staging: vt6656: rf.c: RFvRSSITodBm Remove camel case and clean up.
[linux-2.6.git] / fs / ubifs / debug.c
blob7f60e900edff6ff758e84ddf95f0da693570832e
1 /*
2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
24 * This file implements most of the debugging stuff which is compiled in only
25 * when it is enabled. But some debugging check functions are implemented in
26 * corresponding subsystem, just because they are closely related and utilize
27 * various local functions of those subsystems.
30 #include <linux/module.h>
31 #include <linux/debugfs.h>
32 #include <linux/math64.h>
33 #include <linux/uaccess.h>
34 #include <linux/random.h>
35 #include "ubifs.h"
37 static DEFINE_SPINLOCK(dbg_lock);
39 static const char *get_key_fmt(int fmt)
41 switch (fmt) {
42 case UBIFS_SIMPLE_KEY_FMT:
43 return "simple";
44 default:
45 return "unknown/invalid format";
49 static const char *get_key_hash(int hash)
51 switch (hash) {
52 case UBIFS_KEY_HASH_R5:
53 return "R5";
54 case UBIFS_KEY_HASH_TEST:
55 return "test";
56 default:
57 return "unknown/invalid name hash";
61 static const char *get_key_type(int type)
63 switch (type) {
64 case UBIFS_INO_KEY:
65 return "inode";
66 case UBIFS_DENT_KEY:
67 return "direntry";
68 case UBIFS_XENT_KEY:
69 return "xentry";
70 case UBIFS_DATA_KEY:
71 return "data";
72 case UBIFS_TRUN_KEY:
73 return "truncate";
74 default:
75 return "unknown/invalid key";
79 static const char *get_dent_type(int type)
81 switch (type) {
82 case UBIFS_ITYPE_REG:
83 return "file";
84 case UBIFS_ITYPE_DIR:
85 return "dir";
86 case UBIFS_ITYPE_LNK:
87 return "symlink";
88 case UBIFS_ITYPE_BLK:
89 return "blkdev";
90 case UBIFS_ITYPE_CHR:
91 return "char dev";
92 case UBIFS_ITYPE_FIFO:
93 return "fifo";
94 case UBIFS_ITYPE_SOCK:
95 return "socket";
96 default:
97 return "unknown/invalid type";
101 const char *dbg_snprintf_key(const struct ubifs_info *c,
102 const union ubifs_key *key, char *buffer, int len)
104 char *p = buffer;
105 int type = key_type(c, key);
107 if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
108 switch (type) {
109 case UBIFS_INO_KEY:
110 len -= snprintf(p, len, "(%lu, %s)",
111 (unsigned long)key_inum(c, key),
112 get_key_type(type));
113 break;
114 case UBIFS_DENT_KEY:
115 case UBIFS_XENT_KEY:
116 len -= snprintf(p, len, "(%lu, %s, %#08x)",
117 (unsigned long)key_inum(c, key),
118 get_key_type(type), key_hash(c, key));
119 break;
120 case UBIFS_DATA_KEY:
121 len -= snprintf(p, len, "(%lu, %s, %u)",
122 (unsigned long)key_inum(c, key),
123 get_key_type(type), key_block(c, key));
124 break;
125 case UBIFS_TRUN_KEY:
126 len -= snprintf(p, len, "(%lu, %s)",
127 (unsigned long)key_inum(c, key),
128 get_key_type(type));
129 break;
130 default:
131 len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
132 key->u32[0], key->u32[1]);
134 } else
135 len -= snprintf(p, len, "bad key format %d", c->key_fmt);
136 ubifs_assert(len > 0);
137 return p;
140 const char *dbg_ntype(int type)
142 switch (type) {
143 case UBIFS_PAD_NODE:
144 return "padding node";
145 case UBIFS_SB_NODE:
146 return "superblock node";
147 case UBIFS_MST_NODE:
148 return "master node";
149 case UBIFS_REF_NODE:
150 return "reference node";
151 case UBIFS_INO_NODE:
152 return "inode node";
153 case UBIFS_DENT_NODE:
154 return "direntry node";
155 case UBIFS_XENT_NODE:
156 return "xentry node";
157 case UBIFS_DATA_NODE:
158 return "data node";
159 case UBIFS_TRUN_NODE:
160 return "truncate node";
161 case UBIFS_IDX_NODE:
162 return "indexing node";
163 case UBIFS_CS_NODE:
164 return "commit start node";
165 case UBIFS_ORPH_NODE:
166 return "orphan node";
167 default:
168 return "unknown node";
172 static const char *dbg_gtype(int type)
174 switch (type) {
175 case UBIFS_NO_NODE_GROUP:
176 return "no node group";
177 case UBIFS_IN_NODE_GROUP:
178 return "in node group";
179 case UBIFS_LAST_OF_NODE_GROUP:
180 return "last of node group";
181 default:
182 return "unknown";
186 const char *dbg_cstate(int cmt_state)
188 switch (cmt_state) {
189 case COMMIT_RESTING:
190 return "commit resting";
191 case COMMIT_BACKGROUND:
192 return "background commit requested";
193 case COMMIT_REQUIRED:
194 return "commit required";
195 case COMMIT_RUNNING_BACKGROUND:
196 return "BACKGROUND commit running";
197 case COMMIT_RUNNING_REQUIRED:
198 return "commit running and required";
199 case COMMIT_BROKEN:
200 return "broken commit";
201 default:
202 return "unknown commit state";
206 const char *dbg_jhead(int jhead)
208 switch (jhead) {
209 case GCHD:
210 return "0 (GC)";
211 case BASEHD:
212 return "1 (base)";
213 case DATAHD:
214 return "2 (data)";
215 default:
216 return "unknown journal head";
220 static void dump_ch(const struct ubifs_ch *ch)
222 pr_err("\tmagic %#x\n", le32_to_cpu(ch->magic));
223 pr_err("\tcrc %#x\n", le32_to_cpu(ch->crc));
224 pr_err("\tnode_type %d (%s)\n", ch->node_type,
225 dbg_ntype(ch->node_type));
226 pr_err("\tgroup_type %d (%s)\n", ch->group_type,
227 dbg_gtype(ch->group_type));
228 pr_err("\tsqnum %llu\n",
229 (unsigned long long)le64_to_cpu(ch->sqnum));
230 pr_err("\tlen %u\n", le32_to_cpu(ch->len));
233 void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
235 const struct ubifs_inode *ui = ubifs_inode(inode);
236 struct qstr nm = { .name = NULL };
237 union ubifs_key key;
238 struct ubifs_dent_node *dent, *pdent = NULL;
239 int count = 2;
241 pr_err("Dump in-memory inode:");
242 pr_err("\tinode %lu\n", inode->i_ino);
243 pr_err("\tsize %llu\n",
244 (unsigned long long)i_size_read(inode));
245 pr_err("\tnlink %u\n", inode->i_nlink);
246 pr_err("\tuid %u\n", (unsigned int)i_uid_read(inode));
247 pr_err("\tgid %u\n", (unsigned int)i_gid_read(inode));
248 pr_err("\tatime %u.%u\n",
249 (unsigned int)inode->i_atime.tv_sec,
250 (unsigned int)inode->i_atime.tv_nsec);
251 pr_err("\tmtime %u.%u\n",
252 (unsigned int)inode->i_mtime.tv_sec,
253 (unsigned int)inode->i_mtime.tv_nsec);
254 pr_err("\tctime %u.%u\n",
255 (unsigned int)inode->i_ctime.tv_sec,
256 (unsigned int)inode->i_ctime.tv_nsec);
257 pr_err("\tcreat_sqnum %llu\n", ui->creat_sqnum);
258 pr_err("\txattr_size %u\n", ui->xattr_size);
259 pr_err("\txattr_cnt %u\n", ui->xattr_cnt);
260 pr_err("\txattr_names %u\n", ui->xattr_names);
261 pr_err("\tdirty %u\n", ui->dirty);
262 pr_err("\txattr %u\n", ui->xattr);
263 pr_err("\tbulk_read %u\n", ui->xattr);
264 pr_err("\tsynced_i_size %llu\n",
265 (unsigned long long)ui->synced_i_size);
266 pr_err("\tui_size %llu\n",
267 (unsigned long long)ui->ui_size);
268 pr_err("\tflags %d\n", ui->flags);
269 pr_err("\tcompr_type %d\n", ui->compr_type);
270 pr_err("\tlast_page_read %lu\n", ui->last_page_read);
271 pr_err("\tread_in_a_row %lu\n", ui->read_in_a_row);
272 pr_err("\tdata_len %d\n", ui->data_len);
274 if (!S_ISDIR(inode->i_mode))
275 return;
277 pr_err("List of directory entries:\n");
278 ubifs_assert(!mutex_is_locked(&c->tnc_mutex));
280 lowest_dent_key(c, &key, inode->i_ino);
281 while (1) {
282 dent = ubifs_tnc_next_ent(c, &key, &nm);
283 if (IS_ERR(dent)) {
284 if (PTR_ERR(dent) != -ENOENT)
285 pr_err("error %ld\n", PTR_ERR(dent));
286 break;
289 pr_err("\t%d: %s (%s)\n",
290 count++, dent->name, get_dent_type(dent->type));
292 nm.name = dent->name;
293 nm.len = le16_to_cpu(dent->nlen);
294 kfree(pdent);
295 pdent = dent;
296 key_read(c, &dent->key, &key);
298 kfree(pdent);
301 void ubifs_dump_node(const struct ubifs_info *c, const void *node)
303 int i, n;
304 union ubifs_key key;
305 const struct ubifs_ch *ch = node;
306 char key_buf[DBG_KEY_BUF_LEN];
308 /* If the magic is incorrect, just hexdump the first bytes */
309 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
310 pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ);
311 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
312 (void *)node, UBIFS_CH_SZ, 1);
313 return;
316 spin_lock(&dbg_lock);
317 dump_ch(node);
319 switch (ch->node_type) {
320 case UBIFS_PAD_NODE:
322 const struct ubifs_pad_node *pad = node;
324 pr_err("\tpad_len %u\n", le32_to_cpu(pad->pad_len));
325 break;
327 case UBIFS_SB_NODE:
329 const struct ubifs_sb_node *sup = node;
330 unsigned int sup_flags = le32_to_cpu(sup->flags);
332 pr_err("\tkey_hash %d (%s)\n",
333 (int)sup->key_hash, get_key_hash(sup->key_hash));
334 pr_err("\tkey_fmt %d (%s)\n",
335 (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
336 pr_err("\tflags %#x\n", sup_flags);
337 pr_err("\t big_lpt %u\n",
338 !!(sup_flags & UBIFS_FLG_BIGLPT));
339 pr_err("\t space_fixup %u\n",
340 !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
341 pr_err("\tmin_io_size %u\n", le32_to_cpu(sup->min_io_size));
342 pr_err("\tleb_size %u\n", le32_to_cpu(sup->leb_size));
343 pr_err("\tleb_cnt %u\n", le32_to_cpu(sup->leb_cnt));
344 pr_err("\tmax_leb_cnt %u\n", le32_to_cpu(sup->max_leb_cnt));
345 pr_err("\tmax_bud_bytes %llu\n",
346 (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
347 pr_err("\tlog_lebs %u\n", le32_to_cpu(sup->log_lebs));
348 pr_err("\tlpt_lebs %u\n", le32_to_cpu(sup->lpt_lebs));
349 pr_err("\torph_lebs %u\n", le32_to_cpu(sup->orph_lebs));
350 pr_err("\tjhead_cnt %u\n", le32_to_cpu(sup->jhead_cnt));
351 pr_err("\tfanout %u\n", le32_to_cpu(sup->fanout));
352 pr_err("\tlsave_cnt %u\n", le32_to_cpu(sup->lsave_cnt));
353 pr_err("\tdefault_compr %u\n",
354 (int)le16_to_cpu(sup->default_compr));
355 pr_err("\trp_size %llu\n",
356 (unsigned long long)le64_to_cpu(sup->rp_size));
357 pr_err("\trp_uid %u\n", le32_to_cpu(sup->rp_uid));
358 pr_err("\trp_gid %u\n", le32_to_cpu(sup->rp_gid));
359 pr_err("\tfmt_version %u\n", le32_to_cpu(sup->fmt_version));
360 pr_err("\ttime_gran %u\n", le32_to_cpu(sup->time_gran));
361 pr_err("\tUUID %pUB\n", sup->uuid);
362 break;
364 case UBIFS_MST_NODE:
366 const struct ubifs_mst_node *mst = node;
368 pr_err("\thighest_inum %llu\n",
369 (unsigned long long)le64_to_cpu(mst->highest_inum));
370 pr_err("\tcommit number %llu\n",
371 (unsigned long long)le64_to_cpu(mst->cmt_no));
372 pr_err("\tflags %#x\n", le32_to_cpu(mst->flags));
373 pr_err("\tlog_lnum %u\n", le32_to_cpu(mst->log_lnum));
374 pr_err("\troot_lnum %u\n", le32_to_cpu(mst->root_lnum));
375 pr_err("\troot_offs %u\n", le32_to_cpu(mst->root_offs));
376 pr_err("\troot_len %u\n", le32_to_cpu(mst->root_len));
377 pr_err("\tgc_lnum %u\n", le32_to_cpu(mst->gc_lnum));
378 pr_err("\tihead_lnum %u\n", le32_to_cpu(mst->ihead_lnum));
379 pr_err("\tihead_offs %u\n", le32_to_cpu(mst->ihead_offs));
380 pr_err("\tindex_size %llu\n",
381 (unsigned long long)le64_to_cpu(mst->index_size));
382 pr_err("\tlpt_lnum %u\n", le32_to_cpu(mst->lpt_lnum));
383 pr_err("\tlpt_offs %u\n", le32_to_cpu(mst->lpt_offs));
384 pr_err("\tnhead_lnum %u\n", le32_to_cpu(mst->nhead_lnum));
385 pr_err("\tnhead_offs %u\n", le32_to_cpu(mst->nhead_offs));
386 pr_err("\tltab_lnum %u\n", le32_to_cpu(mst->ltab_lnum));
387 pr_err("\tltab_offs %u\n", le32_to_cpu(mst->ltab_offs));
388 pr_err("\tlsave_lnum %u\n", le32_to_cpu(mst->lsave_lnum));
389 pr_err("\tlsave_offs %u\n", le32_to_cpu(mst->lsave_offs));
390 pr_err("\tlscan_lnum %u\n", le32_to_cpu(mst->lscan_lnum));
391 pr_err("\tleb_cnt %u\n", le32_to_cpu(mst->leb_cnt));
392 pr_err("\tempty_lebs %u\n", le32_to_cpu(mst->empty_lebs));
393 pr_err("\tidx_lebs %u\n", le32_to_cpu(mst->idx_lebs));
394 pr_err("\ttotal_free %llu\n",
395 (unsigned long long)le64_to_cpu(mst->total_free));
396 pr_err("\ttotal_dirty %llu\n",
397 (unsigned long long)le64_to_cpu(mst->total_dirty));
398 pr_err("\ttotal_used %llu\n",
399 (unsigned long long)le64_to_cpu(mst->total_used));
400 pr_err("\ttotal_dead %llu\n",
401 (unsigned long long)le64_to_cpu(mst->total_dead));
402 pr_err("\ttotal_dark %llu\n",
403 (unsigned long long)le64_to_cpu(mst->total_dark));
404 break;
406 case UBIFS_REF_NODE:
408 const struct ubifs_ref_node *ref = node;
410 pr_err("\tlnum %u\n", le32_to_cpu(ref->lnum));
411 pr_err("\toffs %u\n", le32_to_cpu(ref->offs));
412 pr_err("\tjhead %u\n", le32_to_cpu(ref->jhead));
413 break;
415 case UBIFS_INO_NODE:
417 const struct ubifs_ino_node *ino = node;
419 key_read(c, &ino->key, &key);
420 pr_err("\tkey %s\n",
421 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
422 pr_err("\tcreat_sqnum %llu\n",
423 (unsigned long long)le64_to_cpu(ino->creat_sqnum));
424 pr_err("\tsize %llu\n",
425 (unsigned long long)le64_to_cpu(ino->size));
426 pr_err("\tnlink %u\n", le32_to_cpu(ino->nlink));
427 pr_err("\tatime %lld.%u\n",
428 (long long)le64_to_cpu(ino->atime_sec),
429 le32_to_cpu(ino->atime_nsec));
430 pr_err("\tmtime %lld.%u\n",
431 (long long)le64_to_cpu(ino->mtime_sec),
432 le32_to_cpu(ino->mtime_nsec));
433 pr_err("\tctime %lld.%u\n",
434 (long long)le64_to_cpu(ino->ctime_sec),
435 le32_to_cpu(ino->ctime_nsec));
436 pr_err("\tuid %u\n", le32_to_cpu(ino->uid));
437 pr_err("\tgid %u\n", le32_to_cpu(ino->gid));
438 pr_err("\tmode %u\n", le32_to_cpu(ino->mode));
439 pr_err("\tflags %#x\n", le32_to_cpu(ino->flags));
440 pr_err("\txattr_cnt %u\n", le32_to_cpu(ino->xattr_cnt));
441 pr_err("\txattr_size %u\n", le32_to_cpu(ino->xattr_size));
442 pr_err("\txattr_names %u\n", le32_to_cpu(ino->xattr_names));
443 pr_err("\tcompr_type %#x\n",
444 (int)le16_to_cpu(ino->compr_type));
445 pr_err("\tdata len %u\n", le32_to_cpu(ino->data_len));
446 break;
448 case UBIFS_DENT_NODE:
449 case UBIFS_XENT_NODE:
451 const struct ubifs_dent_node *dent = node;
452 int nlen = le16_to_cpu(dent->nlen);
454 key_read(c, &dent->key, &key);
455 pr_err("\tkey %s\n",
456 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
457 pr_err("\tinum %llu\n",
458 (unsigned long long)le64_to_cpu(dent->inum));
459 pr_err("\ttype %d\n", (int)dent->type);
460 pr_err("\tnlen %d\n", nlen);
461 pr_err("\tname ");
463 if (nlen > UBIFS_MAX_NLEN)
464 pr_err("(bad name length, not printing, bad or corrupted node)");
465 else {
466 for (i = 0; i < nlen && dent->name[i]; i++)
467 pr_cont("%c", dent->name[i]);
469 pr_cont("\n");
471 break;
473 case UBIFS_DATA_NODE:
475 const struct ubifs_data_node *dn = node;
476 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
478 key_read(c, &dn->key, &key);
479 pr_err("\tkey %s\n",
480 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
481 pr_err("\tsize %u\n", le32_to_cpu(dn->size));
482 pr_err("\tcompr_typ %d\n",
483 (int)le16_to_cpu(dn->compr_type));
484 pr_err("\tdata size %d\n", dlen);
485 pr_err("\tdata:\n");
486 print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
487 (void *)&dn->data, dlen, 0);
488 break;
490 case UBIFS_TRUN_NODE:
492 const struct ubifs_trun_node *trun = node;
494 pr_err("\tinum %u\n", le32_to_cpu(trun->inum));
495 pr_err("\told_size %llu\n",
496 (unsigned long long)le64_to_cpu(trun->old_size));
497 pr_err("\tnew_size %llu\n",
498 (unsigned long long)le64_to_cpu(trun->new_size));
499 break;
501 case UBIFS_IDX_NODE:
503 const struct ubifs_idx_node *idx = node;
505 n = le16_to_cpu(idx->child_cnt);
506 pr_err("\tchild_cnt %d\n", n);
507 pr_err("\tlevel %d\n", (int)le16_to_cpu(idx->level));
508 pr_err("\tBranches:\n");
510 for (i = 0; i < n && i < c->fanout - 1; i++) {
511 const struct ubifs_branch *br;
513 br = ubifs_idx_branch(c, idx, i);
514 key_read(c, &br->key, &key);
515 pr_err("\t%d: LEB %d:%d len %d key %s\n",
516 i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
517 le32_to_cpu(br->len),
518 dbg_snprintf_key(c, &key, key_buf,
519 DBG_KEY_BUF_LEN));
521 break;
523 case UBIFS_CS_NODE:
524 break;
525 case UBIFS_ORPH_NODE:
527 const struct ubifs_orph_node *orph = node;
529 pr_err("\tcommit number %llu\n",
530 (unsigned long long)
531 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
532 pr_err("\tlast node flag %llu\n",
533 (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
534 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
535 pr_err("\t%d orphan inode numbers:\n", n);
536 for (i = 0; i < n; i++)
537 pr_err("\t ino %llu\n",
538 (unsigned long long)le64_to_cpu(orph->inos[i]));
539 break;
541 default:
542 pr_err("node type %d was not recognized\n",
543 (int)ch->node_type);
545 spin_unlock(&dbg_lock);
548 void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
550 spin_lock(&dbg_lock);
551 pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
552 req->new_ino, req->dirtied_ino);
553 pr_err("\tnew_ino_d %d, dirtied_ino_d %d\n",
554 req->new_ino_d, req->dirtied_ino_d);
555 pr_err("\tnew_page %d, dirtied_page %d\n",
556 req->new_page, req->dirtied_page);
557 pr_err("\tnew_dent %d, mod_dent %d\n",
558 req->new_dent, req->mod_dent);
559 pr_err("\tidx_growth %d\n", req->idx_growth);
560 pr_err("\tdata_growth %d dd_growth %d\n",
561 req->data_growth, req->dd_growth);
562 spin_unlock(&dbg_lock);
565 void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
567 spin_lock(&dbg_lock);
568 pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs %d\n",
569 current->pid, lst->empty_lebs, lst->idx_lebs);
570 pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
571 lst->taken_empty_lebs, lst->total_free, lst->total_dirty);
572 pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
573 lst->total_used, lst->total_dark, lst->total_dead);
574 spin_unlock(&dbg_lock);
577 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
579 int i;
580 struct rb_node *rb;
581 struct ubifs_bud *bud;
582 struct ubifs_gced_idx_leb *idx_gc;
583 long long available, outstanding, free;
585 spin_lock(&c->space_lock);
586 spin_lock(&dbg_lock);
587 pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
588 current->pid, bi->data_growth + bi->dd_growth,
589 bi->data_growth + bi->dd_growth + bi->idx_growth);
590 pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
591 bi->data_growth, bi->dd_growth, bi->idx_growth);
592 pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
593 bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx);
594 pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
595 bi->page_budget, bi->inode_budget, bi->dent_budget);
596 pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp);
597 pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
598 c->dark_wm, c->dead_wm, c->max_idx_node_sz);
600 if (bi != &c->bi)
602 * If we are dumping saved budgeting data, do not print
603 * additional information which is about the current state, not
604 * the old one which corresponded to the saved budgeting data.
606 goto out_unlock;
608 pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
609 c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
610 pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
611 atomic_long_read(&c->dirty_pg_cnt),
612 atomic_long_read(&c->dirty_zn_cnt),
613 atomic_long_read(&c->clean_zn_cnt));
614 pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum);
616 /* If we are in R/O mode, journal heads do not exist */
617 if (c->jheads)
618 for (i = 0; i < c->jhead_cnt; i++)
619 pr_err("\tjhead %s\t LEB %d\n",
620 dbg_jhead(c->jheads[i].wbuf.jhead),
621 c->jheads[i].wbuf.lnum);
622 for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
623 bud = rb_entry(rb, struct ubifs_bud, rb);
624 pr_err("\tbud LEB %d\n", bud->lnum);
626 list_for_each_entry(bud, &c->old_buds, list)
627 pr_err("\told bud LEB %d\n", bud->lnum);
628 list_for_each_entry(idx_gc, &c->idx_gc, list)
629 pr_err("\tGC'ed idx LEB %d unmap %d\n",
630 idx_gc->lnum, idx_gc->unmap);
631 pr_err("\tcommit state %d\n", c->cmt_state);
633 /* Print budgeting predictions */
634 available = ubifs_calc_available(c, c->bi.min_idx_lebs);
635 outstanding = c->bi.data_growth + c->bi.dd_growth;
636 free = ubifs_get_free_space_nolock(c);
637 pr_err("Budgeting predictions:\n");
638 pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
639 available, outstanding, free);
640 out_unlock:
641 spin_unlock(&dbg_lock);
642 spin_unlock(&c->space_lock);
645 void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
647 int i, spc, dark = 0, dead = 0;
648 struct rb_node *rb;
649 struct ubifs_bud *bud;
651 spc = lp->free + lp->dirty;
652 if (spc < c->dead_wm)
653 dead = spc;
654 else
655 dark = ubifs_calc_dark(c, spc);
657 if (lp->flags & LPROPS_INDEX)
658 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
659 lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
660 lp->flags);
661 else
662 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
663 lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
664 dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
666 if (lp->flags & LPROPS_TAKEN) {
667 if (lp->flags & LPROPS_INDEX)
668 pr_cont("index, taken");
669 else
670 pr_cont("taken");
671 } else {
672 const char *s;
674 if (lp->flags & LPROPS_INDEX) {
675 switch (lp->flags & LPROPS_CAT_MASK) {
676 case LPROPS_DIRTY_IDX:
677 s = "dirty index";
678 break;
679 case LPROPS_FRDI_IDX:
680 s = "freeable index";
681 break;
682 default:
683 s = "index";
685 } else {
686 switch (lp->flags & LPROPS_CAT_MASK) {
687 case LPROPS_UNCAT:
688 s = "not categorized";
689 break;
690 case LPROPS_DIRTY:
691 s = "dirty";
692 break;
693 case LPROPS_FREE:
694 s = "free";
695 break;
696 case LPROPS_EMPTY:
697 s = "empty";
698 break;
699 case LPROPS_FREEABLE:
700 s = "freeable";
701 break;
702 default:
703 s = NULL;
704 break;
707 pr_cont("%s", s);
710 for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
711 bud = rb_entry(rb, struct ubifs_bud, rb);
712 if (bud->lnum == lp->lnum) {
713 int head = 0;
714 for (i = 0; i < c->jhead_cnt; i++) {
716 * Note, if we are in R/O mode or in the middle
717 * of mounting/re-mounting, the write-buffers do
718 * not exist.
720 if (c->jheads &&
721 lp->lnum == c->jheads[i].wbuf.lnum) {
722 pr_cont(", jhead %s", dbg_jhead(i));
723 head = 1;
726 if (!head)
727 pr_cont(", bud of jhead %s",
728 dbg_jhead(bud->jhead));
731 if (lp->lnum == c->gc_lnum)
732 pr_cont(", GC LEB");
733 pr_cont(")\n");
736 void ubifs_dump_lprops(struct ubifs_info *c)
738 int lnum, err;
739 struct ubifs_lprops lp;
740 struct ubifs_lp_stats lst;
742 pr_err("(pid %d) start dumping LEB properties\n", current->pid);
743 ubifs_get_lp_stats(c, &lst);
744 ubifs_dump_lstats(&lst);
746 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
747 err = ubifs_read_one_lp(c, lnum, &lp);
748 if (err)
749 ubifs_err("cannot read lprops for LEB %d", lnum);
751 ubifs_dump_lprop(c, &lp);
753 pr_err("(pid %d) finish dumping LEB properties\n", current->pid);
756 void ubifs_dump_lpt_info(struct ubifs_info *c)
758 int i;
760 spin_lock(&dbg_lock);
761 pr_err("(pid %d) dumping LPT information\n", current->pid);
762 pr_err("\tlpt_sz: %lld\n", c->lpt_sz);
763 pr_err("\tpnode_sz: %d\n", c->pnode_sz);
764 pr_err("\tnnode_sz: %d\n", c->nnode_sz);
765 pr_err("\tltab_sz: %d\n", c->ltab_sz);
766 pr_err("\tlsave_sz: %d\n", c->lsave_sz);
767 pr_err("\tbig_lpt: %d\n", c->big_lpt);
768 pr_err("\tlpt_hght: %d\n", c->lpt_hght);
769 pr_err("\tpnode_cnt: %d\n", c->pnode_cnt);
770 pr_err("\tnnode_cnt: %d\n", c->nnode_cnt);
771 pr_err("\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt);
772 pr_err("\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt);
773 pr_err("\tlsave_cnt: %d\n", c->lsave_cnt);
774 pr_err("\tspace_bits: %d\n", c->space_bits);
775 pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
776 pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
777 pr_err("\tlpt_spc_bits: %d\n", c->lpt_spc_bits);
778 pr_err("\tpcnt_bits: %d\n", c->pcnt_bits);
779 pr_err("\tlnum_bits: %d\n", c->lnum_bits);
780 pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
781 pr_err("\tLPT head is at %d:%d\n",
782 c->nhead_lnum, c->nhead_offs);
783 pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
784 if (c->big_lpt)
785 pr_err("\tLPT lsave is at %d:%d\n",
786 c->lsave_lnum, c->lsave_offs);
787 for (i = 0; i < c->lpt_lebs; i++)
788 pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
789 i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty,
790 c->ltab[i].tgc, c->ltab[i].cmt);
791 spin_unlock(&dbg_lock);
794 void ubifs_dump_sleb(const struct ubifs_info *c,
795 const struct ubifs_scan_leb *sleb, int offs)
797 struct ubifs_scan_node *snod;
799 pr_err("(pid %d) start dumping scanned data from LEB %d:%d\n",
800 current->pid, sleb->lnum, offs);
802 list_for_each_entry(snod, &sleb->nodes, list) {
803 cond_resched();
804 pr_err("Dumping node at LEB %d:%d len %d\n",
805 sleb->lnum, snod->offs, snod->len);
806 ubifs_dump_node(c, snod->node);
810 void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
812 struct ubifs_scan_leb *sleb;
813 struct ubifs_scan_node *snod;
814 void *buf;
816 pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
818 buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
819 if (!buf) {
820 ubifs_err("cannot allocate memory for dumping LEB %d", lnum);
821 return;
824 sleb = ubifs_scan(c, lnum, 0, buf, 0);
825 if (IS_ERR(sleb)) {
826 ubifs_err("scan error %d", (int)PTR_ERR(sleb));
827 goto out;
830 pr_err("LEB %d has %d nodes ending at %d\n", lnum,
831 sleb->nodes_cnt, sleb->endpt);
833 list_for_each_entry(snod, &sleb->nodes, list) {
834 cond_resched();
835 pr_err("Dumping node at LEB %d:%d len %d\n", lnum,
836 snod->offs, snod->len);
837 ubifs_dump_node(c, snod->node);
840 pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
841 ubifs_scan_destroy(sleb);
843 out:
844 vfree(buf);
845 return;
848 void ubifs_dump_znode(const struct ubifs_info *c,
849 const struct ubifs_znode *znode)
851 int n;
852 const struct ubifs_zbranch *zbr;
853 char key_buf[DBG_KEY_BUF_LEN];
855 spin_lock(&dbg_lock);
856 if (znode->parent)
857 zbr = &znode->parent->zbranch[znode->iip];
858 else
859 zbr = &c->zroot;
861 pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
862 znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip,
863 znode->level, znode->child_cnt, znode->flags);
865 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
866 spin_unlock(&dbg_lock);
867 return;
870 pr_err("zbranches:\n");
871 for (n = 0; n < znode->child_cnt; n++) {
872 zbr = &znode->zbranch[n];
873 if (znode->level > 0)
874 pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
875 n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
876 dbg_snprintf_key(c, &zbr->key, key_buf,
877 DBG_KEY_BUF_LEN));
878 else
879 pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
880 n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
881 dbg_snprintf_key(c, &zbr->key, key_buf,
882 DBG_KEY_BUF_LEN));
884 spin_unlock(&dbg_lock);
887 void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
889 int i;
891 pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
892 current->pid, cat, heap->cnt);
893 for (i = 0; i < heap->cnt; i++) {
894 struct ubifs_lprops *lprops = heap->arr[i];
896 pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
897 i, lprops->lnum, lprops->hpos, lprops->free,
898 lprops->dirty, lprops->flags);
900 pr_err("(pid %d) finish dumping heap\n", current->pid);
903 void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
904 struct ubifs_nnode *parent, int iip)
906 int i;
908 pr_err("(pid %d) dumping pnode:\n", current->pid);
909 pr_err("\taddress %zx parent %zx cnext %zx\n",
910 (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
911 pr_err("\tflags %lu iip %d level %d num %d\n",
912 pnode->flags, iip, pnode->level, pnode->num);
913 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
914 struct ubifs_lprops *lp = &pnode->lprops[i];
916 pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
917 i, lp->free, lp->dirty, lp->flags, lp->lnum);
921 void ubifs_dump_tnc(struct ubifs_info *c)
923 struct ubifs_znode *znode;
924 int level;
926 pr_err("\n");
927 pr_err("(pid %d) start dumping TNC tree\n", current->pid);
928 znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
929 level = znode->level;
930 pr_err("== Level %d ==\n", level);
931 while (znode) {
932 if (level != znode->level) {
933 level = znode->level;
934 pr_err("== Level %d ==\n", level);
936 ubifs_dump_znode(c, znode);
937 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
939 pr_err("(pid %d) finish dumping TNC tree\n", current->pid);
942 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
943 void *priv)
945 ubifs_dump_znode(c, znode);
946 return 0;
950 * ubifs_dump_index - dump the on-flash index.
951 * @c: UBIFS file-system description object
953 * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
954 * which dumps only in-memory znodes and does not read znodes which from flash.
956 void ubifs_dump_index(struct ubifs_info *c)
958 dbg_walk_index(c, NULL, dump_znode, NULL);
962 * dbg_save_space_info - save information about flash space.
963 * @c: UBIFS file-system description object
965 * This function saves information about UBIFS free space, dirty space, etc, in
966 * order to check it later.
968 void dbg_save_space_info(struct ubifs_info *c)
970 struct ubifs_debug_info *d = c->dbg;
971 int freeable_cnt;
973 spin_lock(&c->space_lock);
974 memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
975 memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
976 d->saved_idx_gc_cnt = c->idx_gc_cnt;
979 * We use a dirty hack here and zero out @c->freeable_cnt, because it
980 * affects the free space calculations, and UBIFS might not know about
981 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
982 * only when we read their lprops, and we do this only lazily, upon the
983 * need. So at any given point of time @c->freeable_cnt might be not
984 * exactly accurate.
986 * Just one example about the issue we hit when we did not zero
987 * @c->freeable_cnt.
988 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
989 * amount of free space in @d->saved_free
990 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
991 * information from flash, where we cache LEBs from various
992 * categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
993 * -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
994 * -> 'ubifs_get_pnode()' -> 'update_cats()'
995 * -> 'ubifs_add_to_cat()').
996 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
997 * becomes %1.
998 * 4. We calculate the amount of free space when the re-mount is
999 * finished in 'dbg_check_space_info()' and it does not match
1000 * @d->saved_free.
1002 freeable_cnt = c->freeable_cnt;
1003 c->freeable_cnt = 0;
1004 d->saved_free = ubifs_get_free_space_nolock(c);
1005 c->freeable_cnt = freeable_cnt;
1006 spin_unlock(&c->space_lock);
1010 * dbg_check_space_info - check flash space information.
1011 * @c: UBIFS file-system description object
1013 * This function compares current flash space information with the information
1014 * which was saved when the 'dbg_save_space_info()' function was called.
1015 * Returns zero if the information has not changed, and %-EINVAL it it has
1016 * changed.
1018 int dbg_check_space_info(struct ubifs_info *c)
1020 struct ubifs_debug_info *d = c->dbg;
1021 struct ubifs_lp_stats lst;
1022 long long free;
1023 int freeable_cnt;
1025 spin_lock(&c->space_lock);
1026 freeable_cnt = c->freeable_cnt;
1027 c->freeable_cnt = 0;
1028 free = ubifs_get_free_space_nolock(c);
1029 c->freeable_cnt = freeable_cnt;
1030 spin_unlock(&c->space_lock);
1032 if (free != d->saved_free) {
1033 ubifs_err("free space changed from %lld to %lld",
1034 d->saved_free, free);
1035 goto out;
1038 return 0;
1040 out:
1041 ubifs_msg("saved lprops statistics dump");
1042 ubifs_dump_lstats(&d->saved_lst);
1043 ubifs_msg("saved budgeting info dump");
1044 ubifs_dump_budg(c, &d->saved_bi);
1045 ubifs_msg("saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1046 ubifs_msg("current lprops statistics dump");
1047 ubifs_get_lp_stats(c, &lst);
1048 ubifs_dump_lstats(&lst);
1049 ubifs_msg("current budgeting info dump");
1050 ubifs_dump_budg(c, &c->bi);
1051 dump_stack();
1052 return -EINVAL;
1056 * dbg_check_synced_i_size - check synchronized inode size.
1057 * @c: UBIFS file-system description object
1058 * @inode: inode to check
1060 * If inode is clean, synchronized inode size has to be equivalent to current
1061 * inode size. This function has to be called only for locked inodes (@i_mutex
1062 * has to be locked). Returns %0 if synchronized inode size if correct, and
1063 * %-EINVAL if not.
1065 int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1067 int err = 0;
1068 struct ubifs_inode *ui = ubifs_inode(inode);
1070 if (!dbg_is_chk_gen(c))
1071 return 0;
1072 if (!S_ISREG(inode->i_mode))
1073 return 0;
1075 mutex_lock(&ui->ui_mutex);
1076 spin_lock(&ui->ui_lock);
1077 if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1078 ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode is clean",
1079 ui->ui_size, ui->synced_i_size);
1080 ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1081 inode->i_mode, i_size_read(inode));
1082 dump_stack();
1083 err = -EINVAL;
1085 spin_unlock(&ui->ui_lock);
1086 mutex_unlock(&ui->ui_mutex);
1087 return err;
1091 * dbg_check_dir - check directory inode size and link count.
1092 * @c: UBIFS file-system description object
1093 * @dir: the directory to calculate size for
1094 * @size: the result is returned here
1096 * This function makes sure that directory size and link count are correct.
1097 * Returns zero in case of success and a negative error code in case of
1098 * failure.
1100 * Note, it is good idea to make sure the @dir->i_mutex is locked before
1101 * calling this function.
1103 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1105 unsigned int nlink = 2;
1106 union ubifs_key key;
1107 struct ubifs_dent_node *dent, *pdent = NULL;
1108 struct qstr nm = { .name = NULL };
1109 loff_t size = UBIFS_INO_NODE_SZ;
1111 if (!dbg_is_chk_gen(c))
1112 return 0;
1114 if (!S_ISDIR(dir->i_mode))
1115 return 0;
1117 lowest_dent_key(c, &key, dir->i_ino);
1118 while (1) {
1119 int err;
1121 dent = ubifs_tnc_next_ent(c, &key, &nm);
1122 if (IS_ERR(dent)) {
1123 err = PTR_ERR(dent);
1124 if (err == -ENOENT)
1125 break;
1126 return err;
1129 nm.name = dent->name;
1130 nm.len = le16_to_cpu(dent->nlen);
1131 size += CALC_DENT_SIZE(nm.len);
1132 if (dent->type == UBIFS_ITYPE_DIR)
1133 nlink += 1;
1134 kfree(pdent);
1135 pdent = dent;
1136 key_read(c, &dent->key, &key);
1138 kfree(pdent);
1140 if (i_size_read(dir) != size) {
1141 ubifs_err("directory inode %lu has size %llu, but calculated size is %llu",
1142 dir->i_ino, (unsigned long long)i_size_read(dir),
1143 (unsigned long long)size);
1144 ubifs_dump_inode(c, dir);
1145 dump_stack();
1146 return -EINVAL;
1148 if (dir->i_nlink != nlink) {
1149 ubifs_err("directory inode %lu has nlink %u, but calculated nlink is %u",
1150 dir->i_ino, dir->i_nlink, nlink);
1151 ubifs_dump_inode(c, dir);
1152 dump_stack();
1153 return -EINVAL;
1156 return 0;
1160 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1161 * @c: UBIFS file-system description object
1162 * @zbr1: first zbranch
1163 * @zbr2: following zbranch
1165 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1166 * names of the direntries/xentries which are referred by the keys. This
1167 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1168 * sure the name of direntry/xentry referred by @zbr1 is less than
1169 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1170 * and a negative error code in case of failure.
1172 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1173 struct ubifs_zbranch *zbr2)
1175 int err, nlen1, nlen2, cmp;
1176 struct ubifs_dent_node *dent1, *dent2;
1177 union ubifs_key key;
1178 char key_buf[DBG_KEY_BUF_LEN];
1180 ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1181 dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1182 if (!dent1)
1183 return -ENOMEM;
1184 dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1185 if (!dent2) {
1186 err = -ENOMEM;
1187 goto out_free;
1190 err = ubifs_tnc_read_node(c, zbr1, dent1);
1191 if (err)
1192 goto out_free;
1193 err = ubifs_validate_entry(c, dent1);
1194 if (err)
1195 goto out_free;
1197 err = ubifs_tnc_read_node(c, zbr2, dent2);
1198 if (err)
1199 goto out_free;
1200 err = ubifs_validate_entry(c, dent2);
1201 if (err)
1202 goto out_free;
1204 /* Make sure node keys are the same as in zbranch */
1205 err = 1;
1206 key_read(c, &dent1->key, &key);
1207 if (keys_cmp(c, &zbr1->key, &key)) {
1208 ubifs_err("1st entry at %d:%d has key %s", zbr1->lnum,
1209 zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1210 DBG_KEY_BUF_LEN));
1211 ubifs_err("but it should have key %s according to tnc",
1212 dbg_snprintf_key(c, &zbr1->key, key_buf,
1213 DBG_KEY_BUF_LEN));
1214 ubifs_dump_node(c, dent1);
1215 goto out_free;
1218 key_read(c, &dent2->key, &key);
1219 if (keys_cmp(c, &zbr2->key, &key)) {
1220 ubifs_err("2nd entry at %d:%d has key %s", zbr1->lnum,
1221 zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1222 DBG_KEY_BUF_LEN));
1223 ubifs_err("but it should have key %s according to tnc",
1224 dbg_snprintf_key(c, &zbr2->key, key_buf,
1225 DBG_KEY_BUF_LEN));
1226 ubifs_dump_node(c, dent2);
1227 goto out_free;
1230 nlen1 = le16_to_cpu(dent1->nlen);
1231 nlen2 = le16_to_cpu(dent2->nlen);
1233 cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1234 if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1235 err = 0;
1236 goto out_free;
1238 if (cmp == 0 && nlen1 == nlen2)
1239 ubifs_err("2 xent/dent nodes with the same name");
1240 else
1241 ubifs_err("bad order of colliding key %s",
1242 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1244 ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1245 ubifs_dump_node(c, dent1);
1246 ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1247 ubifs_dump_node(c, dent2);
1249 out_free:
1250 kfree(dent2);
1251 kfree(dent1);
1252 return err;
1256 * dbg_check_znode - check if znode is all right.
1257 * @c: UBIFS file-system description object
1258 * @zbr: zbranch which points to this znode
1260 * This function makes sure that znode referred to by @zbr is all right.
1261 * Returns zero if it is, and %-EINVAL if it is not.
1263 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1265 struct ubifs_znode *znode = zbr->znode;
1266 struct ubifs_znode *zp = znode->parent;
1267 int n, err, cmp;
1269 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1270 err = 1;
1271 goto out;
1273 if (znode->level < 0) {
1274 err = 2;
1275 goto out;
1277 if (znode->iip < 0 || znode->iip >= c->fanout) {
1278 err = 3;
1279 goto out;
1282 if (zbr->len == 0)
1283 /* Only dirty zbranch may have no on-flash nodes */
1284 if (!ubifs_zn_dirty(znode)) {
1285 err = 4;
1286 goto out;
1289 if (ubifs_zn_dirty(znode)) {
1291 * If znode is dirty, its parent has to be dirty as well. The
1292 * order of the operation is important, so we have to have
1293 * memory barriers.
1295 smp_mb();
1296 if (zp && !ubifs_zn_dirty(zp)) {
1298 * The dirty flag is atomic and is cleared outside the
1299 * TNC mutex, so znode's dirty flag may now have
1300 * been cleared. The child is always cleared before the
1301 * parent, so we just need to check again.
1303 smp_mb();
1304 if (ubifs_zn_dirty(znode)) {
1305 err = 5;
1306 goto out;
1311 if (zp) {
1312 const union ubifs_key *min, *max;
1314 if (znode->level != zp->level - 1) {
1315 err = 6;
1316 goto out;
1319 /* Make sure the 'parent' pointer in our znode is correct */
1320 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1321 if (!err) {
1322 /* This zbranch does not exist in the parent */
1323 err = 7;
1324 goto out;
1327 if (znode->iip >= zp->child_cnt) {
1328 err = 8;
1329 goto out;
1332 if (znode->iip != n) {
1333 /* This may happen only in case of collisions */
1334 if (keys_cmp(c, &zp->zbranch[n].key,
1335 &zp->zbranch[znode->iip].key)) {
1336 err = 9;
1337 goto out;
1339 n = znode->iip;
1343 * Make sure that the first key in our znode is greater than or
1344 * equal to the key in the pointing zbranch.
1346 min = &zbr->key;
1347 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1348 if (cmp == 1) {
1349 err = 10;
1350 goto out;
1353 if (n + 1 < zp->child_cnt) {
1354 max = &zp->zbranch[n + 1].key;
1357 * Make sure the last key in our znode is less or
1358 * equivalent than the key in the zbranch which goes
1359 * after our pointing zbranch.
1361 cmp = keys_cmp(c, max,
1362 &znode->zbranch[znode->child_cnt - 1].key);
1363 if (cmp == -1) {
1364 err = 11;
1365 goto out;
1368 } else {
1369 /* This may only be root znode */
1370 if (zbr != &c->zroot) {
1371 err = 12;
1372 goto out;
1377 * Make sure that next key is greater or equivalent then the previous
1378 * one.
1380 for (n = 1; n < znode->child_cnt; n++) {
1381 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1382 &znode->zbranch[n].key);
1383 if (cmp > 0) {
1384 err = 13;
1385 goto out;
1387 if (cmp == 0) {
1388 /* This can only be keys with colliding hash */
1389 if (!is_hash_key(c, &znode->zbranch[n].key)) {
1390 err = 14;
1391 goto out;
1394 if (znode->level != 0 || c->replaying)
1395 continue;
1398 * Colliding keys should follow binary order of
1399 * corresponding xentry/dentry names.
1401 err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1402 &znode->zbranch[n]);
1403 if (err < 0)
1404 return err;
1405 if (err) {
1406 err = 15;
1407 goto out;
1412 for (n = 0; n < znode->child_cnt; n++) {
1413 if (!znode->zbranch[n].znode &&
1414 (znode->zbranch[n].lnum == 0 ||
1415 znode->zbranch[n].len == 0)) {
1416 err = 16;
1417 goto out;
1420 if (znode->zbranch[n].lnum != 0 &&
1421 znode->zbranch[n].len == 0) {
1422 err = 17;
1423 goto out;
1426 if (znode->zbranch[n].lnum == 0 &&
1427 znode->zbranch[n].len != 0) {
1428 err = 18;
1429 goto out;
1432 if (znode->zbranch[n].lnum == 0 &&
1433 znode->zbranch[n].offs != 0) {
1434 err = 19;
1435 goto out;
1438 if (znode->level != 0 && znode->zbranch[n].znode)
1439 if (znode->zbranch[n].znode->parent != znode) {
1440 err = 20;
1441 goto out;
1445 return 0;
1447 out:
1448 ubifs_err("failed, error %d", err);
1449 ubifs_msg("dump of the znode");
1450 ubifs_dump_znode(c, znode);
1451 if (zp) {
1452 ubifs_msg("dump of the parent znode");
1453 ubifs_dump_znode(c, zp);
1455 dump_stack();
1456 return -EINVAL;
1460 * dbg_check_tnc - check TNC tree.
1461 * @c: UBIFS file-system description object
1462 * @extra: do extra checks that are possible at start commit
1464 * This function traverses whole TNC tree and checks every znode. Returns zero
1465 * if everything is all right and %-EINVAL if something is wrong with TNC.
1467 int dbg_check_tnc(struct ubifs_info *c, int extra)
1469 struct ubifs_znode *znode;
1470 long clean_cnt = 0, dirty_cnt = 0;
1471 int err, last;
1473 if (!dbg_is_chk_index(c))
1474 return 0;
1476 ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1477 if (!c->zroot.znode)
1478 return 0;
1480 znode = ubifs_tnc_postorder_first(c->zroot.znode);
1481 while (1) {
1482 struct ubifs_znode *prev;
1483 struct ubifs_zbranch *zbr;
1485 if (!znode->parent)
1486 zbr = &c->zroot;
1487 else
1488 zbr = &znode->parent->zbranch[znode->iip];
1490 err = dbg_check_znode(c, zbr);
1491 if (err)
1492 return err;
1494 if (extra) {
1495 if (ubifs_zn_dirty(znode))
1496 dirty_cnt += 1;
1497 else
1498 clean_cnt += 1;
1501 prev = znode;
1502 znode = ubifs_tnc_postorder_next(znode);
1503 if (!znode)
1504 break;
1507 * If the last key of this znode is equivalent to the first key
1508 * of the next znode (collision), then check order of the keys.
1510 last = prev->child_cnt - 1;
1511 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1512 !keys_cmp(c, &prev->zbranch[last].key,
1513 &znode->zbranch[0].key)) {
1514 err = dbg_check_key_order(c, &prev->zbranch[last],
1515 &znode->zbranch[0]);
1516 if (err < 0)
1517 return err;
1518 if (err) {
1519 ubifs_msg("first znode");
1520 ubifs_dump_znode(c, prev);
1521 ubifs_msg("second znode");
1522 ubifs_dump_znode(c, znode);
1523 return -EINVAL;
1528 if (extra) {
1529 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1530 ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1531 atomic_long_read(&c->clean_zn_cnt),
1532 clean_cnt);
1533 return -EINVAL;
1535 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1536 ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1537 atomic_long_read(&c->dirty_zn_cnt),
1538 dirty_cnt);
1539 return -EINVAL;
1543 return 0;
1547 * dbg_walk_index - walk the on-flash index.
1548 * @c: UBIFS file-system description object
1549 * @leaf_cb: called for each leaf node
1550 * @znode_cb: called for each indexing node
1551 * @priv: private data which is passed to callbacks
1553 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1554 * node and @znode_cb for each indexing node. Returns zero in case of success
1555 * and a negative error code in case of failure.
1557 * It would be better if this function removed every znode it pulled to into
1558 * the TNC, so that the behavior more closely matched the non-debugging
1559 * behavior.
1561 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1562 dbg_znode_callback znode_cb, void *priv)
1564 int err;
1565 struct ubifs_zbranch *zbr;
1566 struct ubifs_znode *znode, *child;
1568 mutex_lock(&c->tnc_mutex);
1569 /* If the root indexing node is not in TNC - pull it */
1570 if (!c->zroot.znode) {
1571 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1572 if (IS_ERR(c->zroot.znode)) {
1573 err = PTR_ERR(c->zroot.znode);
1574 c->zroot.znode = NULL;
1575 goto out_unlock;
1580 * We are going to traverse the indexing tree in the postorder manner.
1581 * Go down and find the leftmost indexing node where we are going to
1582 * start from.
1584 znode = c->zroot.znode;
1585 while (znode->level > 0) {
1586 zbr = &znode->zbranch[0];
1587 child = zbr->znode;
1588 if (!child) {
1589 child = ubifs_load_znode(c, zbr, znode, 0);
1590 if (IS_ERR(child)) {
1591 err = PTR_ERR(child);
1592 goto out_unlock;
1594 zbr->znode = child;
1597 znode = child;
1600 /* Iterate over all indexing nodes */
1601 while (1) {
1602 int idx;
1604 cond_resched();
1606 if (znode_cb) {
1607 err = znode_cb(c, znode, priv);
1608 if (err) {
1609 ubifs_err("znode checking function returned error %d",
1610 err);
1611 ubifs_dump_znode(c, znode);
1612 goto out_dump;
1615 if (leaf_cb && znode->level == 0) {
1616 for (idx = 0; idx < znode->child_cnt; idx++) {
1617 zbr = &znode->zbranch[idx];
1618 err = leaf_cb(c, zbr, priv);
1619 if (err) {
1620 ubifs_err("leaf checking function returned error %d, for leaf at LEB %d:%d",
1621 err, zbr->lnum, zbr->offs);
1622 goto out_dump;
1627 if (!znode->parent)
1628 break;
1630 idx = znode->iip + 1;
1631 znode = znode->parent;
1632 if (idx < znode->child_cnt) {
1633 /* Switch to the next index in the parent */
1634 zbr = &znode->zbranch[idx];
1635 child = zbr->znode;
1636 if (!child) {
1637 child = ubifs_load_znode(c, zbr, znode, idx);
1638 if (IS_ERR(child)) {
1639 err = PTR_ERR(child);
1640 goto out_unlock;
1642 zbr->znode = child;
1644 znode = child;
1645 } else
1647 * This is the last child, switch to the parent and
1648 * continue.
1650 continue;
1652 /* Go to the lowest leftmost znode in the new sub-tree */
1653 while (znode->level > 0) {
1654 zbr = &znode->zbranch[0];
1655 child = zbr->znode;
1656 if (!child) {
1657 child = ubifs_load_znode(c, zbr, znode, 0);
1658 if (IS_ERR(child)) {
1659 err = PTR_ERR(child);
1660 goto out_unlock;
1662 zbr->znode = child;
1664 znode = child;
1668 mutex_unlock(&c->tnc_mutex);
1669 return 0;
1671 out_dump:
1672 if (znode->parent)
1673 zbr = &znode->parent->zbranch[znode->iip];
1674 else
1675 zbr = &c->zroot;
1676 ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1677 ubifs_dump_znode(c, znode);
1678 out_unlock:
1679 mutex_unlock(&c->tnc_mutex);
1680 return err;
1684 * add_size - add znode size to partially calculated index size.
1685 * @c: UBIFS file-system description object
1686 * @znode: znode to add size for
1687 * @priv: partially calculated index size
1689 * This is a helper function for 'dbg_check_idx_size()' which is called for
1690 * every indexing node and adds its size to the 'long long' variable pointed to
1691 * by @priv.
1693 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1695 long long *idx_size = priv;
1696 int add;
1698 add = ubifs_idx_node_sz(c, znode->child_cnt);
1699 add = ALIGN(add, 8);
1700 *idx_size += add;
1701 return 0;
1705 * dbg_check_idx_size - check index size.
1706 * @c: UBIFS file-system description object
1707 * @idx_size: size to check
1709 * This function walks the UBIFS index, calculates its size and checks that the
1710 * size is equivalent to @idx_size. Returns zero in case of success and a
1711 * negative error code in case of failure.
1713 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1715 int err;
1716 long long calc = 0;
1718 if (!dbg_is_chk_index(c))
1719 return 0;
1721 err = dbg_walk_index(c, NULL, add_size, &calc);
1722 if (err) {
1723 ubifs_err("error %d while walking the index", err);
1724 return err;
1727 if (calc != idx_size) {
1728 ubifs_err("index size check failed: calculated size is %lld, should be %lld",
1729 calc, idx_size);
1730 dump_stack();
1731 return -EINVAL;
1734 return 0;
1738 * struct fsck_inode - information about an inode used when checking the file-system.
1739 * @rb: link in the RB-tree of inodes
1740 * @inum: inode number
1741 * @mode: inode type, permissions, etc
1742 * @nlink: inode link count
1743 * @xattr_cnt: count of extended attributes
1744 * @references: how many directory/xattr entries refer this inode (calculated
1745 * while walking the index)
1746 * @calc_cnt: for directory inode count of child directories
1747 * @size: inode size (read from on-flash inode)
1748 * @xattr_sz: summary size of all extended attributes (read from on-flash
1749 * inode)
1750 * @calc_sz: for directories calculated directory size
1751 * @calc_xcnt: count of extended attributes
1752 * @calc_xsz: calculated summary size of all extended attributes
1753 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1754 * inode (read from on-flash inode)
1755 * @calc_xnms: calculated sum of lengths of all extended attribute names
1757 struct fsck_inode {
1758 struct rb_node rb;
1759 ino_t inum;
1760 umode_t mode;
1761 unsigned int nlink;
1762 unsigned int xattr_cnt;
1763 int references;
1764 int calc_cnt;
1765 long long size;
1766 unsigned int xattr_sz;
1767 long long calc_sz;
1768 long long calc_xcnt;
1769 long long calc_xsz;
1770 unsigned int xattr_nms;
1771 long long calc_xnms;
1775 * struct fsck_data - private FS checking information.
1776 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1778 struct fsck_data {
1779 struct rb_root inodes;
1783 * add_inode - add inode information to RB-tree of inodes.
1784 * @c: UBIFS file-system description object
1785 * @fsckd: FS checking information
1786 * @ino: raw UBIFS inode to add
1788 * This is a helper function for 'check_leaf()' which adds information about
1789 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1790 * case of success and a negative error code in case of failure.
1792 static struct fsck_inode *add_inode(struct ubifs_info *c,
1793 struct fsck_data *fsckd,
1794 struct ubifs_ino_node *ino)
1796 struct rb_node **p, *parent = NULL;
1797 struct fsck_inode *fscki;
1798 ino_t inum = key_inum_flash(c, &ino->key);
1799 struct inode *inode;
1800 struct ubifs_inode *ui;
1802 p = &fsckd->inodes.rb_node;
1803 while (*p) {
1804 parent = *p;
1805 fscki = rb_entry(parent, struct fsck_inode, rb);
1806 if (inum < fscki->inum)
1807 p = &(*p)->rb_left;
1808 else if (inum > fscki->inum)
1809 p = &(*p)->rb_right;
1810 else
1811 return fscki;
1814 if (inum > c->highest_inum) {
1815 ubifs_err("too high inode number, max. is %lu",
1816 (unsigned long)c->highest_inum);
1817 return ERR_PTR(-EINVAL);
1820 fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1821 if (!fscki)
1822 return ERR_PTR(-ENOMEM);
1824 inode = ilookup(c->vfs_sb, inum);
1826 fscki->inum = inum;
1828 * If the inode is present in the VFS inode cache, use it instead of
1829 * the on-flash inode which might be out-of-date. E.g., the size might
1830 * be out-of-date. If we do not do this, the following may happen, for
1831 * example:
1832 * 1. A power cut happens
1833 * 2. We mount the file-system R/O, the replay process fixes up the
1834 * inode size in the VFS cache, but on on-flash.
1835 * 3. 'check_leaf()' fails because it hits a data node beyond inode
1836 * size.
1838 if (!inode) {
1839 fscki->nlink = le32_to_cpu(ino->nlink);
1840 fscki->size = le64_to_cpu(ino->size);
1841 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1842 fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1843 fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1844 fscki->mode = le32_to_cpu(ino->mode);
1845 } else {
1846 ui = ubifs_inode(inode);
1847 fscki->nlink = inode->i_nlink;
1848 fscki->size = inode->i_size;
1849 fscki->xattr_cnt = ui->xattr_cnt;
1850 fscki->xattr_sz = ui->xattr_size;
1851 fscki->xattr_nms = ui->xattr_names;
1852 fscki->mode = inode->i_mode;
1853 iput(inode);
1856 if (S_ISDIR(fscki->mode)) {
1857 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1858 fscki->calc_cnt = 2;
1861 rb_link_node(&fscki->rb, parent, p);
1862 rb_insert_color(&fscki->rb, &fsckd->inodes);
1864 return fscki;
1868 * search_inode - search inode in the RB-tree of inodes.
1869 * @fsckd: FS checking information
1870 * @inum: inode number to search
1872 * This is a helper function for 'check_leaf()' which searches inode @inum in
1873 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1874 * the inode was not found.
1876 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1878 struct rb_node *p;
1879 struct fsck_inode *fscki;
1881 p = fsckd->inodes.rb_node;
1882 while (p) {
1883 fscki = rb_entry(p, struct fsck_inode, rb);
1884 if (inum < fscki->inum)
1885 p = p->rb_left;
1886 else if (inum > fscki->inum)
1887 p = p->rb_right;
1888 else
1889 return fscki;
1891 return NULL;
1895 * read_add_inode - read inode node and add it to RB-tree of inodes.
1896 * @c: UBIFS file-system description object
1897 * @fsckd: FS checking information
1898 * @inum: inode number to read
1900 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1901 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1902 * information pointer in case of success and a negative error code in case of
1903 * failure.
1905 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1906 struct fsck_data *fsckd, ino_t inum)
1908 int n, err;
1909 union ubifs_key key;
1910 struct ubifs_znode *znode;
1911 struct ubifs_zbranch *zbr;
1912 struct ubifs_ino_node *ino;
1913 struct fsck_inode *fscki;
1915 fscki = search_inode(fsckd, inum);
1916 if (fscki)
1917 return fscki;
1919 ino_key_init(c, &key, inum);
1920 err = ubifs_lookup_level0(c, &key, &znode, &n);
1921 if (!err) {
1922 ubifs_err("inode %lu not found in index", (unsigned long)inum);
1923 return ERR_PTR(-ENOENT);
1924 } else if (err < 0) {
1925 ubifs_err("error %d while looking up inode %lu",
1926 err, (unsigned long)inum);
1927 return ERR_PTR(err);
1930 zbr = &znode->zbranch[n];
1931 if (zbr->len < UBIFS_INO_NODE_SZ) {
1932 ubifs_err("bad node %lu node length %d",
1933 (unsigned long)inum, zbr->len);
1934 return ERR_PTR(-EINVAL);
1937 ino = kmalloc(zbr->len, GFP_NOFS);
1938 if (!ino)
1939 return ERR_PTR(-ENOMEM);
1941 err = ubifs_tnc_read_node(c, zbr, ino);
1942 if (err) {
1943 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
1944 zbr->lnum, zbr->offs, err);
1945 kfree(ino);
1946 return ERR_PTR(err);
1949 fscki = add_inode(c, fsckd, ino);
1950 kfree(ino);
1951 if (IS_ERR(fscki)) {
1952 ubifs_err("error %ld while adding inode %lu node",
1953 PTR_ERR(fscki), (unsigned long)inum);
1954 return fscki;
1957 return fscki;
1961 * check_leaf - check leaf node.
1962 * @c: UBIFS file-system description object
1963 * @zbr: zbranch of the leaf node to check
1964 * @priv: FS checking information
1966 * This is a helper function for 'dbg_check_filesystem()' which is called for
1967 * every single leaf node while walking the indexing tree. It checks that the
1968 * leaf node referred from the indexing tree exists, has correct CRC, and does
1969 * some other basic validation. This function is also responsible for building
1970 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1971 * calculates reference count, size, etc for each inode in order to later
1972 * compare them to the information stored inside the inodes and detect possible
1973 * inconsistencies. Returns zero in case of success and a negative error code
1974 * in case of failure.
1976 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
1977 void *priv)
1979 ino_t inum;
1980 void *node;
1981 struct ubifs_ch *ch;
1982 int err, type = key_type(c, &zbr->key);
1983 struct fsck_inode *fscki;
1985 if (zbr->len < UBIFS_CH_SZ) {
1986 ubifs_err("bad leaf length %d (LEB %d:%d)",
1987 zbr->len, zbr->lnum, zbr->offs);
1988 return -EINVAL;
1991 node = kmalloc(zbr->len, GFP_NOFS);
1992 if (!node)
1993 return -ENOMEM;
1995 err = ubifs_tnc_read_node(c, zbr, node);
1996 if (err) {
1997 ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
1998 zbr->lnum, zbr->offs, err);
1999 goto out_free;
2002 /* If this is an inode node, add it to RB-tree of inodes */
2003 if (type == UBIFS_INO_KEY) {
2004 fscki = add_inode(c, priv, node);
2005 if (IS_ERR(fscki)) {
2006 err = PTR_ERR(fscki);
2007 ubifs_err("error %d while adding inode node", err);
2008 goto out_dump;
2010 goto out;
2013 if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2014 type != UBIFS_DATA_KEY) {
2015 ubifs_err("unexpected node type %d at LEB %d:%d",
2016 type, zbr->lnum, zbr->offs);
2017 err = -EINVAL;
2018 goto out_free;
2021 ch = node;
2022 if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2023 ubifs_err("too high sequence number, max. is %llu",
2024 c->max_sqnum);
2025 err = -EINVAL;
2026 goto out_dump;
2029 if (type == UBIFS_DATA_KEY) {
2030 long long blk_offs;
2031 struct ubifs_data_node *dn = node;
2034 * Search the inode node this data node belongs to and insert
2035 * it to the RB-tree of inodes.
2037 inum = key_inum_flash(c, &dn->key);
2038 fscki = read_add_inode(c, priv, inum);
2039 if (IS_ERR(fscki)) {
2040 err = PTR_ERR(fscki);
2041 ubifs_err("error %d while processing data node and trying to find inode node %lu",
2042 err, (unsigned long)inum);
2043 goto out_dump;
2046 /* Make sure the data node is within inode size */
2047 blk_offs = key_block_flash(c, &dn->key);
2048 blk_offs <<= UBIFS_BLOCK_SHIFT;
2049 blk_offs += le32_to_cpu(dn->size);
2050 if (blk_offs > fscki->size) {
2051 ubifs_err("data node at LEB %d:%d is not within inode size %lld",
2052 zbr->lnum, zbr->offs, fscki->size);
2053 err = -EINVAL;
2054 goto out_dump;
2056 } else {
2057 int nlen;
2058 struct ubifs_dent_node *dent = node;
2059 struct fsck_inode *fscki1;
2061 err = ubifs_validate_entry(c, dent);
2062 if (err)
2063 goto out_dump;
2066 * Search the inode node this entry refers to and the parent
2067 * inode node and insert them to the RB-tree of inodes.
2069 inum = le64_to_cpu(dent->inum);
2070 fscki = read_add_inode(c, priv, inum);
2071 if (IS_ERR(fscki)) {
2072 err = PTR_ERR(fscki);
2073 ubifs_err("error %d while processing entry node and trying to find inode node %lu",
2074 err, (unsigned long)inum);
2075 goto out_dump;
2078 /* Count how many direntries or xentries refers this inode */
2079 fscki->references += 1;
2081 inum = key_inum_flash(c, &dent->key);
2082 fscki1 = read_add_inode(c, priv, inum);
2083 if (IS_ERR(fscki1)) {
2084 err = PTR_ERR(fscki1);
2085 ubifs_err("error %d while processing entry node and trying to find parent inode node %lu",
2086 err, (unsigned long)inum);
2087 goto out_dump;
2090 nlen = le16_to_cpu(dent->nlen);
2091 if (type == UBIFS_XENT_KEY) {
2092 fscki1->calc_xcnt += 1;
2093 fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2094 fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2095 fscki1->calc_xnms += nlen;
2096 } else {
2097 fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2098 if (dent->type == UBIFS_ITYPE_DIR)
2099 fscki1->calc_cnt += 1;
2103 out:
2104 kfree(node);
2105 return 0;
2107 out_dump:
2108 ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2109 ubifs_dump_node(c, node);
2110 out_free:
2111 kfree(node);
2112 return err;
2116 * free_inodes - free RB-tree of inodes.
2117 * @fsckd: FS checking information
2119 static void free_inodes(struct fsck_data *fsckd)
2121 struct rb_node *this = fsckd->inodes.rb_node;
2122 struct fsck_inode *fscki;
2124 while (this) {
2125 if (this->rb_left)
2126 this = this->rb_left;
2127 else if (this->rb_right)
2128 this = this->rb_right;
2129 else {
2130 fscki = rb_entry(this, struct fsck_inode, rb);
2131 this = rb_parent(this);
2132 if (this) {
2133 if (this->rb_left == &fscki->rb)
2134 this->rb_left = NULL;
2135 else
2136 this->rb_right = NULL;
2138 kfree(fscki);
2144 * check_inodes - checks all inodes.
2145 * @c: UBIFS file-system description object
2146 * @fsckd: FS checking information
2148 * This is a helper function for 'dbg_check_filesystem()' which walks the
2149 * RB-tree of inodes after the index scan has been finished, and checks that
2150 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2151 * %-EINVAL if not, and a negative error code in case of failure.
2153 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2155 int n, err;
2156 union ubifs_key key;
2157 struct ubifs_znode *znode;
2158 struct ubifs_zbranch *zbr;
2159 struct ubifs_ino_node *ino;
2160 struct fsck_inode *fscki;
2161 struct rb_node *this = rb_first(&fsckd->inodes);
2163 while (this) {
2164 fscki = rb_entry(this, struct fsck_inode, rb);
2165 this = rb_next(this);
2167 if (S_ISDIR(fscki->mode)) {
2169 * Directories have to have exactly one reference (they
2170 * cannot have hardlinks), although root inode is an
2171 * exception.
2173 if (fscki->inum != UBIFS_ROOT_INO &&
2174 fscki->references != 1) {
2175 ubifs_err("directory inode %lu has %d direntries which refer it, but should be 1",
2176 (unsigned long)fscki->inum,
2177 fscki->references);
2178 goto out_dump;
2180 if (fscki->inum == UBIFS_ROOT_INO &&
2181 fscki->references != 0) {
2182 ubifs_err("root inode %lu has non-zero (%d) direntries which refer it",
2183 (unsigned long)fscki->inum,
2184 fscki->references);
2185 goto out_dump;
2187 if (fscki->calc_sz != fscki->size) {
2188 ubifs_err("directory inode %lu size is %lld, but calculated size is %lld",
2189 (unsigned long)fscki->inum,
2190 fscki->size, fscki->calc_sz);
2191 goto out_dump;
2193 if (fscki->calc_cnt != fscki->nlink) {
2194 ubifs_err("directory inode %lu nlink is %d, but calculated nlink is %d",
2195 (unsigned long)fscki->inum,
2196 fscki->nlink, fscki->calc_cnt);
2197 goto out_dump;
2199 } else {
2200 if (fscki->references != fscki->nlink) {
2201 ubifs_err("inode %lu nlink is %d, but calculated nlink is %d",
2202 (unsigned long)fscki->inum,
2203 fscki->nlink, fscki->references);
2204 goto out_dump;
2207 if (fscki->xattr_sz != fscki->calc_xsz) {
2208 ubifs_err("inode %lu has xattr size %u, but calculated size is %lld",
2209 (unsigned long)fscki->inum, fscki->xattr_sz,
2210 fscki->calc_xsz);
2211 goto out_dump;
2213 if (fscki->xattr_cnt != fscki->calc_xcnt) {
2214 ubifs_err("inode %lu has %u xattrs, but calculated count is %lld",
2215 (unsigned long)fscki->inum,
2216 fscki->xattr_cnt, fscki->calc_xcnt);
2217 goto out_dump;
2219 if (fscki->xattr_nms != fscki->calc_xnms) {
2220 ubifs_err("inode %lu has xattr names' size %u, but calculated names' size is %lld",
2221 (unsigned long)fscki->inum, fscki->xattr_nms,
2222 fscki->calc_xnms);
2223 goto out_dump;
2227 return 0;
2229 out_dump:
2230 /* Read the bad inode and dump it */
2231 ino_key_init(c, &key, fscki->inum);
2232 err = ubifs_lookup_level0(c, &key, &znode, &n);
2233 if (!err) {
2234 ubifs_err("inode %lu not found in index",
2235 (unsigned long)fscki->inum);
2236 return -ENOENT;
2237 } else if (err < 0) {
2238 ubifs_err("error %d while looking up inode %lu",
2239 err, (unsigned long)fscki->inum);
2240 return err;
2243 zbr = &znode->zbranch[n];
2244 ino = kmalloc(zbr->len, GFP_NOFS);
2245 if (!ino)
2246 return -ENOMEM;
2248 err = ubifs_tnc_read_node(c, zbr, ino);
2249 if (err) {
2250 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2251 zbr->lnum, zbr->offs, err);
2252 kfree(ino);
2253 return err;
2256 ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
2257 (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2258 ubifs_dump_node(c, ino);
2259 kfree(ino);
2260 return -EINVAL;
2264 * dbg_check_filesystem - check the file-system.
2265 * @c: UBIFS file-system description object
2267 * This function checks the file system, namely:
2268 * o makes sure that all leaf nodes exist and their CRCs are correct;
2269 * o makes sure inode nlink, size, xattr size/count are correct (for all
2270 * inodes).
2272 * The function reads whole indexing tree and all nodes, so it is pretty
2273 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2274 * not, and a negative error code in case of failure.
2276 int dbg_check_filesystem(struct ubifs_info *c)
2278 int err;
2279 struct fsck_data fsckd;
2281 if (!dbg_is_chk_fs(c))
2282 return 0;
2284 fsckd.inodes = RB_ROOT;
2285 err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2286 if (err)
2287 goto out_free;
2289 err = check_inodes(c, &fsckd);
2290 if (err)
2291 goto out_free;
2293 free_inodes(&fsckd);
2294 return 0;
2296 out_free:
2297 ubifs_err("file-system check failed with error %d", err);
2298 dump_stack();
2299 free_inodes(&fsckd);
2300 return err;
2304 * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2305 * @c: UBIFS file-system description object
2306 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2308 * This function returns zero if the list of data nodes is sorted correctly,
2309 * and %-EINVAL if not.
2311 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2313 struct list_head *cur;
2314 struct ubifs_scan_node *sa, *sb;
2316 if (!dbg_is_chk_gen(c))
2317 return 0;
2319 for (cur = head->next; cur->next != head; cur = cur->next) {
2320 ino_t inuma, inumb;
2321 uint32_t blka, blkb;
2323 cond_resched();
2324 sa = container_of(cur, struct ubifs_scan_node, list);
2325 sb = container_of(cur->next, struct ubifs_scan_node, list);
2327 if (sa->type != UBIFS_DATA_NODE) {
2328 ubifs_err("bad node type %d", sa->type);
2329 ubifs_dump_node(c, sa->node);
2330 return -EINVAL;
2332 if (sb->type != UBIFS_DATA_NODE) {
2333 ubifs_err("bad node type %d", sb->type);
2334 ubifs_dump_node(c, sb->node);
2335 return -EINVAL;
2338 inuma = key_inum(c, &sa->key);
2339 inumb = key_inum(c, &sb->key);
2341 if (inuma < inumb)
2342 continue;
2343 if (inuma > inumb) {
2344 ubifs_err("larger inum %lu goes before inum %lu",
2345 (unsigned long)inuma, (unsigned long)inumb);
2346 goto error_dump;
2349 blka = key_block(c, &sa->key);
2350 blkb = key_block(c, &sb->key);
2352 if (blka > blkb) {
2353 ubifs_err("larger block %u goes before %u", blka, blkb);
2354 goto error_dump;
2356 if (blka == blkb) {
2357 ubifs_err("two data nodes for the same block");
2358 goto error_dump;
2362 return 0;
2364 error_dump:
2365 ubifs_dump_node(c, sa->node);
2366 ubifs_dump_node(c, sb->node);
2367 return -EINVAL;
2371 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2372 * @c: UBIFS file-system description object
2373 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2375 * This function returns zero if the list of non-data nodes is sorted correctly,
2376 * and %-EINVAL if not.
2378 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2380 struct list_head *cur;
2381 struct ubifs_scan_node *sa, *sb;
2383 if (!dbg_is_chk_gen(c))
2384 return 0;
2386 for (cur = head->next; cur->next != head; cur = cur->next) {
2387 ino_t inuma, inumb;
2388 uint32_t hasha, hashb;
2390 cond_resched();
2391 sa = container_of(cur, struct ubifs_scan_node, list);
2392 sb = container_of(cur->next, struct ubifs_scan_node, list);
2394 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2395 sa->type != UBIFS_XENT_NODE) {
2396 ubifs_err("bad node type %d", sa->type);
2397 ubifs_dump_node(c, sa->node);
2398 return -EINVAL;
2400 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2401 sa->type != UBIFS_XENT_NODE) {
2402 ubifs_err("bad node type %d", sb->type);
2403 ubifs_dump_node(c, sb->node);
2404 return -EINVAL;
2407 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2408 ubifs_err("non-inode node goes before inode node");
2409 goto error_dump;
2412 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2413 continue;
2415 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2416 /* Inode nodes are sorted in descending size order */
2417 if (sa->len < sb->len) {
2418 ubifs_err("smaller inode node goes first");
2419 goto error_dump;
2421 continue;
2425 * This is either a dentry or xentry, which should be sorted in
2426 * ascending (parent ino, hash) order.
2428 inuma = key_inum(c, &sa->key);
2429 inumb = key_inum(c, &sb->key);
2431 if (inuma < inumb)
2432 continue;
2433 if (inuma > inumb) {
2434 ubifs_err("larger inum %lu goes before inum %lu",
2435 (unsigned long)inuma, (unsigned long)inumb);
2436 goto error_dump;
2439 hasha = key_block(c, &sa->key);
2440 hashb = key_block(c, &sb->key);
2442 if (hasha > hashb) {
2443 ubifs_err("larger hash %u goes before %u",
2444 hasha, hashb);
2445 goto error_dump;
2449 return 0;
2451 error_dump:
2452 ubifs_msg("dumping first node");
2453 ubifs_dump_node(c, sa->node);
2454 ubifs_msg("dumping second node");
2455 ubifs_dump_node(c, sb->node);
2456 return -EINVAL;
2457 return 0;
2460 static inline int chance(unsigned int n, unsigned int out_of)
2462 return !!((prandom_u32() % out_of) + 1 <= n);
2466 static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2468 struct ubifs_debug_info *d = c->dbg;
2470 ubifs_assert(dbg_is_tst_rcvry(c));
2472 if (!d->pc_cnt) {
2473 /* First call - decide delay to the power cut */
2474 if (chance(1, 2)) {
2475 unsigned long delay;
2477 if (chance(1, 2)) {
2478 d->pc_delay = 1;
2479 /* Fail withing 1 minute */
2480 delay = prandom_u32() % 60000;
2481 d->pc_timeout = jiffies;
2482 d->pc_timeout += msecs_to_jiffies(delay);
2483 ubifs_warn("failing after %lums", delay);
2484 } else {
2485 d->pc_delay = 2;
2486 delay = prandom_u32() % 10000;
2487 /* Fail within 10000 operations */
2488 d->pc_cnt_max = delay;
2489 ubifs_warn("failing after %lu calls", delay);
2493 d->pc_cnt += 1;
2496 /* Determine if failure delay has expired */
2497 if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2498 return 0;
2499 if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2500 return 0;
2502 if (lnum == UBIFS_SB_LNUM) {
2503 if (write && chance(1, 2))
2504 return 0;
2505 if (chance(19, 20))
2506 return 0;
2507 ubifs_warn("failing in super block LEB %d", lnum);
2508 } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2509 if (chance(19, 20))
2510 return 0;
2511 ubifs_warn("failing in master LEB %d", lnum);
2512 } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2513 if (write && chance(99, 100))
2514 return 0;
2515 if (chance(399, 400))
2516 return 0;
2517 ubifs_warn("failing in log LEB %d", lnum);
2518 } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2519 if (write && chance(7, 8))
2520 return 0;
2521 if (chance(19, 20))
2522 return 0;
2523 ubifs_warn("failing in LPT LEB %d", lnum);
2524 } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2525 if (write && chance(1, 2))
2526 return 0;
2527 if (chance(9, 10))
2528 return 0;
2529 ubifs_warn("failing in orphan LEB %d", lnum);
2530 } else if (lnum == c->ihead_lnum) {
2531 if (chance(99, 100))
2532 return 0;
2533 ubifs_warn("failing in index head LEB %d", lnum);
2534 } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2535 if (chance(9, 10))
2536 return 0;
2537 ubifs_warn("failing in GC head LEB %d", lnum);
2538 } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2539 !ubifs_search_bud(c, lnum)) {
2540 if (chance(19, 20))
2541 return 0;
2542 ubifs_warn("failing in non-bud LEB %d", lnum);
2543 } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2544 c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2545 if (chance(999, 1000))
2546 return 0;
2547 ubifs_warn("failing in bud LEB %d commit running", lnum);
2548 } else {
2549 if (chance(9999, 10000))
2550 return 0;
2551 ubifs_warn("failing in bud LEB %d commit not running", lnum);
2554 d->pc_happened = 1;
2555 ubifs_warn("========== Power cut emulated ==========");
2556 dump_stack();
2557 return 1;
2560 static int corrupt_data(const struct ubifs_info *c, const void *buf,
2561 unsigned int len)
2563 unsigned int from, to, ffs = chance(1, 2);
2564 unsigned char *p = (void *)buf;
2566 from = prandom_u32() % (len + 1);
2567 /* Corruption may only span one max. write unit */
2568 to = min(len, ALIGN(from, c->max_write_size));
2570 ubifs_warn("filled bytes %u-%u with %s", from, to - 1,
2571 ffs ? "0xFFs" : "random data");
2573 if (ffs)
2574 memset(p + from, 0xFF, to - from);
2575 else
2576 prandom_bytes(p + from, to - from);
2578 return to;
2581 int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2582 int offs, int len)
2584 int err, failing;
2586 if (c->dbg->pc_happened)
2587 return -EROFS;
2589 failing = power_cut_emulated(c, lnum, 1);
2590 if (failing)
2591 len = corrupt_data(c, buf, len);
2592 ubifs_warn("actually write %d bytes to LEB %d:%d (the buffer was corrupted)",
2593 len, lnum, offs);
2594 err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2595 if (err)
2596 return err;
2597 if (failing)
2598 return -EROFS;
2599 return 0;
2602 int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2603 int len)
2605 int err;
2607 if (c->dbg->pc_happened)
2608 return -EROFS;
2609 if (power_cut_emulated(c, lnum, 1))
2610 return -EROFS;
2611 err = ubi_leb_change(c->ubi, lnum, buf, len);
2612 if (err)
2613 return err;
2614 if (power_cut_emulated(c, lnum, 1))
2615 return -EROFS;
2616 return 0;
2619 int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2621 int err;
2623 if (c->dbg->pc_happened)
2624 return -EROFS;
2625 if (power_cut_emulated(c, lnum, 0))
2626 return -EROFS;
2627 err = ubi_leb_unmap(c->ubi, lnum);
2628 if (err)
2629 return err;
2630 if (power_cut_emulated(c, lnum, 0))
2631 return -EROFS;
2632 return 0;
2635 int dbg_leb_map(struct ubifs_info *c, int lnum)
2637 int err;
2639 if (c->dbg->pc_happened)
2640 return -EROFS;
2641 if (power_cut_emulated(c, lnum, 0))
2642 return -EROFS;
2643 err = ubi_leb_map(c->ubi, lnum);
2644 if (err)
2645 return err;
2646 if (power_cut_emulated(c, lnum, 0))
2647 return -EROFS;
2648 return 0;
2652 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2653 * contain the stuff specific to particular file-system mounts.
2655 static struct dentry *dfs_rootdir;
2657 static int dfs_file_open(struct inode *inode, struct file *file)
2659 file->private_data = inode->i_private;
2660 return nonseekable_open(inode, file);
2664 * provide_user_output - provide output to the user reading a debugfs file.
2665 * @val: boolean value for the answer
2666 * @u: the buffer to store the answer at
2667 * @count: size of the buffer
2668 * @ppos: position in the @u output buffer
2670 * This is a simple helper function which stores @val boolean value in the user
2671 * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2672 * bytes written to @u in case of success and a negative error code in case of
2673 * failure.
2675 static int provide_user_output(int val, char __user *u, size_t count,
2676 loff_t *ppos)
2678 char buf[3];
2680 if (val)
2681 buf[0] = '1';
2682 else
2683 buf[0] = '0';
2684 buf[1] = '\n';
2685 buf[2] = 0x00;
2687 return simple_read_from_buffer(u, count, ppos, buf, 2);
2690 static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2691 loff_t *ppos)
2693 struct dentry *dent = file->f_path.dentry;
2694 struct ubifs_info *c = file->private_data;
2695 struct ubifs_debug_info *d = c->dbg;
2696 int val;
2698 if (dent == d->dfs_chk_gen)
2699 val = d->chk_gen;
2700 else if (dent == d->dfs_chk_index)
2701 val = d->chk_index;
2702 else if (dent == d->dfs_chk_orph)
2703 val = d->chk_orph;
2704 else if (dent == d->dfs_chk_lprops)
2705 val = d->chk_lprops;
2706 else if (dent == d->dfs_chk_fs)
2707 val = d->chk_fs;
2708 else if (dent == d->dfs_tst_rcvry)
2709 val = d->tst_rcvry;
2710 else if (dent == d->dfs_ro_error)
2711 val = c->ro_error;
2712 else
2713 return -EINVAL;
2715 return provide_user_output(val, u, count, ppos);
2719 * interpret_user_input - interpret user debugfs file input.
2720 * @u: user-provided buffer with the input
2721 * @count: buffer size
2723 * This is a helper function which interpret user input to a boolean UBIFS
2724 * debugfs file. Returns %0 or %1 in case of success and a negative error code
2725 * in case of failure.
2727 static int interpret_user_input(const char __user *u, size_t count)
2729 size_t buf_size;
2730 char buf[8];
2732 buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2733 if (copy_from_user(buf, u, buf_size))
2734 return -EFAULT;
2736 if (buf[0] == '1')
2737 return 1;
2738 else if (buf[0] == '0')
2739 return 0;
2741 return -EINVAL;
2744 static ssize_t dfs_file_write(struct file *file, const char __user *u,
2745 size_t count, loff_t *ppos)
2747 struct ubifs_info *c = file->private_data;
2748 struct ubifs_debug_info *d = c->dbg;
2749 struct dentry *dent = file->f_path.dentry;
2750 int val;
2753 * TODO: this is racy - the file-system might have already been
2754 * unmounted and we'd oops in this case. The plan is to fix it with
2755 * help of 'iterate_supers_type()' which we should have in v3.0: when
2756 * a debugfs opened, we rember FS's UUID in file->private_data. Then
2757 * whenever we access the FS via a debugfs file, we iterate all UBIFS
2758 * superblocks and fine the one with the same UUID, and take the
2759 * locking right.
2761 * The other way to go suggested by Al Viro is to create a separate
2762 * 'ubifs-debug' file-system instead.
2764 if (file->f_path.dentry == d->dfs_dump_lprops) {
2765 ubifs_dump_lprops(c);
2766 return count;
2768 if (file->f_path.dentry == d->dfs_dump_budg) {
2769 ubifs_dump_budg(c, &c->bi);
2770 return count;
2772 if (file->f_path.dentry == d->dfs_dump_tnc) {
2773 mutex_lock(&c->tnc_mutex);
2774 ubifs_dump_tnc(c);
2775 mutex_unlock(&c->tnc_mutex);
2776 return count;
2779 val = interpret_user_input(u, count);
2780 if (val < 0)
2781 return val;
2783 if (dent == d->dfs_chk_gen)
2784 d->chk_gen = val;
2785 else if (dent == d->dfs_chk_index)
2786 d->chk_index = val;
2787 else if (dent == d->dfs_chk_orph)
2788 d->chk_orph = val;
2789 else if (dent == d->dfs_chk_lprops)
2790 d->chk_lprops = val;
2791 else if (dent == d->dfs_chk_fs)
2792 d->chk_fs = val;
2793 else if (dent == d->dfs_tst_rcvry)
2794 d->tst_rcvry = val;
2795 else if (dent == d->dfs_ro_error)
2796 c->ro_error = !!val;
2797 else
2798 return -EINVAL;
2800 return count;
2803 static const struct file_operations dfs_fops = {
2804 .open = dfs_file_open,
2805 .read = dfs_file_read,
2806 .write = dfs_file_write,
2807 .owner = THIS_MODULE,
2808 .llseek = no_llseek,
2812 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2813 * @c: UBIFS file-system description object
2815 * This function creates all debugfs files for this instance of UBIFS. Returns
2816 * zero in case of success and a negative error code in case of failure.
2818 * Note, the only reason we have not merged this function with the
2819 * 'ubifs_debugging_init()' function is because it is better to initialize
2820 * debugfs interfaces at the very end of the mount process, and remove them at
2821 * the very beginning of the mount process.
2823 int dbg_debugfs_init_fs(struct ubifs_info *c)
2825 int err, n;
2826 const char *fname;
2827 struct dentry *dent;
2828 struct ubifs_debug_info *d = c->dbg;
2830 if (!IS_ENABLED(CONFIG_DEBUG_FS))
2831 return 0;
2833 n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2834 c->vi.ubi_num, c->vi.vol_id);
2835 if (n == UBIFS_DFS_DIR_LEN) {
2836 /* The array size is too small */
2837 fname = UBIFS_DFS_DIR_NAME;
2838 dent = ERR_PTR(-EINVAL);
2839 goto out;
2842 fname = d->dfs_dir_name;
2843 dent = debugfs_create_dir(fname, dfs_rootdir);
2844 if (IS_ERR_OR_NULL(dent))
2845 goto out;
2846 d->dfs_dir = dent;
2848 fname = "dump_lprops";
2849 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2850 if (IS_ERR_OR_NULL(dent))
2851 goto out_remove;
2852 d->dfs_dump_lprops = dent;
2854 fname = "dump_budg";
2855 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2856 if (IS_ERR_OR_NULL(dent))
2857 goto out_remove;
2858 d->dfs_dump_budg = dent;
2860 fname = "dump_tnc";
2861 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2862 if (IS_ERR_OR_NULL(dent))
2863 goto out_remove;
2864 d->dfs_dump_tnc = dent;
2866 fname = "chk_general";
2867 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2868 &dfs_fops);
2869 if (IS_ERR_OR_NULL(dent))
2870 goto out_remove;
2871 d->dfs_chk_gen = dent;
2873 fname = "chk_index";
2874 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2875 &dfs_fops);
2876 if (IS_ERR_OR_NULL(dent))
2877 goto out_remove;
2878 d->dfs_chk_index = dent;
2880 fname = "chk_orphans";
2881 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2882 &dfs_fops);
2883 if (IS_ERR_OR_NULL(dent))
2884 goto out_remove;
2885 d->dfs_chk_orph = dent;
2887 fname = "chk_lprops";
2888 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2889 &dfs_fops);
2890 if (IS_ERR_OR_NULL(dent))
2891 goto out_remove;
2892 d->dfs_chk_lprops = dent;
2894 fname = "chk_fs";
2895 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2896 &dfs_fops);
2897 if (IS_ERR_OR_NULL(dent))
2898 goto out_remove;
2899 d->dfs_chk_fs = dent;
2901 fname = "tst_recovery";
2902 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2903 &dfs_fops);
2904 if (IS_ERR_OR_NULL(dent))
2905 goto out_remove;
2906 d->dfs_tst_rcvry = dent;
2908 fname = "ro_error";
2909 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2910 &dfs_fops);
2911 if (IS_ERR_OR_NULL(dent))
2912 goto out_remove;
2913 d->dfs_ro_error = dent;
2915 return 0;
2917 out_remove:
2918 debugfs_remove_recursive(d->dfs_dir);
2919 out:
2920 err = dent ? PTR_ERR(dent) : -ENODEV;
2921 ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
2922 fname, err);
2923 return err;
2927 * dbg_debugfs_exit_fs - remove all debugfs files.
2928 * @c: UBIFS file-system description object
2930 void dbg_debugfs_exit_fs(struct ubifs_info *c)
2932 if (IS_ENABLED(CONFIG_DEBUG_FS))
2933 debugfs_remove_recursive(c->dbg->dfs_dir);
2936 struct ubifs_global_debug_info ubifs_dbg;
2938 static struct dentry *dfs_chk_gen;
2939 static struct dentry *dfs_chk_index;
2940 static struct dentry *dfs_chk_orph;
2941 static struct dentry *dfs_chk_lprops;
2942 static struct dentry *dfs_chk_fs;
2943 static struct dentry *dfs_tst_rcvry;
2945 static ssize_t dfs_global_file_read(struct file *file, char __user *u,
2946 size_t count, loff_t *ppos)
2948 struct dentry *dent = file->f_path.dentry;
2949 int val;
2951 if (dent == dfs_chk_gen)
2952 val = ubifs_dbg.chk_gen;
2953 else if (dent == dfs_chk_index)
2954 val = ubifs_dbg.chk_index;
2955 else if (dent == dfs_chk_orph)
2956 val = ubifs_dbg.chk_orph;
2957 else if (dent == dfs_chk_lprops)
2958 val = ubifs_dbg.chk_lprops;
2959 else if (dent == dfs_chk_fs)
2960 val = ubifs_dbg.chk_fs;
2961 else if (dent == dfs_tst_rcvry)
2962 val = ubifs_dbg.tst_rcvry;
2963 else
2964 return -EINVAL;
2966 return provide_user_output(val, u, count, ppos);
2969 static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
2970 size_t count, loff_t *ppos)
2972 struct dentry *dent = file->f_path.dentry;
2973 int val;
2975 val = interpret_user_input(u, count);
2976 if (val < 0)
2977 return val;
2979 if (dent == dfs_chk_gen)
2980 ubifs_dbg.chk_gen = val;
2981 else if (dent == dfs_chk_index)
2982 ubifs_dbg.chk_index = val;
2983 else if (dent == dfs_chk_orph)
2984 ubifs_dbg.chk_orph = val;
2985 else if (dent == dfs_chk_lprops)
2986 ubifs_dbg.chk_lprops = val;
2987 else if (dent == dfs_chk_fs)
2988 ubifs_dbg.chk_fs = val;
2989 else if (dent == dfs_tst_rcvry)
2990 ubifs_dbg.tst_rcvry = val;
2991 else
2992 return -EINVAL;
2994 return count;
2997 static const struct file_operations dfs_global_fops = {
2998 .read = dfs_global_file_read,
2999 .write = dfs_global_file_write,
3000 .owner = THIS_MODULE,
3001 .llseek = no_llseek,
3005 * dbg_debugfs_init - initialize debugfs file-system.
3007 * UBIFS uses debugfs file-system to expose various debugging knobs to
3008 * user-space. This function creates "ubifs" directory in the debugfs
3009 * file-system. Returns zero in case of success and a negative error code in
3010 * case of failure.
3012 int dbg_debugfs_init(void)
3014 int err;
3015 const char *fname;
3016 struct dentry *dent;
3018 if (!IS_ENABLED(CONFIG_DEBUG_FS))
3019 return 0;
3021 fname = "ubifs";
3022 dent = debugfs_create_dir(fname, NULL);
3023 if (IS_ERR_OR_NULL(dent))
3024 goto out;
3025 dfs_rootdir = dent;
3027 fname = "chk_general";
3028 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3029 &dfs_global_fops);
3030 if (IS_ERR_OR_NULL(dent))
3031 goto out_remove;
3032 dfs_chk_gen = dent;
3034 fname = "chk_index";
3035 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3036 &dfs_global_fops);
3037 if (IS_ERR_OR_NULL(dent))
3038 goto out_remove;
3039 dfs_chk_index = dent;
3041 fname = "chk_orphans";
3042 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3043 &dfs_global_fops);
3044 if (IS_ERR_OR_NULL(dent))
3045 goto out_remove;
3046 dfs_chk_orph = dent;
3048 fname = "chk_lprops";
3049 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3050 &dfs_global_fops);
3051 if (IS_ERR_OR_NULL(dent))
3052 goto out_remove;
3053 dfs_chk_lprops = dent;
3055 fname = "chk_fs";
3056 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3057 &dfs_global_fops);
3058 if (IS_ERR_OR_NULL(dent))
3059 goto out_remove;
3060 dfs_chk_fs = dent;
3062 fname = "tst_recovery";
3063 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3064 &dfs_global_fops);
3065 if (IS_ERR_OR_NULL(dent))
3066 goto out_remove;
3067 dfs_tst_rcvry = dent;
3069 return 0;
3071 out_remove:
3072 debugfs_remove_recursive(dfs_rootdir);
3073 out:
3074 err = dent ? PTR_ERR(dent) : -ENODEV;
3075 ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
3076 fname, err);
3077 return err;
3081 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3083 void dbg_debugfs_exit(void)
3085 if (IS_ENABLED(CONFIG_DEBUG_FS))
3086 debugfs_remove_recursive(dfs_rootdir);
3090 * ubifs_debugging_init - initialize UBIFS debugging.
3091 * @c: UBIFS file-system description object
3093 * This function initializes debugging-related data for the file system.
3094 * Returns zero in case of success and a negative error code in case of
3095 * failure.
3097 int ubifs_debugging_init(struct ubifs_info *c)
3099 c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3100 if (!c->dbg)
3101 return -ENOMEM;
3103 return 0;
3107 * ubifs_debugging_exit - free debugging data.
3108 * @c: UBIFS file-system description object
3110 void ubifs_debugging_exit(struct ubifs_info *c)
3112 kfree(c->dbg);