
55 * (see update_queue())
56 * - To improve the scalability, the actual wake-up calls are performed after
57 * dropping all locks. (see wake_up_sem_queue_prepare(),
58 * wake_up_sem_queue_do())
59 * - All work is done by the waker, the woken up task does not have to do
60 * anything - not even acquiring a lock or dropping a refcount.
61 * - A woken up task may not even touch the semaphore array anymore, it may
62 * have been destroyed already by a semctl(RMID).
63 * - The synchronizations between wake-ups due to a timeout/signal and a
64 * wake-up due to a completed semaphore operation is achieved by using an
65 * intermediate state (IN_WAKEUP).
66 * - UNDO values are stored in an array (one per process and per
67 * semaphore array, lazily allocated). For backwards compatibility, multiple
68 * modes for the UNDO variables are supported (per process, per thread)
69 * (see copy_semundo, CLONE_SYSVSEM)
70 * - There are two lists of the pending operations: a per-array list
71 * and per-semaphore list (stored in the array). This allows to achieve FIFO
72 * ordering without always scanning all pending operations.
73 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
76 #include <linux/slab.h>
77 #include <linux/spinlock.h>
78 #include <linux/init.h>
79 #include <linux/proc_fs.h>
80 #include <linux/time.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/audit.h>
84 #include <linux/capability.h>
85 #include <linux/seq_file.h>
86 #include <linux/rwsem.h>
87 #include <linux/nsproxy.h>
88 #include <linux/ipc_namespace.h>
90 #include <asm/uaccess.h>
93 /* One semaphore structure for each semaphore in the system. */
95 int semval
; /* current value */
96 int sempid
; /* pid of last operation */
97 spinlock_t lock
; /* spinlock for fine-grained semtimedop */
98 struct list_head sem_pending
; /* pending single-sop operations */
101 /* One queue for each sleeping process in the system. */
103 struct list_head list
; /* queue of pending operations */
104 struct task_struct
*sleeper
; /* this process */
105 struct sem_undo
*undo
; /* undo structure */
106 int pid
; /* process id of requesting process */
107 int status
; /* completion status of operation */
108 struct sembuf
*sops
; /* array of pending operations */
109 int nsops
; /* number of operations */
110 int alter
; /* does *sops alter the array? */
113 /* Each task has a list of undo requests. They are executed automatically
114 * when the process exits.
117 struct list_head list_proc
; /* per-process list: *
118 * all undos from one process
120 struct rcu_head rcu
; /* rcu struct for sem_undo */
121 struct sem_undo_list
*ulp
; /* back ptr to sem_undo_list */
122 struct list_head list_id
; /* per semaphore array list:
123 * all undos for one array */
124 int semid
; /* semaphore set identifier */
125 short *semadj
; /* array of adjustments */
126 /* one per semaphore */
129 /* sem_undo_list controls shared access to the list of sem_undo structures
130 * that may be shared among all a CLONE_SYSVSEM task group.
132 struct sem_undo_list
{
135 struct list_head list_proc
;
139 #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
141 #define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid)
143 static int newary(struct ipc_namespace
*, struct ipc_params
*);
144 static void freeary(struct ipc_namespace
*, struct kern_ipc_perm
*);
145 #ifdef CONFIG_PROC_FS
146 static int sysvipc_sem_proc_show(struct seq_file
*s
, void *it
);
149 #define SEMMSL_FAST 256 /* 512 bytes on stack */
150 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
153 * linked list protection:
155 * sem_array.sem_pending{,last},
156 * sem_array.sem_undo: sem_lock() for read/write
157 * sem_undo.proc_next: only "current" is allowed to read/write that field.
161 #define sc_semmsl sem_ctls[0]
162 #define sc_semmns sem_ctls[1]
163 #define sc_semopm sem_ctls[2]
164 #define sc_semmni sem_ctls[3]
166 void sem_init_ns(struct ipc_namespace
*ns
)
168 ns
->sc_semmsl
= SEMMSL
;
169 ns
->sc_semmns
= SEMMNS
;
170 ns
->sc_semopm
= SEMOPM
;
171 ns
->sc_semmni
= SEMMNI
;
173 ipc_init_ids(&ns
->ids
[IPC_SEM_IDS
]);
177 void sem_exit_ns(struct ipc_namespace
*ns
)
179 free_ipcs(ns
, &sem_ids(ns
), freeary
);
180 idr_destroy(&ns
->ids
[IPC_SEM_IDS
].ipcs_idr
);
184 void __init
sem_init (void)
186 sem_init_ns(&init_ipc_ns
);
187 ipc_init_proc_interface("sysvipc/sem",
188 " key semid perms nsems uid gid cuid cgid otime ctime\n",
189 IPC_SEM_IDS
, sysvipc_sem_proc_show
);
193 * If the request contains only one semaphore operation, and there are
194 * no complex transactions pending, lock only the semaphore involved.
195 * Otherwise, lock the entire semaphore array, since we either have
196 * multiple semaphores in our own semops, or we need to look at
197 * semaphores from other pending complex operations.
199 * Carefully guard against sma->complex_count changing between zero
200 * and non-zero while we are spinning for the lock. The value of
201 * sma->complex_count cannot change while we are holding the lock,
202 * so sem_unlock should be fine.
204 * The global lock path checks that all the local locks have been released,
205 * checking each local lock once. This means that the local lock paths
206 * cannot start their critical sections while the global lock is held.
208 static inline int sem_lock(struct sem_array
*sma
, struct sembuf
*sops
,
213 if (nsops
== 1 && !sma
->complex_count
) {
214 struct sem
*sem
= sma
->sem_base
+ sops
->sem_num
;
216 /* Lock just the semaphore we are interested in. */
217 spin_lock(&sem
->lock
);
220 * If sma->complex_count was set while we were spinning,
221 * we may need to look at things we did not lock here.
223 if (unlikely(sma
->complex_count
)) {
224 spin_unlock(&sem
->lock
);
229 * Another process is holding the global lock on the
230 * sem_array; we cannot enter our critical section,
231 * but have to wait for the global lock to be released.
233 if (unlikely(spin_is_locked(&sma
->sem_perm
.lock
))) {
234 spin_unlock(&sem
->lock
);
235 spin_unlock_wait(&sma
->sem_perm
.lock
);
239 locknum
= sops
->sem_num
;
243 * Lock the semaphore array, and wait for all of the
244 * individual semaphore locks to go away. The code
245 * above ensures no new single-lock holders will enter
246 * their critical section while the array lock is held.
249 spin_lock(&sma
->sem_perm
.lock
);
250 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
251 struct sem
*sem
= sma
->sem_base
+ i
;
252 spin_unlock_wait(&sem
->lock
);
259 static inline void sem_unlock(struct sem_array
*sma
, int locknum
)
262 spin_unlock(&sma
->sem_perm
.lock
);
264 struct sem
*sem
= sma
->sem_base
+ locknum
;
265 spin_unlock(&sem
->lock
);
270 * sem_lock_(check_) routines are called in the paths where the rw_mutex
273 * The caller holds the RCU read lock.
275 static inline struct sem_array
*sem_obtain_lock(struct ipc_namespace
*ns
,
276 int id
, struct sembuf
*sops
, int nsops
, int *locknum
)
278 struct kern_ipc_perm
*ipcp
;
279 struct sem_array
*sma
;
281 ipcp
= ipc_obtain_object(&sem_ids(ns
), id
);
283 return ERR_CAST(ipcp
);
285 sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
286 *locknum
= sem_lock(sma
, sops
, nsops
);
288 /* ipc_rmid() may have already freed the ID while sem_lock
289 * was spinning: verify that the structure is still valid
292 return container_of(ipcp
, struct sem_array
, sem_perm
);
294 sem_unlock(sma
, *locknum
);
295 return ERR_PTR(-EINVAL
);
298 static inline struct sem_array
*sem_obtain_object(struct ipc_namespace
*ns
, int id
)
300 struct kern_ipc_perm
*ipcp
= ipc_obtain_object(&sem_ids(ns
), id
);
303 return ERR_CAST(ipcp
);
305 return container_of(ipcp
, struct sem_array
, sem_perm
);
308 static inline struct sem_array
*sem_obtain_object_check(struct ipc_namespace
*ns
,
311 struct kern_ipc_perm
*ipcp
= ipc_obtain_object_check(&sem_ids(ns
), id
);
314 return ERR_CAST(ipcp
);
316 return container_of(ipcp
, struct sem_array
, sem_perm
);
319 static inline void sem_lock_and_putref(struct sem_array
*sma
)
321 sem_lock(sma
, NULL
, -1);
325 static inline void sem_putref(struct sem_array
*sma
)
330 static inline void sem_rmid(struct ipc_namespace
*ns
, struct sem_array
*s
)
332 ipc_rmid(&sem_ids(ns
), &s
->sem_perm
);
336 * Lockless wakeup algorithm:
337 * Without the check/retry algorithm a lockless wakeup is possible:
338 * - queue.status is initialized to -EINTR before blocking.
339 * - wakeup is performed by
340 * * unlinking the queue entry from sma->sem_pending
341 * * setting queue.status to IN_WAKEUP
342 * This is the notification for the blocked thread that a
343 * result value is imminent.
344 * * call wake_up_process
345 * * set queue.status to the final value.
346 * - the previously blocked thread checks queue.status:
347 * * if it's IN_WAKEUP, then it must wait until the value changes
348 * * if it's not -EINTR, then the operation was completed by
349 * update_queue. semtimedop can return queue.status without
350 * performing any operation on the sem array.
351 * * otherwise it must acquire the spinlock and check what's up.
353 * The two-stage algorithm is necessary to protect against the following
355 * - if queue.status is set after wake_up_process, then the woken up idle
356 * thread could race forward and try (and fail) to acquire sma->lock
357 * before update_queue had a chance to set queue.status
358 * - if queue.status is written before wake_up_process and if the
359 * blocked process is woken up by a signal between writing
360 * queue.status and the wake_up_process, then the woken up
361 * process could return from semtimedop and die by calling
362 * sys_exit before wake_up_process is called. Then wake_up_process
363 * will oops, because the task structure is already invalid.
364 * (yes, this happened on s390 with sysv msg).
370 * newary - Create a new semaphore set
372 * @params: ptr to the structure that contains key, semflg and nsems
374 * Called with sem_ids.rw_mutex held (as a writer)
377 static int newary(struct ipc_namespace
*ns
, struct ipc_params
*params
)
381 struct sem_array
*sma
;
383 key_t key
= params
->key
;
384 int nsems
= params
->u
.nsems
;
385 int semflg
= params
->flg
;
390 if (ns
->used_sems
+ nsems
> ns
->sc_semmns
)
393 size
= sizeof (*sma
) + nsems
* sizeof (struct sem
);
394 sma
= ipc_rcu_alloc(size
);
398 memset (sma
, 0, size
);
400 sma
->sem_perm
.mode
= (semflg
& S_IRWXUGO
);
401 sma
->sem_perm
.key
= key
;
403 sma
->sem_perm
.security
= NULL
;
404 retval
= security_sem_alloc(sma
);
410 id
= ipc_addid(&sem_ids(ns
), &sma
->sem_perm
, ns
->sc_semmni
);
412 security_sem_free(sma
);
416 ns
->used_sems
+= nsems
;
418 sma
->sem_base
= (struct sem
*) &sma
[1];
420 for (i
= 0; i
< nsems
; i
++) {
421 INIT_LIST_HEAD(&sma
->sem_base
[i
].sem_pending
);
422 spin_lock_init(&sma
->sem_base
[i
].lock
);
425 sma
->complex_count
= 0;
426 INIT_LIST_HEAD(&sma
->sem_pending
);
427 INIT_LIST_HEAD(&sma
->list_id
);
428 sma
->sem_nsems
= nsems
;
429 sma
->sem_ctime
= get_seconds();
433 return sma
->sem_perm
.id
;
438 * Called with sem_ids.rw_mutex and ipcp locked.
440 static inline int sem_security(struct kern_ipc_perm
*ipcp
, int semflg
)
442 struct sem_array
*sma
;
444 sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
445 return security_sem_associate(sma
, semflg
);
449 * Called with sem_ids.rw_mutex and ipcp locked.
451 static inline int sem_more_checks(struct kern_ipc_perm
*ipcp
,
452 struct ipc_params
*params
)
454 struct sem_array
*sma
;
456 sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
457 if (params
->u
.nsems
> sma
->sem_nsems
)
463 SYSCALL_DEFINE3(semget
, key_t
, key
, int, nsems
, int, semflg
)
465 struct ipc_namespace
*ns
;
466 struct ipc_ops sem_ops
;
467 struct ipc_params sem_params
;
469 ns
= current
->nsproxy
->ipc_ns
;
471 if (nsems
< 0 || nsems
> ns
->sc_semmsl
)
474 sem_ops
.getnew
= newary
;
475 sem_ops
.associate
= sem_security
;
476 sem_ops
.more_checks
= sem_more_checks
;
478 sem_params
.key
= key
;
479 sem_params
.flg
= semflg
;
480 sem_params
.u
.nsems
= nsems
;
482 return ipcget(ns
, &sem_ids(ns
), &sem_ops
, &sem_params
);
486 * Determine whether a sequence of semaphore operations would succeed
487 * all at once. Return 0 if yes, 1 if need to sleep, else return error code.
490 static int try_atomic_semop (struct sem_array
* sma
, struct sembuf
* sops
,
491 int nsops
, struct sem_undo
*un
, int pid
)
497 for (sop
= sops
; sop
< sops
+ nsops
; sop
++) {
498 curr
= sma
->sem_base
+ sop
->sem_num
;
499 sem_op
= sop
->sem_op
;
500 result
= curr
->semval
;
502 if (!sem_op
&& result
)
510 if (sop
->sem_flg
& SEM_UNDO
) {
511 int undo
= un
->semadj
[sop
->sem_num
] - sem_op
;
513 * Exceeding the undo range is an error.
515 if (undo
< (-SEMAEM
- 1) || undo
> SEMAEM
)
518 curr
->semval
= result
;
522 while (sop
>= sops
) {
523 sma
->sem_base
[sop
->sem_num
].sempid
= pid
;
524 if (sop
->sem_flg
& SEM_UNDO
)
525 un
->semadj
[sop
->sem_num
] -= sop
->sem_op
;
536 if (sop
->sem_flg
& IPC_NOWAIT
)
543 while (sop
>= sops
) {
544 sma
->sem_base
[sop
->sem_num
].semval
-= sop
->sem_op
;
551 /** wake_up_sem_queue_prepare(q, error): Prepare wake-up
552 * @q: queue entry that must be signaled
553 * @error: Error value for the signal
555 * Prepare the wake-up of the queue entry q.
557 static void wake_up_sem_queue_prepare(struct list_head
*pt
,
558 struct sem_queue
*q
, int error
)
560 if (list_empty(pt
)) {
562 * Hold preempt off so that we don't get preempted and have the
563 * wakee busy-wait until we're scheduled back on.
567 q
->status
= IN_WAKEUP
;
570 list_add_tail(&q
->list
, pt
);
574 * wake_up_sem_queue_do(pt) - do the actual wake-up
575 * @pt: list of tasks to be woken up
577 * Do the actual wake-up.
578 * The function is called without any locks held, thus the semaphore array
579 * could be destroyed already and the tasks can disappear as soon as the
580 * status is set to the actual return code.
582 static void wake_up_sem_queue_do(struct list_head
*pt
)
584 struct sem_queue
*q
, *t
;
587 did_something
= !list_empty(pt
);
588 list_for_each_entry_safe(q
, t
, pt
, list
) {
589 wake_up_process(q
->sleeper
);
590 /* q can disappear immediately after writing q->status. */
598 static void unlink_queue(struct sem_array
*sma
, struct sem_queue
*q
)
602 sma
->complex_count
--;
605 /** check_restart(sma, q)
606 * @sma: semaphore array
607 * @q: the operation that just completed
609 * update_queue is O(N^2) when it restarts scanning the whole queue of
610 * waiting operations. Therefore this function checks if the restart is
611 * really necessary. It is called after a previously waiting operation
614 static int check_restart(struct sem_array
*sma
, struct sem_queue
*q
)
619 /* if the operation didn't modify the array, then no restart */
623 /* pending complex operations are too difficult to analyse */
624 if (sma
->complex_count
)
627 /* we were a sleeping complex operation. Too difficult */
631 curr
= sma
->sem_base
+ q
->sops
[0].sem_num
;
633 /* No-one waits on this queue */
634 if (list_empty(&curr
->sem_pending
))
637 /* the new semaphore value */
639 /* It is impossible that someone waits for the new value:
640 * - q is a previously sleeping simple operation that
641 * altered the array. It must be a decrement, because
642 * simple increments never sleep.
643 * - The value is not 0, thus wait-for-zero won't proceed.
644 * - If there are older (higher priority) decrements
645 * in the queue, then they have observed the original
646 * semval value and couldn't proceed. The operation
647 * decremented to value - thus they won't proceed either.
649 BUG_ON(q
->sops
[0].sem_op
>= 0);
653 * semval is 0. Check if there are wait-for-zero semops.
654 * They must be the first entries in the per-semaphore queue
656 h
= list_first_entry(&curr
->sem_pending
, struct sem_queue
, list
);
657 BUG_ON(h
->nsops
!= 1);
658 BUG_ON(h
->sops
[0].sem_num
!= q
->sops
[0].sem_num
);
660 /* Yes, there is a wait-for-zero semop. Restart */
661 if (h
->sops
[0].sem_op
== 0)
664 /* Again - no-one is waiting for the new value. */
670 * update_queue(sma, semnum): Look for tasks that can be completed.
671 * @sma: semaphore array.
672 * @semnum: semaphore that was modified.
673 * @pt: list head for the tasks that must be woken up.
675 * update_queue must be called after a semaphore in a semaphore array
676 * was modified. If multiple semaphores were modified, update_queue must
677 * be called with semnum = -1, as well as with the number of each modified
679 * The tasks that must be woken up are added to @pt. The return code
680 * is stored in q->pid.
681 * The function return 1 if at least one semop was completed successfully.
683 static int update_queue(struct sem_array
*sma
, int semnum
, struct list_head
*pt
)
686 struct list_head
*walk
;
687 struct list_head
*pending_list
;
688 int semop_completed
= 0;
691 pending_list
= &sma
->sem_pending
;
693 pending_list
= &sma
->sem_base
[semnum
].sem_pending
;
696 walk
= pending_list
->next
;
697 while (walk
!= pending_list
) {
700 q
= container_of(walk
, struct sem_queue
, list
);
703 /* If we are scanning the single sop, per-semaphore list of
704 * one semaphore and that semaphore is 0, then it is not
705 * necessary to scan the "alter" entries: simple increments
706 * that affect only one entry succeed immediately and cannot
707 * be in the per semaphore pending queue, and decrements
708 * cannot be successful if the value is already 0.
710 if (semnum
!= -1 && sma
->sem_base
[semnum
].semval
== 0 &&
714 error
= try_atomic_semop(sma
, q
->sops
, q
->nsops
,
717 /* Does q->sleeper still need to sleep? */
721 unlink_queue(sma
, q
);
727 restart
= check_restart(sma
, q
);
730 wake_up_sem_queue_prepare(pt
, q
, error
);
734 return semop_completed
;
738 * do_smart_update(sma, sops, nsops, otime, pt) - optimized update_queue
739 * @sma: semaphore array
740 * @sops: operations that were performed
741 * @nsops: number of operations
742 * @otime: force setting otime
743 * @pt: list head of the tasks that must be woken up.
745 * do_smart_update() does the required called to update_queue, based on the
746 * actual changes that were performed on the semaphore array.
747 * Note that the function does not do the actual wake-up: the caller is
748 * responsible for calling wake_up_sem_queue_do(@pt).
749 * It is safe to perform this call after dropping all locks.
751 static void do_smart_update(struct sem_array
*sma
, struct sembuf
*sops
, int nsops
,
752 int otime
, struct list_head
*pt
)
759 if (sma
->complex_count
) {
760 if (update_queue(sma
, -1, pt
)) {
770 /* No semops; something special is going on. */
771 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
772 if (update_queue(sma
, i
, pt
)) {
777 goto done_checkretry
;
780 /* Check the semaphores that were modified. */
781 for (i
= 0; i
< nsops
; i
++) {
782 if (sops
[i
].sem_op
> 0 ||
783 (sops
[i
].sem_op
< 0 &&
784 sma
->sem_base
[sops
[i
].sem_num
].semval
== 0))
785 if (update_queue(sma
, sops
[i
].sem_num
, pt
)) {
797 sma
->sem_otime
= get_seconds();
801 /* The following counts are associated to each semaphore:
802 * semncnt number of tasks waiting on semval being nonzero
803 * semzcnt number of tasks waiting on semval being zero
804 * This model assumes that a task waits on exactly one semaphore.
805 * Since semaphore operations are to be performed atomically, tasks actually
806 * wait on a whole sequence of semaphores simultaneously.
807 * The counts we return here are a rough approximation, but still
808 * warrant that semncnt+semzcnt>0 if the task is on the pending queue.
810 static int count_semncnt (struct sem_array
* sma
, ushort semnum
)
813 struct sem_queue
* q
;
816 list_for_each_entry(q
, &sma
->sem_base
[semnum
].sem_pending
, list
) {
817 struct sembuf
* sops
= q
->sops
;
818 BUG_ON(sops
->sem_num
!= semnum
);
819 if ((sops
->sem_op
< 0) && !(sops
->sem_flg
& IPC_NOWAIT
))
823 list_for_each_entry(q
, &sma
->sem_pending
, list
) {
824 struct sembuf
* sops
= q
->sops
;
825 int nsops
= q
->nsops
;
827 for (i
= 0; i
< nsops
; i
++)
828 if (sops
[i
].sem_num
== semnum
829 && (sops
[i
].sem_op
< 0)
830 && !(sops
[i
].sem_flg
& IPC_NOWAIT
))
836 static int count_semzcnt (struct sem_array
* sma
, ushort semnum
)
839 struct sem_queue
* q
;
842 list_for_each_entry(q
, &sma
->sem_base
[semnum
].sem_pending
, list
) {
843 struct sembuf
* sops
= q
->sops
;
844 BUG_ON(sops
->sem_num
!= semnum
);
845 if ((sops
->sem_op
== 0) && !(sops
->sem_flg
& IPC_NOWAIT
))
849 list_for_each_entry(q
, &sma
->sem_pending
, list
) {
850 struct sembuf
* sops
= q
->sops
;
851 int nsops
= q
->nsops
;
853 for (i
= 0; i
< nsops
; i
++)
854 if (sops
[i
].sem_num
== semnum
855 && (sops
[i
].sem_op
== 0)
856 && !(sops
[i
].sem_flg
& IPC_NOWAIT
))
862 /* Free a semaphore set. freeary() is called with sem_ids.rw_mutex locked
863 * as a writer and the spinlock for this semaphore set hold. sem_ids.rw_mutex
864 * remains locked on exit.
866 static void freeary(struct ipc_namespace
*ns
, struct kern_ipc_perm
*ipcp
)
868 struct sem_undo
*un
, *tu
;
869 struct sem_queue
*q
, *tq
;
870 struct sem_array
*sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
871 struct list_head tasks
;
874 /* Free the existing undo structures for this semaphore set. */
875 assert_spin_locked(&sma
->sem_perm
.lock
);
876 list_for_each_entry_safe(un
, tu
, &sma
->list_id
, list_id
) {
877 list_del(&un
->list_id
);
878 spin_lock(&un
->ulp
->lock
);
880 list_del_rcu(&un
->list_proc
);
881 spin_unlock(&un
->ulp
->lock
);
885 /* Wake up all pending processes and let them fail with EIDRM. */
886 INIT_LIST_HEAD(&tasks
);
887 list_for_each_entry_safe(q
, tq
, &sma
->sem_pending
, list
) {
888 unlink_queue(sma
, q
);
889 wake_up_sem_queue_prepare(&tasks
, q
, -EIDRM
);
891 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
892 struct sem
*sem
= sma
->sem_base
+ i
;
893 list_for_each_entry_safe(q
, tq
, &sem
->sem_pending
, list
) {
894 unlink_queue(sma
, q
);
895 wake_up_sem_queue_prepare(&tasks
, q
, -EIDRM
);
899 /* Remove the semaphore set from the IDR */
904 wake_up_sem_queue_do(&tasks
);
905 ns
->used_sems
-= sma
->sem_nsems
;
906 security_sem_free(sma
);
910 static unsigned long copy_semid_to_user(void __user
*buf
, struct semid64_ds
*in
, int version
)
914 return copy_to_user(buf
, in
, sizeof(*in
));
919 memset(&out
, 0, sizeof(out
));
921 ipc64_perm_to_ipc_perm(&in
->sem_perm
, &out
.sem_perm
);
923 out
.sem_otime
= in
->sem_otime
;
924 out
.sem_ctime
= in
->sem_ctime
;
925 out
.sem_nsems
= in
->sem_nsems
;
927 return copy_to_user(buf
, &out
, sizeof(out
));
934 static int semctl_nolock(struct ipc_namespace
*ns
, int semid
,
935 int cmd
, int version
, void __user
*p
)
938 struct sem_array
*sma
;
944 struct seminfo seminfo
;
947 err
= security_sem_semctl(NULL
, cmd
);
951 memset(&seminfo
,0,sizeof(seminfo
));
952 seminfo
.semmni
= ns
->sc_semmni
;
953 seminfo
.semmns
= ns
->sc_semmns
;
954 seminfo
.semmsl
= ns
->sc_semmsl
;
955 seminfo
.semopm
= ns
->sc_semopm
;
956 seminfo
.semvmx
= SEMVMX
;
957 seminfo
.semmnu
= SEMMNU
;
958 seminfo
.semmap
= SEMMAP
;
959 seminfo
.semume
= SEMUME
;
960 down_read(&sem_ids(ns
).rw_mutex
);
961 if (cmd
== SEM_INFO
) {
962 seminfo
.semusz
= sem_ids(ns
).in_use
;
963 seminfo
.semaem
= ns
->used_sems
;
965 seminfo
.semusz
= SEMUSZ
;
966 seminfo
.semaem
= SEMAEM
;
968 max_id
= ipc_get_maxid(&sem_ids(ns
));
969 up_read(&sem_ids(ns
).rw_mutex
);
970 if (copy_to_user(p
, &seminfo
, sizeof(struct seminfo
)))
972 return (max_id
< 0) ? 0: max_id
;
977 struct semid64_ds tbuf
;
980 memset(&tbuf
, 0, sizeof(tbuf
));
983 if (cmd
== SEM_STAT
) {
984 sma
= sem_obtain_object(ns
, semid
);
989 id
= sma
->sem_perm
.id
;
991 sma
= sem_obtain_object_check(ns
, semid
);
999 if (ipcperms(ns
, &sma
->sem_perm
, S_IRUGO
))
1002 err
= security_sem_semctl(sma
, cmd
);
1006 kernel_to_ipc64_perm(&sma
->sem_perm
, &tbuf
.sem_perm
);
1007 tbuf
.sem_otime
= sma
->sem_otime
;
1008 tbuf
.sem_ctime
= sma
->sem_ctime
;
1009 tbuf
.sem_nsems
= sma
->sem_nsems
;
1011 if (copy_semid_to_user(p
, &tbuf
, version
))
1023 static int semctl_setval(struct ipc_namespace
*ns
, int semid
, int semnum
,
1026 struct sem_undo
*un
;
1027 struct sem_array
*sma
;
1030 struct list_head tasks
;
1032 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1033 /* big-endian 64bit */
1036 /* 32bit or little-endian 64bit */
1040 if (val
> SEMVMX
|| val
< 0)
1043 INIT_LIST_HEAD(&tasks
);
1046 sma
= sem_obtain_object_check(ns
, semid
);
1049 return PTR_ERR(sma
);
1052 if (semnum
< 0 || semnum
>= sma
->sem_nsems
) {
1058 if (ipcperms(ns
, &sma
->sem_perm
, S_IWUGO
)) {
1063 err
= security_sem_semctl(sma
, SETVAL
);
1069 sem_lock(sma
, NULL
, -1);
1071 curr
= &sma
->sem_base
[semnum
];
1073 assert_spin_locked(&sma
->sem_perm
.lock
);
1074 list_for_each_entry(un
, &sma
->list_id
, list_id
)
1075 un
->semadj
[semnum
] = 0;
1078 curr
->sempid
= task_tgid_vnr(current
);
1079 sma
->sem_ctime
= get_seconds();
1080 /* maybe some queued-up processes were waiting for this */
1081 do_smart_update(sma
, NULL
, 0, 0, &tasks
);
1082 sem_unlock(sma
, -1);
1084 wake_up_sem_queue_do(&tasks
);
1088 static int semctl_main(struct ipc_namespace
*ns
, int semid
, int semnum
,
1089 int cmd
, void __user
*p
)
1091 struct sem_array
*sma
;
1094 ushort fast_sem_io
[SEMMSL_FAST
];
1095 ushort
* sem_io
= fast_sem_io
;
1096 struct list_head tasks
;
1098 INIT_LIST_HEAD(&tasks
);
1101 sma
= sem_obtain_object_check(ns
, semid
);
1104 return PTR_ERR(sma
);
1107 nsems
= sma
->sem_nsems
;
1110 if (ipcperms(ns
, &sma
->sem_perm
, cmd
== SETALL
? S_IWUGO
: S_IRUGO
))
1111 goto out_rcu_wakeup
;
1113 err
= security_sem_semctl(sma
, cmd
);
1115 goto out_rcu_wakeup
;
1121 ushort __user
*array
= p
;
1124 sem_lock(sma
, NULL
, -1);
1125 if(nsems
> SEMMSL_FAST
) {
1126 if (!ipc_rcu_getref(sma
)) {
1127 sem_unlock(sma
, -1);
1132 sem_unlock(sma
, -1);
1134 sem_io
= ipc_alloc(sizeof(ushort
)*nsems
);
1135 if(sem_io
== NULL
) {
1141 sem_lock_and_putref(sma
);
1142 if (sma
->sem_perm
.deleted
) {
1143 sem_unlock(sma
, -1);
1149 for (i
= 0; i
< sma
->sem_nsems
; i
++)
1150 sem_io
[i
] = sma
->sem_base
[i
].semval
;
1151 sem_unlock(sma
, -1);
1154 if(copy_to_user(array
, sem_io
, nsems
*sizeof(ushort
)))
1161 struct sem_undo
*un
;
1163 if (!ipc_rcu_getref(sma
)) {
1169 if(nsems
> SEMMSL_FAST
) {
1170 sem_io
= ipc_alloc(sizeof(ushort
)*nsems
);
1171 if(sem_io
== NULL
) {
1177 if (copy_from_user (sem_io
, p
, nsems
*sizeof(ushort
))) {
1183 for (i
= 0; i
< nsems
; i
++) {
1184 if (sem_io
[i
] > SEMVMX
) {
1191 sem_lock_and_putref(sma
);
1192 if (sma
->sem_perm
.deleted
) {
1193 sem_unlock(sma
, -1);
1199 for (i
= 0; i
< nsems
; i
++)
1200 sma
->sem_base
[i
].semval
= sem_io
[i
];
1202 assert_spin_locked(&sma
->sem_perm
.lock
);
1203 list_for_each_entry(un
, &sma
->list_id
, list_id
) {
1204 for (i
= 0; i
< nsems
; i
++)
1207 sma
->sem_ctime
= get_seconds();
1208 /* maybe some queued-up processes were waiting for this */
1209 do_smart_update(sma
, NULL
, 0, 0, &tasks
);
1213 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1216 if (semnum
< 0 || semnum
>= nsems
)
1217 goto out_rcu_wakeup
;
1219 sem_lock(sma
, NULL
, -1);
1220 curr
= &sma
->sem_base
[semnum
];
1230 err
= count_semncnt(sma
,semnum
);
1233 err
= count_semzcnt(sma
,semnum
);
1238 sem_unlock(sma
, -1);
1241 wake_up_sem_queue_do(&tasks
);
1243 if(sem_io
!= fast_sem_io
)
1244 ipc_free(sem_io
, sizeof(ushort
)*nsems
);
1248 static inline unsigned long
1249 copy_semid_from_user(struct semid64_ds
*out
, void __user
*buf
, int version
)
1253 if (copy_from_user(out
, buf
, sizeof(*out
)))
1258 struct semid_ds tbuf_old
;
1260 if(copy_from_user(&tbuf_old
, buf
, sizeof(tbuf_old
)))
1263 out
->sem_perm
.uid
= tbuf_old
.sem_perm
.uid
;
1264 out
->sem_perm
.gid
= tbuf_old
.sem_perm
.gid
;
1265 out
->sem_perm
.mode
= tbuf_old
.sem_perm
.mode
;
1275 * This function handles some semctl commands which require the rw_mutex
1276 * to be held in write mode.
1277 * NOTE: no locks must be held, the rw_mutex is taken inside this function.
1279 static int semctl_down(struct ipc_namespace
*ns
, int semid
,
1280 int cmd
, int version
, void __user
*p
)
1282 struct sem_array
*sma
;
1284 struct semid64_ds semid64
;
1285 struct kern_ipc_perm
*ipcp
;
1287 if(cmd
== IPC_SET
) {
1288 if (copy_semid_from_user(&semid64
, p
, version
))
1292 ipcp
= ipcctl_pre_down_nolock(ns
, &sem_ids(ns
), semid
, cmd
,
1293 &semid64
.sem_perm
, 0);
1295 return PTR_ERR(ipcp
);
1297 sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
1299 err
= security_sem_semctl(sma
, cmd
);
1307 sem_lock(sma
, NULL
, -1);
1311 sem_lock(sma
, NULL
, -1);
1312 err
= ipc_update_perm(&semid64
.sem_perm
, ipcp
);
1315 sma
->sem_ctime
= get_seconds();
1324 sem_unlock(sma
, -1);
1327 up_write(&sem_ids(ns
).rw_mutex
);
1331 SYSCALL_DEFINE4(semctl
, int, semid
, int, semnum
, int, cmd
, unsigned long, arg
)
1334 struct ipc_namespace
*ns
;
1335 void __user
*p
= (void __user
*)arg
;
1340 version
= ipc_parse_version(&cmd
);
1341 ns
= current
->nsproxy
->ipc_ns
;
1348 return semctl_nolock(ns
, semid
, cmd
, version
, p
);
1355 return semctl_main(ns
, semid
, semnum
, cmd
, p
);
1357 return semctl_setval(ns
, semid
, semnum
, arg
);
1360 return semctl_down(ns
, semid
, cmd
, version
, p
);
1366 /* If the task doesn't already have a undo_list, then allocate one
1367 * here. We guarantee there is only one thread using this undo list,
1368 * and current is THE ONE
1370 * If this allocation and assignment succeeds, but later
1371 * portions of this code fail, there is no need to free the sem_undo_list.
1372 * Just let it stay associated with the task, and it'll be freed later
1375 * This can block, so callers must hold no locks.
1377 static inline int get_undo_list(struct sem_undo_list
**undo_listp
)
1379 struct sem_undo_list
*undo_list
;
1381 undo_list
= current
->sysvsem
.undo_list
;
1383 undo_list
= kzalloc(sizeof(*undo_list
), GFP_KERNEL
);
1384 if (undo_list
== NULL
)
1386 spin_lock_init(&undo_list
->lock
);
1387 atomic_set(&undo_list
->refcnt
, 1);
1388 INIT_LIST_HEAD(&undo_list
->list_proc
);
1390 current
->sysvsem
.undo_list
= undo_list
;
1392 *undo_listp
= undo_list
;
1396 static struct sem_undo
*__lookup_undo(struct sem_undo_list
*ulp
, int semid
)
1398 struct sem_undo
*un
;
1400 list_for_each_entry_rcu(un
, &ulp
->list_proc
, list_proc
) {
1401 if (un
->semid
== semid
)
1407 static struct sem_undo
*lookup_undo(struct sem_undo_list
*ulp
, int semid
)
1409 struct sem_undo
*un
;
1411 assert_spin_locked(&ulp
->lock
);
1413 un
= __lookup_undo(ulp
, semid
);
1415 list_del_rcu(&un
->list_proc
);
1416 list_add_rcu(&un
->list_proc
, &ulp
->list_proc
);
1422 * find_alloc_undo - Lookup (and if not present create) undo array
1424 * @semid: semaphore array id
1426 * The function looks up (and if not present creates) the undo structure.
1427 * The size of the undo structure depends on the size of the semaphore
1428 * array, thus the alloc path is not that straightforward.
1429 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1430 * performs a rcu_read_lock().
1432 static struct sem_undo
*find_alloc_undo(struct ipc_namespace
*ns
, int semid
)
1434 struct sem_array
*sma
;
1435 struct sem_undo_list
*ulp
;
1436 struct sem_undo
*un
, *new;
1439 error
= get_undo_list(&ulp
);
1441 return ERR_PTR(error
);
1444 spin_lock(&ulp
->lock
);
1445 un
= lookup_undo(ulp
, semid
);
1446 spin_unlock(&ulp
->lock
);
1447 if (likely(un
!=NULL
))
1450 /* no undo structure around - allocate one. */
1451 /* step 1: figure out the size of the semaphore array */
1452 sma
= sem_obtain_object_check(ns
, semid
);
1455 return ERR_CAST(sma
);
1458 nsems
= sma
->sem_nsems
;
1459 if (!ipc_rcu_getref(sma
)) {
1461 un
= ERR_PTR(-EIDRM
);
1466 /* step 2: allocate new undo structure */
1467 new = kzalloc(sizeof(struct sem_undo
) + sizeof(short)*nsems
, GFP_KERNEL
);
1470 return ERR_PTR(-ENOMEM
);
1473 /* step 3: Acquire the lock on semaphore array */
1475 sem_lock_and_putref(sma
);
1476 if (sma
->sem_perm
.deleted
) {
1477 sem_unlock(sma
, -1);
1480 un
= ERR_PTR(-EIDRM
);
1483 spin_lock(&ulp
->lock
);
1486 * step 4: check for races: did someone else allocate the undo struct?
1488 un
= lookup_undo(ulp
, semid
);
1493 /* step 5: initialize & link new undo structure */
1494 new->semadj
= (short *) &new[1];
1497 assert_spin_locked(&ulp
->lock
);
1498 list_add_rcu(&new->list_proc
, &ulp
->list_proc
);
1499 assert_spin_locked(&sma
->sem_perm
.lock
);
1500 list_add(&new->list_id
, &sma
->list_id
);
1504 spin_unlock(&ulp
->lock
);
1505 sem_unlock(sma
, -1);
1512 * get_queue_result - Retrieve the result code from sem_queue
1513 * @q: Pointer to queue structure
1515 * Retrieve the return code from the pending queue. If IN_WAKEUP is found in
1516 * q->status, then we must loop until the value is replaced with the final
1517 * value: This may happen if a task is woken up by an unrelated event (e.g.
1518 * signal) and in parallel the task is woken up by another task because it got
1519 * the requested semaphores.
1521 * The function can be called with or without holding the semaphore spinlock.
1523 static int get_queue_result(struct sem_queue
*q
)
1528 while (unlikely(error
== IN_WAKEUP
)) {
1537 SYSCALL_DEFINE4(semtimedop
, int, semid
, struct sembuf __user
*, tsops
,
1538 unsigned, nsops
, const struct timespec __user
*, timeout
)
1540 int error
= -EINVAL
;
1541 struct sem_array
*sma
;
1542 struct sembuf fast_sops
[SEMOPM_FAST
];
1543 struct sembuf
* sops
= fast_sops
, *sop
;
1544 struct sem_undo
*un
;
1545 int undos
= 0, alter
= 0, max
, locknum
;
1546 struct sem_queue queue
;
1547 unsigned long jiffies_left
= 0;
1548 struct ipc_namespace
*ns
;
1549 struct list_head tasks
;
1551 ns
= current
->nsproxy
->ipc_ns
;
1553 if (nsops
< 1 || semid
< 0)
1555 if (nsops
> ns
->sc_semopm
)
1557 if(nsops
> SEMOPM_FAST
) {
1558 sops
= kmalloc(sizeof(*sops
)*nsops
,GFP_KERNEL
);
1562 if (copy_from_user (sops
, tsops
, nsops
* sizeof(*tsops
))) {
1567 struct timespec _timeout
;
1568 if (copy_from_user(&_timeout
, timeout
, sizeof(*timeout
))) {
1572 if (_timeout
.tv_sec
< 0 || _timeout
.tv_nsec
< 0 ||
1573 _timeout
.tv_nsec
>= 1000000000L) {
1577 jiffies_left
= timespec_to_jiffies(&_timeout
);
1580 for (sop
= sops
; sop
< sops
+ nsops
; sop
++) {
1581 if (sop
->sem_num
>= max
)
1583 if (sop
->sem_flg
& SEM_UNDO
)
1585 if (sop
->sem_op
!= 0)
1589 INIT_LIST_HEAD(&tasks
);
1592 /* On success, find_alloc_undo takes the rcu_read_lock */
1593 un
= find_alloc_undo(ns
, semid
);
1595 error
= PTR_ERR(un
);
1603 sma
= sem_obtain_object_check(ns
, semid
);
1606 error
= PTR_ERR(sma
);
1611 if (max
>= sma
->sem_nsems
)
1612 goto out_rcu_wakeup
;
1615 if (ipcperms(ns
, &sma
->sem_perm
, alter
? S_IWUGO
: S_IRUGO
))
1616 goto out_rcu_wakeup
;
1618 error
= security_sem_semop(sma
, sops
, nsops
, alter
);
1620 goto out_rcu_wakeup
;
1623 * semid identifiers are not unique - find_alloc_undo may have
1624 * allocated an undo structure, it was invalidated by an RMID
1625 * and now a new array with received the same id. Check and fail.
1626 * This case can be detected checking un->semid. The existence of
1627 * "un" itself is guaranteed by rcu.
1630 locknum
= sem_lock(sma
, sops
, nsops
);
1631 if (un
&& un
->semid
== -1)
1632 goto out_unlock_free
;
1634 error
= try_atomic_semop (sma
, sops
, nsops
, un
, task_tgid_vnr(current
));
1636 if (alter
&& error
== 0)
1637 do_smart_update(sma
, sops
, nsops
, 1, &tasks
);
1639 goto out_unlock_free
;
1642 /* We need to sleep on this operation, so we put the current
1643 * task into the pending queue and go to sleep.
1647 queue
.nsops
= nsops
;
1649 queue
.pid
= task_tgid_vnr(current
);
1650 queue
.alter
= alter
;
1654 curr
= &sma
->sem_base
[sops
->sem_num
];
1657 list_add_tail(&queue
.list
, &curr
->sem_pending
);
1659 list_add(&queue
.list
, &curr
->sem_pending
);
1662 list_add_tail(&queue
.list
, &sma
->sem_pending
);
1664 list_add(&queue
.list
, &sma
->sem_pending
);
1665 sma
->complex_count
++;
1668 queue
.status
= -EINTR
;
1669 queue
.sleeper
= current
;
1672 current
->state
= TASK_INTERRUPTIBLE
;
1673 sem_unlock(sma
, locknum
);
1677 jiffies_left
= schedule_timeout(jiffies_left
);
1681 error
= get_queue_result(&queue
);
1683 if (error
!= -EINTR
) {
1684 /* fast path: update_queue already obtained all requested
1686 * Perform a smp_mb(): User space could assume that semop()
1687 * is a memory barrier: Without the mb(), the cpu could
1688 * speculatively read in user space stale data that was
1689 * overwritten by the previous owner of the semaphore.
1697 sma
= sem_obtain_lock(ns
, semid
, sops
, nsops
, &locknum
);
1700 * Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing.
1702 error
= get_queue_result(&queue
);
1705 * Array removed? If yes, leave without sem_unlock().
1714 * If queue.status != -EINTR we are woken up by another process.
1715 * Leave without unlink_queue(), but with sem_unlock().
1718 if (error
!= -EINTR
) {
1719 goto out_unlock_free
;
1723 * If an interrupt occurred we have to clean up the queue
1725 if (timeout
&& jiffies_left
== 0)
1729 * If the wakeup was spurious, just retry
1731 if (error
== -EINTR
&& !signal_pending(current
))
1734 unlink_queue(sma
, &queue
);
1737 sem_unlock(sma
, locknum
);
1740 wake_up_sem_queue_do(&tasks
);
1742 if(sops
!= fast_sops
)
1747 SYSCALL_DEFINE3(semop
, int, semid
, struct sembuf __user
*, tsops
,
1750 return sys_semtimedop(semid
, tsops
, nsops
, NULL
);
1753 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
1754 * parent and child tasks.
1757 int copy_semundo(unsigned long clone_flags
, struct task_struct
*tsk
)
1759 struct sem_undo_list
*undo_list
;
1762 if (clone_flags
& CLONE_SYSVSEM
) {
1763 error
= get_undo_list(&undo_list
);
1766 atomic_inc(&undo_list
->refcnt
);
1767 tsk
->sysvsem
.undo_list
= undo_list
;
1769 tsk
->sysvsem
.undo_list
= NULL
;
1775 * add semadj values to semaphores, free undo structures.
1776 * undo structures are not freed when semaphore arrays are destroyed
1777 * so some of them may be out of date.
1778 * IMPLEMENTATION NOTE: There is some confusion over whether the
1779 * set of adjustments that needs to be done should be done in an atomic
1780 * manner or not. That is, if we are attempting to decrement the semval
1781 * should we queue up and wait until we can do so legally?
1782 * The original implementation attempted to do this (queue and wait).
1783 * The current implementation does not do so. The POSIX standard
1784 * and SVID should be consulted to determine what behavior is mandated.
1786 void exit_sem(struct task_struct
*tsk
)
1788 struct sem_undo_list
*ulp
;
1790 ulp
= tsk
->sysvsem
.undo_list
;
1793 tsk
->sysvsem
.undo_list
= NULL
;
1795 if (!atomic_dec_and_test(&ulp
->refcnt
))
1799 struct sem_array
*sma
;
1800 struct sem_undo
*un
;
1801 struct list_head tasks
;
1805 un
= list_entry_rcu(ulp
->list_proc
.next
,
1806 struct sem_undo
, list_proc
);
1807 if (&un
->list_proc
== &ulp
->list_proc
)
1817 sma
= sem_obtain_object_check(tsk
->nsproxy
->ipc_ns
, un
->semid
);
1818 /* exit_sem raced with IPC_RMID, nothing to do */
1824 sem_lock(sma
, NULL
, -1);
1825 un
= __lookup_undo(ulp
, semid
);
1827 /* exit_sem raced with IPC_RMID+semget() that created
1828 * exactly the same semid. Nothing to do.
1830 sem_unlock(sma
, -1);
1835 /* remove un from the linked lists */
1836 assert_spin_locked(&sma
->sem_perm
.lock
);
1837 list_del(&un
->list_id
);
1839 spin_lock(&ulp
->lock
);
1840 list_del_rcu(&un
->list_proc
);
1841 spin_unlock(&ulp
->lock
);
1843 /* perform adjustments registered in un */
1844 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
1845 struct sem
* semaphore
= &sma
->sem_base
[i
];
1846 if (un
->semadj
[i
]) {
1847 semaphore
->semval
+= un
->semadj
[i
];
1849 * Range checks of the new semaphore value,
1850 * not defined by sus:
1851 * - Some unices ignore the undo entirely
1852 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
1853 * - some cap the value (e.g. FreeBSD caps
1854 * at 0, but doesn't enforce SEMVMX)
1856 * Linux caps the semaphore value, both at 0
1859 * Manfred <manfred@colorfullife.com>
1861 if (semaphore
->semval
< 0)
1862 semaphore
->semval
= 0;
1863 if (semaphore
->semval
> SEMVMX
)
1864 semaphore
->semval
= SEMVMX
;
1865 semaphore
->sempid
= task_tgid_vnr(current
);
1868 /* maybe some queued-up processes were waiting for this */
1869 INIT_LIST_HEAD(&tasks
);
1870 do_smart_update(sma
, NULL
, 0, 1, &tasks
);
1871 sem_unlock(sma
, -1);
1873 wake_up_sem_queue_do(&tasks
);
1880 #ifdef CONFIG_PROC_FS
1881 static int sysvipc_sem_proc_show(struct seq_file
*s
, void *it
)
1883 struct user_namespace
*user_ns
= seq_user_ns(s
);
1884 struct sem_array
*sma
= it
;
1886 return seq_printf(s
,
1887 "%10d %10d %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
1892 from_kuid_munged(user_ns
, sma
->sem_perm
.uid
),
1893 from_kgid_munged(user_ns
, sma
->sem_perm
.gid
),
1894 from_kuid_munged(user_ns
, sma
->sem_perm
.cuid
),
1895 from_kgid_munged(user_ns
, sma
->sem_perm
.cgid
),