usb: chipidea: i.MX: use devm_usb_get_phy_by_phandle to get phy
[linux-2.6.git] / fs / direct-io.c
blob7ab90f5081eebc4ab8b0de88bef8d0b6310ed113
1 /*
2 * fs/direct-io.c
4 * Copyright (C) 2002, Linus Torvalds.
6 * O_DIRECT
8 * 04Jul2002 Andrew Morton
9 * Initial version
10 * 11Sep2002 janetinc@us.ibm.com
11 * added readv/writev support.
12 * 29Oct2002 Andrew Morton
13 * rewrote bio_add_page() support.
14 * 30Oct2002 pbadari@us.ibm.com
15 * added support for non-aligned IO.
16 * 06Nov2002 pbadari@us.ibm.com
17 * added asynchronous IO support.
18 * 21Jul2003 nathans@sgi.com
19 * added IO completion notifier.
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/fs.h>
26 #include <linux/mm.h>
27 #include <linux/slab.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/bio.h>
32 #include <linux/wait.h>
33 #include <linux/err.h>
34 #include <linux/blkdev.h>
35 #include <linux/buffer_head.h>
36 #include <linux/rwsem.h>
37 #include <linux/uio.h>
38 #include <linux/atomic.h>
39 #include <linux/prefetch.h>
40 #include <linux/aio.h>
43 * How many user pages to map in one call to get_user_pages(). This determines
44 * the size of a structure in the slab cache
46 #define DIO_PAGES 64
49 * This code generally works in units of "dio_blocks". A dio_block is
50 * somewhere between the hard sector size and the filesystem block size. it
51 * is determined on a per-invocation basis. When talking to the filesystem
52 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
53 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted
54 * to bio_block quantities by shifting left by blkfactor.
56 * If blkfactor is zero then the user's request was aligned to the filesystem's
57 * blocksize.
60 /* dio_state only used in the submission path */
62 struct dio_submit {
63 struct bio *bio; /* bio under assembly */
64 unsigned blkbits; /* doesn't change */
65 unsigned blkfactor; /* When we're using an alignment which
66 is finer than the filesystem's soft
67 blocksize, this specifies how much
68 finer. blkfactor=2 means 1/4-block
69 alignment. Does not change */
70 unsigned start_zero_done; /* flag: sub-blocksize zeroing has
71 been performed at the start of a
72 write */
73 int pages_in_io; /* approximate total IO pages */
74 size_t size; /* total request size (doesn't change)*/
75 sector_t block_in_file; /* Current offset into the underlying
76 file in dio_block units. */
77 unsigned blocks_available; /* At block_in_file. changes */
78 int reap_counter; /* rate limit reaping */
79 sector_t final_block_in_request;/* doesn't change */
80 unsigned first_block_in_page; /* doesn't change, Used only once */
81 int boundary; /* prev block is at a boundary */
82 get_block_t *get_block; /* block mapping function */
83 dio_submit_t *submit_io; /* IO submition function */
85 loff_t logical_offset_in_bio; /* current first logical block in bio */
86 sector_t final_block_in_bio; /* current final block in bio + 1 */
87 sector_t next_block_for_io; /* next block to be put under IO,
88 in dio_blocks units */
91 * Deferred addition of a page to the dio. These variables are
92 * private to dio_send_cur_page(), submit_page_section() and
93 * dio_bio_add_page().
95 struct page *cur_page; /* The page */
96 unsigned cur_page_offset; /* Offset into it, in bytes */
97 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */
98 sector_t cur_page_block; /* Where it starts */
99 loff_t cur_page_fs_offset; /* Offset in file */
102 * Page fetching state. These variables belong to dio_refill_pages().
104 int curr_page; /* changes */
105 int total_pages; /* doesn't change */
106 unsigned long curr_user_address;/* changes */
109 * Page queue. These variables belong to dio_refill_pages() and
110 * dio_get_page().
112 unsigned head; /* next page to process */
113 unsigned tail; /* last valid page + 1 */
116 /* dio_state communicated between submission path and end_io */
117 struct dio {
118 int flags; /* doesn't change */
119 int rw;
120 struct inode *inode;
121 loff_t i_size; /* i_size when submitted */
122 dio_iodone_t *end_io; /* IO completion function */
124 void *private; /* copy from map_bh.b_private */
126 /* BIO completion state */
127 spinlock_t bio_lock; /* protects BIO fields below */
128 int page_errors; /* errno from get_user_pages() */
129 int is_async; /* is IO async ? */
130 int io_error; /* IO error in completion path */
131 unsigned long refcount; /* direct_io_worker() and bios */
132 struct bio *bio_list; /* singly linked via bi_private */
133 struct task_struct *waiter; /* waiting task (NULL if none) */
135 /* AIO related stuff */
136 struct kiocb *iocb; /* kiocb */
137 ssize_t result; /* IO result */
140 * pages[] (and any fields placed after it) are not zeroed out at
141 * allocation time. Don't add new fields after pages[] unless you
142 * wish that they not be zeroed.
144 struct page *pages[DIO_PAGES]; /* page buffer */
145 } ____cacheline_aligned_in_smp;
147 static struct kmem_cache *dio_cache __read_mostly;
150 * How many pages are in the queue?
152 static inline unsigned dio_pages_present(struct dio_submit *sdio)
154 return sdio->tail - sdio->head;
158 * Go grab and pin some userspace pages. Typically we'll get 64 at a time.
160 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
162 int ret;
163 int nr_pages;
165 nr_pages = min(sdio->total_pages - sdio->curr_page, DIO_PAGES);
166 ret = get_user_pages_fast(
167 sdio->curr_user_address, /* Where from? */
168 nr_pages, /* How many pages? */
169 dio->rw == READ, /* Write to memory? */
170 &dio->pages[0]); /* Put results here */
172 if (ret < 0 && sdio->blocks_available && (dio->rw & WRITE)) {
173 struct page *page = ZERO_PAGE(0);
175 * A memory fault, but the filesystem has some outstanding
176 * mapped blocks. We need to use those blocks up to avoid
177 * leaking stale data in the file.
179 if (dio->page_errors == 0)
180 dio->page_errors = ret;
181 page_cache_get(page);
182 dio->pages[0] = page;
183 sdio->head = 0;
184 sdio->tail = 1;
185 ret = 0;
186 goto out;
189 if (ret >= 0) {
190 sdio->curr_user_address += ret * PAGE_SIZE;
191 sdio->curr_page += ret;
192 sdio->head = 0;
193 sdio->tail = ret;
194 ret = 0;
196 out:
197 return ret;
201 * Get another userspace page. Returns an ERR_PTR on error. Pages are
202 * buffered inside the dio so that we can call get_user_pages() against a
203 * decent number of pages, less frequently. To provide nicer use of the
204 * L1 cache.
206 static inline struct page *dio_get_page(struct dio *dio,
207 struct dio_submit *sdio)
209 if (dio_pages_present(sdio) == 0) {
210 int ret;
212 ret = dio_refill_pages(dio, sdio);
213 if (ret)
214 return ERR_PTR(ret);
215 BUG_ON(dio_pages_present(sdio) == 0);
217 return dio->pages[sdio->head++];
221 * dio_complete() - called when all DIO BIO I/O has been completed
222 * @offset: the byte offset in the file of the completed operation
224 * This releases locks as dictated by the locking type, lets interested parties
225 * know that a DIO operation has completed, and calculates the resulting return
226 * code for the operation.
228 * It lets the filesystem know if it registered an interest earlier via
229 * get_block. Pass the private field of the map buffer_head so that
230 * filesystems can use it to hold additional state between get_block calls and
231 * dio_complete.
233 static ssize_t dio_complete(struct dio *dio, loff_t offset, ssize_t ret, bool is_async)
235 ssize_t transferred = 0;
238 * AIO submission can race with bio completion to get here while
239 * expecting to have the last io completed by bio completion.
240 * In that case -EIOCBQUEUED is in fact not an error we want
241 * to preserve through this call.
243 if (ret == -EIOCBQUEUED)
244 ret = 0;
246 if (dio->result) {
247 transferred = dio->result;
249 /* Check for short read case */
250 if ((dio->rw == READ) && ((offset + transferred) > dio->i_size))
251 transferred = dio->i_size - offset;
254 if (ret == 0)
255 ret = dio->page_errors;
256 if (ret == 0)
257 ret = dio->io_error;
258 if (ret == 0)
259 ret = transferred;
261 if (dio->end_io && dio->result) {
262 dio->end_io(dio->iocb, offset, transferred,
263 dio->private, ret, is_async);
264 } else {
265 inode_dio_done(dio->inode);
266 if (is_async)
267 aio_complete(dio->iocb, ret, 0);
270 return ret;
273 static int dio_bio_complete(struct dio *dio, struct bio *bio);
275 * Asynchronous IO callback.
277 static void dio_bio_end_aio(struct bio *bio, int error)
279 struct dio *dio = bio->bi_private;
280 unsigned long remaining;
281 unsigned long flags;
283 /* cleanup the bio */
284 dio_bio_complete(dio, bio);
286 spin_lock_irqsave(&dio->bio_lock, flags);
287 remaining = --dio->refcount;
288 if (remaining == 1 && dio->waiter)
289 wake_up_process(dio->waiter);
290 spin_unlock_irqrestore(&dio->bio_lock, flags);
292 if (remaining == 0) {
293 dio_complete(dio, dio->iocb->ki_pos, 0, true);
294 kmem_cache_free(dio_cache, dio);
299 * The BIO completion handler simply queues the BIO up for the process-context
300 * handler.
302 * During I/O bi_private points at the dio. After I/O, bi_private is used to
303 * implement a singly-linked list of completed BIOs, at dio->bio_list.
305 static void dio_bio_end_io(struct bio *bio, int error)
307 struct dio *dio = bio->bi_private;
308 unsigned long flags;
310 spin_lock_irqsave(&dio->bio_lock, flags);
311 bio->bi_private = dio->bio_list;
312 dio->bio_list = bio;
313 if (--dio->refcount == 1 && dio->waiter)
314 wake_up_process(dio->waiter);
315 spin_unlock_irqrestore(&dio->bio_lock, flags);
319 * dio_end_io - handle the end io action for the given bio
320 * @bio: The direct io bio thats being completed
321 * @error: Error if there was one
323 * This is meant to be called by any filesystem that uses their own dio_submit_t
324 * so that the DIO specific endio actions are dealt with after the filesystem
325 * has done it's completion work.
327 void dio_end_io(struct bio *bio, int error)
329 struct dio *dio = bio->bi_private;
331 if (dio->is_async)
332 dio_bio_end_aio(bio, error);
333 else
334 dio_bio_end_io(bio, error);
336 EXPORT_SYMBOL_GPL(dio_end_io);
338 static inline void
339 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
340 struct block_device *bdev,
341 sector_t first_sector, int nr_vecs)
343 struct bio *bio;
346 * bio_alloc() is guaranteed to return a bio when called with
347 * __GFP_WAIT and we request a valid number of vectors.
349 bio = bio_alloc(GFP_KERNEL, nr_vecs);
351 bio->bi_bdev = bdev;
352 bio->bi_sector = first_sector;
353 if (dio->is_async)
354 bio->bi_end_io = dio_bio_end_aio;
355 else
356 bio->bi_end_io = dio_bio_end_io;
358 sdio->bio = bio;
359 sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
363 * In the AIO read case we speculatively dirty the pages before starting IO.
364 * During IO completion, any of these pages which happen to have been written
365 * back will be redirtied by bio_check_pages_dirty().
367 * bios hold a dio reference between submit_bio and ->end_io.
369 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
371 struct bio *bio = sdio->bio;
372 unsigned long flags;
374 bio->bi_private = dio;
376 spin_lock_irqsave(&dio->bio_lock, flags);
377 dio->refcount++;
378 spin_unlock_irqrestore(&dio->bio_lock, flags);
380 if (dio->is_async && dio->rw == READ)
381 bio_set_pages_dirty(bio);
383 if (sdio->submit_io)
384 sdio->submit_io(dio->rw, bio, dio->inode,
385 sdio->logical_offset_in_bio);
386 else
387 submit_bio(dio->rw, bio);
389 sdio->bio = NULL;
390 sdio->boundary = 0;
391 sdio->logical_offset_in_bio = 0;
395 * Release any resources in case of a failure
397 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
399 while (dio_pages_present(sdio))
400 page_cache_release(dio_get_page(dio, sdio));
404 * Wait for the next BIO to complete. Remove it and return it. NULL is
405 * returned once all BIOs have been completed. This must only be called once
406 * all bios have been issued so that dio->refcount can only decrease. This
407 * requires that that the caller hold a reference on the dio.
409 static struct bio *dio_await_one(struct dio *dio)
411 unsigned long flags;
412 struct bio *bio = NULL;
414 spin_lock_irqsave(&dio->bio_lock, flags);
417 * Wait as long as the list is empty and there are bios in flight. bio
418 * completion drops the count, maybe adds to the list, and wakes while
419 * holding the bio_lock so we don't need set_current_state()'s barrier
420 * and can call it after testing our condition.
422 while (dio->refcount > 1 && dio->bio_list == NULL) {
423 __set_current_state(TASK_UNINTERRUPTIBLE);
424 dio->waiter = current;
425 spin_unlock_irqrestore(&dio->bio_lock, flags);
426 io_schedule();
427 /* wake up sets us TASK_RUNNING */
428 spin_lock_irqsave(&dio->bio_lock, flags);
429 dio->waiter = NULL;
431 if (dio->bio_list) {
432 bio = dio->bio_list;
433 dio->bio_list = bio->bi_private;
435 spin_unlock_irqrestore(&dio->bio_lock, flags);
436 return bio;
440 * Process one completed BIO. No locks are held.
442 static int dio_bio_complete(struct dio *dio, struct bio *bio)
444 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
445 struct bio_vec *bvec;
446 unsigned i;
448 if (!uptodate)
449 dio->io_error = -EIO;
451 if (dio->is_async && dio->rw == READ) {
452 bio_check_pages_dirty(bio); /* transfers ownership */
453 } else {
454 bio_for_each_segment_all(bvec, bio, i) {
455 struct page *page = bvec->bv_page;
457 if (dio->rw == READ && !PageCompound(page))
458 set_page_dirty_lock(page);
459 page_cache_release(page);
461 bio_put(bio);
463 return uptodate ? 0 : -EIO;
467 * Wait on and process all in-flight BIOs. This must only be called once
468 * all bios have been issued so that the refcount can only decrease.
469 * This just waits for all bios to make it through dio_bio_complete. IO
470 * errors are propagated through dio->io_error and should be propagated via
471 * dio_complete().
473 static void dio_await_completion(struct dio *dio)
475 struct bio *bio;
476 do {
477 bio = dio_await_one(dio);
478 if (bio)
479 dio_bio_complete(dio, bio);
480 } while (bio);
484 * A really large O_DIRECT read or write can generate a lot of BIOs. So
485 * to keep the memory consumption sane we periodically reap any completed BIOs
486 * during the BIO generation phase.
488 * This also helps to limit the peak amount of pinned userspace memory.
490 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
492 int ret = 0;
494 if (sdio->reap_counter++ >= 64) {
495 while (dio->bio_list) {
496 unsigned long flags;
497 struct bio *bio;
498 int ret2;
500 spin_lock_irqsave(&dio->bio_lock, flags);
501 bio = dio->bio_list;
502 dio->bio_list = bio->bi_private;
503 spin_unlock_irqrestore(&dio->bio_lock, flags);
504 ret2 = dio_bio_complete(dio, bio);
505 if (ret == 0)
506 ret = ret2;
508 sdio->reap_counter = 0;
510 return ret;
514 * Call into the fs to map some more disk blocks. We record the current number
515 * of available blocks at sdio->blocks_available. These are in units of the
516 * fs blocksize, (1 << inode->i_blkbits).
518 * The fs is allowed to map lots of blocks at once. If it wants to do that,
519 * it uses the passed inode-relative block number as the file offset, as usual.
521 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
522 * has remaining to do. The fs should not map more than this number of blocks.
524 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
525 * indicate how much contiguous disk space has been made available at
526 * bh->b_blocknr.
528 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
529 * This isn't very efficient...
531 * In the case of filesystem holes: the fs may return an arbitrarily-large
532 * hole by returning an appropriate value in b_size and by clearing
533 * buffer_mapped(). However the direct-io code will only process holes one
534 * block at a time - it will repeatedly call get_block() as it walks the hole.
536 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
537 struct buffer_head *map_bh)
539 int ret;
540 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */
541 sector_t fs_endblk; /* Into file, in filesystem-sized blocks */
542 unsigned long fs_count; /* Number of filesystem-sized blocks */
543 int create;
544 unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
547 * If there was a memory error and we've overwritten all the
548 * mapped blocks then we can now return that memory error
550 ret = dio->page_errors;
551 if (ret == 0) {
552 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
553 fs_startblk = sdio->block_in_file >> sdio->blkfactor;
554 fs_endblk = (sdio->final_block_in_request - 1) >>
555 sdio->blkfactor;
556 fs_count = fs_endblk - fs_startblk + 1;
558 map_bh->b_state = 0;
559 map_bh->b_size = fs_count << i_blkbits;
562 * For writes inside i_size on a DIO_SKIP_HOLES filesystem we
563 * forbid block creations: only overwrites are permitted.
564 * We will return early to the caller once we see an
565 * unmapped buffer head returned, and the caller will fall
566 * back to buffered I/O.
568 * Otherwise the decision is left to the get_blocks method,
569 * which may decide to handle it or also return an unmapped
570 * buffer head.
572 create = dio->rw & WRITE;
573 if (dio->flags & DIO_SKIP_HOLES) {
574 if (sdio->block_in_file < (i_size_read(dio->inode) >>
575 sdio->blkbits))
576 create = 0;
579 ret = (*sdio->get_block)(dio->inode, fs_startblk,
580 map_bh, create);
582 /* Store for completion */
583 dio->private = map_bh->b_private;
585 return ret;
589 * There is no bio. Make one now.
591 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
592 sector_t start_sector, struct buffer_head *map_bh)
594 sector_t sector;
595 int ret, nr_pages;
597 ret = dio_bio_reap(dio, sdio);
598 if (ret)
599 goto out;
600 sector = start_sector << (sdio->blkbits - 9);
601 nr_pages = min(sdio->pages_in_io, bio_get_nr_vecs(map_bh->b_bdev));
602 nr_pages = min(nr_pages, BIO_MAX_PAGES);
603 BUG_ON(nr_pages <= 0);
604 dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
605 sdio->boundary = 0;
606 out:
607 return ret;
611 * Attempt to put the current chunk of 'cur_page' into the current BIO. If
612 * that was successful then update final_block_in_bio and take a ref against
613 * the just-added page.
615 * Return zero on success. Non-zero means the caller needs to start a new BIO.
617 static inline int dio_bio_add_page(struct dio_submit *sdio)
619 int ret;
621 ret = bio_add_page(sdio->bio, sdio->cur_page,
622 sdio->cur_page_len, sdio->cur_page_offset);
623 if (ret == sdio->cur_page_len) {
625 * Decrement count only, if we are done with this page
627 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
628 sdio->pages_in_io--;
629 page_cache_get(sdio->cur_page);
630 sdio->final_block_in_bio = sdio->cur_page_block +
631 (sdio->cur_page_len >> sdio->blkbits);
632 ret = 0;
633 } else {
634 ret = 1;
636 return ret;
640 * Put cur_page under IO. The section of cur_page which is described by
641 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page
642 * starts on-disk at cur_page_block.
644 * We take a ref against the page here (on behalf of its presence in the bio).
646 * The caller of this function is responsible for removing cur_page from the
647 * dio, and for dropping the refcount which came from that presence.
649 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
650 struct buffer_head *map_bh)
652 int ret = 0;
654 if (sdio->bio) {
655 loff_t cur_offset = sdio->cur_page_fs_offset;
656 loff_t bio_next_offset = sdio->logical_offset_in_bio +
657 sdio->bio->bi_size;
660 * See whether this new request is contiguous with the old.
662 * Btrfs cannot handle having logically non-contiguous requests
663 * submitted. For example if you have
665 * Logical: [0-4095][HOLE][8192-12287]
666 * Physical: [0-4095] [4096-8191]
668 * We cannot submit those pages together as one BIO. So if our
669 * current logical offset in the file does not equal what would
670 * be the next logical offset in the bio, submit the bio we
671 * have.
673 if (sdio->final_block_in_bio != sdio->cur_page_block ||
674 cur_offset != bio_next_offset)
675 dio_bio_submit(dio, sdio);
678 if (sdio->bio == NULL) {
679 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
680 if (ret)
681 goto out;
684 if (dio_bio_add_page(sdio) != 0) {
685 dio_bio_submit(dio, sdio);
686 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
687 if (ret == 0) {
688 ret = dio_bio_add_page(sdio);
689 BUG_ON(ret != 0);
692 out:
693 return ret;
697 * An autonomous function to put a chunk of a page under deferred IO.
699 * The caller doesn't actually know (or care) whether this piece of page is in
700 * a BIO, or is under IO or whatever. We just take care of all possible
701 * situations here. The separation between the logic of do_direct_IO() and
702 * that of submit_page_section() is important for clarity. Please don't break.
704 * The chunk of page starts on-disk at blocknr.
706 * We perform deferred IO, by recording the last-submitted page inside our
707 * private part of the dio structure. If possible, we just expand the IO
708 * across that page here.
710 * If that doesn't work out then we put the old page into the bio and add this
711 * page to the dio instead.
713 static inline int
714 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
715 unsigned offset, unsigned len, sector_t blocknr,
716 struct buffer_head *map_bh)
718 int ret = 0;
720 if (dio->rw & WRITE) {
722 * Read accounting is performed in submit_bio()
724 task_io_account_write(len);
728 * Can we just grow the current page's presence in the dio?
730 if (sdio->cur_page == page &&
731 sdio->cur_page_offset + sdio->cur_page_len == offset &&
732 sdio->cur_page_block +
733 (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
734 sdio->cur_page_len += len;
735 goto out;
739 * If there's a deferred page already there then send it.
741 if (sdio->cur_page) {
742 ret = dio_send_cur_page(dio, sdio, map_bh);
743 page_cache_release(sdio->cur_page);
744 sdio->cur_page = NULL;
745 if (ret)
746 return ret;
749 page_cache_get(page); /* It is in dio */
750 sdio->cur_page = page;
751 sdio->cur_page_offset = offset;
752 sdio->cur_page_len = len;
753 sdio->cur_page_block = blocknr;
754 sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
755 out:
757 * If sdio->boundary then we want to schedule the IO now to
758 * avoid metadata seeks.
760 if (sdio->boundary) {
761 ret = dio_send_cur_page(dio, sdio, map_bh);
762 dio_bio_submit(dio, sdio);
763 page_cache_release(sdio->cur_page);
764 sdio->cur_page = NULL;
766 return ret;
770 * Clean any dirty buffers in the blockdev mapping which alias newly-created
771 * file blocks. Only called for S_ISREG files - blockdevs do not set
772 * buffer_new
774 static void clean_blockdev_aliases(struct dio *dio, struct buffer_head *map_bh)
776 unsigned i;
777 unsigned nblocks;
779 nblocks = map_bh->b_size >> dio->inode->i_blkbits;
781 for (i = 0; i < nblocks; i++) {
782 unmap_underlying_metadata(map_bh->b_bdev,
783 map_bh->b_blocknr + i);
788 * If we are not writing the entire block and get_block() allocated
789 * the block for us, we need to fill-in the unused portion of the
790 * block with zeros. This happens only if user-buffer, fileoffset or
791 * io length is not filesystem block-size multiple.
793 * `end' is zero if we're doing the start of the IO, 1 at the end of the
794 * IO.
796 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
797 int end, struct buffer_head *map_bh)
799 unsigned dio_blocks_per_fs_block;
800 unsigned this_chunk_blocks; /* In dio_blocks */
801 unsigned this_chunk_bytes;
802 struct page *page;
804 sdio->start_zero_done = 1;
805 if (!sdio->blkfactor || !buffer_new(map_bh))
806 return;
808 dio_blocks_per_fs_block = 1 << sdio->blkfactor;
809 this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
811 if (!this_chunk_blocks)
812 return;
815 * We need to zero out part of an fs block. It is either at the
816 * beginning or the end of the fs block.
818 if (end)
819 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
821 this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
823 page = ZERO_PAGE(0);
824 if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
825 sdio->next_block_for_io, map_bh))
826 return;
828 sdio->next_block_for_io += this_chunk_blocks;
832 * Walk the user pages, and the file, mapping blocks to disk and generating
833 * a sequence of (page,offset,len,block) mappings. These mappings are injected
834 * into submit_page_section(), which takes care of the next stage of submission
836 * Direct IO against a blockdev is different from a file. Because we can
837 * happily perform page-sized but 512-byte aligned IOs. It is important that
838 * blockdev IO be able to have fine alignment and large sizes.
840 * So what we do is to permit the ->get_block function to populate bh.b_size
841 * with the size of IO which is permitted at this offset and this i_blkbits.
843 * For best results, the blockdev should be set up with 512-byte i_blkbits and
844 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives
845 * fine alignment but still allows this function to work in PAGE_SIZE units.
847 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
848 struct buffer_head *map_bh)
850 const unsigned blkbits = sdio->blkbits;
851 const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
852 struct page *page;
853 unsigned block_in_page;
854 int ret = 0;
856 /* The I/O can start at any block offset within the first page */
857 block_in_page = sdio->first_block_in_page;
859 while (sdio->block_in_file < sdio->final_block_in_request) {
860 page = dio_get_page(dio, sdio);
861 if (IS_ERR(page)) {
862 ret = PTR_ERR(page);
863 goto out;
866 while (block_in_page < blocks_per_page) {
867 unsigned offset_in_page = block_in_page << blkbits;
868 unsigned this_chunk_bytes; /* # of bytes mapped */
869 unsigned this_chunk_blocks; /* # of blocks */
870 unsigned u;
872 if (sdio->blocks_available == 0) {
874 * Need to go and map some more disk
876 unsigned long blkmask;
877 unsigned long dio_remainder;
879 ret = get_more_blocks(dio, sdio, map_bh);
880 if (ret) {
881 page_cache_release(page);
882 goto out;
884 if (!buffer_mapped(map_bh))
885 goto do_holes;
887 sdio->blocks_available =
888 map_bh->b_size >> sdio->blkbits;
889 sdio->next_block_for_io =
890 map_bh->b_blocknr << sdio->blkfactor;
891 if (buffer_new(map_bh))
892 clean_blockdev_aliases(dio, map_bh);
894 if (!sdio->blkfactor)
895 goto do_holes;
897 blkmask = (1 << sdio->blkfactor) - 1;
898 dio_remainder = (sdio->block_in_file & blkmask);
901 * If we are at the start of IO and that IO
902 * starts partway into a fs-block,
903 * dio_remainder will be non-zero. If the IO
904 * is a read then we can simply advance the IO
905 * cursor to the first block which is to be
906 * read. But if the IO is a write and the
907 * block was newly allocated we cannot do that;
908 * the start of the fs block must be zeroed out
909 * on-disk
911 if (!buffer_new(map_bh))
912 sdio->next_block_for_io += dio_remainder;
913 sdio->blocks_available -= dio_remainder;
915 do_holes:
916 /* Handle holes */
917 if (!buffer_mapped(map_bh)) {
918 loff_t i_size_aligned;
920 /* AKPM: eargh, -ENOTBLK is a hack */
921 if (dio->rw & WRITE) {
922 page_cache_release(page);
923 return -ENOTBLK;
927 * Be sure to account for a partial block as the
928 * last block in the file
930 i_size_aligned = ALIGN(i_size_read(dio->inode),
931 1 << blkbits);
932 if (sdio->block_in_file >=
933 i_size_aligned >> blkbits) {
934 /* We hit eof */
935 page_cache_release(page);
936 goto out;
938 zero_user(page, block_in_page << blkbits,
939 1 << blkbits);
940 sdio->block_in_file++;
941 block_in_page++;
942 goto next_block;
946 * If we're performing IO which has an alignment which
947 * is finer than the underlying fs, go check to see if
948 * we must zero out the start of this block.
950 if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
951 dio_zero_block(dio, sdio, 0, map_bh);
954 * Work out, in this_chunk_blocks, how much disk we
955 * can add to this page
957 this_chunk_blocks = sdio->blocks_available;
958 u = (PAGE_SIZE - offset_in_page) >> blkbits;
959 if (this_chunk_blocks > u)
960 this_chunk_blocks = u;
961 u = sdio->final_block_in_request - sdio->block_in_file;
962 if (this_chunk_blocks > u)
963 this_chunk_blocks = u;
964 this_chunk_bytes = this_chunk_blocks << blkbits;
965 BUG_ON(this_chunk_bytes == 0);
967 if (this_chunk_blocks == sdio->blocks_available)
968 sdio->boundary = buffer_boundary(map_bh);
969 ret = submit_page_section(dio, sdio, page,
970 offset_in_page,
971 this_chunk_bytes,
972 sdio->next_block_for_io,
973 map_bh);
974 if (ret) {
975 page_cache_release(page);
976 goto out;
978 sdio->next_block_for_io += this_chunk_blocks;
980 sdio->block_in_file += this_chunk_blocks;
981 block_in_page += this_chunk_blocks;
982 sdio->blocks_available -= this_chunk_blocks;
983 next_block:
984 BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
985 if (sdio->block_in_file == sdio->final_block_in_request)
986 break;
989 /* Drop the ref which was taken in get_user_pages() */
990 page_cache_release(page);
991 block_in_page = 0;
993 out:
994 return ret;
997 static inline int drop_refcount(struct dio *dio)
999 int ret2;
1000 unsigned long flags;
1003 * Sync will always be dropping the final ref and completing the
1004 * operation. AIO can if it was a broken operation described above or
1005 * in fact if all the bios race to complete before we get here. In
1006 * that case dio_complete() translates the EIOCBQUEUED into the proper
1007 * return code that the caller will hand to aio_complete().
1009 * This is managed by the bio_lock instead of being an atomic_t so that
1010 * completion paths can drop their ref and use the remaining count to
1011 * decide to wake the submission path atomically.
1013 spin_lock_irqsave(&dio->bio_lock, flags);
1014 ret2 = --dio->refcount;
1015 spin_unlock_irqrestore(&dio->bio_lock, flags);
1016 return ret2;
1020 * This is a library function for use by filesystem drivers.
1022 * The locking rules are governed by the flags parameter:
1023 * - if the flags value contains DIO_LOCKING we use a fancy locking
1024 * scheme for dumb filesystems.
1025 * For writes this function is called under i_mutex and returns with
1026 * i_mutex held, for reads, i_mutex is not held on entry, but it is
1027 * taken and dropped again before returning.
1028 * - if the flags value does NOT contain DIO_LOCKING we don't use any
1029 * internal locking but rather rely on the filesystem to synchronize
1030 * direct I/O reads/writes versus each other and truncate.
1032 * To help with locking against truncate we incremented the i_dio_count
1033 * counter before starting direct I/O, and decrement it once we are done.
1034 * Truncate can wait for it to reach zero to provide exclusion. It is
1035 * expected that filesystem provide exclusion between new direct I/O
1036 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex,
1037 * but other filesystems need to take care of this on their own.
1039 * NOTE: if you pass "sdio" to anything by pointer make sure that function
1040 * is always inlined. Otherwise gcc is unable to split the structure into
1041 * individual fields and will generate much worse code. This is important
1042 * for the whole file.
1044 static inline ssize_t
1045 do_blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
1046 struct block_device *bdev, const struct iovec *iov, loff_t offset,
1047 unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io,
1048 dio_submit_t submit_io, int flags)
1050 int seg;
1051 size_t size;
1052 unsigned long addr;
1053 unsigned i_blkbits = ACCESS_ONCE(inode->i_blkbits);
1054 unsigned blkbits = i_blkbits;
1055 unsigned blocksize_mask = (1 << blkbits) - 1;
1056 ssize_t retval = -EINVAL;
1057 loff_t end = offset;
1058 struct dio *dio;
1059 struct dio_submit sdio = { 0, };
1060 unsigned long user_addr;
1061 size_t bytes;
1062 struct buffer_head map_bh = { 0, };
1063 struct blk_plug plug;
1065 if (rw & WRITE)
1066 rw = WRITE_ODIRECT;
1069 * Avoid references to bdev if not absolutely needed to give
1070 * the early prefetch in the caller enough time.
1073 if (offset & blocksize_mask) {
1074 if (bdev)
1075 blkbits = blksize_bits(bdev_logical_block_size(bdev));
1076 blocksize_mask = (1 << blkbits) - 1;
1077 if (offset & blocksize_mask)
1078 goto out;
1081 /* Check the memory alignment. Blocks cannot straddle pages */
1082 for (seg = 0; seg < nr_segs; seg++) {
1083 addr = (unsigned long)iov[seg].iov_base;
1084 size = iov[seg].iov_len;
1085 end += size;
1086 if (unlikely((addr & blocksize_mask) ||
1087 (size & blocksize_mask))) {
1088 if (bdev)
1089 blkbits = blksize_bits(
1090 bdev_logical_block_size(bdev));
1091 blocksize_mask = (1 << blkbits) - 1;
1092 if ((addr & blocksize_mask) || (size & blocksize_mask))
1093 goto out;
1097 /* watch out for a 0 len io from a tricksy fs */
1098 if (rw == READ && end == offset)
1099 return 0;
1101 dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1102 retval = -ENOMEM;
1103 if (!dio)
1104 goto out;
1106 * Believe it or not, zeroing out the page array caused a .5%
1107 * performance regression in a database benchmark. So, we take
1108 * care to only zero out what's needed.
1110 memset(dio, 0, offsetof(struct dio, pages));
1112 dio->flags = flags;
1113 if (dio->flags & DIO_LOCKING) {
1114 if (rw == READ) {
1115 struct address_space *mapping =
1116 iocb->ki_filp->f_mapping;
1118 /* will be released by direct_io_worker */
1119 mutex_lock(&inode->i_mutex);
1121 retval = filemap_write_and_wait_range(mapping, offset,
1122 end - 1);
1123 if (retval) {
1124 mutex_unlock(&inode->i_mutex);
1125 kmem_cache_free(dio_cache, dio);
1126 goto out;
1132 * Will be decremented at I/O completion time.
1134 atomic_inc(&inode->i_dio_count);
1137 * For file extending writes updating i_size before data
1138 * writeouts complete can expose uninitialized blocks. So
1139 * even for AIO, we need to wait for i/o to complete before
1140 * returning in this case.
1142 dio->is_async = !is_sync_kiocb(iocb) && !((rw & WRITE) &&
1143 (end > i_size_read(inode)));
1145 retval = 0;
1147 dio->inode = inode;
1148 dio->rw = rw;
1149 sdio.blkbits = blkbits;
1150 sdio.blkfactor = i_blkbits - blkbits;
1151 sdio.block_in_file = offset >> blkbits;
1153 sdio.get_block = get_block;
1154 dio->end_io = end_io;
1155 sdio.submit_io = submit_io;
1156 sdio.final_block_in_bio = -1;
1157 sdio.next_block_for_io = -1;
1159 dio->iocb = iocb;
1160 dio->i_size = i_size_read(inode);
1162 spin_lock_init(&dio->bio_lock);
1163 dio->refcount = 1;
1166 * In case of non-aligned buffers, we may need 2 more
1167 * pages since we need to zero out first and last block.
1169 if (unlikely(sdio.blkfactor))
1170 sdio.pages_in_io = 2;
1172 for (seg = 0; seg < nr_segs; seg++) {
1173 user_addr = (unsigned long)iov[seg].iov_base;
1174 sdio.pages_in_io +=
1175 ((user_addr + iov[seg].iov_len + PAGE_SIZE-1) /
1176 PAGE_SIZE - user_addr / PAGE_SIZE);
1179 blk_start_plug(&plug);
1181 for (seg = 0; seg < nr_segs; seg++) {
1182 user_addr = (unsigned long)iov[seg].iov_base;
1183 sdio.size += bytes = iov[seg].iov_len;
1185 /* Index into the first page of the first block */
1186 sdio.first_block_in_page = (user_addr & ~PAGE_MASK) >> blkbits;
1187 sdio.final_block_in_request = sdio.block_in_file +
1188 (bytes >> blkbits);
1189 /* Page fetching state */
1190 sdio.head = 0;
1191 sdio.tail = 0;
1192 sdio.curr_page = 0;
1194 sdio.total_pages = 0;
1195 if (user_addr & (PAGE_SIZE-1)) {
1196 sdio.total_pages++;
1197 bytes -= PAGE_SIZE - (user_addr & (PAGE_SIZE - 1));
1199 sdio.total_pages += (bytes + PAGE_SIZE - 1) / PAGE_SIZE;
1200 sdio.curr_user_address = user_addr;
1202 retval = do_direct_IO(dio, &sdio, &map_bh);
1204 dio->result += iov[seg].iov_len -
1205 ((sdio.final_block_in_request - sdio.block_in_file) <<
1206 blkbits);
1208 if (retval) {
1209 dio_cleanup(dio, &sdio);
1210 break;
1212 } /* end iovec loop */
1214 if (retval == -ENOTBLK) {
1216 * The remaining part of the request will be
1217 * be handled by buffered I/O when we return
1219 retval = 0;
1222 * There may be some unwritten disk at the end of a part-written
1223 * fs-block-sized block. Go zero that now.
1225 dio_zero_block(dio, &sdio, 1, &map_bh);
1227 if (sdio.cur_page) {
1228 ssize_t ret2;
1230 ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1231 if (retval == 0)
1232 retval = ret2;
1233 page_cache_release(sdio.cur_page);
1234 sdio.cur_page = NULL;
1236 if (sdio.bio)
1237 dio_bio_submit(dio, &sdio);
1239 blk_finish_plug(&plug);
1242 * It is possible that, we return short IO due to end of file.
1243 * In that case, we need to release all the pages we got hold on.
1245 dio_cleanup(dio, &sdio);
1248 * All block lookups have been performed. For READ requests
1249 * we can let i_mutex go now that its achieved its purpose
1250 * of protecting us from looking up uninitialized blocks.
1252 if (rw == READ && (dio->flags & DIO_LOCKING))
1253 mutex_unlock(&dio->inode->i_mutex);
1256 * The only time we want to leave bios in flight is when a successful
1257 * partial aio read or full aio write have been setup. In that case
1258 * bio completion will call aio_complete. The only time it's safe to
1259 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1260 * This had *better* be the only place that raises -EIOCBQUEUED.
1262 BUG_ON(retval == -EIOCBQUEUED);
1263 if (dio->is_async && retval == 0 && dio->result &&
1264 ((rw == READ) || (dio->result == sdio.size)))
1265 retval = -EIOCBQUEUED;
1267 if (retval != -EIOCBQUEUED)
1268 dio_await_completion(dio);
1270 if (drop_refcount(dio) == 0) {
1271 retval = dio_complete(dio, offset, retval, false);
1272 kmem_cache_free(dio_cache, dio);
1273 } else
1274 BUG_ON(retval != -EIOCBQUEUED);
1276 out:
1277 return retval;
1280 ssize_t
1281 __blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
1282 struct block_device *bdev, const struct iovec *iov, loff_t offset,
1283 unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io,
1284 dio_submit_t submit_io, int flags)
1287 * The block device state is needed in the end to finally
1288 * submit everything. Since it's likely to be cache cold
1289 * prefetch it here as first thing to hide some of the
1290 * latency.
1292 * Attempt to prefetch the pieces we likely need later.
1294 prefetch(&bdev->bd_disk->part_tbl);
1295 prefetch(bdev->bd_queue);
1296 prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES);
1298 return do_blockdev_direct_IO(rw, iocb, inode, bdev, iov, offset,
1299 nr_segs, get_block, end_io,
1300 submit_io, flags);
1303 EXPORT_SYMBOL(__blockdev_direct_IO);
1305 static __init int dio_init(void)
1307 dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1308 return 0;
1310 module_init(dio_init)