prepend_path() needs to reinitialize dentry/vfsmount/mnt on restarts
[linux-2.6.git] / fs / dcache.c
bloba9dd384c5e8039e5707789128160600b6e4ed3e6
1 /*
2 * fs/dcache.c
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
9 /*
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include "internal.h"
42 #include "mount.h"
45 * Usage:
46 * dcache->d_inode->i_lock protects:
47 * - i_dentry, d_alias, d_inode of aliases
48 * dcache_hash_bucket lock protects:
49 * - the dcache hash table
50 * s_anon bl list spinlock protects:
51 * - the s_anon list (see __d_drop)
52 * dentry->d_sb->s_dentry_lru_lock protects:
53 * - the dcache lru lists and counters
54 * d_lock protects:
55 * - d_flags
56 * - d_name
57 * - d_lru
58 * - d_count
59 * - d_unhashed()
60 * - d_parent and d_subdirs
61 * - childrens' d_child and d_parent
62 * - d_alias, d_inode
64 * Ordering:
65 * dentry->d_inode->i_lock
66 * dentry->d_lock
67 * dentry->d_sb->s_dentry_lru_lock
68 * dcache_hash_bucket lock
69 * s_anon lock
71 * If there is an ancestor relationship:
72 * dentry->d_parent->...->d_parent->d_lock
73 * ...
74 * dentry->d_parent->d_lock
75 * dentry->d_lock
77 * If no ancestor relationship:
78 * if (dentry1 < dentry2)
79 * dentry1->d_lock
80 * dentry2->d_lock
82 int sysctl_vfs_cache_pressure __read_mostly = 100;
83 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
87 EXPORT_SYMBOL(rename_lock);
89 static struct kmem_cache *dentry_cache __read_mostly;
91 /**
92 * read_seqbegin_or_lock - begin a sequence number check or locking block
93 * @lock: sequence lock
94 * @seq : sequence number to be checked
96 * First try it once optimistically without taking the lock. If that fails,
97 * take the lock. The sequence number is also used as a marker for deciding
98 * whether to be a reader (even) or writer (odd).
99 * N.B. seq must be initialized to an even number to begin with.
101 static inline void read_seqbegin_or_lock(seqlock_t *lock, int *seq)
103 if (!(*seq & 1)) /* Even */
104 *seq = read_seqbegin(lock);
105 else /* Odd */
106 read_seqlock_excl(lock);
109 static inline int need_seqretry(seqlock_t *lock, int seq)
111 return !(seq & 1) && read_seqretry(lock, seq);
114 static inline void done_seqretry(seqlock_t *lock, int seq)
116 if (seq & 1)
117 read_sequnlock_excl(lock);
121 * This is the single most critical data structure when it comes
122 * to the dcache: the hashtable for lookups. Somebody should try
123 * to make this good - I've just made it work.
125 * This hash-function tries to avoid losing too many bits of hash
126 * information, yet avoid using a prime hash-size or similar.
128 #define D_HASHBITS d_hash_shift
129 #define D_HASHMASK d_hash_mask
131 static unsigned int d_hash_mask __read_mostly;
132 static unsigned int d_hash_shift __read_mostly;
134 static struct hlist_bl_head *dentry_hashtable __read_mostly;
136 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
137 unsigned int hash)
139 hash += (unsigned long) parent / L1_CACHE_BYTES;
140 hash = hash + (hash >> D_HASHBITS);
141 return dentry_hashtable + (hash & D_HASHMASK);
144 /* Statistics gathering. */
145 struct dentry_stat_t dentry_stat = {
146 .age_limit = 45,
149 static DEFINE_PER_CPU(long, nr_dentry);
150 static DEFINE_PER_CPU(long, nr_dentry_unused);
152 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
155 * Here we resort to our own counters instead of using generic per-cpu counters
156 * for consistency with what the vfs inode code does. We are expected to harvest
157 * better code and performance by having our own specialized counters.
159 * Please note that the loop is done over all possible CPUs, not over all online
160 * CPUs. The reason for this is that we don't want to play games with CPUs going
161 * on and off. If one of them goes off, we will just keep their counters.
163 * glommer: See cffbc8a for details, and if you ever intend to change this,
164 * please update all vfs counters to match.
166 static long get_nr_dentry(void)
168 int i;
169 long sum = 0;
170 for_each_possible_cpu(i)
171 sum += per_cpu(nr_dentry, i);
172 return sum < 0 ? 0 : sum;
175 static long get_nr_dentry_unused(void)
177 int i;
178 long sum = 0;
179 for_each_possible_cpu(i)
180 sum += per_cpu(nr_dentry_unused, i);
181 return sum < 0 ? 0 : sum;
184 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
185 size_t *lenp, loff_t *ppos)
187 dentry_stat.nr_dentry = get_nr_dentry();
188 dentry_stat.nr_unused = get_nr_dentry_unused();
189 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
191 #endif
194 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
195 * The strings are both count bytes long, and count is non-zero.
197 #ifdef CONFIG_DCACHE_WORD_ACCESS
199 #include <asm/word-at-a-time.h>
201 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
202 * aligned allocation for this particular component. We don't
203 * strictly need the load_unaligned_zeropad() safety, but it
204 * doesn't hurt either.
206 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
207 * need the careful unaligned handling.
209 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
211 unsigned long a,b,mask;
213 for (;;) {
214 a = *(unsigned long *)cs;
215 b = load_unaligned_zeropad(ct);
216 if (tcount < sizeof(unsigned long))
217 break;
218 if (unlikely(a != b))
219 return 1;
220 cs += sizeof(unsigned long);
221 ct += sizeof(unsigned long);
222 tcount -= sizeof(unsigned long);
223 if (!tcount)
224 return 0;
226 mask = ~(~0ul << tcount*8);
227 return unlikely(!!((a ^ b) & mask));
230 #else
232 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
234 do {
235 if (*cs != *ct)
236 return 1;
237 cs++;
238 ct++;
239 tcount--;
240 } while (tcount);
241 return 0;
244 #endif
246 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
248 const unsigned char *cs;
250 * Be careful about RCU walk racing with rename:
251 * use ACCESS_ONCE to fetch the name pointer.
253 * NOTE! Even if a rename will mean that the length
254 * was not loaded atomically, we don't care. The
255 * RCU walk will check the sequence count eventually,
256 * and catch it. And we won't overrun the buffer,
257 * because we're reading the name pointer atomically,
258 * and a dentry name is guaranteed to be properly
259 * terminated with a NUL byte.
261 * End result: even if 'len' is wrong, we'll exit
262 * early because the data cannot match (there can
263 * be no NUL in the ct/tcount data)
265 cs = ACCESS_ONCE(dentry->d_name.name);
266 smp_read_barrier_depends();
267 return dentry_string_cmp(cs, ct, tcount);
270 static void __d_free(struct rcu_head *head)
272 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
274 WARN_ON(!hlist_unhashed(&dentry->d_alias));
275 if (dname_external(dentry))
276 kfree(dentry->d_name.name);
277 kmem_cache_free(dentry_cache, dentry);
281 * no locks, please.
283 static void d_free(struct dentry *dentry)
285 BUG_ON((int)dentry->d_lockref.count > 0);
286 this_cpu_dec(nr_dentry);
287 if (dentry->d_op && dentry->d_op->d_release)
288 dentry->d_op->d_release(dentry);
290 /* if dentry was never visible to RCU, immediate free is OK */
291 if (!(dentry->d_flags & DCACHE_RCUACCESS))
292 __d_free(&dentry->d_u.d_rcu);
293 else
294 call_rcu(&dentry->d_u.d_rcu, __d_free);
298 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
299 * @dentry: the target dentry
300 * After this call, in-progress rcu-walk path lookup will fail. This
301 * should be called after unhashing, and after changing d_inode (if
302 * the dentry has not already been unhashed).
304 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
306 assert_spin_locked(&dentry->d_lock);
307 /* Go through a barrier */
308 write_seqcount_barrier(&dentry->d_seq);
312 * Release the dentry's inode, using the filesystem
313 * d_iput() operation if defined. Dentry has no refcount
314 * and is unhashed.
316 static void dentry_iput(struct dentry * dentry)
317 __releases(dentry->d_lock)
318 __releases(dentry->d_inode->i_lock)
320 struct inode *inode = dentry->d_inode;
321 if (inode) {
322 dentry->d_inode = NULL;
323 hlist_del_init(&dentry->d_alias);
324 spin_unlock(&dentry->d_lock);
325 spin_unlock(&inode->i_lock);
326 if (!inode->i_nlink)
327 fsnotify_inoderemove(inode);
328 if (dentry->d_op && dentry->d_op->d_iput)
329 dentry->d_op->d_iput(dentry, inode);
330 else
331 iput(inode);
332 } else {
333 spin_unlock(&dentry->d_lock);
338 * Release the dentry's inode, using the filesystem
339 * d_iput() operation if defined. dentry remains in-use.
341 static void dentry_unlink_inode(struct dentry * dentry)
342 __releases(dentry->d_lock)
343 __releases(dentry->d_inode->i_lock)
345 struct inode *inode = dentry->d_inode;
346 __d_clear_type(dentry);
347 dentry->d_inode = NULL;
348 hlist_del_init(&dentry->d_alias);
349 dentry_rcuwalk_barrier(dentry);
350 spin_unlock(&dentry->d_lock);
351 spin_unlock(&inode->i_lock);
352 if (!inode->i_nlink)
353 fsnotify_inoderemove(inode);
354 if (dentry->d_op && dentry->d_op->d_iput)
355 dentry->d_op->d_iput(dentry, inode);
356 else
357 iput(inode);
361 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
362 * is in use - which includes both the "real" per-superblock
363 * LRU list _and_ the DCACHE_SHRINK_LIST use.
365 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
366 * on the shrink list (ie not on the superblock LRU list).
368 * The per-cpu "nr_dentry_unused" counters are updated with
369 * the DCACHE_LRU_LIST bit.
371 * These helper functions make sure we always follow the
372 * rules. d_lock must be held by the caller.
374 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
375 static void d_lru_add(struct dentry *dentry)
377 D_FLAG_VERIFY(dentry, 0);
378 dentry->d_flags |= DCACHE_LRU_LIST;
379 this_cpu_inc(nr_dentry_unused);
380 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
383 static void d_lru_del(struct dentry *dentry)
385 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
386 dentry->d_flags &= ~DCACHE_LRU_LIST;
387 this_cpu_dec(nr_dentry_unused);
388 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
391 static void d_shrink_del(struct dentry *dentry)
393 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
394 list_del_init(&dentry->d_lru);
395 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
396 this_cpu_dec(nr_dentry_unused);
399 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
401 D_FLAG_VERIFY(dentry, 0);
402 list_add(&dentry->d_lru, list);
403 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
404 this_cpu_inc(nr_dentry_unused);
408 * These can only be called under the global LRU lock, ie during the
409 * callback for freeing the LRU list. "isolate" removes it from the
410 * LRU lists entirely, while shrink_move moves it to the indicated
411 * private list.
413 static void d_lru_isolate(struct dentry *dentry)
415 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
416 dentry->d_flags &= ~DCACHE_LRU_LIST;
417 this_cpu_dec(nr_dentry_unused);
418 list_del_init(&dentry->d_lru);
421 static void d_lru_shrink_move(struct dentry *dentry, struct list_head *list)
423 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
424 dentry->d_flags |= DCACHE_SHRINK_LIST;
425 list_move_tail(&dentry->d_lru, list);
429 * dentry_lru_(add|del)_list) must be called with d_lock held.
431 static void dentry_lru_add(struct dentry *dentry)
433 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
434 d_lru_add(dentry);
438 * Remove a dentry with references from the LRU.
440 * If we are on the shrink list, then we can get to try_prune_one_dentry() and
441 * lose our last reference through the parent walk. In this case, we need to
442 * remove ourselves from the shrink list, not the LRU.
444 static void dentry_lru_del(struct dentry *dentry)
446 if (dentry->d_flags & DCACHE_LRU_LIST) {
447 if (dentry->d_flags & DCACHE_SHRINK_LIST)
448 return d_shrink_del(dentry);
449 d_lru_del(dentry);
454 * d_kill - kill dentry and return parent
455 * @dentry: dentry to kill
456 * @parent: parent dentry
458 * The dentry must already be unhashed and removed from the LRU.
460 * If this is the root of the dentry tree, return NULL.
462 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
463 * d_kill.
465 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
466 __releases(dentry->d_lock)
467 __releases(parent->d_lock)
468 __releases(dentry->d_inode->i_lock)
470 list_del(&dentry->d_u.d_child);
472 * Inform try_to_ascend() that we are no longer attached to the
473 * dentry tree
475 dentry->d_flags |= DCACHE_DENTRY_KILLED;
476 if (parent)
477 spin_unlock(&parent->d_lock);
478 dentry_iput(dentry);
480 * dentry_iput drops the locks, at which point nobody (except
481 * transient RCU lookups) can reach this dentry.
483 d_free(dentry);
484 return parent;
488 * d_drop - drop a dentry
489 * @dentry: dentry to drop
491 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
492 * be found through a VFS lookup any more. Note that this is different from
493 * deleting the dentry - d_delete will try to mark the dentry negative if
494 * possible, giving a successful _negative_ lookup, while d_drop will
495 * just make the cache lookup fail.
497 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
498 * reason (NFS timeouts or autofs deletes).
500 * __d_drop requires dentry->d_lock.
502 void __d_drop(struct dentry *dentry)
504 if (!d_unhashed(dentry)) {
505 struct hlist_bl_head *b;
507 * Hashed dentries are normally on the dentry hashtable,
508 * with the exception of those newly allocated by
509 * d_obtain_alias, which are always IS_ROOT:
511 if (unlikely(IS_ROOT(dentry)))
512 b = &dentry->d_sb->s_anon;
513 else
514 b = d_hash(dentry->d_parent, dentry->d_name.hash);
516 hlist_bl_lock(b);
517 __hlist_bl_del(&dentry->d_hash);
518 dentry->d_hash.pprev = NULL;
519 hlist_bl_unlock(b);
520 dentry_rcuwalk_barrier(dentry);
523 EXPORT_SYMBOL(__d_drop);
525 void d_drop(struct dentry *dentry)
527 spin_lock(&dentry->d_lock);
528 __d_drop(dentry);
529 spin_unlock(&dentry->d_lock);
531 EXPORT_SYMBOL(d_drop);
534 * Finish off a dentry we've decided to kill.
535 * dentry->d_lock must be held, returns with it unlocked.
536 * If ref is non-zero, then decrement the refcount too.
537 * Returns dentry requiring refcount drop, or NULL if we're done.
539 static struct dentry *
540 dentry_kill(struct dentry *dentry, int unlock_on_failure)
541 __releases(dentry->d_lock)
543 struct inode *inode;
544 struct dentry *parent;
546 inode = dentry->d_inode;
547 if (inode && !spin_trylock(&inode->i_lock)) {
548 relock:
549 if (unlock_on_failure) {
550 spin_unlock(&dentry->d_lock);
551 cpu_relax();
553 return dentry; /* try again with same dentry */
555 if (IS_ROOT(dentry))
556 parent = NULL;
557 else
558 parent = dentry->d_parent;
559 if (parent && !spin_trylock(&parent->d_lock)) {
560 if (inode)
561 spin_unlock(&inode->i_lock);
562 goto relock;
566 * The dentry is now unrecoverably dead to the world.
568 lockref_mark_dead(&dentry->d_lockref);
571 * inform the fs via d_prune that this dentry is about to be
572 * unhashed and destroyed.
574 if ((dentry->d_flags & DCACHE_OP_PRUNE) && !d_unhashed(dentry))
575 dentry->d_op->d_prune(dentry);
577 dentry_lru_del(dentry);
578 /* if it was on the hash then remove it */
579 __d_drop(dentry);
580 return d_kill(dentry, parent);
584 * This is dput
586 * This is complicated by the fact that we do not want to put
587 * dentries that are no longer on any hash chain on the unused
588 * list: we'd much rather just get rid of them immediately.
590 * However, that implies that we have to traverse the dentry
591 * tree upwards to the parents which might _also_ now be
592 * scheduled for deletion (it may have been only waiting for
593 * its last child to go away).
595 * This tail recursion is done by hand as we don't want to depend
596 * on the compiler to always get this right (gcc generally doesn't).
597 * Real recursion would eat up our stack space.
601 * dput - release a dentry
602 * @dentry: dentry to release
604 * Release a dentry. This will drop the usage count and if appropriate
605 * call the dentry unlink method as well as removing it from the queues and
606 * releasing its resources. If the parent dentries were scheduled for release
607 * they too may now get deleted.
609 void dput(struct dentry *dentry)
611 if (unlikely(!dentry))
612 return;
614 repeat:
615 if (lockref_put_or_lock(&dentry->d_lockref))
616 return;
618 /* Unreachable? Get rid of it */
619 if (unlikely(d_unhashed(dentry)))
620 goto kill_it;
622 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
623 if (dentry->d_op->d_delete(dentry))
624 goto kill_it;
627 if (!(dentry->d_flags & DCACHE_REFERENCED))
628 dentry->d_flags |= DCACHE_REFERENCED;
629 dentry_lru_add(dentry);
631 dentry->d_lockref.count--;
632 spin_unlock(&dentry->d_lock);
633 return;
635 kill_it:
636 dentry = dentry_kill(dentry, 1);
637 if (dentry)
638 goto repeat;
640 EXPORT_SYMBOL(dput);
643 * d_invalidate - invalidate a dentry
644 * @dentry: dentry to invalidate
646 * Try to invalidate the dentry if it turns out to be
647 * possible. If there are other dentries that can be
648 * reached through this one we can't delete it and we
649 * return -EBUSY. On success we return 0.
651 * no dcache lock.
654 int d_invalidate(struct dentry * dentry)
657 * If it's already been dropped, return OK.
659 spin_lock(&dentry->d_lock);
660 if (d_unhashed(dentry)) {
661 spin_unlock(&dentry->d_lock);
662 return 0;
665 * Check whether to do a partial shrink_dcache
666 * to get rid of unused child entries.
668 if (!list_empty(&dentry->d_subdirs)) {
669 spin_unlock(&dentry->d_lock);
670 shrink_dcache_parent(dentry);
671 spin_lock(&dentry->d_lock);
675 * Somebody else still using it?
677 * If it's a directory, we can't drop it
678 * for fear of somebody re-populating it
679 * with children (even though dropping it
680 * would make it unreachable from the root,
681 * we might still populate it if it was a
682 * working directory or similar).
683 * We also need to leave mountpoints alone,
684 * directory or not.
686 if (dentry->d_lockref.count > 1 && dentry->d_inode) {
687 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
688 spin_unlock(&dentry->d_lock);
689 return -EBUSY;
693 __d_drop(dentry);
694 spin_unlock(&dentry->d_lock);
695 return 0;
697 EXPORT_SYMBOL(d_invalidate);
699 /* This must be called with d_lock held */
700 static inline void __dget_dlock(struct dentry *dentry)
702 dentry->d_lockref.count++;
705 static inline void __dget(struct dentry *dentry)
707 lockref_get(&dentry->d_lockref);
710 struct dentry *dget_parent(struct dentry *dentry)
712 int gotref;
713 struct dentry *ret;
716 * Do optimistic parent lookup without any
717 * locking.
719 rcu_read_lock();
720 ret = ACCESS_ONCE(dentry->d_parent);
721 gotref = lockref_get_not_zero(&ret->d_lockref);
722 rcu_read_unlock();
723 if (likely(gotref)) {
724 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
725 return ret;
726 dput(ret);
729 repeat:
731 * Don't need rcu_dereference because we re-check it was correct under
732 * the lock.
734 rcu_read_lock();
735 ret = dentry->d_parent;
736 spin_lock(&ret->d_lock);
737 if (unlikely(ret != dentry->d_parent)) {
738 spin_unlock(&ret->d_lock);
739 rcu_read_unlock();
740 goto repeat;
742 rcu_read_unlock();
743 BUG_ON(!ret->d_lockref.count);
744 ret->d_lockref.count++;
745 spin_unlock(&ret->d_lock);
746 return ret;
748 EXPORT_SYMBOL(dget_parent);
751 * d_find_alias - grab a hashed alias of inode
752 * @inode: inode in question
753 * @want_discon: flag, used by d_splice_alias, to request
754 * that only a DISCONNECTED alias be returned.
756 * If inode has a hashed alias, or is a directory and has any alias,
757 * acquire the reference to alias and return it. Otherwise return NULL.
758 * Notice that if inode is a directory there can be only one alias and
759 * it can be unhashed only if it has no children, or if it is the root
760 * of a filesystem.
762 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
763 * any other hashed alias over that one unless @want_discon is set,
764 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
766 static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
768 struct dentry *alias, *discon_alias;
770 again:
771 discon_alias = NULL;
772 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
773 spin_lock(&alias->d_lock);
774 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
775 if (IS_ROOT(alias) &&
776 (alias->d_flags & DCACHE_DISCONNECTED)) {
777 discon_alias = alias;
778 } else if (!want_discon) {
779 __dget_dlock(alias);
780 spin_unlock(&alias->d_lock);
781 return alias;
784 spin_unlock(&alias->d_lock);
786 if (discon_alias) {
787 alias = discon_alias;
788 spin_lock(&alias->d_lock);
789 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
790 if (IS_ROOT(alias) &&
791 (alias->d_flags & DCACHE_DISCONNECTED)) {
792 __dget_dlock(alias);
793 spin_unlock(&alias->d_lock);
794 return alias;
797 spin_unlock(&alias->d_lock);
798 goto again;
800 return NULL;
803 struct dentry *d_find_alias(struct inode *inode)
805 struct dentry *de = NULL;
807 if (!hlist_empty(&inode->i_dentry)) {
808 spin_lock(&inode->i_lock);
809 de = __d_find_alias(inode, 0);
810 spin_unlock(&inode->i_lock);
812 return de;
814 EXPORT_SYMBOL(d_find_alias);
817 * Try to kill dentries associated with this inode.
818 * WARNING: you must own a reference to inode.
820 void d_prune_aliases(struct inode *inode)
822 struct dentry *dentry;
823 restart:
824 spin_lock(&inode->i_lock);
825 hlist_for_each_entry(dentry, &inode->i_dentry, d_alias) {
826 spin_lock(&dentry->d_lock);
827 if (!dentry->d_lockref.count) {
829 * inform the fs via d_prune that this dentry
830 * is about to be unhashed and destroyed.
832 if ((dentry->d_flags & DCACHE_OP_PRUNE) &&
833 !d_unhashed(dentry))
834 dentry->d_op->d_prune(dentry);
836 __dget_dlock(dentry);
837 __d_drop(dentry);
838 spin_unlock(&dentry->d_lock);
839 spin_unlock(&inode->i_lock);
840 dput(dentry);
841 goto restart;
843 spin_unlock(&dentry->d_lock);
845 spin_unlock(&inode->i_lock);
847 EXPORT_SYMBOL(d_prune_aliases);
850 * Try to throw away a dentry - free the inode, dput the parent.
851 * Requires dentry->d_lock is held, and dentry->d_count == 0.
852 * Releases dentry->d_lock.
854 * This may fail if locks cannot be acquired no problem, just try again.
856 static struct dentry * try_prune_one_dentry(struct dentry *dentry)
857 __releases(dentry->d_lock)
859 struct dentry *parent;
861 parent = dentry_kill(dentry, 0);
863 * If dentry_kill returns NULL, we have nothing more to do.
864 * if it returns the same dentry, trylocks failed. In either
865 * case, just loop again.
867 * Otherwise, we need to prune ancestors too. This is necessary
868 * to prevent quadratic behavior of shrink_dcache_parent(), but
869 * is also expected to be beneficial in reducing dentry cache
870 * fragmentation.
872 if (!parent)
873 return NULL;
874 if (parent == dentry)
875 return dentry;
877 /* Prune ancestors. */
878 dentry = parent;
879 while (dentry) {
880 if (lockref_put_or_lock(&dentry->d_lockref))
881 return NULL;
882 dentry = dentry_kill(dentry, 1);
884 return NULL;
887 static void shrink_dentry_list(struct list_head *list)
889 struct dentry *dentry;
891 rcu_read_lock();
892 for (;;) {
893 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
894 if (&dentry->d_lru == list)
895 break; /* empty */
898 * Get the dentry lock, and re-verify that the dentry is
899 * this on the shrinking list. If it is, we know that
900 * DCACHE_SHRINK_LIST and DCACHE_LRU_LIST are set.
902 spin_lock(&dentry->d_lock);
903 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
904 spin_unlock(&dentry->d_lock);
905 continue;
909 * The dispose list is isolated and dentries are not accounted
910 * to the LRU here, so we can simply remove it from the list
911 * here regardless of whether it is referenced or not.
913 d_shrink_del(dentry);
916 * We found an inuse dentry which was not removed from
917 * the LRU because of laziness during lookup. Do not free it.
919 if (dentry->d_lockref.count) {
920 spin_unlock(&dentry->d_lock);
921 continue;
923 rcu_read_unlock();
926 * If 'try_to_prune()' returns a dentry, it will
927 * be the same one we passed in, and d_lock will
928 * have been held the whole time, so it will not
929 * have been added to any other lists. We failed
930 * to get the inode lock.
932 * We just add it back to the shrink list.
934 dentry = try_prune_one_dentry(dentry);
936 rcu_read_lock();
937 if (dentry) {
938 d_shrink_add(dentry, list);
939 spin_unlock(&dentry->d_lock);
942 rcu_read_unlock();
945 static enum lru_status
946 dentry_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg)
948 struct list_head *freeable = arg;
949 struct dentry *dentry = container_of(item, struct dentry, d_lru);
953 * we are inverting the lru lock/dentry->d_lock here,
954 * so use a trylock. If we fail to get the lock, just skip
955 * it
957 if (!spin_trylock(&dentry->d_lock))
958 return LRU_SKIP;
961 * Referenced dentries are still in use. If they have active
962 * counts, just remove them from the LRU. Otherwise give them
963 * another pass through the LRU.
965 if (dentry->d_lockref.count) {
966 d_lru_isolate(dentry);
967 spin_unlock(&dentry->d_lock);
968 return LRU_REMOVED;
971 if (dentry->d_flags & DCACHE_REFERENCED) {
972 dentry->d_flags &= ~DCACHE_REFERENCED;
973 spin_unlock(&dentry->d_lock);
976 * The list move itself will be made by the common LRU code. At
977 * this point, we've dropped the dentry->d_lock but keep the
978 * lru lock. This is safe to do, since every list movement is
979 * protected by the lru lock even if both locks are held.
981 * This is guaranteed by the fact that all LRU management
982 * functions are intermediated by the LRU API calls like
983 * list_lru_add and list_lru_del. List movement in this file
984 * only ever occur through this functions or through callbacks
985 * like this one, that are called from the LRU API.
987 * The only exceptions to this are functions like
988 * shrink_dentry_list, and code that first checks for the
989 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
990 * operating only with stack provided lists after they are
991 * properly isolated from the main list. It is thus, always a
992 * local access.
994 return LRU_ROTATE;
997 d_lru_shrink_move(dentry, freeable);
998 spin_unlock(&dentry->d_lock);
1000 return LRU_REMOVED;
1004 * prune_dcache_sb - shrink the dcache
1005 * @sb: superblock
1006 * @nr_to_scan : number of entries to try to free
1007 * @nid: which node to scan for freeable entities
1009 * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is
1010 * done when we need more memory an called from the superblock shrinker
1011 * function.
1013 * This function may fail to free any resources if all the dentries are in
1014 * use.
1016 long prune_dcache_sb(struct super_block *sb, unsigned long nr_to_scan,
1017 int nid)
1019 LIST_HEAD(dispose);
1020 long freed;
1022 freed = list_lru_walk_node(&sb->s_dentry_lru, nid, dentry_lru_isolate,
1023 &dispose, &nr_to_scan);
1024 shrink_dentry_list(&dispose);
1025 return freed;
1028 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1029 spinlock_t *lru_lock, void *arg)
1031 struct list_head *freeable = arg;
1032 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1035 * we are inverting the lru lock/dentry->d_lock here,
1036 * so use a trylock. If we fail to get the lock, just skip
1037 * it
1039 if (!spin_trylock(&dentry->d_lock))
1040 return LRU_SKIP;
1042 d_lru_shrink_move(dentry, freeable);
1043 spin_unlock(&dentry->d_lock);
1045 return LRU_REMOVED;
1050 * shrink_dcache_sb - shrink dcache for a superblock
1051 * @sb: superblock
1053 * Shrink the dcache for the specified super block. This is used to free
1054 * the dcache before unmounting a file system.
1056 void shrink_dcache_sb(struct super_block *sb)
1058 long freed;
1060 do {
1061 LIST_HEAD(dispose);
1063 freed = list_lru_walk(&sb->s_dentry_lru,
1064 dentry_lru_isolate_shrink, &dispose, UINT_MAX);
1066 this_cpu_sub(nr_dentry_unused, freed);
1067 shrink_dentry_list(&dispose);
1068 } while (freed > 0);
1070 EXPORT_SYMBOL(shrink_dcache_sb);
1073 * This tries to ascend one level of parenthood, but
1074 * we can race with renaming, so we need to re-check
1075 * the parenthood after dropping the lock and check
1076 * that the sequence number still matches.
1078 static struct dentry *try_to_ascend(struct dentry *old, unsigned seq)
1080 struct dentry *new = old->d_parent;
1082 rcu_read_lock();
1083 spin_unlock(&old->d_lock);
1084 spin_lock(&new->d_lock);
1087 * might go back up the wrong parent if we have had a rename
1088 * or deletion
1090 if (new != old->d_parent ||
1091 (old->d_flags & DCACHE_DENTRY_KILLED) ||
1092 need_seqretry(&rename_lock, seq)) {
1093 spin_unlock(&new->d_lock);
1094 new = NULL;
1096 rcu_read_unlock();
1097 return new;
1101 * enum d_walk_ret - action to talke during tree walk
1102 * @D_WALK_CONTINUE: contrinue walk
1103 * @D_WALK_QUIT: quit walk
1104 * @D_WALK_NORETRY: quit when retry is needed
1105 * @D_WALK_SKIP: skip this dentry and its children
1107 enum d_walk_ret {
1108 D_WALK_CONTINUE,
1109 D_WALK_QUIT,
1110 D_WALK_NORETRY,
1111 D_WALK_SKIP,
1115 * d_walk - walk the dentry tree
1116 * @parent: start of walk
1117 * @data: data passed to @enter() and @finish()
1118 * @enter: callback when first entering the dentry
1119 * @finish: callback when successfully finished the walk
1121 * The @enter() and @finish() callbacks are called with d_lock held.
1123 static void d_walk(struct dentry *parent, void *data,
1124 enum d_walk_ret (*enter)(void *, struct dentry *),
1125 void (*finish)(void *))
1127 struct dentry *this_parent;
1128 struct list_head *next;
1129 unsigned seq = 0;
1130 enum d_walk_ret ret;
1131 bool retry = true;
1133 again:
1134 read_seqbegin_or_lock(&rename_lock, &seq);
1135 this_parent = parent;
1136 spin_lock(&this_parent->d_lock);
1138 ret = enter(data, this_parent);
1139 switch (ret) {
1140 case D_WALK_CONTINUE:
1141 break;
1142 case D_WALK_QUIT:
1143 case D_WALK_SKIP:
1144 goto out_unlock;
1145 case D_WALK_NORETRY:
1146 retry = false;
1147 break;
1149 repeat:
1150 next = this_parent->d_subdirs.next;
1151 resume:
1152 while (next != &this_parent->d_subdirs) {
1153 struct list_head *tmp = next;
1154 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1155 next = tmp->next;
1157 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1159 ret = enter(data, dentry);
1160 switch (ret) {
1161 case D_WALK_CONTINUE:
1162 break;
1163 case D_WALK_QUIT:
1164 spin_unlock(&dentry->d_lock);
1165 goto out_unlock;
1166 case D_WALK_NORETRY:
1167 retry = false;
1168 break;
1169 case D_WALK_SKIP:
1170 spin_unlock(&dentry->d_lock);
1171 continue;
1174 if (!list_empty(&dentry->d_subdirs)) {
1175 spin_unlock(&this_parent->d_lock);
1176 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1177 this_parent = dentry;
1178 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1179 goto repeat;
1181 spin_unlock(&dentry->d_lock);
1184 * All done at this level ... ascend and resume the search.
1186 if (this_parent != parent) {
1187 struct dentry *child = this_parent;
1188 this_parent = try_to_ascend(this_parent, seq);
1189 if (!this_parent)
1190 goto rename_retry;
1191 next = child->d_u.d_child.next;
1192 goto resume;
1194 if (need_seqretry(&rename_lock, seq)) {
1195 spin_unlock(&this_parent->d_lock);
1196 goto rename_retry;
1198 if (finish)
1199 finish(data);
1201 out_unlock:
1202 spin_unlock(&this_parent->d_lock);
1203 done_seqretry(&rename_lock, seq);
1204 return;
1206 rename_retry:
1207 if (!retry)
1208 return;
1209 seq = 1;
1210 goto again;
1214 * Search for at least 1 mount point in the dentry's subdirs.
1215 * We descend to the next level whenever the d_subdirs
1216 * list is non-empty and continue searching.
1219 static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1221 int *ret = data;
1222 if (d_mountpoint(dentry)) {
1223 *ret = 1;
1224 return D_WALK_QUIT;
1226 return D_WALK_CONTINUE;
1230 * have_submounts - check for mounts over a dentry
1231 * @parent: dentry to check.
1233 * Return true if the parent or its subdirectories contain
1234 * a mount point
1236 int have_submounts(struct dentry *parent)
1238 int ret = 0;
1240 d_walk(parent, &ret, check_mount, NULL);
1242 return ret;
1244 EXPORT_SYMBOL(have_submounts);
1247 * Called by mount code to set a mountpoint and check if the mountpoint is
1248 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1249 * subtree can become unreachable).
1251 * Only one of check_submounts_and_drop() and d_set_mounted() must succeed. For
1252 * this reason take rename_lock and d_lock on dentry and ancestors.
1254 int d_set_mounted(struct dentry *dentry)
1256 struct dentry *p;
1257 int ret = -ENOENT;
1258 write_seqlock(&rename_lock);
1259 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1260 /* Need exclusion wrt. check_submounts_and_drop() */
1261 spin_lock(&p->d_lock);
1262 if (unlikely(d_unhashed(p))) {
1263 spin_unlock(&p->d_lock);
1264 goto out;
1266 spin_unlock(&p->d_lock);
1268 spin_lock(&dentry->d_lock);
1269 if (!d_unlinked(dentry)) {
1270 dentry->d_flags |= DCACHE_MOUNTED;
1271 ret = 0;
1273 spin_unlock(&dentry->d_lock);
1274 out:
1275 write_sequnlock(&rename_lock);
1276 return ret;
1280 * Search the dentry child list of the specified parent,
1281 * and move any unused dentries to the end of the unused
1282 * list for prune_dcache(). We descend to the next level
1283 * whenever the d_subdirs list is non-empty and continue
1284 * searching.
1286 * It returns zero iff there are no unused children,
1287 * otherwise it returns the number of children moved to
1288 * the end of the unused list. This may not be the total
1289 * number of unused children, because select_parent can
1290 * drop the lock and return early due to latency
1291 * constraints.
1294 struct select_data {
1295 struct dentry *start;
1296 struct list_head dispose;
1297 int found;
1300 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1302 struct select_data *data = _data;
1303 enum d_walk_ret ret = D_WALK_CONTINUE;
1305 if (data->start == dentry)
1306 goto out;
1309 * move only zero ref count dentries to the dispose list.
1311 * Those which are presently on the shrink list, being processed
1312 * by shrink_dentry_list(), shouldn't be moved. Otherwise the
1313 * loop in shrink_dcache_parent() might not make any progress
1314 * and loop forever.
1316 if (dentry->d_lockref.count) {
1317 dentry_lru_del(dentry);
1318 } else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
1320 * We can't use d_lru_shrink_move() because we
1321 * need to get the global LRU lock and do the
1322 * LRU accounting.
1324 d_lru_del(dentry);
1325 d_shrink_add(dentry, &data->dispose);
1326 data->found++;
1327 ret = D_WALK_NORETRY;
1330 * We can return to the caller if we have found some (this
1331 * ensures forward progress). We'll be coming back to find
1332 * the rest.
1334 if (data->found && need_resched())
1335 ret = D_WALK_QUIT;
1336 out:
1337 return ret;
1341 * shrink_dcache_parent - prune dcache
1342 * @parent: parent of entries to prune
1344 * Prune the dcache to remove unused children of the parent dentry.
1346 void shrink_dcache_parent(struct dentry *parent)
1348 for (;;) {
1349 struct select_data data;
1351 INIT_LIST_HEAD(&data.dispose);
1352 data.start = parent;
1353 data.found = 0;
1355 d_walk(parent, &data, select_collect, NULL);
1356 if (!data.found)
1357 break;
1359 shrink_dentry_list(&data.dispose);
1360 cond_resched();
1363 EXPORT_SYMBOL(shrink_dcache_parent);
1365 static enum d_walk_ret umount_collect(void *_data, struct dentry *dentry)
1367 struct select_data *data = _data;
1368 enum d_walk_ret ret = D_WALK_CONTINUE;
1370 if (dentry->d_lockref.count) {
1371 dentry_lru_del(dentry);
1372 if (likely(!list_empty(&dentry->d_subdirs)))
1373 goto out;
1374 if (dentry == data->start && dentry->d_lockref.count == 1)
1375 goto out;
1376 printk(KERN_ERR
1377 "BUG: Dentry %p{i=%lx,n=%s}"
1378 " still in use (%d)"
1379 " [unmount of %s %s]\n",
1380 dentry,
1381 dentry->d_inode ?
1382 dentry->d_inode->i_ino : 0UL,
1383 dentry->d_name.name,
1384 dentry->d_lockref.count,
1385 dentry->d_sb->s_type->name,
1386 dentry->d_sb->s_id);
1387 BUG();
1388 } else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
1390 * We can't use d_lru_shrink_move() because we
1391 * need to get the global LRU lock and do the
1392 * LRU accounting.
1394 if (dentry->d_flags & DCACHE_LRU_LIST)
1395 d_lru_del(dentry);
1396 d_shrink_add(dentry, &data->dispose);
1397 data->found++;
1398 ret = D_WALK_NORETRY;
1400 out:
1401 if (data->found && need_resched())
1402 ret = D_WALK_QUIT;
1403 return ret;
1407 * destroy the dentries attached to a superblock on unmounting
1409 void shrink_dcache_for_umount(struct super_block *sb)
1411 struct dentry *dentry;
1413 if (down_read_trylock(&sb->s_umount))
1414 BUG();
1416 dentry = sb->s_root;
1417 sb->s_root = NULL;
1418 for (;;) {
1419 struct select_data data;
1421 INIT_LIST_HEAD(&data.dispose);
1422 data.start = dentry;
1423 data.found = 0;
1425 d_walk(dentry, &data, umount_collect, NULL);
1426 if (!data.found)
1427 break;
1429 shrink_dentry_list(&data.dispose);
1430 cond_resched();
1432 d_drop(dentry);
1433 dput(dentry);
1435 while (!hlist_bl_empty(&sb->s_anon)) {
1436 struct select_data data;
1437 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
1439 INIT_LIST_HEAD(&data.dispose);
1440 data.start = NULL;
1441 data.found = 0;
1443 d_walk(dentry, &data, umount_collect, NULL);
1444 if (data.found)
1445 shrink_dentry_list(&data.dispose);
1446 cond_resched();
1450 static enum d_walk_ret check_and_collect(void *_data, struct dentry *dentry)
1452 struct select_data *data = _data;
1454 if (d_mountpoint(dentry)) {
1455 data->found = -EBUSY;
1456 return D_WALK_QUIT;
1459 return select_collect(_data, dentry);
1462 static void check_and_drop(void *_data)
1464 struct select_data *data = _data;
1466 if (d_mountpoint(data->start))
1467 data->found = -EBUSY;
1468 if (!data->found)
1469 __d_drop(data->start);
1473 * check_submounts_and_drop - prune dcache, check for submounts and drop
1475 * All done as a single atomic operation relative to has_unlinked_ancestor().
1476 * Returns 0 if successfully unhashed @parent. If there were submounts then
1477 * return -EBUSY.
1479 * @dentry: dentry to prune and drop
1481 int check_submounts_and_drop(struct dentry *dentry)
1483 int ret = 0;
1485 /* Negative dentries can be dropped without further checks */
1486 if (!dentry->d_inode) {
1487 d_drop(dentry);
1488 goto out;
1491 for (;;) {
1492 struct select_data data;
1494 INIT_LIST_HEAD(&data.dispose);
1495 data.start = dentry;
1496 data.found = 0;
1498 d_walk(dentry, &data, check_and_collect, check_and_drop);
1499 ret = data.found;
1501 if (!list_empty(&data.dispose))
1502 shrink_dentry_list(&data.dispose);
1504 if (ret <= 0)
1505 break;
1507 cond_resched();
1510 out:
1511 return ret;
1513 EXPORT_SYMBOL(check_submounts_and_drop);
1516 * __d_alloc - allocate a dcache entry
1517 * @sb: filesystem it will belong to
1518 * @name: qstr of the name
1520 * Allocates a dentry. It returns %NULL if there is insufficient memory
1521 * available. On a success the dentry is returned. The name passed in is
1522 * copied and the copy passed in may be reused after this call.
1525 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1527 struct dentry *dentry;
1528 char *dname;
1530 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1531 if (!dentry)
1532 return NULL;
1535 * We guarantee that the inline name is always NUL-terminated.
1536 * This way the memcpy() done by the name switching in rename
1537 * will still always have a NUL at the end, even if we might
1538 * be overwriting an internal NUL character
1540 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1541 if (name->len > DNAME_INLINE_LEN-1) {
1542 dname = kmalloc(name->len + 1, GFP_KERNEL);
1543 if (!dname) {
1544 kmem_cache_free(dentry_cache, dentry);
1545 return NULL;
1547 } else {
1548 dname = dentry->d_iname;
1551 dentry->d_name.len = name->len;
1552 dentry->d_name.hash = name->hash;
1553 memcpy(dname, name->name, name->len);
1554 dname[name->len] = 0;
1556 /* Make sure we always see the terminating NUL character */
1557 smp_wmb();
1558 dentry->d_name.name = dname;
1560 dentry->d_lockref.count = 1;
1561 dentry->d_flags = 0;
1562 spin_lock_init(&dentry->d_lock);
1563 seqcount_init(&dentry->d_seq);
1564 dentry->d_inode = NULL;
1565 dentry->d_parent = dentry;
1566 dentry->d_sb = sb;
1567 dentry->d_op = NULL;
1568 dentry->d_fsdata = NULL;
1569 INIT_HLIST_BL_NODE(&dentry->d_hash);
1570 INIT_LIST_HEAD(&dentry->d_lru);
1571 INIT_LIST_HEAD(&dentry->d_subdirs);
1572 INIT_HLIST_NODE(&dentry->d_alias);
1573 INIT_LIST_HEAD(&dentry->d_u.d_child);
1574 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1576 this_cpu_inc(nr_dentry);
1578 return dentry;
1582 * d_alloc - allocate a dcache entry
1583 * @parent: parent of entry to allocate
1584 * @name: qstr of the name
1586 * Allocates a dentry. It returns %NULL if there is insufficient memory
1587 * available. On a success the dentry is returned. The name passed in is
1588 * copied and the copy passed in may be reused after this call.
1590 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1592 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1593 if (!dentry)
1594 return NULL;
1596 spin_lock(&parent->d_lock);
1598 * don't need child lock because it is not subject
1599 * to concurrency here
1601 __dget_dlock(parent);
1602 dentry->d_parent = parent;
1603 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1604 spin_unlock(&parent->d_lock);
1606 return dentry;
1608 EXPORT_SYMBOL(d_alloc);
1611 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1612 * @sb: the superblock
1613 * @name: qstr of the name
1615 * For a filesystem that just pins its dentries in memory and never
1616 * performs lookups at all, return an unhashed IS_ROOT dentry.
1618 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1620 return __d_alloc(sb, name);
1622 EXPORT_SYMBOL(d_alloc_pseudo);
1624 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1626 struct qstr q;
1628 q.name = name;
1629 q.len = strlen(name);
1630 q.hash = full_name_hash(q.name, q.len);
1631 return d_alloc(parent, &q);
1633 EXPORT_SYMBOL(d_alloc_name);
1635 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1637 WARN_ON_ONCE(dentry->d_op);
1638 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1639 DCACHE_OP_COMPARE |
1640 DCACHE_OP_REVALIDATE |
1641 DCACHE_OP_WEAK_REVALIDATE |
1642 DCACHE_OP_DELETE ));
1643 dentry->d_op = op;
1644 if (!op)
1645 return;
1646 if (op->d_hash)
1647 dentry->d_flags |= DCACHE_OP_HASH;
1648 if (op->d_compare)
1649 dentry->d_flags |= DCACHE_OP_COMPARE;
1650 if (op->d_revalidate)
1651 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1652 if (op->d_weak_revalidate)
1653 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1654 if (op->d_delete)
1655 dentry->d_flags |= DCACHE_OP_DELETE;
1656 if (op->d_prune)
1657 dentry->d_flags |= DCACHE_OP_PRUNE;
1660 EXPORT_SYMBOL(d_set_d_op);
1662 static unsigned d_flags_for_inode(struct inode *inode)
1664 unsigned add_flags = DCACHE_FILE_TYPE;
1666 if (!inode)
1667 return DCACHE_MISS_TYPE;
1669 if (S_ISDIR(inode->i_mode)) {
1670 add_flags = DCACHE_DIRECTORY_TYPE;
1671 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1672 if (unlikely(!inode->i_op->lookup))
1673 add_flags = DCACHE_AUTODIR_TYPE;
1674 else
1675 inode->i_opflags |= IOP_LOOKUP;
1677 } else if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1678 if (unlikely(inode->i_op->follow_link))
1679 add_flags = DCACHE_SYMLINK_TYPE;
1680 else
1681 inode->i_opflags |= IOP_NOFOLLOW;
1684 if (unlikely(IS_AUTOMOUNT(inode)))
1685 add_flags |= DCACHE_NEED_AUTOMOUNT;
1686 return add_flags;
1689 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1691 unsigned add_flags = d_flags_for_inode(inode);
1693 spin_lock(&dentry->d_lock);
1694 dentry->d_flags &= ~DCACHE_ENTRY_TYPE;
1695 dentry->d_flags |= add_flags;
1696 if (inode)
1697 hlist_add_head(&dentry->d_alias, &inode->i_dentry);
1698 dentry->d_inode = inode;
1699 dentry_rcuwalk_barrier(dentry);
1700 spin_unlock(&dentry->d_lock);
1701 fsnotify_d_instantiate(dentry, inode);
1705 * d_instantiate - fill in inode information for a dentry
1706 * @entry: dentry to complete
1707 * @inode: inode to attach to this dentry
1709 * Fill in inode information in the entry.
1711 * This turns negative dentries into productive full members
1712 * of society.
1714 * NOTE! This assumes that the inode count has been incremented
1715 * (or otherwise set) by the caller to indicate that it is now
1716 * in use by the dcache.
1719 void d_instantiate(struct dentry *entry, struct inode * inode)
1721 BUG_ON(!hlist_unhashed(&entry->d_alias));
1722 if (inode)
1723 spin_lock(&inode->i_lock);
1724 __d_instantiate(entry, inode);
1725 if (inode)
1726 spin_unlock(&inode->i_lock);
1727 security_d_instantiate(entry, inode);
1729 EXPORT_SYMBOL(d_instantiate);
1732 * d_instantiate_unique - instantiate a non-aliased dentry
1733 * @entry: dentry to instantiate
1734 * @inode: inode to attach to this dentry
1736 * Fill in inode information in the entry. On success, it returns NULL.
1737 * If an unhashed alias of "entry" already exists, then we return the
1738 * aliased dentry instead and drop one reference to inode.
1740 * Note that in order to avoid conflicts with rename() etc, the caller
1741 * had better be holding the parent directory semaphore.
1743 * This also assumes that the inode count has been incremented
1744 * (or otherwise set) by the caller to indicate that it is now
1745 * in use by the dcache.
1747 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1748 struct inode *inode)
1750 struct dentry *alias;
1751 int len = entry->d_name.len;
1752 const char *name = entry->d_name.name;
1753 unsigned int hash = entry->d_name.hash;
1755 if (!inode) {
1756 __d_instantiate(entry, NULL);
1757 return NULL;
1760 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
1762 * Don't need alias->d_lock here, because aliases with
1763 * d_parent == entry->d_parent are not subject to name or
1764 * parent changes, because the parent inode i_mutex is held.
1766 if (alias->d_name.hash != hash)
1767 continue;
1768 if (alias->d_parent != entry->d_parent)
1769 continue;
1770 if (alias->d_name.len != len)
1771 continue;
1772 if (dentry_cmp(alias, name, len))
1773 continue;
1774 __dget(alias);
1775 return alias;
1778 __d_instantiate(entry, inode);
1779 return NULL;
1782 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1784 struct dentry *result;
1786 BUG_ON(!hlist_unhashed(&entry->d_alias));
1788 if (inode)
1789 spin_lock(&inode->i_lock);
1790 result = __d_instantiate_unique(entry, inode);
1791 if (inode)
1792 spin_unlock(&inode->i_lock);
1794 if (!result) {
1795 security_d_instantiate(entry, inode);
1796 return NULL;
1799 BUG_ON(!d_unhashed(result));
1800 iput(inode);
1801 return result;
1804 EXPORT_SYMBOL(d_instantiate_unique);
1807 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1808 * @entry: dentry to complete
1809 * @inode: inode to attach to this dentry
1811 * Fill in inode information in the entry. If a directory alias is found, then
1812 * return an error (and drop inode). Together with d_materialise_unique() this
1813 * guarantees that a directory inode may never have more than one alias.
1815 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1817 BUG_ON(!hlist_unhashed(&entry->d_alias));
1819 spin_lock(&inode->i_lock);
1820 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1821 spin_unlock(&inode->i_lock);
1822 iput(inode);
1823 return -EBUSY;
1825 __d_instantiate(entry, inode);
1826 spin_unlock(&inode->i_lock);
1827 security_d_instantiate(entry, inode);
1829 return 0;
1831 EXPORT_SYMBOL(d_instantiate_no_diralias);
1833 struct dentry *d_make_root(struct inode *root_inode)
1835 struct dentry *res = NULL;
1837 if (root_inode) {
1838 static const struct qstr name = QSTR_INIT("/", 1);
1840 res = __d_alloc(root_inode->i_sb, &name);
1841 if (res)
1842 d_instantiate(res, root_inode);
1843 else
1844 iput(root_inode);
1846 return res;
1848 EXPORT_SYMBOL(d_make_root);
1850 static struct dentry * __d_find_any_alias(struct inode *inode)
1852 struct dentry *alias;
1854 if (hlist_empty(&inode->i_dentry))
1855 return NULL;
1856 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias);
1857 __dget(alias);
1858 return alias;
1862 * d_find_any_alias - find any alias for a given inode
1863 * @inode: inode to find an alias for
1865 * If any aliases exist for the given inode, take and return a
1866 * reference for one of them. If no aliases exist, return %NULL.
1868 struct dentry *d_find_any_alias(struct inode *inode)
1870 struct dentry *de;
1872 spin_lock(&inode->i_lock);
1873 de = __d_find_any_alias(inode);
1874 spin_unlock(&inode->i_lock);
1875 return de;
1877 EXPORT_SYMBOL(d_find_any_alias);
1880 * d_obtain_alias - find or allocate a dentry for a given inode
1881 * @inode: inode to allocate the dentry for
1883 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1884 * similar open by handle operations. The returned dentry may be anonymous,
1885 * or may have a full name (if the inode was already in the cache).
1887 * When called on a directory inode, we must ensure that the inode only ever
1888 * has one dentry. If a dentry is found, that is returned instead of
1889 * allocating a new one.
1891 * On successful return, the reference to the inode has been transferred
1892 * to the dentry. In case of an error the reference on the inode is released.
1893 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1894 * be passed in and will be the error will be propagate to the return value,
1895 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1897 struct dentry *d_obtain_alias(struct inode *inode)
1899 static const struct qstr anonstring = QSTR_INIT("/", 1);
1900 struct dentry *tmp;
1901 struct dentry *res;
1902 unsigned add_flags;
1904 if (!inode)
1905 return ERR_PTR(-ESTALE);
1906 if (IS_ERR(inode))
1907 return ERR_CAST(inode);
1909 res = d_find_any_alias(inode);
1910 if (res)
1911 goto out_iput;
1913 tmp = __d_alloc(inode->i_sb, &anonstring);
1914 if (!tmp) {
1915 res = ERR_PTR(-ENOMEM);
1916 goto out_iput;
1919 spin_lock(&inode->i_lock);
1920 res = __d_find_any_alias(inode);
1921 if (res) {
1922 spin_unlock(&inode->i_lock);
1923 dput(tmp);
1924 goto out_iput;
1927 /* attach a disconnected dentry */
1928 add_flags = d_flags_for_inode(inode) | DCACHE_DISCONNECTED;
1930 spin_lock(&tmp->d_lock);
1931 tmp->d_inode = inode;
1932 tmp->d_flags |= add_flags;
1933 hlist_add_head(&tmp->d_alias, &inode->i_dentry);
1934 hlist_bl_lock(&tmp->d_sb->s_anon);
1935 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1936 hlist_bl_unlock(&tmp->d_sb->s_anon);
1937 spin_unlock(&tmp->d_lock);
1938 spin_unlock(&inode->i_lock);
1939 security_d_instantiate(tmp, inode);
1941 return tmp;
1943 out_iput:
1944 if (res && !IS_ERR(res))
1945 security_d_instantiate(res, inode);
1946 iput(inode);
1947 return res;
1949 EXPORT_SYMBOL(d_obtain_alias);
1952 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1953 * @inode: the inode which may have a disconnected dentry
1954 * @dentry: a negative dentry which we want to point to the inode.
1956 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1957 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1958 * and return it, else simply d_add the inode to the dentry and return NULL.
1960 * This is needed in the lookup routine of any filesystem that is exportable
1961 * (via knfsd) so that we can build dcache paths to directories effectively.
1963 * If a dentry was found and moved, then it is returned. Otherwise NULL
1964 * is returned. This matches the expected return value of ->lookup.
1966 * Cluster filesystems may call this function with a negative, hashed dentry.
1967 * In that case, we know that the inode will be a regular file, and also this
1968 * will only occur during atomic_open. So we need to check for the dentry
1969 * being already hashed only in the final case.
1971 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1973 struct dentry *new = NULL;
1975 if (IS_ERR(inode))
1976 return ERR_CAST(inode);
1978 if (inode && S_ISDIR(inode->i_mode)) {
1979 spin_lock(&inode->i_lock);
1980 new = __d_find_alias(inode, 1);
1981 if (new) {
1982 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1983 spin_unlock(&inode->i_lock);
1984 security_d_instantiate(new, inode);
1985 d_move(new, dentry);
1986 iput(inode);
1987 } else {
1988 /* already taking inode->i_lock, so d_add() by hand */
1989 __d_instantiate(dentry, inode);
1990 spin_unlock(&inode->i_lock);
1991 security_d_instantiate(dentry, inode);
1992 d_rehash(dentry);
1994 } else {
1995 d_instantiate(dentry, inode);
1996 if (d_unhashed(dentry))
1997 d_rehash(dentry);
1999 return new;
2001 EXPORT_SYMBOL(d_splice_alias);
2004 * d_add_ci - lookup or allocate new dentry with case-exact name
2005 * @inode: the inode case-insensitive lookup has found
2006 * @dentry: the negative dentry that was passed to the parent's lookup func
2007 * @name: the case-exact name to be associated with the returned dentry
2009 * This is to avoid filling the dcache with case-insensitive names to the
2010 * same inode, only the actual correct case is stored in the dcache for
2011 * case-insensitive filesystems.
2013 * For a case-insensitive lookup match and if the the case-exact dentry
2014 * already exists in in the dcache, use it and return it.
2016 * If no entry exists with the exact case name, allocate new dentry with
2017 * the exact case, and return the spliced entry.
2019 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2020 struct qstr *name)
2022 struct dentry *found;
2023 struct dentry *new;
2026 * First check if a dentry matching the name already exists,
2027 * if not go ahead and create it now.
2029 found = d_hash_and_lookup(dentry->d_parent, name);
2030 if (unlikely(IS_ERR(found)))
2031 goto err_out;
2032 if (!found) {
2033 new = d_alloc(dentry->d_parent, name);
2034 if (!new) {
2035 found = ERR_PTR(-ENOMEM);
2036 goto err_out;
2039 found = d_splice_alias(inode, new);
2040 if (found) {
2041 dput(new);
2042 return found;
2044 return new;
2048 * If a matching dentry exists, and it's not negative use it.
2050 * Decrement the reference count to balance the iget() done
2051 * earlier on.
2053 if (found->d_inode) {
2054 if (unlikely(found->d_inode != inode)) {
2055 /* This can't happen because bad inodes are unhashed. */
2056 BUG_ON(!is_bad_inode(inode));
2057 BUG_ON(!is_bad_inode(found->d_inode));
2059 iput(inode);
2060 return found;
2064 * Negative dentry: instantiate it unless the inode is a directory and
2065 * already has a dentry.
2067 new = d_splice_alias(inode, found);
2068 if (new) {
2069 dput(found);
2070 found = new;
2072 return found;
2074 err_out:
2075 iput(inode);
2076 return found;
2078 EXPORT_SYMBOL(d_add_ci);
2081 * Do the slow-case of the dentry name compare.
2083 * Unlike the dentry_cmp() function, we need to atomically
2084 * load the name and length information, so that the
2085 * filesystem can rely on them, and can use the 'name' and
2086 * 'len' information without worrying about walking off the
2087 * end of memory etc.
2089 * Thus the read_seqcount_retry() and the "duplicate" info
2090 * in arguments (the low-level filesystem should not look
2091 * at the dentry inode or name contents directly, since
2092 * rename can change them while we're in RCU mode).
2094 enum slow_d_compare {
2095 D_COMP_OK,
2096 D_COMP_NOMATCH,
2097 D_COMP_SEQRETRY,
2100 static noinline enum slow_d_compare slow_dentry_cmp(
2101 const struct dentry *parent,
2102 struct dentry *dentry,
2103 unsigned int seq,
2104 const struct qstr *name)
2106 int tlen = dentry->d_name.len;
2107 const char *tname = dentry->d_name.name;
2109 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2110 cpu_relax();
2111 return D_COMP_SEQRETRY;
2113 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2114 return D_COMP_NOMATCH;
2115 return D_COMP_OK;
2119 * __d_lookup_rcu - search for a dentry (racy, store-free)
2120 * @parent: parent dentry
2121 * @name: qstr of name we wish to find
2122 * @seqp: returns d_seq value at the point where the dentry was found
2123 * Returns: dentry, or NULL
2125 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2126 * resolution (store-free path walking) design described in
2127 * Documentation/filesystems/path-lookup.txt.
2129 * This is not to be used outside core vfs.
2131 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2132 * held, and rcu_read_lock held. The returned dentry must not be stored into
2133 * without taking d_lock and checking d_seq sequence count against @seq
2134 * returned here.
2136 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2137 * function.
2139 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2140 * the returned dentry, so long as its parent's seqlock is checked after the
2141 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2142 * is formed, giving integrity down the path walk.
2144 * NOTE! The caller *has* to check the resulting dentry against the sequence
2145 * number we've returned before using any of the resulting dentry state!
2147 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2148 const struct qstr *name,
2149 unsigned *seqp)
2151 u64 hashlen = name->hash_len;
2152 const unsigned char *str = name->name;
2153 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
2154 struct hlist_bl_node *node;
2155 struct dentry *dentry;
2158 * Note: There is significant duplication with __d_lookup_rcu which is
2159 * required to prevent single threaded performance regressions
2160 * especially on architectures where smp_rmb (in seqcounts) are costly.
2161 * Keep the two functions in sync.
2165 * The hash list is protected using RCU.
2167 * Carefully use d_seq when comparing a candidate dentry, to avoid
2168 * races with d_move().
2170 * It is possible that concurrent renames can mess up our list
2171 * walk here and result in missing our dentry, resulting in the
2172 * false-negative result. d_lookup() protects against concurrent
2173 * renames using rename_lock seqlock.
2175 * See Documentation/filesystems/path-lookup.txt for more details.
2177 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2178 unsigned seq;
2180 seqretry:
2182 * The dentry sequence count protects us from concurrent
2183 * renames, and thus protects parent and name fields.
2185 * The caller must perform a seqcount check in order
2186 * to do anything useful with the returned dentry.
2188 * NOTE! We do a "raw" seqcount_begin here. That means that
2189 * we don't wait for the sequence count to stabilize if it
2190 * is in the middle of a sequence change. If we do the slow
2191 * dentry compare, we will do seqretries until it is stable,
2192 * and if we end up with a successful lookup, we actually
2193 * want to exit RCU lookup anyway.
2195 seq = raw_seqcount_begin(&dentry->d_seq);
2196 if (dentry->d_parent != parent)
2197 continue;
2198 if (d_unhashed(dentry))
2199 continue;
2201 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2202 if (dentry->d_name.hash != hashlen_hash(hashlen))
2203 continue;
2204 *seqp = seq;
2205 switch (slow_dentry_cmp(parent, dentry, seq, name)) {
2206 case D_COMP_OK:
2207 return dentry;
2208 case D_COMP_NOMATCH:
2209 continue;
2210 default:
2211 goto seqretry;
2215 if (dentry->d_name.hash_len != hashlen)
2216 continue;
2217 *seqp = seq;
2218 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
2219 return dentry;
2221 return NULL;
2225 * d_lookup - search for a dentry
2226 * @parent: parent dentry
2227 * @name: qstr of name we wish to find
2228 * Returns: dentry, or NULL
2230 * d_lookup searches the children of the parent dentry for the name in
2231 * question. If the dentry is found its reference count is incremented and the
2232 * dentry is returned. The caller must use dput to free the entry when it has
2233 * finished using it. %NULL is returned if the dentry does not exist.
2235 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2237 struct dentry *dentry;
2238 unsigned seq;
2240 do {
2241 seq = read_seqbegin(&rename_lock);
2242 dentry = __d_lookup(parent, name);
2243 if (dentry)
2244 break;
2245 } while (read_seqretry(&rename_lock, seq));
2246 return dentry;
2248 EXPORT_SYMBOL(d_lookup);
2251 * __d_lookup - search for a dentry (racy)
2252 * @parent: parent dentry
2253 * @name: qstr of name we wish to find
2254 * Returns: dentry, or NULL
2256 * __d_lookup is like d_lookup, however it may (rarely) return a
2257 * false-negative result due to unrelated rename activity.
2259 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2260 * however it must be used carefully, eg. with a following d_lookup in
2261 * the case of failure.
2263 * __d_lookup callers must be commented.
2265 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2267 unsigned int len = name->len;
2268 unsigned int hash = name->hash;
2269 const unsigned char *str = name->name;
2270 struct hlist_bl_head *b = d_hash(parent, hash);
2271 struct hlist_bl_node *node;
2272 struct dentry *found = NULL;
2273 struct dentry *dentry;
2276 * Note: There is significant duplication with __d_lookup_rcu which is
2277 * required to prevent single threaded performance regressions
2278 * especially on architectures where smp_rmb (in seqcounts) are costly.
2279 * Keep the two functions in sync.
2283 * The hash list is protected using RCU.
2285 * Take d_lock when comparing a candidate dentry, to avoid races
2286 * with d_move().
2288 * It is possible that concurrent renames can mess up our list
2289 * walk here and result in missing our dentry, resulting in the
2290 * false-negative result. d_lookup() protects against concurrent
2291 * renames using rename_lock seqlock.
2293 * See Documentation/filesystems/path-lookup.txt for more details.
2295 rcu_read_lock();
2297 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2299 if (dentry->d_name.hash != hash)
2300 continue;
2302 spin_lock(&dentry->d_lock);
2303 if (dentry->d_parent != parent)
2304 goto next;
2305 if (d_unhashed(dentry))
2306 goto next;
2309 * It is safe to compare names since d_move() cannot
2310 * change the qstr (protected by d_lock).
2312 if (parent->d_flags & DCACHE_OP_COMPARE) {
2313 int tlen = dentry->d_name.len;
2314 const char *tname = dentry->d_name.name;
2315 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2316 goto next;
2317 } else {
2318 if (dentry->d_name.len != len)
2319 goto next;
2320 if (dentry_cmp(dentry, str, len))
2321 goto next;
2324 dentry->d_lockref.count++;
2325 found = dentry;
2326 spin_unlock(&dentry->d_lock);
2327 break;
2328 next:
2329 spin_unlock(&dentry->d_lock);
2331 rcu_read_unlock();
2333 return found;
2337 * d_hash_and_lookup - hash the qstr then search for a dentry
2338 * @dir: Directory to search in
2339 * @name: qstr of name we wish to find
2341 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2343 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2346 * Check for a fs-specific hash function. Note that we must
2347 * calculate the standard hash first, as the d_op->d_hash()
2348 * routine may choose to leave the hash value unchanged.
2350 name->hash = full_name_hash(name->name, name->len);
2351 if (dir->d_flags & DCACHE_OP_HASH) {
2352 int err = dir->d_op->d_hash(dir, name);
2353 if (unlikely(err < 0))
2354 return ERR_PTR(err);
2356 return d_lookup(dir, name);
2358 EXPORT_SYMBOL(d_hash_and_lookup);
2361 * d_validate - verify dentry provided from insecure source (deprecated)
2362 * @dentry: The dentry alleged to be valid child of @dparent
2363 * @dparent: The parent dentry (known to be valid)
2365 * An insecure source has sent us a dentry, here we verify it and dget() it.
2366 * This is used by ncpfs in its readdir implementation.
2367 * Zero is returned in the dentry is invalid.
2369 * This function is slow for big directories, and deprecated, do not use it.
2371 int d_validate(struct dentry *dentry, struct dentry *dparent)
2373 struct dentry *child;
2375 spin_lock(&dparent->d_lock);
2376 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2377 if (dentry == child) {
2378 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2379 __dget_dlock(dentry);
2380 spin_unlock(&dentry->d_lock);
2381 spin_unlock(&dparent->d_lock);
2382 return 1;
2385 spin_unlock(&dparent->d_lock);
2387 return 0;
2389 EXPORT_SYMBOL(d_validate);
2392 * When a file is deleted, we have two options:
2393 * - turn this dentry into a negative dentry
2394 * - unhash this dentry and free it.
2396 * Usually, we want to just turn this into
2397 * a negative dentry, but if anybody else is
2398 * currently using the dentry or the inode
2399 * we can't do that and we fall back on removing
2400 * it from the hash queues and waiting for
2401 * it to be deleted later when it has no users
2405 * d_delete - delete a dentry
2406 * @dentry: The dentry to delete
2408 * Turn the dentry into a negative dentry if possible, otherwise
2409 * remove it from the hash queues so it can be deleted later
2412 void d_delete(struct dentry * dentry)
2414 struct inode *inode;
2415 int isdir = 0;
2417 * Are we the only user?
2419 again:
2420 spin_lock(&dentry->d_lock);
2421 inode = dentry->d_inode;
2422 isdir = S_ISDIR(inode->i_mode);
2423 if (dentry->d_lockref.count == 1) {
2424 if (!spin_trylock(&inode->i_lock)) {
2425 spin_unlock(&dentry->d_lock);
2426 cpu_relax();
2427 goto again;
2429 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2430 dentry_unlink_inode(dentry);
2431 fsnotify_nameremove(dentry, isdir);
2432 return;
2435 if (!d_unhashed(dentry))
2436 __d_drop(dentry);
2438 spin_unlock(&dentry->d_lock);
2440 fsnotify_nameremove(dentry, isdir);
2442 EXPORT_SYMBOL(d_delete);
2444 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2446 BUG_ON(!d_unhashed(entry));
2447 hlist_bl_lock(b);
2448 entry->d_flags |= DCACHE_RCUACCESS;
2449 hlist_bl_add_head_rcu(&entry->d_hash, b);
2450 hlist_bl_unlock(b);
2453 static void _d_rehash(struct dentry * entry)
2455 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2459 * d_rehash - add an entry back to the hash
2460 * @entry: dentry to add to the hash
2462 * Adds a dentry to the hash according to its name.
2465 void d_rehash(struct dentry * entry)
2467 spin_lock(&entry->d_lock);
2468 _d_rehash(entry);
2469 spin_unlock(&entry->d_lock);
2471 EXPORT_SYMBOL(d_rehash);
2474 * dentry_update_name_case - update case insensitive dentry with a new name
2475 * @dentry: dentry to be updated
2476 * @name: new name
2478 * Update a case insensitive dentry with new case of name.
2480 * dentry must have been returned by d_lookup with name @name. Old and new
2481 * name lengths must match (ie. no d_compare which allows mismatched name
2482 * lengths).
2484 * Parent inode i_mutex must be held over d_lookup and into this call (to
2485 * keep renames and concurrent inserts, and readdir(2) away).
2487 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2489 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2490 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2492 spin_lock(&dentry->d_lock);
2493 write_seqcount_begin(&dentry->d_seq);
2494 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2495 write_seqcount_end(&dentry->d_seq);
2496 spin_unlock(&dentry->d_lock);
2498 EXPORT_SYMBOL(dentry_update_name_case);
2500 static void switch_names(struct dentry *dentry, struct dentry *target)
2502 if (dname_external(target)) {
2503 if (dname_external(dentry)) {
2505 * Both external: swap the pointers
2507 swap(target->d_name.name, dentry->d_name.name);
2508 } else {
2510 * dentry:internal, target:external. Steal target's
2511 * storage and make target internal.
2513 memcpy(target->d_iname, dentry->d_name.name,
2514 dentry->d_name.len + 1);
2515 dentry->d_name.name = target->d_name.name;
2516 target->d_name.name = target->d_iname;
2518 } else {
2519 if (dname_external(dentry)) {
2521 * dentry:external, target:internal. Give dentry's
2522 * storage to target and make dentry internal
2524 memcpy(dentry->d_iname, target->d_name.name,
2525 target->d_name.len + 1);
2526 target->d_name.name = dentry->d_name.name;
2527 dentry->d_name.name = dentry->d_iname;
2528 } else {
2530 * Both are internal. Just copy target to dentry
2532 memcpy(dentry->d_iname, target->d_name.name,
2533 target->d_name.len + 1);
2534 dentry->d_name.len = target->d_name.len;
2535 return;
2538 swap(dentry->d_name.len, target->d_name.len);
2541 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2544 * XXXX: do we really need to take target->d_lock?
2546 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2547 spin_lock(&target->d_parent->d_lock);
2548 else {
2549 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2550 spin_lock(&dentry->d_parent->d_lock);
2551 spin_lock_nested(&target->d_parent->d_lock,
2552 DENTRY_D_LOCK_NESTED);
2553 } else {
2554 spin_lock(&target->d_parent->d_lock);
2555 spin_lock_nested(&dentry->d_parent->d_lock,
2556 DENTRY_D_LOCK_NESTED);
2559 if (target < dentry) {
2560 spin_lock_nested(&target->d_lock, 2);
2561 spin_lock_nested(&dentry->d_lock, 3);
2562 } else {
2563 spin_lock_nested(&dentry->d_lock, 2);
2564 spin_lock_nested(&target->d_lock, 3);
2568 static void dentry_unlock_parents_for_move(struct dentry *dentry,
2569 struct dentry *target)
2571 if (target->d_parent != dentry->d_parent)
2572 spin_unlock(&dentry->d_parent->d_lock);
2573 if (target->d_parent != target)
2574 spin_unlock(&target->d_parent->d_lock);
2578 * When switching names, the actual string doesn't strictly have to
2579 * be preserved in the target - because we're dropping the target
2580 * anyway. As such, we can just do a simple memcpy() to copy over
2581 * the new name before we switch.
2583 * Note that we have to be a lot more careful about getting the hash
2584 * switched - we have to switch the hash value properly even if it
2585 * then no longer matches the actual (corrupted) string of the target.
2586 * The hash value has to match the hash queue that the dentry is on..
2589 * __d_move - move a dentry
2590 * @dentry: entry to move
2591 * @target: new dentry
2593 * Update the dcache to reflect the move of a file name. Negative
2594 * dcache entries should not be moved in this way. Caller must hold
2595 * rename_lock, the i_mutex of the source and target directories,
2596 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2598 static void __d_move(struct dentry * dentry, struct dentry * target)
2600 if (!dentry->d_inode)
2601 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2603 BUG_ON(d_ancestor(dentry, target));
2604 BUG_ON(d_ancestor(target, dentry));
2606 dentry_lock_for_move(dentry, target);
2608 write_seqcount_begin(&dentry->d_seq);
2609 write_seqcount_begin(&target->d_seq);
2611 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2614 * Move the dentry to the target hash queue. Don't bother checking
2615 * for the same hash queue because of how unlikely it is.
2617 __d_drop(dentry);
2618 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2620 /* Unhash the target: dput() will then get rid of it */
2621 __d_drop(target);
2623 list_del(&dentry->d_u.d_child);
2624 list_del(&target->d_u.d_child);
2626 /* Switch the names.. */
2627 switch_names(dentry, target);
2628 swap(dentry->d_name.hash, target->d_name.hash);
2630 /* ... and switch the parents */
2631 if (IS_ROOT(dentry)) {
2632 dentry->d_parent = target->d_parent;
2633 target->d_parent = target;
2634 INIT_LIST_HEAD(&target->d_u.d_child);
2635 } else {
2636 swap(dentry->d_parent, target->d_parent);
2638 /* And add them back to the (new) parent lists */
2639 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
2642 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2644 write_seqcount_end(&target->d_seq);
2645 write_seqcount_end(&dentry->d_seq);
2647 dentry_unlock_parents_for_move(dentry, target);
2648 spin_unlock(&target->d_lock);
2649 fsnotify_d_move(dentry);
2650 spin_unlock(&dentry->d_lock);
2654 * d_move - move a dentry
2655 * @dentry: entry to move
2656 * @target: new dentry
2658 * Update the dcache to reflect the move of a file name. Negative
2659 * dcache entries should not be moved in this way. See the locking
2660 * requirements for __d_move.
2662 void d_move(struct dentry *dentry, struct dentry *target)
2664 write_seqlock(&rename_lock);
2665 __d_move(dentry, target);
2666 write_sequnlock(&rename_lock);
2668 EXPORT_SYMBOL(d_move);
2671 * d_ancestor - search for an ancestor
2672 * @p1: ancestor dentry
2673 * @p2: child dentry
2675 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2676 * an ancestor of p2, else NULL.
2678 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2680 struct dentry *p;
2682 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2683 if (p->d_parent == p1)
2684 return p;
2686 return NULL;
2690 * This helper attempts to cope with remotely renamed directories
2692 * It assumes that the caller is already holding
2693 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2695 * Note: If ever the locking in lock_rename() changes, then please
2696 * remember to update this too...
2698 static struct dentry *__d_unalias(struct inode *inode,
2699 struct dentry *dentry, struct dentry *alias)
2701 struct mutex *m1 = NULL, *m2 = NULL;
2702 struct dentry *ret = ERR_PTR(-EBUSY);
2704 /* If alias and dentry share a parent, then no extra locks required */
2705 if (alias->d_parent == dentry->d_parent)
2706 goto out_unalias;
2708 /* See lock_rename() */
2709 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2710 goto out_err;
2711 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2712 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2713 goto out_err;
2714 m2 = &alias->d_parent->d_inode->i_mutex;
2715 out_unalias:
2716 if (likely(!d_mountpoint(alias))) {
2717 __d_move(alias, dentry);
2718 ret = alias;
2720 out_err:
2721 spin_unlock(&inode->i_lock);
2722 if (m2)
2723 mutex_unlock(m2);
2724 if (m1)
2725 mutex_unlock(m1);
2726 return ret;
2730 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2731 * named dentry in place of the dentry to be replaced.
2732 * returns with anon->d_lock held!
2734 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2736 struct dentry *dparent;
2738 dentry_lock_for_move(anon, dentry);
2740 write_seqcount_begin(&dentry->d_seq);
2741 write_seqcount_begin(&anon->d_seq);
2743 dparent = dentry->d_parent;
2745 switch_names(dentry, anon);
2746 swap(dentry->d_name.hash, anon->d_name.hash);
2748 dentry->d_parent = dentry;
2749 list_del_init(&dentry->d_u.d_child);
2750 anon->d_parent = dparent;
2751 list_move(&anon->d_u.d_child, &dparent->d_subdirs);
2753 write_seqcount_end(&dentry->d_seq);
2754 write_seqcount_end(&anon->d_seq);
2756 dentry_unlock_parents_for_move(anon, dentry);
2757 spin_unlock(&dentry->d_lock);
2759 /* anon->d_lock still locked, returns locked */
2763 * d_materialise_unique - introduce an inode into the tree
2764 * @dentry: candidate dentry
2765 * @inode: inode to bind to the dentry, to which aliases may be attached
2767 * Introduces an dentry into the tree, substituting an extant disconnected
2768 * root directory alias in its place if there is one. Caller must hold the
2769 * i_mutex of the parent directory.
2771 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2773 struct dentry *actual;
2775 BUG_ON(!d_unhashed(dentry));
2777 if (!inode) {
2778 actual = dentry;
2779 __d_instantiate(dentry, NULL);
2780 d_rehash(actual);
2781 goto out_nolock;
2784 spin_lock(&inode->i_lock);
2786 if (S_ISDIR(inode->i_mode)) {
2787 struct dentry *alias;
2789 /* Does an aliased dentry already exist? */
2790 alias = __d_find_alias(inode, 0);
2791 if (alias) {
2792 actual = alias;
2793 write_seqlock(&rename_lock);
2795 if (d_ancestor(alias, dentry)) {
2796 /* Check for loops */
2797 actual = ERR_PTR(-ELOOP);
2798 spin_unlock(&inode->i_lock);
2799 } else if (IS_ROOT(alias)) {
2800 /* Is this an anonymous mountpoint that we
2801 * could splice into our tree? */
2802 __d_materialise_dentry(dentry, alias);
2803 write_sequnlock(&rename_lock);
2804 __d_drop(alias);
2805 goto found;
2806 } else {
2807 /* Nope, but we must(!) avoid directory
2808 * aliasing. This drops inode->i_lock */
2809 actual = __d_unalias(inode, dentry, alias);
2811 write_sequnlock(&rename_lock);
2812 if (IS_ERR(actual)) {
2813 if (PTR_ERR(actual) == -ELOOP)
2814 pr_warn_ratelimited(
2815 "VFS: Lookup of '%s' in %s %s"
2816 " would have caused loop\n",
2817 dentry->d_name.name,
2818 inode->i_sb->s_type->name,
2819 inode->i_sb->s_id);
2820 dput(alias);
2822 goto out_nolock;
2826 /* Add a unique reference */
2827 actual = __d_instantiate_unique(dentry, inode);
2828 if (!actual)
2829 actual = dentry;
2830 else
2831 BUG_ON(!d_unhashed(actual));
2833 spin_lock(&actual->d_lock);
2834 found:
2835 _d_rehash(actual);
2836 spin_unlock(&actual->d_lock);
2837 spin_unlock(&inode->i_lock);
2838 out_nolock:
2839 if (actual == dentry) {
2840 security_d_instantiate(dentry, inode);
2841 return NULL;
2844 iput(inode);
2845 return actual;
2847 EXPORT_SYMBOL_GPL(d_materialise_unique);
2849 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2851 *buflen -= namelen;
2852 if (*buflen < 0)
2853 return -ENAMETOOLONG;
2854 *buffer -= namelen;
2855 memcpy(*buffer, str, namelen);
2856 return 0;
2860 * prepend_name - prepend a pathname in front of current buffer pointer
2861 * @buffer: buffer pointer
2862 * @buflen: allocated length of the buffer
2863 * @name: name string and length qstr structure
2865 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2866 * make sure that either the old or the new name pointer and length are
2867 * fetched. However, there may be mismatch between length and pointer.
2868 * The length cannot be trusted, we need to copy it byte-by-byte until
2869 * the length is reached or a null byte is found. It also prepends "/" at
2870 * the beginning of the name. The sequence number check at the caller will
2871 * retry it again when a d_move() does happen. So any garbage in the buffer
2872 * due to mismatched pointer and length will be discarded.
2874 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2876 const char *dname = ACCESS_ONCE(name->name);
2877 u32 dlen = ACCESS_ONCE(name->len);
2878 char *p;
2880 if (*buflen < dlen + 1)
2881 return -ENAMETOOLONG;
2882 *buflen -= dlen + 1;
2883 p = *buffer -= dlen + 1;
2884 *p++ = '/';
2885 while (dlen--) {
2886 char c = *dname++;
2887 if (!c)
2888 break;
2889 *p++ = c;
2891 return 0;
2895 * prepend_path - Prepend path string to a buffer
2896 * @path: the dentry/vfsmount to report
2897 * @root: root vfsmnt/dentry
2898 * @buffer: pointer to the end of the buffer
2899 * @buflen: pointer to buffer length
2901 * The function will first try to write out the pathname without taking any
2902 * lock other than the RCU read lock to make sure that dentries won't go away.
2903 * It only checks the sequence number of the global rename_lock as any change
2904 * in the dentry's d_seq will be preceded by changes in the rename_lock
2905 * sequence number. If the sequence number had been changed, it will restart
2906 * the whole pathname back-tracing sequence again by taking the rename_lock.
2907 * In this case, there is no need to take the RCU read lock as the recursive
2908 * parent pointer references will keep the dentry chain alive as long as no
2909 * rename operation is performed.
2911 static int prepend_path(const struct path *path,
2912 const struct path *root,
2913 char **buffer, int *buflen)
2915 struct dentry *dentry;
2916 struct vfsmount *vfsmnt;
2917 struct mount *mnt;
2918 int error = 0;
2919 unsigned seq, m_seq = 0;
2920 char *bptr;
2921 int blen;
2923 rcu_read_lock();
2924 restart_mnt:
2925 read_seqbegin_or_lock(&mount_lock, &m_seq);
2926 seq = 0;
2927 rcu_read_lock();
2928 restart:
2929 bptr = *buffer;
2930 blen = *buflen;
2931 error = 0;
2932 dentry = path->dentry;
2933 vfsmnt = path->mnt;
2934 mnt = real_mount(vfsmnt);
2935 read_seqbegin_or_lock(&rename_lock, &seq);
2936 while (dentry != root->dentry || vfsmnt != root->mnt) {
2937 struct dentry * parent;
2939 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2940 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
2941 /* Global root? */
2942 if (mnt != parent) {
2943 dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
2944 mnt = parent;
2945 vfsmnt = &mnt->mnt;
2946 continue;
2949 * Filesystems needing to implement special "root names"
2950 * should do so with ->d_dname()
2952 if (IS_ROOT(dentry) &&
2953 (dentry->d_name.len != 1 ||
2954 dentry->d_name.name[0] != '/')) {
2955 WARN(1, "Root dentry has weird name <%.*s>\n",
2956 (int) dentry->d_name.len,
2957 dentry->d_name.name);
2959 if (!error)
2960 error = is_mounted(vfsmnt) ? 1 : 2;
2961 break;
2963 parent = dentry->d_parent;
2964 prefetch(parent);
2965 error = prepend_name(&bptr, &blen, &dentry->d_name);
2966 if (error)
2967 break;
2969 dentry = parent;
2971 if (!(seq & 1))
2972 rcu_read_unlock();
2973 if (need_seqretry(&rename_lock, seq)) {
2974 seq = 1;
2975 goto restart;
2977 done_seqretry(&rename_lock, seq);
2979 if (!(m_seq & 1))
2980 rcu_read_unlock();
2981 if (need_seqretry(&mount_lock, m_seq)) {
2982 m_seq = 1;
2983 goto restart_mnt;
2985 done_seqretry(&mount_lock, m_seq);
2987 if (error >= 0 && bptr == *buffer) {
2988 if (--blen < 0)
2989 error = -ENAMETOOLONG;
2990 else
2991 *--bptr = '/';
2993 *buffer = bptr;
2994 *buflen = blen;
2995 return error;
2999 * __d_path - return the path of a dentry
3000 * @path: the dentry/vfsmount to report
3001 * @root: root vfsmnt/dentry
3002 * @buf: buffer to return value in
3003 * @buflen: buffer length
3005 * Convert a dentry into an ASCII path name.
3007 * Returns a pointer into the buffer or an error code if the
3008 * path was too long.
3010 * "buflen" should be positive.
3012 * If the path is not reachable from the supplied root, return %NULL.
3014 char *__d_path(const struct path *path,
3015 const struct path *root,
3016 char *buf, int buflen)
3018 char *res = buf + buflen;
3019 int error;
3021 prepend(&res, &buflen, "\0", 1);
3022 error = prepend_path(path, root, &res, &buflen);
3024 if (error < 0)
3025 return ERR_PTR(error);
3026 if (error > 0)
3027 return NULL;
3028 return res;
3031 char *d_absolute_path(const struct path *path,
3032 char *buf, int buflen)
3034 struct path root = {};
3035 char *res = buf + buflen;
3036 int error;
3038 prepend(&res, &buflen, "\0", 1);
3039 error = prepend_path(path, &root, &res, &buflen);
3041 if (error > 1)
3042 error = -EINVAL;
3043 if (error < 0)
3044 return ERR_PTR(error);
3045 return res;
3049 * same as __d_path but appends "(deleted)" for unlinked files.
3051 static int path_with_deleted(const struct path *path,
3052 const struct path *root,
3053 char **buf, int *buflen)
3055 prepend(buf, buflen, "\0", 1);
3056 if (d_unlinked(path->dentry)) {
3057 int error = prepend(buf, buflen, " (deleted)", 10);
3058 if (error)
3059 return error;
3062 return prepend_path(path, root, buf, buflen);
3065 static int prepend_unreachable(char **buffer, int *buflen)
3067 return prepend(buffer, buflen, "(unreachable)", 13);
3070 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3072 unsigned seq;
3074 do {
3075 seq = read_seqcount_begin(&fs->seq);
3076 *root = fs->root;
3077 } while (read_seqcount_retry(&fs->seq, seq));
3081 * d_path - return the path of a dentry
3082 * @path: path to report
3083 * @buf: buffer to return value in
3084 * @buflen: buffer length
3086 * Convert a dentry into an ASCII path name. If the entry has been deleted
3087 * the string " (deleted)" is appended. Note that this is ambiguous.
3089 * Returns a pointer into the buffer or an error code if the path was
3090 * too long. Note: Callers should use the returned pointer, not the passed
3091 * in buffer, to use the name! The implementation often starts at an offset
3092 * into the buffer, and may leave 0 bytes at the start.
3094 * "buflen" should be positive.
3096 char *d_path(const struct path *path, char *buf, int buflen)
3098 char *res = buf + buflen;
3099 struct path root;
3100 int error;
3103 * We have various synthetic filesystems that never get mounted. On
3104 * these filesystems dentries are never used for lookup purposes, and
3105 * thus don't need to be hashed. They also don't need a name until a
3106 * user wants to identify the object in /proc/pid/fd/. The little hack
3107 * below allows us to generate a name for these objects on demand:
3109 if (path->dentry->d_op && path->dentry->d_op->d_dname)
3110 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3112 rcu_read_lock();
3113 get_fs_root_rcu(current->fs, &root);
3114 error = path_with_deleted(path, &root, &res, &buflen);
3115 rcu_read_unlock();
3117 if (error < 0)
3118 res = ERR_PTR(error);
3119 return res;
3121 EXPORT_SYMBOL(d_path);
3124 * Helper function for dentry_operations.d_dname() members
3126 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3127 const char *fmt, ...)
3129 va_list args;
3130 char temp[64];
3131 int sz;
3133 va_start(args, fmt);
3134 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3135 va_end(args);
3137 if (sz > sizeof(temp) || sz > buflen)
3138 return ERR_PTR(-ENAMETOOLONG);
3140 buffer += buflen - sz;
3141 return memcpy(buffer, temp, sz);
3144 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3146 char *end = buffer + buflen;
3147 /* these dentries are never renamed, so d_lock is not needed */
3148 if (prepend(&end, &buflen, " (deleted)", 11) ||
3149 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3150 prepend(&end, &buflen, "/", 1))
3151 end = ERR_PTR(-ENAMETOOLONG);
3152 return end;
3156 * Write full pathname from the root of the filesystem into the buffer.
3158 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
3160 char *end, *retval;
3161 int len, seq = 0;
3162 int error = 0;
3164 rcu_read_lock();
3165 restart:
3166 end = buf + buflen;
3167 len = buflen;
3168 prepend(&end, &len, "\0", 1);
3169 if (buflen < 1)
3170 goto Elong;
3171 /* Get '/' right */
3172 retval = end-1;
3173 *retval = '/';
3174 read_seqbegin_or_lock(&rename_lock, &seq);
3175 while (!IS_ROOT(dentry)) {
3176 struct dentry *parent = dentry->d_parent;
3177 int error;
3179 prefetch(parent);
3180 error = prepend_name(&end, &len, &dentry->d_name);
3181 if (error)
3182 break;
3184 retval = end;
3185 dentry = parent;
3187 if (!(seq & 1))
3188 rcu_read_unlock();
3189 if (need_seqretry(&rename_lock, seq)) {
3190 seq = 1;
3191 goto restart;
3193 done_seqretry(&rename_lock, seq);
3194 if (error)
3195 goto Elong;
3196 return retval;
3197 Elong:
3198 return ERR_PTR(-ENAMETOOLONG);
3201 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3203 return __dentry_path(dentry, buf, buflen);
3205 EXPORT_SYMBOL(dentry_path_raw);
3207 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3209 char *p = NULL;
3210 char *retval;
3212 if (d_unlinked(dentry)) {
3213 p = buf + buflen;
3214 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3215 goto Elong;
3216 buflen++;
3218 retval = __dentry_path(dentry, buf, buflen);
3219 if (!IS_ERR(retval) && p)
3220 *p = '/'; /* restore '/' overriden with '\0' */
3221 return retval;
3222 Elong:
3223 return ERR_PTR(-ENAMETOOLONG);
3226 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3227 struct path *pwd)
3229 unsigned seq;
3231 do {
3232 seq = read_seqcount_begin(&fs->seq);
3233 *root = fs->root;
3234 *pwd = fs->pwd;
3235 } while (read_seqcount_retry(&fs->seq, seq));
3239 * NOTE! The user-level library version returns a
3240 * character pointer. The kernel system call just
3241 * returns the length of the buffer filled (which
3242 * includes the ending '\0' character), or a negative
3243 * error value. So libc would do something like
3245 * char *getcwd(char * buf, size_t size)
3247 * int retval;
3249 * retval = sys_getcwd(buf, size);
3250 * if (retval >= 0)
3251 * return buf;
3252 * errno = -retval;
3253 * return NULL;
3256 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3258 int error;
3259 struct path pwd, root;
3260 char *page = __getname();
3262 if (!page)
3263 return -ENOMEM;
3265 rcu_read_lock();
3266 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3268 error = -ENOENT;
3269 if (!d_unlinked(pwd.dentry)) {
3270 unsigned long len;
3271 char *cwd = page + PATH_MAX;
3272 int buflen = PATH_MAX;
3274 prepend(&cwd, &buflen, "\0", 1);
3275 error = prepend_path(&pwd, &root, &cwd, &buflen);
3276 rcu_read_unlock();
3278 if (error < 0)
3279 goto out;
3281 /* Unreachable from current root */
3282 if (error > 0) {
3283 error = prepend_unreachable(&cwd, &buflen);
3284 if (error)
3285 goto out;
3288 error = -ERANGE;
3289 len = PATH_MAX + page - cwd;
3290 if (len <= size) {
3291 error = len;
3292 if (copy_to_user(buf, cwd, len))
3293 error = -EFAULT;
3295 } else {
3296 rcu_read_unlock();
3299 out:
3300 __putname(page);
3301 return error;
3305 * Test whether new_dentry is a subdirectory of old_dentry.
3307 * Trivially implemented using the dcache structure
3311 * is_subdir - is new dentry a subdirectory of old_dentry
3312 * @new_dentry: new dentry
3313 * @old_dentry: old dentry
3315 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3316 * Returns 0 otherwise.
3317 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3320 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3322 int result;
3323 unsigned seq;
3325 if (new_dentry == old_dentry)
3326 return 1;
3328 do {
3329 /* for restarting inner loop in case of seq retry */
3330 seq = read_seqbegin(&rename_lock);
3332 * Need rcu_readlock to protect against the d_parent trashing
3333 * due to d_move
3335 rcu_read_lock();
3336 if (d_ancestor(old_dentry, new_dentry))
3337 result = 1;
3338 else
3339 result = 0;
3340 rcu_read_unlock();
3341 } while (read_seqretry(&rename_lock, seq));
3343 return result;
3346 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3348 struct dentry *root = data;
3349 if (dentry != root) {
3350 if (d_unhashed(dentry) || !dentry->d_inode)
3351 return D_WALK_SKIP;
3353 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3354 dentry->d_flags |= DCACHE_GENOCIDE;
3355 dentry->d_lockref.count--;
3358 return D_WALK_CONTINUE;
3361 void d_genocide(struct dentry *parent)
3363 d_walk(parent, parent, d_genocide_kill, NULL);
3366 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3368 inode_dec_link_count(inode);
3369 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3370 !hlist_unhashed(&dentry->d_alias) ||
3371 !d_unlinked(dentry));
3372 spin_lock(&dentry->d_parent->d_lock);
3373 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3374 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3375 (unsigned long long)inode->i_ino);
3376 spin_unlock(&dentry->d_lock);
3377 spin_unlock(&dentry->d_parent->d_lock);
3378 d_instantiate(dentry, inode);
3380 EXPORT_SYMBOL(d_tmpfile);
3382 static __initdata unsigned long dhash_entries;
3383 static int __init set_dhash_entries(char *str)
3385 if (!str)
3386 return 0;
3387 dhash_entries = simple_strtoul(str, &str, 0);
3388 return 1;
3390 __setup("dhash_entries=", set_dhash_entries);
3392 static void __init dcache_init_early(void)
3394 unsigned int loop;
3396 /* If hashes are distributed across NUMA nodes, defer
3397 * hash allocation until vmalloc space is available.
3399 if (hashdist)
3400 return;
3402 dentry_hashtable =
3403 alloc_large_system_hash("Dentry cache",
3404 sizeof(struct hlist_bl_head),
3405 dhash_entries,
3407 HASH_EARLY,
3408 &d_hash_shift,
3409 &d_hash_mask,
3413 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3414 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3417 static void __init dcache_init(void)
3419 unsigned int loop;
3422 * A constructor could be added for stable state like the lists,
3423 * but it is probably not worth it because of the cache nature
3424 * of the dcache.
3426 dentry_cache = KMEM_CACHE(dentry,
3427 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3429 /* Hash may have been set up in dcache_init_early */
3430 if (!hashdist)
3431 return;
3433 dentry_hashtable =
3434 alloc_large_system_hash("Dentry cache",
3435 sizeof(struct hlist_bl_head),
3436 dhash_entries,
3439 &d_hash_shift,
3440 &d_hash_mask,
3444 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3445 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3448 /* SLAB cache for __getname() consumers */
3449 struct kmem_cache *names_cachep __read_mostly;
3450 EXPORT_SYMBOL(names_cachep);
3452 EXPORT_SYMBOL(d_genocide);
3454 void __init vfs_caches_init_early(void)
3456 dcache_init_early();
3457 inode_init_early();
3460 void __init vfs_caches_init(unsigned long mempages)
3462 unsigned long reserve;
3464 /* Base hash sizes on available memory, with a reserve equal to
3465 150% of current kernel size */
3467 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3468 mempages -= reserve;
3470 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3471 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3473 dcache_init();
3474 inode_init();
3475 files_init(mempages);
3476 mnt_init();
3477 bdev_cache_init();
3478 chrdev_init();