2 * IA-32 Huge TLB Page Support for Kernel.
4 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
7 #include <linux/init.h>
10 #include <linux/hugetlb.h>
11 #include <linux/pagemap.h>
12 #include <linux/err.h>
13 #include <linux/sysctl.h>
16 #include <asm/tlbflush.h>
17 #include <asm/pgalloc.h>
19 static unsigned long page_table_shareable(struct vm_area_struct
*svma
,
20 struct vm_area_struct
*vma
,
21 unsigned long addr
, pgoff_t idx
)
23 unsigned long saddr
= ((idx
- svma
->vm_pgoff
) << PAGE_SHIFT
) +
25 unsigned long sbase
= saddr
& PUD_MASK
;
26 unsigned long s_end
= sbase
+ PUD_SIZE
;
28 /* Allow segments to share if only one is marked locked */
29 unsigned long vm_flags
= vma
->vm_flags
& ~VM_LOCKED
;
30 unsigned long svm_flags
= svma
->vm_flags
& ~VM_LOCKED
;
33 * match the virtual addresses, permission and the alignment of the
36 if (pmd_index(addr
) != pmd_index(saddr
) ||
37 vm_flags
!= svm_flags
||
38 sbase
< svma
->vm_start
|| svma
->vm_end
< s_end
)
44 static int vma_shareable(struct vm_area_struct
*vma
, unsigned long addr
)
46 unsigned long base
= addr
& PUD_MASK
;
47 unsigned long end
= base
+ PUD_SIZE
;
50 * check on proper vm_flags and page table alignment
52 if (vma
->vm_flags
& VM_MAYSHARE
&&
53 vma
->vm_start
<= base
&& end
<= vma
->vm_end
)
59 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
60 * and returns the corresponding pte. While this is not necessary for the
61 * !shared pmd case because we can allocate the pmd later as well, it makes the
62 * code much cleaner. pmd allocation is essential for the shared case because
63 * pud has to be populated inside the same i_mmap_mutex section - otherwise
64 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
65 * bad pmd for sharing.
68 huge_pmd_share(struct mm_struct
*mm
, unsigned long addr
, pud_t
*pud
)
70 struct vm_area_struct
*vma
= find_vma(mm
, addr
);
71 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
72 pgoff_t idx
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) +
74 struct prio_tree_iter iter
;
75 struct vm_area_struct
*svma
;
80 if (!vma_shareable(vma
, addr
))
81 return (pte_t
*)pmd_alloc(mm
, pud
, addr
);
83 mutex_lock(&mapping
->i_mmap_mutex
);
84 vma_prio_tree_foreach(svma
, &iter
, &mapping
->i_mmap
, idx
, idx
) {
88 saddr
= page_table_shareable(svma
, vma
, addr
, idx
);
90 spte
= huge_pte_offset(svma
->vm_mm
, saddr
);
92 get_page(virt_to_page(spte
));
101 spin_lock(&mm
->page_table_lock
);
103 pud_populate(mm
, pud
, (pmd_t
*)((unsigned long)spte
& PAGE_MASK
));
105 put_page(virt_to_page(spte
));
106 spin_unlock(&mm
->page_table_lock
);
108 pte
= (pte_t
*)pmd_alloc(mm
, pud
, addr
);
109 mutex_unlock(&mapping
->i_mmap_mutex
);
114 * unmap huge page backed by shared pte.
116 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
117 * indicated by page_count > 1, unmap is achieved by clearing pud and
118 * decrementing the ref count. If count == 1, the pte page is not shared.
120 * called with vma->vm_mm->page_table_lock held.
122 * returns: 1 successfully unmapped a shared pte page
123 * 0 the underlying pte page is not shared, or it is the last user
125 int huge_pmd_unshare(struct mm_struct
*mm
, unsigned long *addr
, pte_t
*ptep
)
127 pgd_t
*pgd
= pgd_offset(mm
, *addr
);
128 pud_t
*pud
= pud_offset(pgd
, *addr
);
130 BUG_ON(page_count(virt_to_page(ptep
)) == 0);
131 if (page_count(virt_to_page(ptep
)) == 1)
135 put_page(virt_to_page(ptep
));
136 *addr
= ALIGN(*addr
, HPAGE_SIZE
* PTRS_PER_PTE
) - HPAGE_SIZE
;
140 pte_t
*huge_pte_alloc(struct mm_struct
*mm
,
141 unsigned long addr
, unsigned long sz
)
147 pgd
= pgd_offset(mm
, addr
);
148 pud
= pud_alloc(mm
, pgd
, addr
);
150 if (sz
== PUD_SIZE
) {
153 BUG_ON(sz
!= PMD_SIZE
);
155 pte
= huge_pmd_share(mm
, addr
, pud
);
157 pte
= (pte_t
*)pmd_alloc(mm
, pud
, addr
);
160 BUG_ON(pte
&& !pte_none(*pte
) && !pte_huge(*pte
));
165 pte_t
*huge_pte_offset(struct mm_struct
*mm
, unsigned long addr
)
171 pgd
= pgd_offset(mm
, addr
);
172 if (pgd_present(*pgd
)) {
173 pud
= pud_offset(pgd
, addr
);
174 if (pud_present(*pud
)) {
177 pmd
= pmd_offset(pud
, addr
);
180 return (pte_t
*) pmd
;
183 #if 0 /* This is just for testing */
185 follow_huge_addr(struct mm_struct
*mm
, unsigned long address
, int write
)
187 unsigned long start
= address
;
191 struct vm_area_struct
*vma
;
193 vma
= find_vma(mm
, addr
);
194 if (!vma
|| !is_vm_hugetlb_page(vma
))
195 return ERR_PTR(-EINVAL
);
197 pte
= huge_pte_offset(mm
, address
);
199 /* hugetlb should be locked, and hence, prefaulted */
200 WARN_ON(!pte
|| pte_none(*pte
));
202 page
= &pte_page(*pte
)[vpfn
% (HPAGE_SIZE
/PAGE_SIZE
)];
204 WARN_ON(!PageHead(page
));
209 int pmd_huge(pmd_t pmd
)
214 int pud_huge(pud_t pud
)
220 follow_huge_pmd(struct mm_struct
*mm
, unsigned long address
,
221 pmd_t
*pmd
, int write
)
229 follow_huge_addr(struct mm_struct
*mm
, unsigned long address
, int write
)
231 return ERR_PTR(-EINVAL
);
234 int pmd_huge(pmd_t pmd
)
236 return !!(pmd_val(pmd
) & _PAGE_PSE
);
239 int pud_huge(pud_t pud
)
241 return !!(pud_val(pud
) & _PAGE_PSE
);
245 follow_huge_pmd(struct mm_struct
*mm
, unsigned long address
,
246 pmd_t
*pmd
, int write
)
250 page
= pte_page(*(pte_t
*)pmd
);
252 page
+= ((address
& ~PMD_MASK
) >> PAGE_SHIFT
);
257 follow_huge_pud(struct mm_struct
*mm
, unsigned long address
,
258 pud_t
*pud
, int write
)
262 page
= pte_page(*(pte_t
*)pud
);
264 page
+= ((address
& ~PUD_MASK
) >> PAGE_SHIFT
);
270 /* x86_64 also uses this file */
272 #ifdef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
273 static unsigned long hugetlb_get_unmapped_area_bottomup(struct file
*file
,
274 unsigned long addr
, unsigned long len
,
275 unsigned long pgoff
, unsigned long flags
)
277 struct hstate
*h
= hstate_file(file
);
278 struct mm_struct
*mm
= current
->mm
;
279 struct vm_area_struct
*vma
;
280 unsigned long start_addr
;
282 if (len
> mm
->cached_hole_size
) {
283 start_addr
= mm
->free_area_cache
;
285 start_addr
= TASK_UNMAPPED_BASE
;
286 mm
->cached_hole_size
= 0;
290 addr
= ALIGN(start_addr
, huge_page_size(h
));
292 for (vma
= find_vma(mm
, addr
); ; vma
= vma
->vm_next
) {
293 /* At this point: (!vma || addr < vma->vm_end). */
294 if (TASK_SIZE
- len
< addr
) {
296 * Start a new search - just in case we missed
299 if (start_addr
!= TASK_UNMAPPED_BASE
) {
300 start_addr
= TASK_UNMAPPED_BASE
;
301 mm
->cached_hole_size
= 0;
306 if (!vma
|| addr
+ len
<= vma
->vm_start
) {
307 mm
->free_area_cache
= addr
+ len
;
310 if (addr
+ mm
->cached_hole_size
< vma
->vm_start
)
311 mm
->cached_hole_size
= vma
->vm_start
- addr
;
312 addr
= ALIGN(vma
->vm_end
, huge_page_size(h
));
316 static unsigned long hugetlb_get_unmapped_area_topdown(struct file
*file
,
317 unsigned long addr0
, unsigned long len
,
318 unsigned long pgoff
, unsigned long flags
)
320 struct hstate
*h
= hstate_file(file
);
321 struct mm_struct
*mm
= current
->mm
;
322 struct vm_area_struct
*vma
;
323 unsigned long base
= mm
->mmap_base
;
324 unsigned long addr
= addr0
;
325 unsigned long largest_hole
= mm
->cached_hole_size
;
326 unsigned long start_addr
;
328 /* don't allow allocations above current base */
329 if (mm
->free_area_cache
> base
)
330 mm
->free_area_cache
= base
;
332 if (len
<= largest_hole
) {
334 mm
->free_area_cache
= base
;
337 start_addr
= mm
->free_area_cache
;
339 /* make sure it can fit in the remaining address space */
340 if (mm
->free_area_cache
< len
)
343 /* either no address requested or can't fit in requested address hole */
344 addr
= (mm
->free_area_cache
- len
) & huge_page_mask(h
);
347 * Lookup failure means no vma is above this address,
348 * i.e. return with success:
350 vma
= find_vma(mm
, addr
);
354 if (addr
+ len
<= vma
->vm_start
) {
355 /* remember the address as a hint for next time */
356 mm
->cached_hole_size
= largest_hole
;
357 return (mm
->free_area_cache
= addr
);
358 } else if (mm
->free_area_cache
== vma
->vm_end
) {
359 /* pull free_area_cache down to the first hole */
360 mm
->free_area_cache
= vma
->vm_start
;
361 mm
->cached_hole_size
= largest_hole
;
364 /* remember the largest hole we saw so far */
365 if (addr
+ largest_hole
< vma
->vm_start
)
366 largest_hole
= vma
->vm_start
- addr
;
368 /* try just below the current vma->vm_start */
369 addr
= (vma
->vm_start
- len
) & huge_page_mask(h
);
370 } while (len
<= vma
->vm_start
);
374 * if hint left us with no space for the requested
375 * mapping then try again:
377 if (start_addr
!= base
) {
378 mm
->free_area_cache
= base
;
383 * A failed mmap() very likely causes application failure,
384 * so fall back to the bottom-up function here. This scenario
385 * can happen with large stack limits and large mmap()
388 mm
->free_area_cache
= TASK_UNMAPPED_BASE
;
389 mm
->cached_hole_size
= ~0UL;
390 addr
= hugetlb_get_unmapped_area_bottomup(file
, addr0
,
394 * Restore the topdown base:
396 mm
->free_area_cache
= base
;
397 mm
->cached_hole_size
= ~0UL;
403 hugetlb_get_unmapped_area(struct file
*file
, unsigned long addr
,
404 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
406 struct hstate
*h
= hstate_file(file
);
407 struct mm_struct
*mm
= current
->mm
;
408 struct vm_area_struct
*vma
;
410 if (len
& ~huge_page_mask(h
))
415 if (flags
& MAP_FIXED
) {
416 if (prepare_hugepage_range(file
, addr
, len
))
422 addr
= ALIGN(addr
, huge_page_size(h
));
423 vma
= find_vma(mm
, addr
);
424 if (TASK_SIZE
- len
>= addr
&&
425 (!vma
|| addr
+ len
<= vma
->vm_start
))
428 if (mm
->get_unmapped_area
== arch_get_unmapped_area
)
429 return hugetlb_get_unmapped_area_bottomup(file
, addr
, len
,
432 return hugetlb_get_unmapped_area_topdown(file
, addr
, len
,
436 #endif /*HAVE_ARCH_HUGETLB_UNMAPPED_AREA*/
439 static __init
int setup_hugepagesz(char *opt
)
441 unsigned long ps
= memparse(opt
, &opt
);
442 if (ps
== PMD_SIZE
) {
443 hugetlb_add_hstate(PMD_SHIFT
- PAGE_SHIFT
);
444 } else if (ps
== PUD_SIZE
&& cpu_has_gbpages
) {
445 hugetlb_add_hstate(PUD_SHIFT
- PAGE_SHIFT
);
447 printk(KERN_ERR
"hugepagesz: Unsupported page size %lu M\n",
453 __setup("hugepagesz=", setup_hugepagesz
);