irqchip: add to the directories part of the IRQ subsystem in MAINTAINERS
[linux-2.6.git] / kernel / signal.c
blob372771e948c230141a767003fa0f2e18c0d44db2
1 /*
2 * linux/kernel/signal.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/coredump.h>
21 #include <linux/security.h>
22 #include <linux/syscalls.h>
23 #include <linux/ptrace.h>
24 #include <linux/signal.h>
25 #include <linux/signalfd.h>
26 #include <linux/ratelimit.h>
27 #include <linux/tracehook.h>
28 #include <linux/capability.h>
29 #include <linux/freezer.h>
30 #include <linux/pid_namespace.h>
31 #include <linux/nsproxy.h>
32 #include <linux/user_namespace.h>
33 #include <linux/uprobes.h>
34 #include <linux/compat.h>
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/signal.h>
38 #include <asm/param.h>
39 #include <asm/uaccess.h>
40 #include <asm/unistd.h>
41 #include <asm/siginfo.h>
42 #include <asm/cacheflush.h>
43 #include "audit.h" /* audit_signal_info() */
46 * SLAB caches for signal bits.
49 static struct kmem_cache *sigqueue_cachep;
51 int print_fatal_signals __read_mostly;
53 static void __user *sig_handler(struct task_struct *t, int sig)
55 return t->sighand->action[sig - 1].sa.sa_handler;
58 static int sig_handler_ignored(void __user *handler, int sig)
60 /* Is it explicitly or implicitly ignored? */
61 return handler == SIG_IGN ||
62 (handler == SIG_DFL && sig_kernel_ignore(sig));
65 static int sig_task_ignored(struct task_struct *t, int sig, bool force)
67 void __user *handler;
69 handler = sig_handler(t, sig);
71 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
72 handler == SIG_DFL && !force)
73 return 1;
75 return sig_handler_ignored(handler, sig);
78 static int sig_ignored(struct task_struct *t, int sig, bool force)
81 * Blocked signals are never ignored, since the
82 * signal handler may change by the time it is
83 * unblocked.
85 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
86 return 0;
88 if (!sig_task_ignored(t, sig, force))
89 return 0;
92 * Tracers may want to know about even ignored signals.
94 return !t->ptrace;
98 * Re-calculate pending state from the set of locally pending
99 * signals, globally pending signals, and blocked signals.
101 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
103 unsigned long ready;
104 long i;
106 switch (_NSIG_WORDS) {
107 default:
108 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
109 ready |= signal->sig[i] &~ blocked->sig[i];
110 break;
112 case 4: ready = signal->sig[3] &~ blocked->sig[3];
113 ready |= signal->sig[2] &~ blocked->sig[2];
114 ready |= signal->sig[1] &~ blocked->sig[1];
115 ready |= signal->sig[0] &~ blocked->sig[0];
116 break;
118 case 2: ready = signal->sig[1] &~ blocked->sig[1];
119 ready |= signal->sig[0] &~ blocked->sig[0];
120 break;
122 case 1: ready = signal->sig[0] &~ blocked->sig[0];
124 return ready != 0;
127 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
129 static int recalc_sigpending_tsk(struct task_struct *t)
131 if ((t->jobctl & JOBCTL_PENDING_MASK) ||
132 PENDING(&t->pending, &t->blocked) ||
133 PENDING(&t->signal->shared_pending, &t->blocked)) {
134 set_tsk_thread_flag(t, TIF_SIGPENDING);
135 return 1;
138 * We must never clear the flag in another thread, or in current
139 * when it's possible the current syscall is returning -ERESTART*.
140 * So we don't clear it here, and only callers who know they should do.
142 return 0;
146 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
147 * This is superfluous when called on current, the wakeup is a harmless no-op.
149 void recalc_sigpending_and_wake(struct task_struct *t)
151 if (recalc_sigpending_tsk(t))
152 signal_wake_up(t, 0);
155 void recalc_sigpending(void)
157 if (!recalc_sigpending_tsk(current) && !freezing(current))
158 clear_thread_flag(TIF_SIGPENDING);
162 /* Given the mask, find the first available signal that should be serviced. */
164 #define SYNCHRONOUS_MASK \
165 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
166 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
168 int next_signal(struct sigpending *pending, sigset_t *mask)
170 unsigned long i, *s, *m, x;
171 int sig = 0;
173 s = pending->signal.sig;
174 m = mask->sig;
177 * Handle the first word specially: it contains the
178 * synchronous signals that need to be dequeued first.
180 x = *s &~ *m;
181 if (x) {
182 if (x & SYNCHRONOUS_MASK)
183 x &= SYNCHRONOUS_MASK;
184 sig = ffz(~x) + 1;
185 return sig;
188 switch (_NSIG_WORDS) {
189 default:
190 for (i = 1; i < _NSIG_WORDS; ++i) {
191 x = *++s &~ *++m;
192 if (!x)
193 continue;
194 sig = ffz(~x) + i*_NSIG_BPW + 1;
195 break;
197 break;
199 case 2:
200 x = s[1] &~ m[1];
201 if (!x)
202 break;
203 sig = ffz(~x) + _NSIG_BPW + 1;
204 break;
206 case 1:
207 /* Nothing to do */
208 break;
211 return sig;
214 static inline void print_dropped_signal(int sig)
216 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
218 if (!print_fatal_signals)
219 return;
221 if (!__ratelimit(&ratelimit_state))
222 return;
224 printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
225 current->comm, current->pid, sig);
229 * task_set_jobctl_pending - set jobctl pending bits
230 * @task: target task
231 * @mask: pending bits to set
233 * Clear @mask from @task->jobctl. @mask must be subset of
234 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
235 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
236 * cleared. If @task is already being killed or exiting, this function
237 * becomes noop.
239 * CONTEXT:
240 * Must be called with @task->sighand->siglock held.
242 * RETURNS:
243 * %true if @mask is set, %false if made noop because @task was dying.
245 bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask)
247 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
248 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
249 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
251 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
252 return false;
254 if (mask & JOBCTL_STOP_SIGMASK)
255 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
257 task->jobctl |= mask;
258 return true;
262 * task_clear_jobctl_trapping - clear jobctl trapping bit
263 * @task: target task
265 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
266 * Clear it and wake up the ptracer. Note that we don't need any further
267 * locking. @task->siglock guarantees that @task->parent points to the
268 * ptracer.
270 * CONTEXT:
271 * Must be called with @task->sighand->siglock held.
273 void task_clear_jobctl_trapping(struct task_struct *task)
275 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
276 task->jobctl &= ~JOBCTL_TRAPPING;
277 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
282 * task_clear_jobctl_pending - clear jobctl pending bits
283 * @task: target task
284 * @mask: pending bits to clear
286 * Clear @mask from @task->jobctl. @mask must be subset of
287 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
288 * STOP bits are cleared together.
290 * If clearing of @mask leaves no stop or trap pending, this function calls
291 * task_clear_jobctl_trapping().
293 * CONTEXT:
294 * Must be called with @task->sighand->siglock held.
296 void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask)
298 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
300 if (mask & JOBCTL_STOP_PENDING)
301 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
303 task->jobctl &= ~mask;
305 if (!(task->jobctl & JOBCTL_PENDING_MASK))
306 task_clear_jobctl_trapping(task);
310 * task_participate_group_stop - participate in a group stop
311 * @task: task participating in a group stop
313 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
314 * Group stop states are cleared and the group stop count is consumed if
315 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
316 * stop, the appropriate %SIGNAL_* flags are set.
318 * CONTEXT:
319 * Must be called with @task->sighand->siglock held.
321 * RETURNS:
322 * %true if group stop completion should be notified to the parent, %false
323 * otherwise.
325 static bool task_participate_group_stop(struct task_struct *task)
327 struct signal_struct *sig = task->signal;
328 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
330 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
332 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
334 if (!consume)
335 return false;
337 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
338 sig->group_stop_count--;
341 * Tell the caller to notify completion iff we are entering into a
342 * fresh group stop. Read comment in do_signal_stop() for details.
344 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
345 sig->flags = SIGNAL_STOP_STOPPED;
346 return true;
348 return false;
352 * allocate a new signal queue record
353 * - this may be called without locks if and only if t == current, otherwise an
354 * appropriate lock must be held to stop the target task from exiting
356 static struct sigqueue *
357 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
359 struct sigqueue *q = NULL;
360 struct user_struct *user;
363 * Protect access to @t credentials. This can go away when all
364 * callers hold rcu read lock.
366 rcu_read_lock();
367 user = get_uid(__task_cred(t)->user);
368 atomic_inc(&user->sigpending);
369 rcu_read_unlock();
371 if (override_rlimit ||
372 atomic_read(&user->sigpending) <=
373 task_rlimit(t, RLIMIT_SIGPENDING)) {
374 q = kmem_cache_alloc(sigqueue_cachep, flags);
375 } else {
376 print_dropped_signal(sig);
379 if (unlikely(q == NULL)) {
380 atomic_dec(&user->sigpending);
381 free_uid(user);
382 } else {
383 INIT_LIST_HEAD(&q->list);
384 q->flags = 0;
385 q->user = user;
388 return q;
391 static void __sigqueue_free(struct sigqueue *q)
393 if (q->flags & SIGQUEUE_PREALLOC)
394 return;
395 atomic_dec(&q->user->sigpending);
396 free_uid(q->user);
397 kmem_cache_free(sigqueue_cachep, q);
400 void flush_sigqueue(struct sigpending *queue)
402 struct sigqueue *q;
404 sigemptyset(&queue->signal);
405 while (!list_empty(&queue->list)) {
406 q = list_entry(queue->list.next, struct sigqueue , list);
407 list_del_init(&q->list);
408 __sigqueue_free(q);
413 * Flush all pending signals for a task.
415 void __flush_signals(struct task_struct *t)
417 clear_tsk_thread_flag(t, TIF_SIGPENDING);
418 flush_sigqueue(&t->pending);
419 flush_sigqueue(&t->signal->shared_pending);
422 void flush_signals(struct task_struct *t)
424 unsigned long flags;
426 spin_lock_irqsave(&t->sighand->siglock, flags);
427 __flush_signals(t);
428 spin_unlock_irqrestore(&t->sighand->siglock, flags);
431 static void __flush_itimer_signals(struct sigpending *pending)
433 sigset_t signal, retain;
434 struct sigqueue *q, *n;
436 signal = pending->signal;
437 sigemptyset(&retain);
439 list_for_each_entry_safe(q, n, &pending->list, list) {
440 int sig = q->info.si_signo;
442 if (likely(q->info.si_code != SI_TIMER)) {
443 sigaddset(&retain, sig);
444 } else {
445 sigdelset(&signal, sig);
446 list_del_init(&q->list);
447 __sigqueue_free(q);
451 sigorsets(&pending->signal, &signal, &retain);
454 void flush_itimer_signals(void)
456 struct task_struct *tsk = current;
457 unsigned long flags;
459 spin_lock_irqsave(&tsk->sighand->siglock, flags);
460 __flush_itimer_signals(&tsk->pending);
461 __flush_itimer_signals(&tsk->signal->shared_pending);
462 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
465 void ignore_signals(struct task_struct *t)
467 int i;
469 for (i = 0; i < _NSIG; ++i)
470 t->sighand->action[i].sa.sa_handler = SIG_IGN;
472 flush_signals(t);
476 * Flush all handlers for a task.
479 void
480 flush_signal_handlers(struct task_struct *t, int force_default)
482 int i;
483 struct k_sigaction *ka = &t->sighand->action[0];
484 for (i = _NSIG ; i != 0 ; i--) {
485 if (force_default || ka->sa.sa_handler != SIG_IGN)
486 ka->sa.sa_handler = SIG_DFL;
487 ka->sa.sa_flags = 0;
488 sigemptyset(&ka->sa.sa_mask);
489 ka++;
493 int unhandled_signal(struct task_struct *tsk, int sig)
495 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
496 if (is_global_init(tsk))
497 return 1;
498 if (handler != SIG_IGN && handler != SIG_DFL)
499 return 0;
500 /* if ptraced, let the tracer determine */
501 return !tsk->ptrace;
505 * Notify the system that a driver wants to block all signals for this
506 * process, and wants to be notified if any signals at all were to be
507 * sent/acted upon. If the notifier routine returns non-zero, then the
508 * signal will be acted upon after all. If the notifier routine returns 0,
509 * then then signal will be blocked. Only one block per process is
510 * allowed. priv is a pointer to private data that the notifier routine
511 * can use to determine if the signal should be blocked or not.
513 void
514 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
516 unsigned long flags;
518 spin_lock_irqsave(&current->sighand->siglock, flags);
519 current->notifier_mask = mask;
520 current->notifier_data = priv;
521 current->notifier = notifier;
522 spin_unlock_irqrestore(&current->sighand->siglock, flags);
525 /* Notify the system that blocking has ended. */
527 void
528 unblock_all_signals(void)
530 unsigned long flags;
532 spin_lock_irqsave(&current->sighand->siglock, flags);
533 current->notifier = NULL;
534 current->notifier_data = NULL;
535 recalc_sigpending();
536 spin_unlock_irqrestore(&current->sighand->siglock, flags);
539 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
541 struct sigqueue *q, *first = NULL;
544 * Collect the siginfo appropriate to this signal. Check if
545 * there is another siginfo for the same signal.
547 list_for_each_entry(q, &list->list, list) {
548 if (q->info.si_signo == sig) {
549 if (first)
550 goto still_pending;
551 first = q;
555 sigdelset(&list->signal, sig);
557 if (first) {
558 still_pending:
559 list_del_init(&first->list);
560 copy_siginfo(info, &first->info);
561 __sigqueue_free(first);
562 } else {
564 * Ok, it wasn't in the queue. This must be
565 * a fast-pathed signal or we must have been
566 * out of queue space. So zero out the info.
568 info->si_signo = sig;
569 info->si_errno = 0;
570 info->si_code = SI_USER;
571 info->si_pid = 0;
572 info->si_uid = 0;
576 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
577 siginfo_t *info)
579 int sig = next_signal(pending, mask);
581 if (sig) {
582 if (current->notifier) {
583 if (sigismember(current->notifier_mask, sig)) {
584 if (!(current->notifier)(current->notifier_data)) {
585 clear_thread_flag(TIF_SIGPENDING);
586 return 0;
591 collect_signal(sig, pending, info);
594 return sig;
598 * Dequeue a signal and return the element to the caller, which is
599 * expected to free it.
601 * All callers have to hold the siglock.
603 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
605 int signr;
607 /* We only dequeue private signals from ourselves, we don't let
608 * signalfd steal them
610 signr = __dequeue_signal(&tsk->pending, mask, info);
611 if (!signr) {
612 signr = __dequeue_signal(&tsk->signal->shared_pending,
613 mask, info);
615 * itimer signal ?
617 * itimers are process shared and we restart periodic
618 * itimers in the signal delivery path to prevent DoS
619 * attacks in the high resolution timer case. This is
620 * compliant with the old way of self-restarting
621 * itimers, as the SIGALRM is a legacy signal and only
622 * queued once. Changing the restart behaviour to
623 * restart the timer in the signal dequeue path is
624 * reducing the timer noise on heavy loaded !highres
625 * systems too.
627 if (unlikely(signr == SIGALRM)) {
628 struct hrtimer *tmr = &tsk->signal->real_timer;
630 if (!hrtimer_is_queued(tmr) &&
631 tsk->signal->it_real_incr.tv64 != 0) {
632 hrtimer_forward(tmr, tmr->base->get_time(),
633 tsk->signal->it_real_incr);
634 hrtimer_restart(tmr);
639 recalc_sigpending();
640 if (!signr)
641 return 0;
643 if (unlikely(sig_kernel_stop(signr))) {
645 * Set a marker that we have dequeued a stop signal. Our
646 * caller might release the siglock and then the pending
647 * stop signal it is about to process is no longer in the
648 * pending bitmasks, but must still be cleared by a SIGCONT
649 * (and overruled by a SIGKILL). So those cases clear this
650 * shared flag after we've set it. Note that this flag may
651 * remain set after the signal we return is ignored or
652 * handled. That doesn't matter because its only purpose
653 * is to alert stop-signal processing code when another
654 * processor has come along and cleared the flag.
656 current->jobctl |= JOBCTL_STOP_DEQUEUED;
658 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
660 * Release the siglock to ensure proper locking order
661 * of timer locks outside of siglocks. Note, we leave
662 * irqs disabled here, since the posix-timers code is
663 * about to disable them again anyway.
665 spin_unlock(&tsk->sighand->siglock);
666 do_schedule_next_timer(info);
667 spin_lock(&tsk->sighand->siglock);
669 return signr;
673 * Tell a process that it has a new active signal..
675 * NOTE! we rely on the previous spin_lock to
676 * lock interrupts for us! We can only be called with
677 * "siglock" held, and the local interrupt must
678 * have been disabled when that got acquired!
680 * No need to set need_resched since signal event passing
681 * goes through ->blocked
683 void signal_wake_up(struct task_struct *t, int resume)
685 unsigned int mask;
687 set_tsk_thread_flag(t, TIF_SIGPENDING);
690 * For SIGKILL, we want to wake it up in the stopped/traced/killable
691 * case. We don't check t->state here because there is a race with it
692 * executing another processor and just now entering stopped state.
693 * By using wake_up_state, we ensure the process will wake up and
694 * handle its death signal.
696 mask = TASK_INTERRUPTIBLE;
697 if (resume)
698 mask |= TASK_WAKEKILL;
699 if (!wake_up_state(t, mask))
700 kick_process(t);
704 * Remove signals in mask from the pending set and queue.
705 * Returns 1 if any signals were found.
707 * All callers must be holding the siglock.
709 * This version takes a sigset mask and looks at all signals,
710 * not just those in the first mask word.
712 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
714 struct sigqueue *q, *n;
715 sigset_t m;
717 sigandsets(&m, mask, &s->signal);
718 if (sigisemptyset(&m))
719 return 0;
721 sigandnsets(&s->signal, &s->signal, mask);
722 list_for_each_entry_safe(q, n, &s->list, list) {
723 if (sigismember(mask, q->info.si_signo)) {
724 list_del_init(&q->list);
725 __sigqueue_free(q);
728 return 1;
731 * Remove signals in mask from the pending set and queue.
732 * Returns 1 if any signals were found.
734 * All callers must be holding the siglock.
736 static int rm_from_queue(unsigned long mask, struct sigpending *s)
738 struct sigqueue *q, *n;
740 if (!sigtestsetmask(&s->signal, mask))
741 return 0;
743 sigdelsetmask(&s->signal, mask);
744 list_for_each_entry_safe(q, n, &s->list, list) {
745 if (q->info.si_signo < SIGRTMIN &&
746 (mask & sigmask(q->info.si_signo))) {
747 list_del_init(&q->list);
748 __sigqueue_free(q);
751 return 1;
754 static inline int is_si_special(const struct siginfo *info)
756 return info <= SEND_SIG_FORCED;
759 static inline bool si_fromuser(const struct siginfo *info)
761 return info == SEND_SIG_NOINFO ||
762 (!is_si_special(info) && SI_FROMUSER(info));
766 * called with RCU read lock from check_kill_permission()
768 static int kill_ok_by_cred(struct task_struct *t)
770 const struct cred *cred = current_cred();
771 const struct cred *tcred = __task_cred(t);
773 if (uid_eq(cred->euid, tcred->suid) ||
774 uid_eq(cred->euid, tcred->uid) ||
775 uid_eq(cred->uid, tcred->suid) ||
776 uid_eq(cred->uid, tcred->uid))
777 return 1;
779 if (ns_capable(tcred->user_ns, CAP_KILL))
780 return 1;
782 return 0;
786 * Bad permissions for sending the signal
787 * - the caller must hold the RCU read lock
789 static int check_kill_permission(int sig, struct siginfo *info,
790 struct task_struct *t)
792 struct pid *sid;
793 int error;
795 if (!valid_signal(sig))
796 return -EINVAL;
798 if (!si_fromuser(info))
799 return 0;
801 error = audit_signal_info(sig, t); /* Let audit system see the signal */
802 if (error)
803 return error;
805 if (!same_thread_group(current, t) &&
806 !kill_ok_by_cred(t)) {
807 switch (sig) {
808 case SIGCONT:
809 sid = task_session(t);
811 * We don't return the error if sid == NULL. The
812 * task was unhashed, the caller must notice this.
814 if (!sid || sid == task_session(current))
815 break;
816 default:
817 return -EPERM;
821 return security_task_kill(t, info, sig, 0);
825 * ptrace_trap_notify - schedule trap to notify ptracer
826 * @t: tracee wanting to notify tracer
828 * This function schedules sticky ptrace trap which is cleared on the next
829 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
830 * ptracer.
832 * If @t is running, STOP trap will be taken. If trapped for STOP and
833 * ptracer is listening for events, tracee is woken up so that it can
834 * re-trap for the new event. If trapped otherwise, STOP trap will be
835 * eventually taken without returning to userland after the existing traps
836 * are finished by PTRACE_CONT.
838 * CONTEXT:
839 * Must be called with @task->sighand->siglock held.
841 static void ptrace_trap_notify(struct task_struct *t)
843 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
844 assert_spin_locked(&t->sighand->siglock);
846 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
847 signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
851 * Handle magic process-wide effects of stop/continue signals. Unlike
852 * the signal actions, these happen immediately at signal-generation
853 * time regardless of blocking, ignoring, or handling. This does the
854 * actual continuing for SIGCONT, but not the actual stopping for stop
855 * signals. The process stop is done as a signal action for SIG_DFL.
857 * Returns true if the signal should be actually delivered, otherwise
858 * it should be dropped.
860 static int prepare_signal(int sig, struct task_struct *p, bool force)
862 struct signal_struct *signal = p->signal;
863 struct task_struct *t;
865 if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
867 * The process is in the middle of dying, nothing to do.
869 } else if (sig_kernel_stop(sig)) {
871 * This is a stop signal. Remove SIGCONT from all queues.
873 rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
874 t = p;
875 do {
876 rm_from_queue(sigmask(SIGCONT), &t->pending);
877 } while_each_thread(p, t);
878 } else if (sig == SIGCONT) {
879 unsigned int why;
881 * Remove all stop signals from all queues, wake all threads.
883 rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
884 t = p;
885 do {
886 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
887 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
888 if (likely(!(t->ptrace & PT_SEIZED)))
889 wake_up_state(t, __TASK_STOPPED);
890 else
891 ptrace_trap_notify(t);
892 } while_each_thread(p, t);
895 * Notify the parent with CLD_CONTINUED if we were stopped.
897 * If we were in the middle of a group stop, we pretend it
898 * was already finished, and then continued. Since SIGCHLD
899 * doesn't queue we report only CLD_STOPPED, as if the next
900 * CLD_CONTINUED was dropped.
902 why = 0;
903 if (signal->flags & SIGNAL_STOP_STOPPED)
904 why |= SIGNAL_CLD_CONTINUED;
905 else if (signal->group_stop_count)
906 why |= SIGNAL_CLD_STOPPED;
908 if (why) {
910 * The first thread which returns from do_signal_stop()
911 * will take ->siglock, notice SIGNAL_CLD_MASK, and
912 * notify its parent. See get_signal_to_deliver().
914 signal->flags = why | SIGNAL_STOP_CONTINUED;
915 signal->group_stop_count = 0;
916 signal->group_exit_code = 0;
920 return !sig_ignored(p, sig, force);
924 * Test if P wants to take SIG. After we've checked all threads with this,
925 * it's equivalent to finding no threads not blocking SIG. Any threads not
926 * blocking SIG were ruled out because they are not running and already
927 * have pending signals. Such threads will dequeue from the shared queue
928 * as soon as they're available, so putting the signal on the shared queue
929 * will be equivalent to sending it to one such thread.
931 static inline int wants_signal(int sig, struct task_struct *p)
933 if (sigismember(&p->blocked, sig))
934 return 0;
935 if (p->flags & PF_EXITING)
936 return 0;
937 if (sig == SIGKILL)
938 return 1;
939 if (task_is_stopped_or_traced(p))
940 return 0;
941 return task_curr(p) || !signal_pending(p);
944 static void complete_signal(int sig, struct task_struct *p, int group)
946 struct signal_struct *signal = p->signal;
947 struct task_struct *t;
950 * Now find a thread we can wake up to take the signal off the queue.
952 * If the main thread wants the signal, it gets first crack.
953 * Probably the least surprising to the average bear.
955 if (wants_signal(sig, p))
956 t = p;
957 else if (!group || thread_group_empty(p))
959 * There is just one thread and it does not need to be woken.
960 * It will dequeue unblocked signals before it runs again.
962 return;
963 else {
965 * Otherwise try to find a suitable thread.
967 t = signal->curr_target;
968 while (!wants_signal(sig, t)) {
969 t = next_thread(t);
970 if (t == signal->curr_target)
972 * No thread needs to be woken.
973 * Any eligible threads will see
974 * the signal in the queue soon.
976 return;
978 signal->curr_target = t;
982 * Found a killable thread. If the signal will be fatal,
983 * then start taking the whole group down immediately.
985 if (sig_fatal(p, sig) &&
986 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
987 !sigismember(&t->real_blocked, sig) &&
988 (sig == SIGKILL || !t->ptrace)) {
990 * This signal will be fatal to the whole group.
992 if (!sig_kernel_coredump(sig)) {
994 * Start a group exit and wake everybody up.
995 * This way we don't have other threads
996 * running and doing things after a slower
997 * thread has the fatal signal pending.
999 signal->flags = SIGNAL_GROUP_EXIT;
1000 signal->group_exit_code = sig;
1001 signal->group_stop_count = 0;
1002 t = p;
1003 do {
1004 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1005 sigaddset(&t->pending.signal, SIGKILL);
1006 signal_wake_up(t, 1);
1007 } while_each_thread(p, t);
1008 return;
1013 * The signal is already in the shared-pending queue.
1014 * Tell the chosen thread to wake up and dequeue it.
1016 signal_wake_up(t, sig == SIGKILL);
1017 return;
1020 static inline int legacy_queue(struct sigpending *signals, int sig)
1022 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1025 #ifdef CONFIG_USER_NS
1026 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1028 if (current_user_ns() == task_cred_xxx(t, user_ns))
1029 return;
1031 if (SI_FROMKERNEL(info))
1032 return;
1034 rcu_read_lock();
1035 info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
1036 make_kuid(current_user_ns(), info->si_uid));
1037 rcu_read_unlock();
1039 #else
1040 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1042 return;
1044 #endif
1046 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1047 int group, int from_ancestor_ns)
1049 struct sigpending *pending;
1050 struct sigqueue *q;
1051 int override_rlimit;
1052 int ret = 0, result;
1054 assert_spin_locked(&t->sighand->siglock);
1056 result = TRACE_SIGNAL_IGNORED;
1057 if (!prepare_signal(sig, t,
1058 from_ancestor_ns || (info == SEND_SIG_FORCED)))
1059 goto ret;
1061 pending = group ? &t->signal->shared_pending : &t->pending;
1063 * Short-circuit ignored signals and support queuing
1064 * exactly one non-rt signal, so that we can get more
1065 * detailed information about the cause of the signal.
1067 result = TRACE_SIGNAL_ALREADY_PENDING;
1068 if (legacy_queue(pending, sig))
1069 goto ret;
1071 result = TRACE_SIGNAL_DELIVERED;
1073 * fast-pathed signals for kernel-internal things like SIGSTOP
1074 * or SIGKILL.
1076 if (info == SEND_SIG_FORCED)
1077 goto out_set;
1080 * Real-time signals must be queued if sent by sigqueue, or
1081 * some other real-time mechanism. It is implementation
1082 * defined whether kill() does so. We attempt to do so, on
1083 * the principle of least surprise, but since kill is not
1084 * allowed to fail with EAGAIN when low on memory we just
1085 * make sure at least one signal gets delivered and don't
1086 * pass on the info struct.
1088 if (sig < SIGRTMIN)
1089 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1090 else
1091 override_rlimit = 0;
1093 q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1094 override_rlimit);
1095 if (q) {
1096 list_add_tail(&q->list, &pending->list);
1097 switch ((unsigned long) info) {
1098 case (unsigned long) SEND_SIG_NOINFO:
1099 q->info.si_signo = sig;
1100 q->info.si_errno = 0;
1101 q->info.si_code = SI_USER;
1102 q->info.si_pid = task_tgid_nr_ns(current,
1103 task_active_pid_ns(t));
1104 q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1105 break;
1106 case (unsigned long) SEND_SIG_PRIV:
1107 q->info.si_signo = sig;
1108 q->info.si_errno = 0;
1109 q->info.si_code = SI_KERNEL;
1110 q->info.si_pid = 0;
1111 q->info.si_uid = 0;
1112 break;
1113 default:
1114 copy_siginfo(&q->info, info);
1115 if (from_ancestor_ns)
1116 q->info.si_pid = 0;
1117 break;
1120 userns_fixup_signal_uid(&q->info, t);
1122 } else if (!is_si_special(info)) {
1123 if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1125 * Queue overflow, abort. We may abort if the
1126 * signal was rt and sent by user using something
1127 * other than kill().
1129 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1130 ret = -EAGAIN;
1131 goto ret;
1132 } else {
1134 * This is a silent loss of information. We still
1135 * send the signal, but the *info bits are lost.
1137 result = TRACE_SIGNAL_LOSE_INFO;
1141 out_set:
1142 signalfd_notify(t, sig);
1143 sigaddset(&pending->signal, sig);
1144 complete_signal(sig, t, group);
1145 ret:
1146 trace_signal_generate(sig, info, t, group, result);
1147 return ret;
1150 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1151 int group)
1153 int from_ancestor_ns = 0;
1155 #ifdef CONFIG_PID_NS
1156 from_ancestor_ns = si_fromuser(info) &&
1157 !task_pid_nr_ns(current, task_active_pid_ns(t));
1158 #endif
1160 return __send_signal(sig, info, t, group, from_ancestor_ns);
1163 static void print_fatal_signal(int signr)
1165 struct pt_regs *regs = signal_pt_regs();
1166 printk("%s/%d: potentially unexpected fatal signal %d.\n",
1167 current->comm, task_pid_nr(current), signr);
1169 #if defined(__i386__) && !defined(__arch_um__)
1170 printk("code at %08lx: ", regs->ip);
1172 int i;
1173 for (i = 0; i < 16; i++) {
1174 unsigned char insn;
1176 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1177 break;
1178 printk("%02x ", insn);
1181 #endif
1182 printk("\n");
1183 preempt_disable();
1184 show_regs(regs);
1185 preempt_enable();
1188 static int __init setup_print_fatal_signals(char *str)
1190 get_option (&str, &print_fatal_signals);
1192 return 1;
1195 __setup("print-fatal-signals=", setup_print_fatal_signals);
1198 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1200 return send_signal(sig, info, p, 1);
1203 static int
1204 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1206 return send_signal(sig, info, t, 0);
1209 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1210 bool group)
1212 unsigned long flags;
1213 int ret = -ESRCH;
1215 if (lock_task_sighand(p, &flags)) {
1216 ret = send_signal(sig, info, p, group);
1217 unlock_task_sighand(p, &flags);
1220 return ret;
1224 * Force a signal that the process can't ignore: if necessary
1225 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1227 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1228 * since we do not want to have a signal handler that was blocked
1229 * be invoked when user space had explicitly blocked it.
1231 * We don't want to have recursive SIGSEGV's etc, for example,
1232 * that is why we also clear SIGNAL_UNKILLABLE.
1235 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1237 unsigned long int flags;
1238 int ret, blocked, ignored;
1239 struct k_sigaction *action;
1241 spin_lock_irqsave(&t->sighand->siglock, flags);
1242 action = &t->sighand->action[sig-1];
1243 ignored = action->sa.sa_handler == SIG_IGN;
1244 blocked = sigismember(&t->blocked, sig);
1245 if (blocked || ignored) {
1246 action->sa.sa_handler = SIG_DFL;
1247 if (blocked) {
1248 sigdelset(&t->blocked, sig);
1249 recalc_sigpending_and_wake(t);
1252 if (action->sa.sa_handler == SIG_DFL)
1253 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1254 ret = specific_send_sig_info(sig, info, t);
1255 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1257 return ret;
1261 * Nuke all other threads in the group.
1263 int zap_other_threads(struct task_struct *p)
1265 struct task_struct *t = p;
1266 int count = 0;
1268 p->signal->group_stop_count = 0;
1270 while_each_thread(p, t) {
1271 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1272 count++;
1274 /* Don't bother with already dead threads */
1275 if (t->exit_state)
1276 continue;
1277 sigaddset(&t->pending.signal, SIGKILL);
1278 signal_wake_up(t, 1);
1281 return count;
1284 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1285 unsigned long *flags)
1287 struct sighand_struct *sighand;
1289 for (;;) {
1290 local_irq_save(*flags);
1291 rcu_read_lock();
1292 sighand = rcu_dereference(tsk->sighand);
1293 if (unlikely(sighand == NULL)) {
1294 rcu_read_unlock();
1295 local_irq_restore(*flags);
1296 break;
1299 spin_lock(&sighand->siglock);
1300 if (likely(sighand == tsk->sighand)) {
1301 rcu_read_unlock();
1302 break;
1304 spin_unlock(&sighand->siglock);
1305 rcu_read_unlock();
1306 local_irq_restore(*flags);
1309 return sighand;
1313 * send signal info to all the members of a group
1315 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1317 int ret;
1319 rcu_read_lock();
1320 ret = check_kill_permission(sig, info, p);
1321 rcu_read_unlock();
1323 if (!ret && sig)
1324 ret = do_send_sig_info(sig, info, p, true);
1326 return ret;
1330 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1331 * control characters do (^C, ^Z etc)
1332 * - the caller must hold at least a readlock on tasklist_lock
1334 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1336 struct task_struct *p = NULL;
1337 int retval, success;
1339 success = 0;
1340 retval = -ESRCH;
1341 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1342 int err = group_send_sig_info(sig, info, p);
1343 success |= !err;
1344 retval = err;
1345 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1346 return success ? 0 : retval;
1349 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1351 int error = -ESRCH;
1352 struct task_struct *p;
1354 rcu_read_lock();
1355 retry:
1356 p = pid_task(pid, PIDTYPE_PID);
1357 if (p) {
1358 error = group_send_sig_info(sig, info, p);
1359 if (unlikely(error == -ESRCH))
1361 * The task was unhashed in between, try again.
1362 * If it is dead, pid_task() will return NULL,
1363 * if we race with de_thread() it will find the
1364 * new leader.
1366 goto retry;
1368 rcu_read_unlock();
1370 return error;
1373 int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1375 int error;
1376 rcu_read_lock();
1377 error = kill_pid_info(sig, info, find_vpid(pid));
1378 rcu_read_unlock();
1379 return error;
1382 static int kill_as_cred_perm(const struct cred *cred,
1383 struct task_struct *target)
1385 const struct cred *pcred = __task_cred(target);
1386 if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1387 !uid_eq(cred->uid, pcred->suid) && !uid_eq(cred->uid, pcred->uid))
1388 return 0;
1389 return 1;
1392 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1393 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1394 const struct cred *cred, u32 secid)
1396 int ret = -EINVAL;
1397 struct task_struct *p;
1398 unsigned long flags;
1400 if (!valid_signal(sig))
1401 return ret;
1403 rcu_read_lock();
1404 p = pid_task(pid, PIDTYPE_PID);
1405 if (!p) {
1406 ret = -ESRCH;
1407 goto out_unlock;
1409 if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1410 ret = -EPERM;
1411 goto out_unlock;
1413 ret = security_task_kill(p, info, sig, secid);
1414 if (ret)
1415 goto out_unlock;
1417 if (sig) {
1418 if (lock_task_sighand(p, &flags)) {
1419 ret = __send_signal(sig, info, p, 1, 0);
1420 unlock_task_sighand(p, &flags);
1421 } else
1422 ret = -ESRCH;
1424 out_unlock:
1425 rcu_read_unlock();
1426 return ret;
1428 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1431 * kill_something_info() interprets pid in interesting ways just like kill(2).
1433 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1434 * is probably wrong. Should make it like BSD or SYSV.
1437 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1439 int ret;
1441 if (pid > 0) {
1442 rcu_read_lock();
1443 ret = kill_pid_info(sig, info, find_vpid(pid));
1444 rcu_read_unlock();
1445 return ret;
1448 read_lock(&tasklist_lock);
1449 if (pid != -1) {
1450 ret = __kill_pgrp_info(sig, info,
1451 pid ? find_vpid(-pid) : task_pgrp(current));
1452 } else {
1453 int retval = 0, count = 0;
1454 struct task_struct * p;
1456 for_each_process(p) {
1457 if (task_pid_vnr(p) > 1 &&
1458 !same_thread_group(p, current)) {
1459 int err = group_send_sig_info(sig, info, p);
1460 ++count;
1461 if (err != -EPERM)
1462 retval = err;
1465 ret = count ? retval : -ESRCH;
1467 read_unlock(&tasklist_lock);
1469 return ret;
1473 * These are for backward compatibility with the rest of the kernel source.
1476 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1479 * Make sure legacy kernel users don't send in bad values
1480 * (normal paths check this in check_kill_permission).
1482 if (!valid_signal(sig))
1483 return -EINVAL;
1485 return do_send_sig_info(sig, info, p, false);
1488 #define __si_special(priv) \
1489 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1492 send_sig(int sig, struct task_struct *p, int priv)
1494 return send_sig_info(sig, __si_special(priv), p);
1497 void
1498 force_sig(int sig, struct task_struct *p)
1500 force_sig_info(sig, SEND_SIG_PRIV, p);
1504 * When things go south during signal handling, we
1505 * will force a SIGSEGV. And if the signal that caused
1506 * the problem was already a SIGSEGV, we'll want to
1507 * make sure we don't even try to deliver the signal..
1510 force_sigsegv(int sig, struct task_struct *p)
1512 if (sig == SIGSEGV) {
1513 unsigned long flags;
1514 spin_lock_irqsave(&p->sighand->siglock, flags);
1515 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1516 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1518 force_sig(SIGSEGV, p);
1519 return 0;
1522 int kill_pgrp(struct pid *pid, int sig, int priv)
1524 int ret;
1526 read_lock(&tasklist_lock);
1527 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1528 read_unlock(&tasklist_lock);
1530 return ret;
1532 EXPORT_SYMBOL(kill_pgrp);
1534 int kill_pid(struct pid *pid, int sig, int priv)
1536 return kill_pid_info(sig, __si_special(priv), pid);
1538 EXPORT_SYMBOL(kill_pid);
1541 * These functions support sending signals using preallocated sigqueue
1542 * structures. This is needed "because realtime applications cannot
1543 * afford to lose notifications of asynchronous events, like timer
1544 * expirations or I/O completions". In the case of POSIX Timers
1545 * we allocate the sigqueue structure from the timer_create. If this
1546 * allocation fails we are able to report the failure to the application
1547 * with an EAGAIN error.
1549 struct sigqueue *sigqueue_alloc(void)
1551 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1553 if (q)
1554 q->flags |= SIGQUEUE_PREALLOC;
1556 return q;
1559 void sigqueue_free(struct sigqueue *q)
1561 unsigned long flags;
1562 spinlock_t *lock = &current->sighand->siglock;
1564 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1566 * We must hold ->siglock while testing q->list
1567 * to serialize with collect_signal() or with
1568 * __exit_signal()->flush_sigqueue().
1570 spin_lock_irqsave(lock, flags);
1571 q->flags &= ~SIGQUEUE_PREALLOC;
1573 * If it is queued it will be freed when dequeued,
1574 * like the "regular" sigqueue.
1576 if (!list_empty(&q->list))
1577 q = NULL;
1578 spin_unlock_irqrestore(lock, flags);
1580 if (q)
1581 __sigqueue_free(q);
1584 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1586 int sig = q->info.si_signo;
1587 struct sigpending *pending;
1588 unsigned long flags;
1589 int ret, result;
1591 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1593 ret = -1;
1594 if (!likely(lock_task_sighand(t, &flags)))
1595 goto ret;
1597 ret = 1; /* the signal is ignored */
1598 result = TRACE_SIGNAL_IGNORED;
1599 if (!prepare_signal(sig, t, false))
1600 goto out;
1602 ret = 0;
1603 if (unlikely(!list_empty(&q->list))) {
1605 * If an SI_TIMER entry is already queue just increment
1606 * the overrun count.
1608 BUG_ON(q->info.si_code != SI_TIMER);
1609 q->info.si_overrun++;
1610 result = TRACE_SIGNAL_ALREADY_PENDING;
1611 goto out;
1613 q->info.si_overrun = 0;
1615 signalfd_notify(t, sig);
1616 pending = group ? &t->signal->shared_pending : &t->pending;
1617 list_add_tail(&q->list, &pending->list);
1618 sigaddset(&pending->signal, sig);
1619 complete_signal(sig, t, group);
1620 result = TRACE_SIGNAL_DELIVERED;
1621 out:
1622 trace_signal_generate(sig, &q->info, t, group, result);
1623 unlock_task_sighand(t, &flags);
1624 ret:
1625 return ret;
1629 * Let a parent know about the death of a child.
1630 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1632 * Returns true if our parent ignored us and so we've switched to
1633 * self-reaping.
1635 bool do_notify_parent(struct task_struct *tsk, int sig)
1637 struct siginfo info;
1638 unsigned long flags;
1639 struct sighand_struct *psig;
1640 bool autoreap = false;
1642 BUG_ON(sig == -1);
1644 /* do_notify_parent_cldstop should have been called instead. */
1645 BUG_ON(task_is_stopped_or_traced(tsk));
1647 BUG_ON(!tsk->ptrace &&
1648 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1650 if (sig != SIGCHLD) {
1652 * This is only possible if parent == real_parent.
1653 * Check if it has changed security domain.
1655 if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1656 sig = SIGCHLD;
1659 info.si_signo = sig;
1660 info.si_errno = 0;
1662 * We are under tasklist_lock here so our parent is tied to
1663 * us and cannot change.
1665 * task_active_pid_ns will always return the same pid namespace
1666 * until a task passes through release_task.
1668 * write_lock() currently calls preempt_disable() which is the
1669 * same as rcu_read_lock(), but according to Oleg, this is not
1670 * correct to rely on this
1672 rcu_read_lock();
1673 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1674 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1675 task_uid(tsk));
1676 rcu_read_unlock();
1678 info.si_utime = cputime_to_clock_t(tsk->utime + tsk->signal->utime);
1679 info.si_stime = cputime_to_clock_t(tsk->stime + tsk->signal->stime);
1681 info.si_status = tsk->exit_code & 0x7f;
1682 if (tsk->exit_code & 0x80)
1683 info.si_code = CLD_DUMPED;
1684 else if (tsk->exit_code & 0x7f)
1685 info.si_code = CLD_KILLED;
1686 else {
1687 info.si_code = CLD_EXITED;
1688 info.si_status = tsk->exit_code >> 8;
1691 psig = tsk->parent->sighand;
1692 spin_lock_irqsave(&psig->siglock, flags);
1693 if (!tsk->ptrace && sig == SIGCHLD &&
1694 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1695 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1697 * We are exiting and our parent doesn't care. POSIX.1
1698 * defines special semantics for setting SIGCHLD to SIG_IGN
1699 * or setting the SA_NOCLDWAIT flag: we should be reaped
1700 * automatically and not left for our parent's wait4 call.
1701 * Rather than having the parent do it as a magic kind of
1702 * signal handler, we just set this to tell do_exit that we
1703 * can be cleaned up without becoming a zombie. Note that
1704 * we still call __wake_up_parent in this case, because a
1705 * blocked sys_wait4 might now return -ECHILD.
1707 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1708 * is implementation-defined: we do (if you don't want
1709 * it, just use SIG_IGN instead).
1711 autoreap = true;
1712 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1713 sig = 0;
1715 if (valid_signal(sig) && sig)
1716 __group_send_sig_info(sig, &info, tsk->parent);
1717 __wake_up_parent(tsk, tsk->parent);
1718 spin_unlock_irqrestore(&psig->siglock, flags);
1720 return autoreap;
1724 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1725 * @tsk: task reporting the state change
1726 * @for_ptracer: the notification is for ptracer
1727 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1729 * Notify @tsk's parent that the stopped/continued state has changed. If
1730 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1731 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1733 * CONTEXT:
1734 * Must be called with tasklist_lock at least read locked.
1736 static void do_notify_parent_cldstop(struct task_struct *tsk,
1737 bool for_ptracer, int why)
1739 struct siginfo info;
1740 unsigned long flags;
1741 struct task_struct *parent;
1742 struct sighand_struct *sighand;
1744 if (for_ptracer) {
1745 parent = tsk->parent;
1746 } else {
1747 tsk = tsk->group_leader;
1748 parent = tsk->real_parent;
1751 info.si_signo = SIGCHLD;
1752 info.si_errno = 0;
1754 * see comment in do_notify_parent() about the following 4 lines
1756 rcu_read_lock();
1757 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1758 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1759 rcu_read_unlock();
1761 info.si_utime = cputime_to_clock_t(tsk->utime);
1762 info.si_stime = cputime_to_clock_t(tsk->stime);
1764 info.si_code = why;
1765 switch (why) {
1766 case CLD_CONTINUED:
1767 info.si_status = SIGCONT;
1768 break;
1769 case CLD_STOPPED:
1770 info.si_status = tsk->signal->group_exit_code & 0x7f;
1771 break;
1772 case CLD_TRAPPED:
1773 info.si_status = tsk->exit_code & 0x7f;
1774 break;
1775 default:
1776 BUG();
1779 sighand = parent->sighand;
1780 spin_lock_irqsave(&sighand->siglock, flags);
1781 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1782 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1783 __group_send_sig_info(SIGCHLD, &info, parent);
1785 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1787 __wake_up_parent(tsk, parent);
1788 spin_unlock_irqrestore(&sighand->siglock, flags);
1791 static inline int may_ptrace_stop(void)
1793 if (!likely(current->ptrace))
1794 return 0;
1796 * Are we in the middle of do_coredump?
1797 * If so and our tracer is also part of the coredump stopping
1798 * is a deadlock situation, and pointless because our tracer
1799 * is dead so don't allow us to stop.
1800 * If SIGKILL was already sent before the caller unlocked
1801 * ->siglock we must see ->core_state != NULL. Otherwise it
1802 * is safe to enter schedule().
1804 if (unlikely(current->mm->core_state) &&
1805 unlikely(current->mm == current->parent->mm))
1806 return 0;
1808 return 1;
1812 * Return non-zero if there is a SIGKILL that should be waking us up.
1813 * Called with the siglock held.
1815 static int sigkill_pending(struct task_struct *tsk)
1817 return sigismember(&tsk->pending.signal, SIGKILL) ||
1818 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1822 * This must be called with current->sighand->siglock held.
1824 * This should be the path for all ptrace stops.
1825 * We always set current->last_siginfo while stopped here.
1826 * That makes it a way to test a stopped process for
1827 * being ptrace-stopped vs being job-control-stopped.
1829 * If we actually decide not to stop at all because the tracer
1830 * is gone, we keep current->exit_code unless clear_code.
1832 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1833 __releases(&current->sighand->siglock)
1834 __acquires(&current->sighand->siglock)
1836 bool gstop_done = false;
1838 if (arch_ptrace_stop_needed(exit_code, info)) {
1840 * The arch code has something special to do before a
1841 * ptrace stop. This is allowed to block, e.g. for faults
1842 * on user stack pages. We can't keep the siglock while
1843 * calling arch_ptrace_stop, so we must release it now.
1844 * To preserve proper semantics, we must do this before
1845 * any signal bookkeeping like checking group_stop_count.
1846 * Meanwhile, a SIGKILL could come in before we retake the
1847 * siglock. That must prevent us from sleeping in TASK_TRACED.
1848 * So after regaining the lock, we must check for SIGKILL.
1850 spin_unlock_irq(&current->sighand->siglock);
1851 arch_ptrace_stop(exit_code, info);
1852 spin_lock_irq(&current->sighand->siglock);
1853 if (sigkill_pending(current))
1854 return;
1858 * We're committing to trapping. TRACED should be visible before
1859 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1860 * Also, transition to TRACED and updates to ->jobctl should be
1861 * atomic with respect to siglock and should be done after the arch
1862 * hook as siglock is released and regrabbed across it.
1864 set_current_state(TASK_TRACED);
1866 current->last_siginfo = info;
1867 current->exit_code = exit_code;
1870 * If @why is CLD_STOPPED, we're trapping to participate in a group
1871 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
1872 * across siglock relocks since INTERRUPT was scheduled, PENDING
1873 * could be clear now. We act as if SIGCONT is received after
1874 * TASK_TRACED is entered - ignore it.
1876 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1877 gstop_done = task_participate_group_stop(current);
1879 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1880 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1881 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1882 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1884 /* entering a trap, clear TRAPPING */
1885 task_clear_jobctl_trapping(current);
1887 spin_unlock_irq(&current->sighand->siglock);
1888 read_lock(&tasklist_lock);
1889 if (may_ptrace_stop()) {
1891 * Notify parents of the stop.
1893 * While ptraced, there are two parents - the ptracer and
1894 * the real_parent of the group_leader. The ptracer should
1895 * know about every stop while the real parent is only
1896 * interested in the completion of group stop. The states
1897 * for the two don't interact with each other. Notify
1898 * separately unless they're gonna be duplicates.
1900 do_notify_parent_cldstop(current, true, why);
1901 if (gstop_done && ptrace_reparented(current))
1902 do_notify_parent_cldstop(current, false, why);
1905 * Don't want to allow preemption here, because
1906 * sys_ptrace() needs this task to be inactive.
1908 * XXX: implement read_unlock_no_resched().
1910 preempt_disable();
1911 read_unlock(&tasklist_lock);
1912 preempt_enable_no_resched();
1913 freezable_schedule();
1914 } else {
1916 * By the time we got the lock, our tracer went away.
1917 * Don't drop the lock yet, another tracer may come.
1919 * If @gstop_done, the ptracer went away between group stop
1920 * completion and here. During detach, it would have set
1921 * JOBCTL_STOP_PENDING on us and we'll re-enter
1922 * TASK_STOPPED in do_signal_stop() on return, so notifying
1923 * the real parent of the group stop completion is enough.
1925 if (gstop_done)
1926 do_notify_parent_cldstop(current, false, why);
1928 __set_current_state(TASK_RUNNING);
1929 if (clear_code)
1930 current->exit_code = 0;
1931 read_unlock(&tasklist_lock);
1935 * We are back. Now reacquire the siglock before touching
1936 * last_siginfo, so that we are sure to have synchronized with
1937 * any signal-sending on another CPU that wants to examine it.
1939 spin_lock_irq(&current->sighand->siglock);
1940 current->last_siginfo = NULL;
1942 /* LISTENING can be set only during STOP traps, clear it */
1943 current->jobctl &= ~JOBCTL_LISTENING;
1946 * Queued signals ignored us while we were stopped for tracing.
1947 * So check for any that we should take before resuming user mode.
1948 * This sets TIF_SIGPENDING, but never clears it.
1950 recalc_sigpending_tsk(current);
1953 static void ptrace_do_notify(int signr, int exit_code, int why)
1955 siginfo_t info;
1957 memset(&info, 0, sizeof info);
1958 info.si_signo = signr;
1959 info.si_code = exit_code;
1960 info.si_pid = task_pid_vnr(current);
1961 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1963 /* Let the debugger run. */
1964 ptrace_stop(exit_code, why, 1, &info);
1967 void ptrace_notify(int exit_code)
1969 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1970 if (unlikely(current->task_works))
1971 task_work_run();
1973 spin_lock_irq(&current->sighand->siglock);
1974 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1975 spin_unlock_irq(&current->sighand->siglock);
1979 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1980 * @signr: signr causing group stop if initiating
1982 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1983 * and participate in it. If already set, participate in the existing
1984 * group stop. If participated in a group stop (and thus slept), %true is
1985 * returned with siglock released.
1987 * If ptraced, this function doesn't handle stop itself. Instead,
1988 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1989 * untouched. The caller must ensure that INTERRUPT trap handling takes
1990 * places afterwards.
1992 * CONTEXT:
1993 * Must be called with @current->sighand->siglock held, which is released
1994 * on %true return.
1996 * RETURNS:
1997 * %false if group stop is already cancelled or ptrace trap is scheduled.
1998 * %true if participated in group stop.
2000 static bool do_signal_stop(int signr)
2001 __releases(&current->sighand->siglock)
2003 struct signal_struct *sig = current->signal;
2005 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2006 unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2007 struct task_struct *t;
2009 /* signr will be recorded in task->jobctl for retries */
2010 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2012 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2013 unlikely(signal_group_exit(sig)))
2014 return false;
2016 * There is no group stop already in progress. We must
2017 * initiate one now.
2019 * While ptraced, a task may be resumed while group stop is
2020 * still in effect and then receive a stop signal and
2021 * initiate another group stop. This deviates from the
2022 * usual behavior as two consecutive stop signals can't
2023 * cause two group stops when !ptraced. That is why we
2024 * also check !task_is_stopped(t) below.
2026 * The condition can be distinguished by testing whether
2027 * SIGNAL_STOP_STOPPED is already set. Don't generate
2028 * group_exit_code in such case.
2030 * This is not necessary for SIGNAL_STOP_CONTINUED because
2031 * an intervening stop signal is required to cause two
2032 * continued events regardless of ptrace.
2034 if (!(sig->flags & SIGNAL_STOP_STOPPED))
2035 sig->group_exit_code = signr;
2037 sig->group_stop_count = 0;
2039 if (task_set_jobctl_pending(current, signr | gstop))
2040 sig->group_stop_count++;
2042 for (t = next_thread(current); t != current;
2043 t = next_thread(t)) {
2045 * Setting state to TASK_STOPPED for a group
2046 * stop is always done with the siglock held,
2047 * so this check has no races.
2049 if (!task_is_stopped(t) &&
2050 task_set_jobctl_pending(t, signr | gstop)) {
2051 sig->group_stop_count++;
2052 if (likely(!(t->ptrace & PT_SEIZED)))
2053 signal_wake_up(t, 0);
2054 else
2055 ptrace_trap_notify(t);
2060 if (likely(!current->ptrace)) {
2061 int notify = 0;
2064 * If there are no other threads in the group, or if there
2065 * is a group stop in progress and we are the last to stop,
2066 * report to the parent.
2068 if (task_participate_group_stop(current))
2069 notify = CLD_STOPPED;
2071 __set_current_state(TASK_STOPPED);
2072 spin_unlock_irq(&current->sighand->siglock);
2075 * Notify the parent of the group stop completion. Because
2076 * we're not holding either the siglock or tasklist_lock
2077 * here, ptracer may attach inbetween; however, this is for
2078 * group stop and should always be delivered to the real
2079 * parent of the group leader. The new ptracer will get
2080 * its notification when this task transitions into
2081 * TASK_TRACED.
2083 if (notify) {
2084 read_lock(&tasklist_lock);
2085 do_notify_parent_cldstop(current, false, notify);
2086 read_unlock(&tasklist_lock);
2089 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2090 freezable_schedule();
2091 return true;
2092 } else {
2094 * While ptraced, group stop is handled by STOP trap.
2095 * Schedule it and let the caller deal with it.
2097 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2098 return false;
2103 * do_jobctl_trap - take care of ptrace jobctl traps
2105 * When PT_SEIZED, it's used for both group stop and explicit
2106 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2107 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2108 * the stop signal; otherwise, %SIGTRAP.
2110 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2111 * number as exit_code and no siginfo.
2113 * CONTEXT:
2114 * Must be called with @current->sighand->siglock held, which may be
2115 * released and re-acquired before returning with intervening sleep.
2117 static void do_jobctl_trap(void)
2119 struct signal_struct *signal = current->signal;
2120 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2122 if (current->ptrace & PT_SEIZED) {
2123 if (!signal->group_stop_count &&
2124 !(signal->flags & SIGNAL_STOP_STOPPED))
2125 signr = SIGTRAP;
2126 WARN_ON_ONCE(!signr);
2127 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2128 CLD_STOPPED);
2129 } else {
2130 WARN_ON_ONCE(!signr);
2131 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2132 current->exit_code = 0;
2136 static int ptrace_signal(int signr, siginfo_t *info)
2138 ptrace_signal_deliver();
2140 * We do not check sig_kernel_stop(signr) but set this marker
2141 * unconditionally because we do not know whether debugger will
2142 * change signr. This flag has no meaning unless we are going
2143 * to stop after return from ptrace_stop(). In this case it will
2144 * be checked in do_signal_stop(), we should only stop if it was
2145 * not cleared by SIGCONT while we were sleeping. See also the
2146 * comment in dequeue_signal().
2148 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2149 ptrace_stop(signr, CLD_TRAPPED, 0, info);
2151 /* We're back. Did the debugger cancel the sig? */
2152 signr = current->exit_code;
2153 if (signr == 0)
2154 return signr;
2156 current->exit_code = 0;
2159 * Update the siginfo structure if the signal has
2160 * changed. If the debugger wanted something
2161 * specific in the siginfo structure then it should
2162 * have updated *info via PTRACE_SETSIGINFO.
2164 if (signr != info->si_signo) {
2165 info->si_signo = signr;
2166 info->si_errno = 0;
2167 info->si_code = SI_USER;
2168 rcu_read_lock();
2169 info->si_pid = task_pid_vnr(current->parent);
2170 info->si_uid = from_kuid_munged(current_user_ns(),
2171 task_uid(current->parent));
2172 rcu_read_unlock();
2175 /* If the (new) signal is now blocked, requeue it. */
2176 if (sigismember(&current->blocked, signr)) {
2177 specific_send_sig_info(signr, info, current);
2178 signr = 0;
2181 return signr;
2184 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
2185 struct pt_regs *regs, void *cookie)
2187 struct sighand_struct *sighand = current->sighand;
2188 struct signal_struct *signal = current->signal;
2189 int signr;
2191 if (unlikely(current->task_works))
2192 task_work_run();
2194 if (unlikely(uprobe_deny_signal()))
2195 return 0;
2198 * Do this once, we can't return to user-mode if freezing() == T.
2199 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2200 * thus do not need another check after return.
2202 try_to_freeze();
2204 relock:
2205 spin_lock_irq(&sighand->siglock);
2207 * Every stopped thread goes here after wakeup. Check to see if
2208 * we should notify the parent, prepare_signal(SIGCONT) encodes
2209 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2211 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2212 int why;
2214 if (signal->flags & SIGNAL_CLD_CONTINUED)
2215 why = CLD_CONTINUED;
2216 else
2217 why = CLD_STOPPED;
2219 signal->flags &= ~SIGNAL_CLD_MASK;
2221 spin_unlock_irq(&sighand->siglock);
2224 * Notify the parent that we're continuing. This event is
2225 * always per-process and doesn't make whole lot of sense
2226 * for ptracers, who shouldn't consume the state via
2227 * wait(2) either, but, for backward compatibility, notify
2228 * the ptracer of the group leader too unless it's gonna be
2229 * a duplicate.
2231 read_lock(&tasklist_lock);
2232 do_notify_parent_cldstop(current, false, why);
2234 if (ptrace_reparented(current->group_leader))
2235 do_notify_parent_cldstop(current->group_leader,
2236 true, why);
2237 read_unlock(&tasklist_lock);
2239 goto relock;
2242 for (;;) {
2243 struct k_sigaction *ka;
2245 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2246 do_signal_stop(0))
2247 goto relock;
2249 if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2250 do_jobctl_trap();
2251 spin_unlock_irq(&sighand->siglock);
2252 goto relock;
2255 signr = dequeue_signal(current, &current->blocked, info);
2257 if (!signr)
2258 break; /* will return 0 */
2260 if (unlikely(current->ptrace) && signr != SIGKILL) {
2261 signr = ptrace_signal(signr, info);
2262 if (!signr)
2263 continue;
2266 ka = &sighand->action[signr-1];
2268 /* Trace actually delivered signals. */
2269 trace_signal_deliver(signr, info, ka);
2271 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2272 continue;
2273 if (ka->sa.sa_handler != SIG_DFL) {
2274 /* Run the handler. */
2275 *return_ka = *ka;
2277 if (ka->sa.sa_flags & SA_ONESHOT)
2278 ka->sa.sa_handler = SIG_DFL;
2280 break; /* will return non-zero "signr" value */
2284 * Now we are doing the default action for this signal.
2286 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2287 continue;
2290 * Global init gets no signals it doesn't want.
2291 * Container-init gets no signals it doesn't want from same
2292 * container.
2294 * Note that if global/container-init sees a sig_kernel_only()
2295 * signal here, the signal must have been generated internally
2296 * or must have come from an ancestor namespace. In either
2297 * case, the signal cannot be dropped.
2299 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2300 !sig_kernel_only(signr))
2301 continue;
2303 if (sig_kernel_stop(signr)) {
2305 * The default action is to stop all threads in
2306 * the thread group. The job control signals
2307 * do nothing in an orphaned pgrp, but SIGSTOP
2308 * always works. Note that siglock needs to be
2309 * dropped during the call to is_orphaned_pgrp()
2310 * because of lock ordering with tasklist_lock.
2311 * This allows an intervening SIGCONT to be posted.
2312 * We need to check for that and bail out if necessary.
2314 if (signr != SIGSTOP) {
2315 spin_unlock_irq(&sighand->siglock);
2317 /* signals can be posted during this window */
2319 if (is_current_pgrp_orphaned())
2320 goto relock;
2322 spin_lock_irq(&sighand->siglock);
2325 if (likely(do_signal_stop(info->si_signo))) {
2326 /* It released the siglock. */
2327 goto relock;
2331 * We didn't actually stop, due to a race
2332 * with SIGCONT or something like that.
2334 continue;
2337 spin_unlock_irq(&sighand->siglock);
2340 * Anything else is fatal, maybe with a core dump.
2342 current->flags |= PF_SIGNALED;
2344 if (sig_kernel_coredump(signr)) {
2345 if (print_fatal_signals)
2346 print_fatal_signal(info->si_signo);
2348 * If it was able to dump core, this kills all
2349 * other threads in the group and synchronizes with
2350 * their demise. If we lost the race with another
2351 * thread getting here, it set group_exit_code
2352 * first and our do_group_exit call below will use
2353 * that value and ignore the one we pass it.
2355 do_coredump(info);
2359 * Death signals, no core dump.
2361 do_group_exit(info->si_signo);
2362 /* NOTREACHED */
2364 spin_unlock_irq(&sighand->siglock);
2365 return signr;
2369 * signal_delivered -
2370 * @sig: number of signal being delivered
2371 * @info: siginfo_t of signal being delivered
2372 * @ka: sigaction setting that chose the handler
2373 * @regs: user register state
2374 * @stepping: nonzero if debugger single-step or block-step in use
2376 * This function should be called when a signal has succesfully been
2377 * delivered. It updates the blocked signals accordingly (@ka->sa.sa_mask
2378 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2379 * is set in @ka->sa.sa_flags. Tracing is notified.
2381 void signal_delivered(int sig, siginfo_t *info, struct k_sigaction *ka,
2382 struct pt_regs *regs, int stepping)
2384 sigset_t blocked;
2386 /* A signal was successfully delivered, and the
2387 saved sigmask was stored on the signal frame,
2388 and will be restored by sigreturn. So we can
2389 simply clear the restore sigmask flag. */
2390 clear_restore_sigmask();
2392 sigorsets(&blocked, &current->blocked, &ka->sa.sa_mask);
2393 if (!(ka->sa.sa_flags & SA_NODEFER))
2394 sigaddset(&blocked, sig);
2395 set_current_blocked(&blocked);
2396 tracehook_signal_handler(sig, info, ka, regs, stepping);
2400 * It could be that complete_signal() picked us to notify about the
2401 * group-wide signal. Other threads should be notified now to take
2402 * the shared signals in @which since we will not.
2404 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2406 sigset_t retarget;
2407 struct task_struct *t;
2409 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2410 if (sigisemptyset(&retarget))
2411 return;
2413 t = tsk;
2414 while_each_thread(tsk, t) {
2415 if (t->flags & PF_EXITING)
2416 continue;
2418 if (!has_pending_signals(&retarget, &t->blocked))
2419 continue;
2420 /* Remove the signals this thread can handle. */
2421 sigandsets(&retarget, &retarget, &t->blocked);
2423 if (!signal_pending(t))
2424 signal_wake_up(t, 0);
2426 if (sigisemptyset(&retarget))
2427 break;
2431 void exit_signals(struct task_struct *tsk)
2433 int group_stop = 0;
2434 sigset_t unblocked;
2437 * @tsk is about to have PF_EXITING set - lock out users which
2438 * expect stable threadgroup.
2440 threadgroup_change_begin(tsk);
2442 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2443 tsk->flags |= PF_EXITING;
2444 threadgroup_change_end(tsk);
2445 return;
2448 spin_lock_irq(&tsk->sighand->siglock);
2450 * From now this task is not visible for group-wide signals,
2451 * see wants_signal(), do_signal_stop().
2453 tsk->flags |= PF_EXITING;
2455 threadgroup_change_end(tsk);
2457 if (!signal_pending(tsk))
2458 goto out;
2460 unblocked = tsk->blocked;
2461 signotset(&unblocked);
2462 retarget_shared_pending(tsk, &unblocked);
2464 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2465 task_participate_group_stop(tsk))
2466 group_stop = CLD_STOPPED;
2467 out:
2468 spin_unlock_irq(&tsk->sighand->siglock);
2471 * If group stop has completed, deliver the notification. This
2472 * should always go to the real parent of the group leader.
2474 if (unlikely(group_stop)) {
2475 read_lock(&tasklist_lock);
2476 do_notify_parent_cldstop(tsk, false, group_stop);
2477 read_unlock(&tasklist_lock);
2481 EXPORT_SYMBOL(recalc_sigpending);
2482 EXPORT_SYMBOL_GPL(dequeue_signal);
2483 EXPORT_SYMBOL(flush_signals);
2484 EXPORT_SYMBOL(force_sig);
2485 EXPORT_SYMBOL(send_sig);
2486 EXPORT_SYMBOL(send_sig_info);
2487 EXPORT_SYMBOL(sigprocmask);
2488 EXPORT_SYMBOL(block_all_signals);
2489 EXPORT_SYMBOL(unblock_all_signals);
2493 * System call entry points.
2497 * sys_restart_syscall - restart a system call
2499 SYSCALL_DEFINE0(restart_syscall)
2501 struct restart_block *restart = &current_thread_info()->restart_block;
2502 return restart->fn(restart);
2505 long do_no_restart_syscall(struct restart_block *param)
2507 return -EINTR;
2510 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2512 if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2513 sigset_t newblocked;
2514 /* A set of now blocked but previously unblocked signals. */
2515 sigandnsets(&newblocked, newset, &current->blocked);
2516 retarget_shared_pending(tsk, &newblocked);
2518 tsk->blocked = *newset;
2519 recalc_sigpending();
2523 * set_current_blocked - change current->blocked mask
2524 * @newset: new mask
2526 * It is wrong to change ->blocked directly, this helper should be used
2527 * to ensure the process can't miss a shared signal we are going to block.
2529 void set_current_blocked(sigset_t *newset)
2531 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2532 __set_current_blocked(newset);
2535 void __set_current_blocked(const sigset_t *newset)
2537 struct task_struct *tsk = current;
2539 spin_lock_irq(&tsk->sighand->siglock);
2540 __set_task_blocked(tsk, newset);
2541 spin_unlock_irq(&tsk->sighand->siglock);
2545 * This is also useful for kernel threads that want to temporarily
2546 * (or permanently) block certain signals.
2548 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2549 * interface happily blocks "unblockable" signals like SIGKILL
2550 * and friends.
2552 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2554 struct task_struct *tsk = current;
2555 sigset_t newset;
2557 /* Lockless, only current can change ->blocked, never from irq */
2558 if (oldset)
2559 *oldset = tsk->blocked;
2561 switch (how) {
2562 case SIG_BLOCK:
2563 sigorsets(&newset, &tsk->blocked, set);
2564 break;
2565 case SIG_UNBLOCK:
2566 sigandnsets(&newset, &tsk->blocked, set);
2567 break;
2568 case SIG_SETMASK:
2569 newset = *set;
2570 break;
2571 default:
2572 return -EINVAL;
2575 __set_current_blocked(&newset);
2576 return 0;
2580 * sys_rt_sigprocmask - change the list of currently blocked signals
2581 * @how: whether to add, remove, or set signals
2582 * @nset: stores pending signals
2583 * @oset: previous value of signal mask if non-null
2584 * @sigsetsize: size of sigset_t type
2586 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2587 sigset_t __user *, oset, size_t, sigsetsize)
2589 sigset_t old_set, new_set;
2590 int error;
2592 /* XXX: Don't preclude handling different sized sigset_t's. */
2593 if (sigsetsize != sizeof(sigset_t))
2594 return -EINVAL;
2596 old_set = current->blocked;
2598 if (nset) {
2599 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2600 return -EFAULT;
2601 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2603 error = sigprocmask(how, &new_set, NULL);
2604 if (error)
2605 return error;
2608 if (oset) {
2609 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2610 return -EFAULT;
2613 return 0;
2616 long do_sigpending(void __user *set, unsigned long sigsetsize)
2618 long error = -EINVAL;
2619 sigset_t pending;
2621 if (sigsetsize > sizeof(sigset_t))
2622 goto out;
2624 spin_lock_irq(&current->sighand->siglock);
2625 sigorsets(&pending, &current->pending.signal,
2626 &current->signal->shared_pending.signal);
2627 spin_unlock_irq(&current->sighand->siglock);
2629 /* Outside the lock because only this thread touches it. */
2630 sigandsets(&pending, &current->blocked, &pending);
2632 error = -EFAULT;
2633 if (!copy_to_user(set, &pending, sigsetsize))
2634 error = 0;
2636 out:
2637 return error;
2641 * sys_rt_sigpending - examine a pending signal that has been raised
2642 * while blocked
2643 * @set: stores pending signals
2644 * @sigsetsize: size of sigset_t type or larger
2646 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize)
2648 return do_sigpending(set, sigsetsize);
2651 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2653 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2655 int err;
2657 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2658 return -EFAULT;
2659 if (from->si_code < 0)
2660 return __copy_to_user(to, from, sizeof(siginfo_t))
2661 ? -EFAULT : 0;
2663 * If you change siginfo_t structure, please be sure
2664 * this code is fixed accordingly.
2665 * Please remember to update the signalfd_copyinfo() function
2666 * inside fs/signalfd.c too, in case siginfo_t changes.
2667 * It should never copy any pad contained in the structure
2668 * to avoid security leaks, but must copy the generic
2669 * 3 ints plus the relevant union member.
2671 err = __put_user(from->si_signo, &to->si_signo);
2672 err |= __put_user(from->si_errno, &to->si_errno);
2673 err |= __put_user((short)from->si_code, &to->si_code);
2674 switch (from->si_code & __SI_MASK) {
2675 case __SI_KILL:
2676 err |= __put_user(from->si_pid, &to->si_pid);
2677 err |= __put_user(from->si_uid, &to->si_uid);
2678 break;
2679 case __SI_TIMER:
2680 err |= __put_user(from->si_tid, &to->si_tid);
2681 err |= __put_user(from->si_overrun, &to->si_overrun);
2682 err |= __put_user(from->si_ptr, &to->si_ptr);
2683 break;
2684 case __SI_POLL:
2685 err |= __put_user(from->si_band, &to->si_band);
2686 err |= __put_user(from->si_fd, &to->si_fd);
2687 break;
2688 case __SI_FAULT:
2689 err |= __put_user(from->si_addr, &to->si_addr);
2690 #ifdef __ARCH_SI_TRAPNO
2691 err |= __put_user(from->si_trapno, &to->si_trapno);
2692 #endif
2693 #ifdef BUS_MCEERR_AO
2695 * Other callers might not initialize the si_lsb field,
2696 * so check explicitly for the right codes here.
2698 if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)
2699 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2700 #endif
2701 break;
2702 case __SI_CHLD:
2703 err |= __put_user(from->si_pid, &to->si_pid);
2704 err |= __put_user(from->si_uid, &to->si_uid);
2705 err |= __put_user(from->si_status, &to->si_status);
2706 err |= __put_user(from->si_utime, &to->si_utime);
2707 err |= __put_user(from->si_stime, &to->si_stime);
2708 break;
2709 case __SI_RT: /* This is not generated by the kernel as of now. */
2710 case __SI_MESGQ: /* But this is */
2711 err |= __put_user(from->si_pid, &to->si_pid);
2712 err |= __put_user(from->si_uid, &to->si_uid);
2713 err |= __put_user(from->si_ptr, &to->si_ptr);
2714 break;
2715 #ifdef __ARCH_SIGSYS
2716 case __SI_SYS:
2717 err |= __put_user(from->si_call_addr, &to->si_call_addr);
2718 err |= __put_user(from->si_syscall, &to->si_syscall);
2719 err |= __put_user(from->si_arch, &to->si_arch);
2720 break;
2721 #endif
2722 default: /* this is just in case for now ... */
2723 err |= __put_user(from->si_pid, &to->si_pid);
2724 err |= __put_user(from->si_uid, &to->si_uid);
2725 break;
2727 return err;
2730 #endif
2733 * do_sigtimedwait - wait for queued signals specified in @which
2734 * @which: queued signals to wait for
2735 * @info: if non-null, the signal's siginfo is returned here
2736 * @ts: upper bound on process time suspension
2738 int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2739 const struct timespec *ts)
2741 struct task_struct *tsk = current;
2742 long timeout = MAX_SCHEDULE_TIMEOUT;
2743 sigset_t mask = *which;
2744 int sig;
2746 if (ts) {
2747 if (!timespec_valid(ts))
2748 return -EINVAL;
2749 timeout = timespec_to_jiffies(ts);
2751 * We can be close to the next tick, add another one
2752 * to ensure we will wait at least the time asked for.
2754 if (ts->tv_sec || ts->tv_nsec)
2755 timeout++;
2759 * Invert the set of allowed signals to get those we want to block.
2761 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2762 signotset(&mask);
2764 spin_lock_irq(&tsk->sighand->siglock);
2765 sig = dequeue_signal(tsk, &mask, info);
2766 if (!sig && timeout) {
2768 * None ready, temporarily unblock those we're interested
2769 * while we are sleeping in so that we'll be awakened when
2770 * they arrive. Unblocking is always fine, we can avoid
2771 * set_current_blocked().
2773 tsk->real_blocked = tsk->blocked;
2774 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2775 recalc_sigpending();
2776 spin_unlock_irq(&tsk->sighand->siglock);
2778 timeout = schedule_timeout_interruptible(timeout);
2780 spin_lock_irq(&tsk->sighand->siglock);
2781 __set_task_blocked(tsk, &tsk->real_blocked);
2782 siginitset(&tsk->real_blocked, 0);
2783 sig = dequeue_signal(tsk, &mask, info);
2785 spin_unlock_irq(&tsk->sighand->siglock);
2787 if (sig)
2788 return sig;
2789 return timeout ? -EINTR : -EAGAIN;
2793 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
2794 * in @uthese
2795 * @uthese: queued signals to wait for
2796 * @uinfo: if non-null, the signal's siginfo is returned here
2797 * @uts: upper bound on process time suspension
2798 * @sigsetsize: size of sigset_t type
2800 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2801 siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2802 size_t, sigsetsize)
2804 sigset_t these;
2805 struct timespec ts;
2806 siginfo_t info;
2807 int ret;
2809 /* XXX: Don't preclude handling different sized sigset_t's. */
2810 if (sigsetsize != sizeof(sigset_t))
2811 return -EINVAL;
2813 if (copy_from_user(&these, uthese, sizeof(these)))
2814 return -EFAULT;
2816 if (uts) {
2817 if (copy_from_user(&ts, uts, sizeof(ts)))
2818 return -EFAULT;
2821 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2823 if (ret > 0 && uinfo) {
2824 if (copy_siginfo_to_user(uinfo, &info))
2825 ret = -EFAULT;
2828 return ret;
2832 * sys_kill - send a signal to a process
2833 * @pid: the PID of the process
2834 * @sig: signal to be sent
2836 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2838 struct siginfo info;
2840 info.si_signo = sig;
2841 info.si_errno = 0;
2842 info.si_code = SI_USER;
2843 info.si_pid = task_tgid_vnr(current);
2844 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2846 return kill_something_info(sig, &info, pid);
2849 static int
2850 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2852 struct task_struct *p;
2853 int error = -ESRCH;
2855 rcu_read_lock();
2856 p = find_task_by_vpid(pid);
2857 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2858 error = check_kill_permission(sig, info, p);
2860 * The null signal is a permissions and process existence
2861 * probe. No signal is actually delivered.
2863 if (!error && sig) {
2864 error = do_send_sig_info(sig, info, p, false);
2866 * If lock_task_sighand() failed we pretend the task
2867 * dies after receiving the signal. The window is tiny,
2868 * and the signal is private anyway.
2870 if (unlikely(error == -ESRCH))
2871 error = 0;
2874 rcu_read_unlock();
2876 return error;
2879 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2881 struct siginfo info;
2883 info.si_signo = sig;
2884 info.si_errno = 0;
2885 info.si_code = SI_TKILL;
2886 info.si_pid = task_tgid_vnr(current);
2887 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2889 return do_send_specific(tgid, pid, sig, &info);
2893 * sys_tgkill - send signal to one specific thread
2894 * @tgid: the thread group ID of the thread
2895 * @pid: the PID of the thread
2896 * @sig: signal to be sent
2898 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2899 * exists but it's not belonging to the target process anymore. This
2900 * method solves the problem of threads exiting and PIDs getting reused.
2902 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2904 /* This is only valid for single tasks */
2905 if (pid <= 0 || tgid <= 0)
2906 return -EINVAL;
2908 return do_tkill(tgid, pid, sig);
2912 * sys_tkill - send signal to one specific task
2913 * @pid: the PID of the task
2914 * @sig: signal to be sent
2916 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2918 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2920 /* This is only valid for single tasks */
2921 if (pid <= 0)
2922 return -EINVAL;
2924 return do_tkill(0, pid, sig);
2928 * sys_rt_sigqueueinfo - send signal information to a signal
2929 * @pid: the PID of the thread
2930 * @sig: signal to be sent
2931 * @uinfo: signal info to be sent
2933 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2934 siginfo_t __user *, uinfo)
2936 siginfo_t info;
2938 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2939 return -EFAULT;
2941 /* Not even root can pretend to send signals from the kernel.
2942 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2944 if (info.si_code >= 0 || info.si_code == SI_TKILL) {
2945 /* We used to allow any < 0 si_code */
2946 WARN_ON_ONCE(info.si_code < 0);
2947 return -EPERM;
2949 info.si_signo = sig;
2951 /* POSIX.1b doesn't mention process groups. */
2952 return kill_proc_info(sig, &info, pid);
2955 long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
2957 /* This is only valid for single tasks */
2958 if (pid <= 0 || tgid <= 0)
2959 return -EINVAL;
2961 /* Not even root can pretend to send signals from the kernel.
2962 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2964 if (info->si_code >= 0 || info->si_code == SI_TKILL) {
2965 /* We used to allow any < 0 si_code */
2966 WARN_ON_ONCE(info->si_code < 0);
2967 return -EPERM;
2969 info->si_signo = sig;
2971 return do_send_specific(tgid, pid, sig, info);
2974 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
2975 siginfo_t __user *, uinfo)
2977 siginfo_t info;
2979 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2980 return -EFAULT;
2982 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
2985 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2987 struct task_struct *t = current;
2988 struct k_sigaction *k;
2989 sigset_t mask;
2991 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2992 return -EINVAL;
2994 k = &t->sighand->action[sig-1];
2996 spin_lock_irq(&current->sighand->siglock);
2997 if (oact)
2998 *oact = *k;
3000 if (act) {
3001 sigdelsetmask(&act->sa.sa_mask,
3002 sigmask(SIGKILL) | sigmask(SIGSTOP));
3003 *k = *act;
3005 * POSIX 3.3.1.3:
3006 * "Setting a signal action to SIG_IGN for a signal that is
3007 * pending shall cause the pending signal to be discarded,
3008 * whether or not it is blocked."
3010 * "Setting a signal action to SIG_DFL for a signal that is
3011 * pending and whose default action is to ignore the signal
3012 * (for example, SIGCHLD), shall cause the pending signal to
3013 * be discarded, whether or not it is blocked"
3015 if (sig_handler_ignored(sig_handler(t, sig), sig)) {
3016 sigemptyset(&mask);
3017 sigaddset(&mask, sig);
3018 rm_from_queue_full(&mask, &t->signal->shared_pending);
3019 do {
3020 rm_from_queue_full(&mask, &t->pending);
3021 t = next_thread(t);
3022 } while (t != current);
3026 spin_unlock_irq(&current->sighand->siglock);
3027 return 0;
3030 int
3031 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
3033 stack_t oss;
3034 int error;
3036 oss.ss_sp = (void __user *) current->sas_ss_sp;
3037 oss.ss_size = current->sas_ss_size;
3038 oss.ss_flags = sas_ss_flags(sp);
3040 if (uss) {
3041 void __user *ss_sp;
3042 size_t ss_size;
3043 int ss_flags;
3045 error = -EFAULT;
3046 if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3047 goto out;
3048 error = __get_user(ss_sp, &uss->ss_sp) |
3049 __get_user(ss_flags, &uss->ss_flags) |
3050 __get_user(ss_size, &uss->ss_size);
3051 if (error)
3052 goto out;
3054 error = -EPERM;
3055 if (on_sig_stack(sp))
3056 goto out;
3058 error = -EINVAL;
3060 * Note - this code used to test ss_flags incorrectly:
3061 * old code may have been written using ss_flags==0
3062 * to mean ss_flags==SS_ONSTACK (as this was the only
3063 * way that worked) - this fix preserves that older
3064 * mechanism.
3066 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
3067 goto out;
3069 if (ss_flags == SS_DISABLE) {
3070 ss_size = 0;
3071 ss_sp = NULL;
3072 } else {
3073 error = -ENOMEM;
3074 if (ss_size < MINSIGSTKSZ)
3075 goto out;
3078 current->sas_ss_sp = (unsigned long) ss_sp;
3079 current->sas_ss_size = ss_size;
3082 error = 0;
3083 if (uoss) {
3084 error = -EFAULT;
3085 if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3086 goto out;
3087 error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3088 __put_user(oss.ss_size, &uoss->ss_size) |
3089 __put_user(oss.ss_flags, &uoss->ss_flags);
3092 out:
3093 return error;
3095 #ifdef CONFIG_GENERIC_SIGALTSTACK
3096 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3098 return do_sigaltstack(uss, uoss, current_user_stack_pointer());
3100 #endif
3102 int restore_altstack(const stack_t __user *uss)
3104 int err = do_sigaltstack(uss, NULL, current_user_stack_pointer());
3105 /* squash all but EFAULT for now */
3106 return err == -EFAULT ? err : 0;
3109 int __save_altstack(stack_t __user *uss, unsigned long sp)
3111 struct task_struct *t = current;
3112 return __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3113 __put_user(sas_ss_flags(sp), &uss->ss_flags) |
3114 __put_user(t->sas_ss_size, &uss->ss_size);
3117 #ifdef CONFIG_COMPAT
3118 #ifdef CONFIG_GENERIC_SIGALTSTACK
3119 asmlinkage long compat_sys_sigaltstack(const compat_stack_t __user *uss_ptr,
3120 compat_stack_t __user *uoss_ptr)
3122 stack_t uss, uoss;
3123 int ret;
3124 mm_segment_t seg;
3126 if (uss_ptr) {
3127 compat_stack_t uss32;
3129 memset(&uss, 0, sizeof(stack_t));
3130 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3131 return -EFAULT;
3132 uss.ss_sp = compat_ptr(uss32.ss_sp);
3133 uss.ss_flags = uss32.ss_flags;
3134 uss.ss_size = uss32.ss_size;
3136 seg = get_fs();
3137 set_fs(KERNEL_DS);
3138 ret = do_sigaltstack((stack_t __force __user *) (uss_ptr ? &uss : NULL),
3139 (stack_t __force __user *) &uoss,
3140 compat_user_stack_pointer());
3141 set_fs(seg);
3142 if (ret >= 0 && uoss_ptr) {
3143 if (!access_ok(VERIFY_WRITE, uoss_ptr, sizeof(compat_stack_t)) ||
3144 __put_user(ptr_to_compat(uoss.ss_sp), &uoss_ptr->ss_sp) ||
3145 __put_user(uoss.ss_flags, &uoss_ptr->ss_flags) ||
3146 __put_user(uoss.ss_size, &uoss_ptr->ss_size))
3147 ret = -EFAULT;
3149 return ret;
3152 int compat_restore_altstack(const compat_stack_t __user *uss)
3154 int err = compat_sys_sigaltstack(uss, NULL);
3155 /* squash all but -EFAULT for now */
3156 return err == -EFAULT ? err : 0;
3159 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3161 struct task_struct *t = current;
3162 return __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), &uss->ss_sp) |
3163 __put_user(sas_ss_flags(sp), &uss->ss_flags) |
3164 __put_user(t->sas_ss_size, &uss->ss_size);
3166 #endif
3167 #endif
3169 #ifdef __ARCH_WANT_SYS_SIGPENDING
3172 * sys_sigpending - examine pending signals
3173 * @set: where mask of pending signal is returned
3175 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3177 return do_sigpending(set, sizeof(*set));
3180 #endif
3182 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
3184 * sys_sigprocmask - examine and change blocked signals
3185 * @how: whether to add, remove, or set signals
3186 * @nset: signals to add or remove (if non-null)
3187 * @oset: previous value of signal mask if non-null
3189 * Some platforms have their own version with special arguments;
3190 * others support only sys_rt_sigprocmask.
3193 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3194 old_sigset_t __user *, oset)
3196 old_sigset_t old_set, new_set;
3197 sigset_t new_blocked;
3199 old_set = current->blocked.sig[0];
3201 if (nset) {
3202 if (copy_from_user(&new_set, nset, sizeof(*nset)))
3203 return -EFAULT;
3205 new_blocked = current->blocked;
3207 switch (how) {
3208 case SIG_BLOCK:
3209 sigaddsetmask(&new_blocked, new_set);
3210 break;
3211 case SIG_UNBLOCK:
3212 sigdelsetmask(&new_blocked, new_set);
3213 break;
3214 case SIG_SETMASK:
3215 new_blocked.sig[0] = new_set;
3216 break;
3217 default:
3218 return -EINVAL;
3221 set_current_blocked(&new_blocked);
3224 if (oset) {
3225 if (copy_to_user(oset, &old_set, sizeof(*oset)))
3226 return -EFAULT;
3229 return 0;
3231 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3233 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
3235 * sys_rt_sigaction - alter an action taken by a process
3236 * @sig: signal to be sent
3237 * @act: new sigaction
3238 * @oact: used to save the previous sigaction
3239 * @sigsetsize: size of sigset_t type
3241 SYSCALL_DEFINE4(rt_sigaction, int, sig,
3242 const struct sigaction __user *, act,
3243 struct sigaction __user *, oact,
3244 size_t, sigsetsize)
3246 struct k_sigaction new_sa, old_sa;
3247 int ret = -EINVAL;
3249 /* XXX: Don't preclude handling different sized sigset_t's. */
3250 if (sigsetsize != sizeof(sigset_t))
3251 goto out;
3253 if (act) {
3254 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3255 return -EFAULT;
3258 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3260 if (!ret && oact) {
3261 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3262 return -EFAULT;
3264 out:
3265 return ret;
3267 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
3269 #ifdef __ARCH_WANT_SYS_SGETMASK
3272 * For backwards compatibility. Functionality superseded by sigprocmask.
3274 SYSCALL_DEFINE0(sgetmask)
3276 /* SMP safe */
3277 return current->blocked.sig[0];
3280 SYSCALL_DEFINE1(ssetmask, int, newmask)
3282 int old = current->blocked.sig[0];
3283 sigset_t newset;
3285 siginitset(&newset, newmask);
3286 set_current_blocked(&newset);
3288 return old;
3290 #endif /* __ARCH_WANT_SGETMASK */
3292 #ifdef __ARCH_WANT_SYS_SIGNAL
3294 * For backwards compatibility. Functionality superseded by sigaction.
3296 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3298 struct k_sigaction new_sa, old_sa;
3299 int ret;
3301 new_sa.sa.sa_handler = handler;
3302 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3303 sigemptyset(&new_sa.sa.sa_mask);
3305 ret = do_sigaction(sig, &new_sa, &old_sa);
3307 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3309 #endif /* __ARCH_WANT_SYS_SIGNAL */
3311 #ifdef __ARCH_WANT_SYS_PAUSE
3313 SYSCALL_DEFINE0(pause)
3315 while (!signal_pending(current)) {
3316 current->state = TASK_INTERRUPTIBLE;
3317 schedule();
3319 return -ERESTARTNOHAND;
3322 #endif
3324 int sigsuspend(sigset_t *set)
3326 current->saved_sigmask = current->blocked;
3327 set_current_blocked(set);
3329 current->state = TASK_INTERRUPTIBLE;
3330 schedule();
3331 set_restore_sigmask();
3332 return -ERESTARTNOHAND;
3335 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
3337 * sys_rt_sigsuspend - replace the signal mask for a value with the
3338 * @unewset value until a signal is received
3339 * @unewset: new signal mask value
3340 * @sigsetsize: size of sigset_t type
3342 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3344 sigset_t newset;
3346 /* XXX: Don't preclude handling different sized sigset_t's. */
3347 if (sigsetsize != sizeof(sigset_t))
3348 return -EINVAL;
3350 if (copy_from_user(&newset, unewset, sizeof(newset)))
3351 return -EFAULT;
3352 return sigsuspend(&newset);
3354 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
3356 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
3358 return NULL;
3361 void __init signals_init(void)
3363 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3366 #ifdef CONFIG_KGDB_KDB
3367 #include <linux/kdb.h>
3369 * kdb_send_sig_info - Allows kdb to send signals without exposing
3370 * signal internals. This function checks if the required locks are
3371 * available before calling the main signal code, to avoid kdb
3372 * deadlocks.
3374 void
3375 kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3377 static struct task_struct *kdb_prev_t;
3378 int sig, new_t;
3379 if (!spin_trylock(&t->sighand->siglock)) {
3380 kdb_printf("Can't do kill command now.\n"
3381 "The sigmask lock is held somewhere else in "
3382 "kernel, try again later\n");
3383 return;
3385 spin_unlock(&t->sighand->siglock);
3386 new_t = kdb_prev_t != t;
3387 kdb_prev_t = t;
3388 if (t->state != TASK_RUNNING && new_t) {
3389 kdb_printf("Process is not RUNNING, sending a signal from "
3390 "kdb risks deadlock\n"
3391 "on the run queue locks. "
3392 "The signal has _not_ been sent.\n"
3393 "Reissue the kill command if you want to risk "
3394 "the deadlock.\n");
3395 return;
3397 sig = info->si_signo;
3398 if (send_sig_info(sig, info, t))
3399 kdb_printf("Fail to deliver Signal %d to process %d.\n",
3400 sig, t->pid);
3401 else
3402 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3404 #endif /* CONFIG_KGDB_KDB */