rt2x00: Limit TX done looping to number of TX ring entries
[linux-2.6.git] / drivers / net / wireless / rt2x00 / rt61pci.c
blob7ca383478eeb9a24d8d15d87968ec325619b7f4f
1 /*
2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 Module: rt61pci
23 Abstract: rt61pci device specific routines.
24 Supported chipsets: RT2561, RT2561s, RT2661.
27 #include <linux/crc-itu-t.h>
28 #include <linux/delay.h>
29 #include <linux/etherdevice.h>
30 #include <linux/init.h>
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/slab.h>
34 #include <linux/pci.h>
35 #include <linux/eeprom_93cx6.h>
37 #include "rt2x00.h"
38 #include "rt2x00pci.h"
39 #include "rt61pci.h"
42 * Allow hardware encryption to be disabled.
44 static int modparam_nohwcrypt = 0;
45 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
46 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
49 * Register access.
50 * BBP and RF register require indirect register access,
51 * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
52 * These indirect registers work with busy bits,
53 * and we will try maximal REGISTER_BUSY_COUNT times to access
54 * the register while taking a REGISTER_BUSY_DELAY us delay
55 * between each attempt. When the busy bit is still set at that time,
56 * the access attempt is considered to have failed,
57 * and we will print an error.
59 #define WAIT_FOR_BBP(__dev, __reg) \
60 rt2x00pci_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
61 #define WAIT_FOR_RF(__dev, __reg) \
62 rt2x00pci_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
63 #define WAIT_FOR_MCU(__dev, __reg) \
64 rt2x00pci_regbusy_read((__dev), H2M_MAILBOX_CSR, \
65 H2M_MAILBOX_CSR_OWNER, (__reg))
67 static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
68 const unsigned int word, const u8 value)
70 u32 reg;
72 mutex_lock(&rt2x00dev->csr_mutex);
75 * Wait until the BBP becomes available, afterwards we
76 * can safely write the new data into the register.
78 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
79 reg = 0;
80 rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
81 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
82 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
83 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
85 rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
88 mutex_unlock(&rt2x00dev->csr_mutex);
91 static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
92 const unsigned int word, u8 *value)
94 u32 reg;
96 mutex_lock(&rt2x00dev->csr_mutex);
99 * Wait until the BBP becomes available, afterwards we
100 * can safely write the read request into the register.
101 * After the data has been written, we wait until hardware
102 * returns the correct value, if at any time the register
103 * doesn't become available in time, reg will be 0xffffffff
104 * which means we return 0xff to the caller.
106 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
107 reg = 0;
108 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
109 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
110 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
112 rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
114 WAIT_FOR_BBP(rt2x00dev, &reg);
117 *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
119 mutex_unlock(&rt2x00dev->csr_mutex);
122 static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
123 const unsigned int word, const u32 value)
125 u32 reg;
127 mutex_lock(&rt2x00dev->csr_mutex);
130 * Wait until the RF becomes available, afterwards we
131 * can safely write the new data into the register.
133 if (WAIT_FOR_RF(rt2x00dev, &reg)) {
134 reg = 0;
135 rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
136 rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
137 rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
138 rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
140 rt2x00pci_register_write(rt2x00dev, PHY_CSR4, reg);
141 rt2x00_rf_write(rt2x00dev, word, value);
144 mutex_unlock(&rt2x00dev->csr_mutex);
147 static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
148 const u8 command, const u8 token,
149 const u8 arg0, const u8 arg1)
151 u32 reg;
153 mutex_lock(&rt2x00dev->csr_mutex);
156 * Wait until the MCU becomes available, afterwards we
157 * can safely write the new data into the register.
159 if (WAIT_FOR_MCU(rt2x00dev, &reg)) {
160 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
161 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
162 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
163 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
164 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
166 rt2x00pci_register_read(rt2x00dev, HOST_CMD_CSR, &reg);
167 rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
168 rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
169 rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, reg);
172 mutex_unlock(&rt2x00dev->csr_mutex);
176 static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
178 struct rt2x00_dev *rt2x00dev = eeprom->data;
179 u32 reg;
181 rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
183 eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
184 eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
185 eeprom->reg_data_clock =
186 !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
187 eeprom->reg_chip_select =
188 !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
191 static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
193 struct rt2x00_dev *rt2x00dev = eeprom->data;
194 u32 reg = 0;
196 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
197 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
198 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
199 !!eeprom->reg_data_clock);
200 rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
201 !!eeprom->reg_chip_select);
203 rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
206 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
207 static const struct rt2x00debug rt61pci_rt2x00debug = {
208 .owner = THIS_MODULE,
209 .csr = {
210 .read = rt2x00pci_register_read,
211 .write = rt2x00pci_register_write,
212 .flags = RT2X00DEBUGFS_OFFSET,
213 .word_base = CSR_REG_BASE,
214 .word_size = sizeof(u32),
215 .word_count = CSR_REG_SIZE / sizeof(u32),
217 .eeprom = {
218 .read = rt2x00_eeprom_read,
219 .write = rt2x00_eeprom_write,
220 .word_base = EEPROM_BASE,
221 .word_size = sizeof(u16),
222 .word_count = EEPROM_SIZE / sizeof(u16),
224 .bbp = {
225 .read = rt61pci_bbp_read,
226 .write = rt61pci_bbp_write,
227 .word_base = BBP_BASE,
228 .word_size = sizeof(u8),
229 .word_count = BBP_SIZE / sizeof(u8),
231 .rf = {
232 .read = rt2x00_rf_read,
233 .write = rt61pci_rf_write,
234 .word_base = RF_BASE,
235 .word_size = sizeof(u32),
236 .word_count = RF_SIZE / sizeof(u32),
239 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
241 static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
243 u32 reg;
245 rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
246 return rt2x00_get_field32(reg, MAC_CSR13_BIT5);
249 #ifdef CONFIG_RT2X00_LIB_LEDS
250 static void rt61pci_brightness_set(struct led_classdev *led_cdev,
251 enum led_brightness brightness)
253 struct rt2x00_led *led =
254 container_of(led_cdev, struct rt2x00_led, led_dev);
255 unsigned int enabled = brightness != LED_OFF;
256 unsigned int a_mode =
257 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
258 unsigned int bg_mode =
259 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
261 if (led->type == LED_TYPE_RADIO) {
262 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
263 MCU_LEDCS_RADIO_STATUS, enabled);
265 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
266 (led->rt2x00dev->led_mcu_reg & 0xff),
267 ((led->rt2x00dev->led_mcu_reg >> 8)));
268 } else if (led->type == LED_TYPE_ASSOC) {
269 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
270 MCU_LEDCS_LINK_BG_STATUS, bg_mode);
271 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
272 MCU_LEDCS_LINK_A_STATUS, a_mode);
274 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
275 (led->rt2x00dev->led_mcu_reg & 0xff),
276 ((led->rt2x00dev->led_mcu_reg >> 8)));
277 } else if (led->type == LED_TYPE_QUALITY) {
279 * The brightness is divided into 6 levels (0 - 5),
280 * this means we need to convert the brightness
281 * argument into the matching level within that range.
283 rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
284 brightness / (LED_FULL / 6), 0);
288 static int rt61pci_blink_set(struct led_classdev *led_cdev,
289 unsigned long *delay_on,
290 unsigned long *delay_off)
292 struct rt2x00_led *led =
293 container_of(led_cdev, struct rt2x00_led, led_dev);
294 u32 reg;
296 rt2x00pci_register_read(led->rt2x00dev, MAC_CSR14, &reg);
297 rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
298 rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
299 rt2x00pci_register_write(led->rt2x00dev, MAC_CSR14, reg);
301 return 0;
304 static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev,
305 struct rt2x00_led *led,
306 enum led_type type)
308 led->rt2x00dev = rt2x00dev;
309 led->type = type;
310 led->led_dev.brightness_set = rt61pci_brightness_set;
311 led->led_dev.blink_set = rt61pci_blink_set;
312 led->flags = LED_INITIALIZED;
314 #endif /* CONFIG_RT2X00_LIB_LEDS */
317 * Configuration handlers.
319 static int rt61pci_config_shared_key(struct rt2x00_dev *rt2x00dev,
320 struct rt2x00lib_crypto *crypto,
321 struct ieee80211_key_conf *key)
323 struct hw_key_entry key_entry;
324 struct rt2x00_field32 field;
325 u32 mask;
326 u32 reg;
328 if (crypto->cmd == SET_KEY) {
330 * rt2x00lib can't determine the correct free
331 * key_idx for shared keys. We have 1 register
332 * with key valid bits. The goal is simple, read
333 * the register, if that is full we have no slots
334 * left.
335 * Note that each BSS is allowed to have up to 4
336 * shared keys, so put a mask over the allowed
337 * entries.
339 mask = (0xf << crypto->bssidx);
341 rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
342 reg &= mask;
344 if (reg && reg == mask)
345 return -ENOSPC;
347 key->hw_key_idx += reg ? ffz(reg) : 0;
350 * Upload key to hardware
352 memcpy(key_entry.key, crypto->key,
353 sizeof(key_entry.key));
354 memcpy(key_entry.tx_mic, crypto->tx_mic,
355 sizeof(key_entry.tx_mic));
356 memcpy(key_entry.rx_mic, crypto->rx_mic,
357 sizeof(key_entry.rx_mic));
359 reg = SHARED_KEY_ENTRY(key->hw_key_idx);
360 rt2x00pci_register_multiwrite(rt2x00dev, reg,
361 &key_entry, sizeof(key_entry));
364 * The cipher types are stored over 2 registers.
365 * bssidx 0 and 1 keys are stored in SEC_CSR1 and
366 * bssidx 1 and 2 keys are stored in SEC_CSR5.
367 * Using the correct defines correctly will cause overhead,
368 * so just calculate the correct offset.
370 if (key->hw_key_idx < 8) {
371 field.bit_offset = (3 * key->hw_key_idx);
372 field.bit_mask = 0x7 << field.bit_offset;
374 rt2x00pci_register_read(rt2x00dev, SEC_CSR1, &reg);
375 rt2x00_set_field32(&reg, field, crypto->cipher);
376 rt2x00pci_register_write(rt2x00dev, SEC_CSR1, reg);
377 } else {
378 field.bit_offset = (3 * (key->hw_key_idx - 8));
379 field.bit_mask = 0x7 << field.bit_offset;
381 rt2x00pci_register_read(rt2x00dev, SEC_CSR5, &reg);
382 rt2x00_set_field32(&reg, field, crypto->cipher);
383 rt2x00pci_register_write(rt2x00dev, SEC_CSR5, reg);
387 * The driver does not support the IV/EIV generation
388 * in hardware. However it doesn't support the IV/EIV
389 * inside the ieee80211 frame either, but requires it
390 * to be provided separately for the descriptor.
391 * rt2x00lib will cut the IV/EIV data out of all frames
392 * given to us by mac80211, but we must tell mac80211
393 * to generate the IV/EIV data.
395 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
399 * SEC_CSR0 contains only single-bit fields to indicate
400 * a particular key is valid. Because using the FIELD32()
401 * defines directly will cause a lot of overhead, we use
402 * a calculation to determine the correct bit directly.
404 mask = 1 << key->hw_key_idx;
406 rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
407 if (crypto->cmd == SET_KEY)
408 reg |= mask;
409 else if (crypto->cmd == DISABLE_KEY)
410 reg &= ~mask;
411 rt2x00pci_register_write(rt2x00dev, SEC_CSR0, reg);
413 return 0;
416 static int rt61pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
417 struct rt2x00lib_crypto *crypto,
418 struct ieee80211_key_conf *key)
420 struct hw_pairwise_ta_entry addr_entry;
421 struct hw_key_entry key_entry;
422 u32 mask;
423 u32 reg;
425 if (crypto->cmd == SET_KEY) {
427 * rt2x00lib can't determine the correct free
428 * key_idx for pairwise keys. We have 2 registers
429 * with key valid bits. The goal is simple: read
430 * the first register. If that is full, move to
431 * the next register.
432 * When both registers are full, we drop the key.
433 * Otherwise, we use the first invalid entry.
435 rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
436 if (reg && reg == ~0) {
437 key->hw_key_idx = 32;
438 rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
439 if (reg && reg == ~0)
440 return -ENOSPC;
443 key->hw_key_idx += reg ? ffz(reg) : 0;
446 * Upload key to hardware
448 memcpy(key_entry.key, crypto->key,
449 sizeof(key_entry.key));
450 memcpy(key_entry.tx_mic, crypto->tx_mic,
451 sizeof(key_entry.tx_mic));
452 memcpy(key_entry.rx_mic, crypto->rx_mic,
453 sizeof(key_entry.rx_mic));
455 memset(&addr_entry, 0, sizeof(addr_entry));
456 memcpy(&addr_entry, crypto->address, ETH_ALEN);
457 addr_entry.cipher = crypto->cipher;
459 reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
460 rt2x00pci_register_multiwrite(rt2x00dev, reg,
461 &key_entry, sizeof(key_entry));
463 reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
464 rt2x00pci_register_multiwrite(rt2x00dev, reg,
465 &addr_entry, sizeof(addr_entry));
468 * Enable pairwise lookup table for given BSS idx.
469 * Without this, received frames will not be decrypted
470 * by the hardware.
472 rt2x00pci_register_read(rt2x00dev, SEC_CSR4, &reg);
473 reg |= (1 << crypto->bssidx);
474 rt2x00pci_register_write(rt2x00dev, SEC_CSR4, reg);
477 * The driver does not support the IV/EIV generation
478 * in hardware. However it doesn't support the IV/EIV
479 * inside the ieee80211 frame either, but requires it
480 * to be provided separately for the descriptor.
481 * rt2x00lib will cut the IV/EIV data out of all frames
482 * given to us by mac80211, but we must tell mac80211
483 * to generate the IV/EIV data.
485 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
489 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
490 * a particular key is valid. Because using the FIELD32()
491 * defines directly will cause a lot of overhead, we use
492 * a calculation to determine the correct bit directly.
494 if (key->hw_key_idx < 32) {
495 mask = 1 << key->hw_key_idx;
497 rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
498 if (crypto->cmd == SET_KEY)
499 reg |= mask;
500 else if (crypto->cmd == DISABLE_KEY)
501 reg &= ~mask;
502 rt2x00pci_register_write(rt2x00dev, SEC_CSR2, reg);
503 } else {
504 mask = 1 << (key->hw_key_idx - 32);
506 rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
507 if (crypto->cmd == SET_KEY)
508 reg |= mask;
509 else if (crypto->cmd == DISABLE_KEY)
510 reg &= ~mask;
511 rt2x00pci_register_write(rt2x00dev, SEC_CSR3, reg);
514 return 0;
517 static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
518 const unsigned int filter_flags)
520 u32 reg;
523 * Start configuration steps.
524 * Note that the version error will always be dropped
525 * and broadcast frames will always be accepted since
526 * there is no filter for it at this time.
528 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
529 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
530 !(filter_flags & FIF_FCSFAIL));
531 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
532 !(filter_flags & FIF_PLCPFAIL));
533 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
534 !(filter_flags & (FIF_CONTROL | FIF_PSPOLL)));
535 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
536 !(filter_flags & FIF_PROMISC_IN_BSS));
537 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
538 !(filter_flags & FIF_PROMISC_IN_BSS) &&
539 !rt2x00dev->intf_ap_count);
540 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
541 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
542 !(filter_flags & FIF_ALLMULTI));
543 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
544 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
545 !(filter_flags & FIF_CONTROL));
546 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
549 static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
550 struct rt2x00_intf *intf,
551 struct rt2x00intf_conf *conf,
552 const unsigned int flags)
554 unsigned int beacon_base;
555 u32 reg;
557 if (flags & CONFIG_UPDATE_TYPE) {
559 * Clear current synchronisation setup.
560 * For the Beacon base registers, we only need to clear
561 * the first byte since that byte contains the VALID and OWNER
562 * bits which (when set to 0) will invalidate the entire beacon.
564 beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
565 rt2x00pci_register_write(rt2x00dev, beacon_base, 0);
568 * Enable synchronisation.
570 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
571 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
572 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
573 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
574 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
577 if (flags & CONFIG_UPDATE_MAC) {
578 reg = le32_to_cpu(conf->mac[1]);
579 rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
580 conf->mac[1] = cpu_to_le32(reg);
582 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR2,
583 conf->mac, sizeof(conf->mac));
586 if (flags & CONFIG_UPDATE_BSSID) {
587 reg = le32_to_cpu(conf->bssid[1]);
588 rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
589 conf->bssid[1] = cpu_to_le32(reg);
591 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR4,
592 conf->bssid, sizeof(conf->bssid));
596 static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
597 struct rt2x00lib_erp *erp)
599 u32 reg;
601 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
602 rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32);
603 rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
604 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
606 rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
607 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
608 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
609 !!erp->short_preamble);
610 rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
612 rt2x00pci_register_write(rt2x00dev, TXRX_CSR5, erp->basic_rates);
614 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
615 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
616 erp->beacon_int * 16);
617 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
619 rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
620 rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
621 rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
623 rt2x00pci_register_read(rt2x00dev, MAC_CSR8, &reg);
624 rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
625 rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
626 rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
627 rt2x00pci_register_write(rt2x00dev, MAC_CSR8, reg);
630 static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
631 struct antenna_setup *ant)
633 u8 r3;
634 u8 r4;
635 u8 r77;
637 rt61pci_bbp_read(rt2x00dev, 3, &r3);
638 rt61pci_bbp_read(rt2x00dev, 4, &r4);
639 rt61pci_bbp_read(rt2x00dev, 77, &r77);
641 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF5325));
644 * Configure the RX antenna.
646 switch (ant->rx) {
647 case ANTENNA_HW_DIVERSITY:
648 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
649 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
650 (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ));
651 break;
652 case ANTENNA_A:
653 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
654 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
655 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
656 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
657 else
658 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
659 break;
660 case ANTENNA_B:
661 default:
662 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
663 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
664 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
665 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
666 else
667 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
668 break;
671 rt61pci_bbp_write(rt2x00dev, 77, r77);
672 rt61pci_bbp_write(rt2x00dev, 3, r3);
673 rt61pci_bbp_write(rt2x00dev, 4, r4);
676 static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
677 struct antenna_setup *ant)
679 u8 r3;
680 u8 r4;
681 u8 r77;
683 rt61pci_bbp_read(rt2x00dev, 3, &r3);
684 rt61pci_bbp_read(rt2x00dev, 4, &r4);
685 rt61pci_bbp_read(rt2x00dev, 77, &r77);
687 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF2529));
688 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
689 !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags));
692 * Configure the RX antenna.
694 switch (ant->rx) {
695 case ANTENNA_HW_DIVERSITY:
696 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
697 break;
698 case ANTENNA_A:
699 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
700 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
701 break;
702 case ANTENNA_B:
703 default:
704 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
705 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
706 break;
709 rt61pci_bbp_write(rt2x00dev, 77, r77);
710 rt61pci_bbp_write(rt2x00dev, 3, r3);
711 rt61pci_bbp_write(rt2x00dev, 4, r4);
714 static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
715 const int p1, const int p2)
717 u32 reg;
719 rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
721 rt2x00_set_field32(&reg, MAC_CSR13_BIT4, p1);
722 rt2x00_set_field32(&reg, MAC_CSR13_BIT12, 0);
724 rt2x00_set_field32(&reg, MAC_CSR13_BIT3, !p2);
725 rt2x00_set_field32(&reg, MAC_CSR13_BIT11, 0);
727 rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg);
730 static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
731 struct antenna_setup *ant)
733 u8 r3;
734 u8 r4;
735 u8 r77;
737 rt61pci_bbp_read(rt2x00dev, 3, &r3);
738 rt61pci_bbp_read(rt2x00dev, 4, &r4);
739 rt61pci_bbp_read(rt2x00dev, 77, &r77);
742 * Configure the RX antenna.
744 switch (ant->rx) {
745 case ANTENNA_A:
746 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
747 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
748 rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
749 break;
750 case ANTENNA_HW_DIVERSITY:
752 * FIXME: Antenna selection for the rf 2529 is very confusing
753 * in the legacy driver. Just default to antenna B until the
754 * legacy code can be properly translated into rt2x00 code.
756 case ANTENNA_B:
757 default:
758 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
759 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
760 rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
761 break;
764 rt61pci_bbp_write(rt2x00dev, 77, r77);
765 rt61pci_bbp_write(rt2x00dev, 3, r3);
766 rt61pci_bbp_write(rt2x00dev, 4, r4);
769 struct antenna_sel {
770 u8 word;
772 * value[0] -> non-LNA
773 * value[1] -> LNA
775 u8 value[2];
778 static const struct antenna_sel antenna_sel_a[] = {
779 { 96, { 0x58, 0x78 } },
780 { 104, { 0x38, 0x48 } },
781 { 75, { 0xfe, 0x80 } },
782 { 86, { 0xfe, 0x80 } },
783 { 88, { 0xfe, 0x80 } },
784 { 35, { 0x60, 0x60 } },
785 { 97, { 0x58, 0x58 } },
786 { 98, { 0x58, 0x58 } },
789 static const struct antenna_sel antenna_sel_bg[] = {
790 { 96, { 0x48, 0x68 } },
791 { 104, { 0x2c, 0x3c } },
792 { 75, { 0xfe, 0x80 } },
793 { 86, { 0xfe, 0x80 } },
794 { 88, { 0xfe, 0x80 } },
795 { 35, { 0x50, 0x50 } },
796 { 97, { 0x48, 0x48 } },
797 { 98, { 0x48, 0x48 } },
800 static void rt61pci_config_ant(struct rt2x00_dev *rt2x00dev,
801 struct antenna_setup *ant)
803 const struct antenna_sel *sel;
804 unsigned int lna;
805 unsigned int i;
806 u32 reg;
809 * We should never come here because rt2x00lib is supposed
810 * to catch this and send us the correct antenna explicitely.
812 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
813 ant->tx == ANTENNA_SW_DIVERSITY);
815 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
816 sel = antenna_sel_a;
817 lna = test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
818 } else {
819 sel = antenna_sel_bg;
820 lna = test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
823 for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
824 rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
826 rt2x00pci_register_read(rt2x00dev, PHY_CSR0, &reg);
828 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
829 rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
830 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
831 rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
833 rt2x00pci_register_write(rt2x00dev, PHY_CSR0, reg);
835 if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325))
836 rt61pci_config_antenna_5x(rt2x00dev, ant);
837 else if (rt2x00_rf(rt2x00dev, RF2527))
838 rt61pci_config_antenna_2x(rt2x00dev, ant);
839 else if (rt2x00_rf(rt2x00dev, RF2529)) {
840 if (test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags))
841 rt61pci_config_antenna_2x(rt2x00dev, ant);
842 else
843 rt61pci_config_antenna_2529(rt2x00dev, ant);
847 static void rt61pci_config_lna_gain(struct rt2x00_dev *rt2x00dev,
848 struct rt2x00lib_conf *libconf)
850 u16 eeprom;
851 short lna_gain = 0;
853 if (libconf->conf->channel->band == IEEE80211_BAND_2GHZ) {
854 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
855 lna_gain += 14;
857 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
858 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
859 } else {
860 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags))
861 lna_gain += 14;
863 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
864 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
867 rt2x00dev->lna_gain = lna_gain;
870 static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
871 struct rf_channel *rf, const int txpower)
873 u8 r3;
874 u8 r94;
875 u8 smart;
877 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
878 rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
880 smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527));
882 rt61pci_bbp_read(rt2x00dev, 3, &r3);
883 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
884 rt61pci_bbp_write(rt2x00dev, 3, r3);
886 r94 = 6;
887 if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
888 r94 += txpower - MAX_TXPOWER;
889 else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
890 r94 += txpower;
891 rt61pci_bbp_write(rt2x00dev, 94, r94);
893 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
894 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
895 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
896 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
898 udelay(200);
900 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
901 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
902 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
903 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
905 udelay(200);
907 rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
908 rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
909 rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
910 rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
912 msleep(1);
915 static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
916 const int txpower)
918 struct rf_channel rf;
920 rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
921 rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
922 rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
923 rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
925 rt61pci_config_channel(rt2x00dev, &rf, txpower);
928 static void rt61pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
929 struct rt2x00lib_conf *libconf)
931 u32 reg;
933 rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
934 rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_DOWN, 1);
935 rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_STEP, 0);
936 rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_FALLBACK_CCK, 0);
937 rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
938 libconf->conf->long_frame_max_tx_count);
939 rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
940 libconf->conf->short_frame_max_tx_count);
941 rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
944 static void rt61pci_config_ps(struct rt2x00_dev *rt2x00dev,
945 struct rt2x00lib_conf *libconf)
947 enum dev_state state =
948 (libconf->conf->flags & IEEE80211_CONF_PS) ?
949 STATE_SLEEP : STATE_AWAKE;
950 u32 reg;
952 if (state == STATE_SLEEP) {
953 rt2x00pci_register_read(rt2x00dev, MAC_CSR11, &reg);
954 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
955 rt2x00dev->beacon_int - 10);
956 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
957 libconf->conf->listen_interval - 1);
958 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);
960 /* We must first disable autowake before it can be enabled */
961 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
962 rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
964 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
965 rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
967 rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000005);
968 rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x0000001c);
969 rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000060);
971 rt61pci_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 0);
972 } else {
973 rt2x00pci_register_read(rt2x00dev, MAC_CSR11, &reg);
974 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
975 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
976 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
977 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
978 rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
980 rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
981 rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x00000018);
982 rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000020);
984 rt61pci_mcu_request(rt2x00dev, MCU_WAKEUP, 0xff, 0, 0);
988 static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
989 struct rt2x00lib_conf *libconf,
990 const unsigned int flags)
992 /* Always recalculate LNA gain before changing configuration */
993 rt61pci_config_lna_gain(rt2x00dev, libconf);
995 if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
996 rt61pci_config_channel(rt2x00dev, &libconf->rf,
997 libconf->conf->power_level);
998 if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
999 !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
1000 rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
1001 if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
1002 rt61pci_config_retry_limit(rt2x00dev, libconf);
1003 if (flags & IEEE80211_CONF_CHANGE_PS)
1004 rt61pci_config_ps(rt2x00dev, libconf);
1008 * Link tuning
1010 static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
1011 struct link_qual *qual)
1013 u32 reg;
1016 * Update FCS error count from register.
1018 rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1019 qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
1022 * Update False CCA count from register.
1024 rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1025 qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
1028 static inline void rt61pci_set_vgc(struct rt2x00_dev *rt2x00dev,
1029 struct link_qual *qual, u8 vgc_level)
1031 if (qual->vgc_level != vgc_level) {
1032 rt61pci_bbp_write(rt2x00dev, 17, vgc_level);
1033 qual->vgc_level = vgc_level;
1034 qual->vgc_level_reg = vgc_level;
1038 static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
1039 struct link_qual *qual)
1041 rt61pci_set_vgc(rt2x00dev, qual, 0x20);
1044 static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev,
1045 struct link_qual *qual, const u32 count)
1047 u8 up_bound;
1048 u8 low_bound;
1051 * Determine r17 bounds.
1053 if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1054 low_bound = 0x28;
1055 up_bound = 0x48;
1056 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
1057 low_bound += 0x10;
1058 up_bound += 0x10;
1060 } else {
1061 low_bound = 0x20;
1062 up_bound = 0x40;
1063 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
1064 low_bound += 0x10;
1065 up_bound += 0x10;
1070 * If we are not associated, we should go straight to the
1071 * dynamic CCA tuning.
1073 if (!rt2x00dev->intf_associated)
1074 goto dynamic_cca_tune;
1077 * Special big-R17 for very short distance
1079 if (qual->rssi >= -35) {
1080 rt61pci_set_vgc(rt2x00dev, qual, 0x60);
1081 return;
1085 * Special big-R17 for short distance
1087 if (qual->rssi >= -58) {
1088 rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1089 return;
1093 * Special big-R17 for middle-short distance
1095 if (qual->rssi >= -66) {
1096 rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x10);
1097 return;
1101 * Special mid-R17 for middle distance
1103 if (qual->rssi >= -74) {
1104 rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x08);
1105 return;
1109 * Special case: Change up_bound based on the rssi.
1110 * Lower up_bound when rssi is weaker then -74 dBm.
1112 up_bound -= 2 * (-74 - qual->rssi);
1113 if (low_bound > up_bound)
1114 up_bound = low_bound;
1116 if (qual->vgc_level > up_bound) {
1117 rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1118 return;
1121 dynamic_cca_tune:
1124 * r17 does not yet exceed upper limit, continue and base
1125 * the r17 tuning on the false CCA count.
1127 if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
1128 rt61pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
1129 else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
1130 rt61pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
1134 * Firmware functions
1136 static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1138 u16 chip;
1139 char *fw_name;
1141 pci_read_config_word(to_pci_dev(rt2x00dev->dev), PCI_DEVICE_ID, &chip);
1142 switch (chip) {
1143 case RT2561_PCI_ID:
1144 fw_name = FIRMWARE_RT2561;
1145 break;
1146 case RT2561s_PCI_ID:
1147 fw_name = FIRMWARE_RT2561s;
1148 break;
1149 case RT2661_PCI_ID:
1150 fw_name = FIRMWARE_RT2661;
1151 break;
1152 default:
1153 fw_name = NULL;
1154 break;
1157 return fw_name;
1160 static int rt61pci_check_firmware(struct rt2x00_dev *rt2x00dev,
1161 const u8 *data, const size_t len)
1163 u16 fw_crc;
1164 u16 crc;
1167 * Only support 8kb firmware files.
1169 if (len != 8192)
1170 return FW_BAD_LENGTH;
1173 * The last 2 bytes in the firmware array are the crc checksum itself.
1174 * This means that we should never pass those 2 bytes to the crc
1175 * algorithm.
1177 fw_crc = (data[len - 2] << 8 | data[len - 1]);
1180 * Use the crc itu-t algorithm.
1182 crc = crc_itu_t(0, data, len - 2);
1183 crc = crc_itu_t_byte(crc, 0);
1184 crc = crc_itu_t_byte(crc, 0);
1186 return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
1189 static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev,
1190 const u8 *data, const size_t len)
1192 int i;
1193 u32 reg;
1196 * Wait for stable hardware.
1198 for (i = 0; i < 100; i++) {
1199 rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
1200 if (reg)
1201 break;
1202 msleep(1);
1205 if (!reg) {
1206 ERROR(rt2x00dev, "Unstable hardware.\n");
1207 return -EBUSY;
1211 * Prepare MCU and mailbox for firmware loading.
1213 reg = 0;
1214 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1215 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1216 rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1217 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
1218 rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, 0);
1221 * Write firmware to device.
1223 reg = 0;
1224 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1225 rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
1226 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1228 rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
1229 data, len);
1231 rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
1232 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1234 rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
1235 rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1237 for (i = 0; i < 100; i++) {
1238 rt2x00pci_register_read(rt2x00dev, MCU_CNTL_CSR, &reg);
1239 if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
1240 break;
1241 msleep(1);
1244 if (i == 100) {
1245 ERROR(rt2x00dev, "MCU Control register not ready.\n");
1246 return -EBUSY;
1250 * Hardware needs another millisecond before it is ready.
1252 msleep(1);
1255 * Reset MAC and BBP registers.
1257 reg = 0;
1258 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1259 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1260 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1262 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1263 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1264 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1265 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1267 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1268 rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1269 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1271 return 0;
1275 * Initialization functions.
1277 static bool rt61pci_get_entry_state(struct queue_entry *entry)
1279 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1280 u32 word;
1282 if (entry->queue->qid == QID_RX) {
1283 rt2x00_desc_read(entry_priv->desc, 0, &word);
1285 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
1286 } else {
1287 rt2x00_desc_read(entry_priv->desc, 0, &word);
1289 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1290 rt2x00_get_field32(word, TXD_W0_VALID));
1294 static void rt61pci_clear_entry(struct queue_entry *entry)
1296 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1297 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1298 u32 word;
1300 if (entry->queue->qid == QID_RX) {
1301 rt2x00_desc_read(entry_priv->desc, 5, &word);
1302 rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
1303 skbdesc->skb_dma);
1304 rt2x00_desc_write(entry_priv->desc, 5, word);
1306 rt2x00_desc_read(entry_priv->desc, 0, &word);
1307 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
1308 rt2x00_desc_write(entry_priv->desc, 0, word);
1309 } else {
1310 rt2x00_desc_read(entry_priv->desc, 0, &word);
1311 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1312 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
1313 rt2x00_desc_write(entry_priv->desc, 0, word);
1317 static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
1319 struct queue_entry_priv_pci *entry_priv;
1320 u32 reg;
1323 * Initialize registers.
1325 rt2x00pci_register_read(rt2x00dev, TX_RING_CSR0, &reg);
1326 rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
1327 rt2x00dev->tx[0].limit);
1328 rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
1329 rt2x00dev->tx[1].limit);
1330 rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
1331 rt2x00dev->tx[2].limit);
1332 rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
1333 rt2x00dev->tx[3].limit);
1334 rt2x00pci_register_write(rt2x00dev, TX_RING_CSR0, reg);
1336 rt2x00pci_register_read(rt2x00dev, TX_RING_CSR1, &reg);
1337 rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
1338 rt2x00dev->tx[0].desc_size / 4);
1339 rt2x00pci_register_write(rt2x00dev, TX_RING_CSR1, reg);
1341 entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
1342 rt2x00pci_register_read(rt2x00dev, AC0_BASE_CSR, &reg);
1343 rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
1344 entry_priv->desc_dma);
1345 rt2x00pci_register_write(rt2x00dev, AC0_BASE_CSR, reg);
1347 entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
1348 rt2x00pci_register_read(rt2x00dev, AC1_BASE_CSR, &reg);
1349 rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
1350 entry_priv->desc_dma);
1351 rt2x00pci_register_write(rt2x00dev, AC1_BASE_CSR, reg);
1353 entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
1354 rt2x00pci_register_read(rt2x00dev, AC2_BASE_CSR, &reg);
1355 rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
1356 entry_priv->desc_dma);
1357 rt2x00pci_register_write(rt2x00dev, AC2_BASE_CSR, reg);
1359 entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
1360 rt2x00pci_register_read(rt2x00dev, AC3_BASE_CSR, &reg);
1361 rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
1362 entry_priv->desc_dma);
1363 rt2x00pci_register_write(rt2x00dev, AC3_BASE_CSR, reg);
1365 rt2x00pci_register_read(rt2x00dev, RX_RING_CSR, &reg);
1366 rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
1367 rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
1368 rt2x00dev->rx->desc_size / 4);
1369 rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
1370 rt2x00pci_register_write(rt2x00dev, RX_RING_CSR, reg);
1372 entry_priv = rt2x00dev->rx->entries[0].priv_data;
1373 rt2x00pci_register_read(rt2x00dev, RX_BASE_CSR, &reg);
1374 rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
1375 entry_priv->desc_dma);
1376 rt2x00pci_register_write(rt2x00dev, RX_BASE_CSR, reg);
1378 rt2x00pci_register_read(rt2x00dev, TX_DMA_DST_CSR, &reg);
1379 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
1380 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
1381 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
1382 rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
1383 rt2x00pci_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
1385 rt2x00pci_register_read(rt2x00dev, LOAD_TX_RING_CSR, &reg);
1386 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
1387 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
1388 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
1389 rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
1390 rt2x00pci_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
1392 rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1393 rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
1394 rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1396 return 0;
1399 static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
1401 u32 reg;
1403 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1404 rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1405 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1406 rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1407 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1409 rt2x00pci_register_read(rt2x00dev, TXRX_CSR1, &reg);
1410 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1411 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1412 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1413 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1414 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1415 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1416 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1417 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1418 rt2x00pci_register_write(rt2x00dev, TXRX_CSR1, reg);
1421 * CCK TXD BBP registers
1423 rt2x00pci_register_read(rt2x00dev, TXRX_CSR2, &reg);
1424 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1425 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1426 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1427 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1428 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1429 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1430 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1431 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1432 rt2x00pci_register_write(rt2x00dev, TXRX_CSR2, reg);
1435 * OFDM TXD BBP registers
1437 rt2x00pci_register_read(rt2x00dev, TXRX_CSR3, &reg);
1438 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1439 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1440 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1441 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1442 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1443 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1444 rt2x00pci_register_write(rt2x00dev, TXRX_CSR3, reg);
1446 rt2x00pci_register_read(rt2x00dev, TXRX_CSR7, &reg);
1447 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1448 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1449 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1450 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1451 rt2x00pci_register_write(rt2x00dev, TXRX_CSR7, reg);
1453 rt2x00pci_register_read(rt2x00dev, TXRX_CSR8, &reg);
1454 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1455 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1456 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1457 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1458 rt2x00pci_register_write(rt2x00dev, TXRX_CSR8, reg);
1460 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1461 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1462 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1463 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1464 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1465 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1466 rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1467 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1469 rt2x00pci_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1471 rt2x00pci_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
1473 rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
1474 rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1475 rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
1477 rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
1479 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1480 return -EBUSY;
1482 rt2x00pci_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
1485 * Invalidate all Shared Keys (SEC_CSR0),
1486 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1488 rt2x00pci_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1489 rt2x00pci_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1490 rt2x00pci_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1492 rt2x00pci_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
1493 rt2x00pci_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
1494 rt2x00pci_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1495 rt2x00pci_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
1497 rt2x00pci_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
1499 rt2x00pci_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
1501 rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1504 * Clear all beacons
1505 * For the Beacon base registers we only need to clear
1506 * the first byte since that byte contains the VALID and OWNER
1507 * bits which (when set to 0) will invalidate the entire beacon.
1509 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1510 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1511 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1512 rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1515 * We must clear the error counters.
1516 * These registers are cleared on read,
1517 * so we may pass a useless variable to store the value.
1519 rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1520 rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1521 rt2x00pci_register_read(rt2x00dev, STA_CSR2, &reg);
1524 * Reset MAC and BBP registers.
1526 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1527 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1528 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1529 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1531 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1532 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1533 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1534 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1536 rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1537 rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1538 rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1540 return 0;
1543 static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1545 unsigned int i;
1546 u8 value;
1548 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1549 rt61pci_bbp_read(rt2x00dev, 0, &value);
1550 if ((value != 0xff) && (value != 0x00))
1551 return 0;
1552 udelay(REGISTER_BUSY_DELAY);
1555 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1556 return -EACCES;
1559 static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1561 unsigned int i;
1562 u16 eeprom;
1563 u8 reg_id;
1564 u8 value;
1566 if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev)))
1567 return -EACCES;
1569 rt61pci_bbp_write(rt2x00dev, 3, 0x00);
1570 rt61pci_bbp_write(rt2x00dev, 15, 0x30);
1571 rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
1572 rt61pci_bbp_write(rt2x00dev, 22, 0x38);
1573 rt61pci_bbp_write(rt2x00dev, 23, 0x06);
1574 rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
1575 rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
1576 rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
1577 rt61pci_bbp_write(rt2x00dev, 34, 0x12);
1578 rt61pci_bbp_write(rt2x00dev, 37, 0x07);
1579 rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
1580 rt61pci_bbp_write(rt2x00dev, 41, 0x60);
1581 rt61pci_bbp_write(rt2x00dev, 53, 0x10);
1582 rt61pci_bbp_write(rt2x00dev, 54, 0x18);
1583 rt61pci_bbp_write(rt2x00dev, 60, 0x10);
1584 rt61pci_bbp_write(rt2x00dev, 61, 0x04);
1585 rt61pci_bbp_write(rt2x00dev, 62, 0x04);
1586 rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
1587 rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
1588 rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
1589 rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
1590 rt61pci_bbp_write(rt2x00dev, 99, 0x00);
1591 rt61pci_bbp_write(rt2x00dev, 102, 0x16);
1592 rt61pci_bbp_write(rt2x00dev, 107, 0x04);
1594 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1595 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1597 if (eeprom != 0xffff && eeprom != 0x0000) {
1598 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1599 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1600 rt61pci_bbp_write(rt2x00dev, reg_id, value);
1604 return 0;
1608 * Device state switch handlers.
1610 static void rt61pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
1611 enum dev_state state)
1613 u32 reg;
1615 rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1616 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX,
1617 (state == STATE_RADIO_RX_OFF) ||
1618 (state == STATE_RADIO_RX_OFF_LINK));
1619 rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1622 static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1623 enum dev_state state)
1625 int mask = (state == STATE_RADIO_IRQ_OFF);
1626 u32 reg;
1629 * When interrupts are being enabled, the interrupt registers
1630 * should clear the register to assure a clean state.
1632 if (state == STATE_RADIO_IRQ_ON) {
1633 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
1634 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1636 rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg);
1637 rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
1641 * Only toggle the interrupts bits we are going to use.
1642 * Non-checked interrupt bits are disabled by default.
1644 rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
1645 rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
1646 rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
1647 rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
1648 rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
1649 rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
1651 rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
1652 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
1653 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
1654 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
1655 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
1656 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
1657 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
1658 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
1659 rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
1660 rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
1663 static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1665 u32 reg;
1668 * Initialize all registers.
1670 if (unlikely(rt61pci_init_queues(rt2x00dev) ||
1671 rt61pci_init_registers(rt2x00dev) ||
1672 rt61pci_init_bbp(rt2x00dev)))
1673 return -EIO;
1676 * Enable RX.
1678 rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1679 rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
1680 rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1682 return 0;
1685 static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1688 * Disable power
1690 rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1693 static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1695 u32 reg, reg2;
1696 unsigned int i;
1697 char put_to_sleep;
1699 put_to_sleep = (state != STATE_AWAKE);
1701 rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1702 rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1703 rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1704 rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
1707 * Device is not guaranteed to be in the requested state yet.
1708 * We must wait until the register indicates that the
1709 * device has entered the correct state.
1711 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1712 rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg2);
1713 state = rt2x00_get_field32(reg2, MAC_CSR12_BBP_CURRENT_STATE);
1714 if (state == !put_to_sleep)
1715 return 0;
1716 rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
1717 msleep(10);
1720 return -EBUSY;
1723 static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1724 enum dev_state state)
1726 int retval = 0;
1728 switch (state) {
1729 case STATE_RADIO_ON:
1730 retval = rt61pci_enable_radio(rt2x00dev);
1731 break;
1732 case STATE_RADIO_OFF:
1733 rt61pci_disable_radio(rt2x00dev);
1734 break;
1735 case STATE_RADIO_RX_ON:
1736 case STATE_RADIO_RX_ON_LINK:
1737 case STATE_RADIO_RX_OFF:
1738 case STATE_RADIO_RX_OFF_LINK:
1739 rt61pci_toggle_rx(rt2x00dev, state);
1740 break;
1741 case STATE_RADIO_IRQ_ON:
1742 case STATE_RADIO_IRQ_OFF:
1743 rt61pci_toggle_irq(rt2x00dev, state);
1744 break;
1745 case STATE_DEEP_SLEEP:
1746 case STATE_SLEEP:
1747 case STATE_STANDBY:
1748 case STATE_AWAKE:
1749 retval = rt61pci_set_state(rt2x00dev, state);
1750 break;
1751 default:
1752 retval = -ENOTSUPP;
1753 break;
1756 if (unlikely(retval))
1757 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1758 state, retval);
1760 return retval;
1764 * TX descriptor initialization
1766 static void rt61pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1767 struct sk_buff *skb,
1768 struct txentry_desc *txdesc)
1770 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1771 struct queue_entry_priv_pci *entry_priv = skbdesc->entry->priv_data;
1772 __le32 *txd = entry_priv->desc;
1773 u32 word;
1776 * Start writing the descriptor words.
1778 rt2x00_desc_read(txd, 1, &word);
1779 rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, txdesc->queue);
1780 rt2x00_set_field32(&word, TXD_W1_AIFSN, txdesc->aifs);
1781 rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1782 rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1783 rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1784 rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1785 test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1786 rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
1787 rt2x00_desc_write(txd, 1, word);
1789 rt2x00_desc_read(txd, 2, &word);
1790 rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1791 rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1792 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1793 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1794 rt2x00_desc_write(txd, 2, word);
1796 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1797 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1798 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1801 rt2x00_desc_read(txd, 5, &word);
1802 rt2x00_set_field32(&word, TXD_W5_PID_TYPE, skbdesc->entry->queue->qid);
1803 rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE,
1804 skbdesc->entry->entry_idx);
1805 rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1806 TXPOWER_TO_DEV(rt2x00dev->tx_power));
1807 rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1808 rt2x00_desc_write(txd, 5, word);
1810 if (txdesc->queue != QID_BEACON) {
1811 rt2x00_desc_read(txd, 6, &word);
1812 rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
1813 skbdesc->skb_dma);
1814 rt2x00_desc_write(txd, 6, word);
1816 rt2x00_desc_read(txd, 11, &word);
1817 rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0,
1818 txdesc->length);
1819 rt2x00_desc_write(txd, 11, word);
1823 * Writing TXD word 0 must the last to prevent a race condition with
1824 * the device, whereby the device may take hold of the TXD before we
1825 * finished updating it.
1827 rt2x00_desc_read(txd, 0, &word);
1828 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1829 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1830 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1831 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1832 rt2x00_set_field32(&word, TXD_W0_ACK,
1833 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1834 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1835 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1836 rt2x00_set_field32(&word, TXD_W0_OFDM,
1837 (txdesc->rate_mode == RATE_MODE_OFDM));
1838 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1839 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1840 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1841 rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1842 test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1843 rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1844 test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1845 rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1846 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1847 rt2x00_set_field32(&word, TXD_W0_BURST,
1848 test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1849 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1850 rt2x00_desc_write(txd, 0, word);
1853 * Register descriptor details in skb frame descriptor.
1855 skbdesc->desc = txd;
1856 skbdesc->desc_len =
1857 (txdesc->queue == QID_BEACON) ? TXINFO_SIZE : TXD_DESC_SIZE;
1861 * TX data initialization
1863 static void rt61pci_write_beacon(struct queue_entry *entry,
1864 struct txentry_desc *txdesc)
1866 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1867 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1868 unsigned int beacon_base;
1869 u32 reg;
1872 * Disable beaconing while we are reloading the beacon data,
1873 * otherwise we might be sending out invalid data.
1875 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1876 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1877 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1880 * Write the TX descriptor for the beacon.
1882 rt61pci_write_tx_desc(rt2x00dev, entry->skb, txdesc);
1885 * Dump beacon to userspace through debugfs.
1887 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1890 * Write entire beacon with descriptor to register.
1892 beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1893 rt2x00pci_register_multiwrite(rt2x00dev, beacon_base,
1894 entry_priv->desc, TXINFO_SIZE);
1895 rt2x00pci_register_multiwrite(rt2x00dev, beacon_base + TXINFO_SIZE,
1896 entry->skb->data, entry->skb->len);
1899 * Enable beaconing again.
1901 * For Wi-Fi faily generated beacons between participating
1902 * stations. Set TBTT phase adaptive adjustment step to 8us.
1904 rt2x00pci_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
1906 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1907 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1908 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1909 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1912 * Clean up beacon skb.
1914 dev_kfree_skb_any(entry->skb);
1915 entry->skb = NULL;
1918 static void rt61pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1919 const enum data_queue_qid queue)
1921 u32 reg;
1923 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1924 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0, (queue == QID_AC_BE));
1925 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1, (queue == QID_AC_BK));
1926 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2, (queue == QID_AC_VI));
1927 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3, (queue == QID_AC_VO));
1928 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1931 static void rt61pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
1932 const enum data_queue_qid qid)
1934 u32 reg;
1936 if (qid == QID_BEACON) {
1937 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, 0);
1938 return;
1941 rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1942 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, (qid == QID_AC_BE));
1943 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, (qid == QID_AC_BK));
1944 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, (qid == QID_AC_VI));
1945 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, (qid == QID_AC_VO));
1946 rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1950 * RX control handlers
1952 static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
1954 u8 offset = rt2x00dev->lna_gain;
1955 u8 lna;
1957 lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
1958 switch (lna) {
1959 case 3:
1960 offset += 90;
1961 break;
1962 case 2:
1963 offset += 74;
1964 break;
1965 case 1:
1966 offset += 64;
1967 break;
1968 default:
1969 return 0;
1972 if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1973 if (lna == 3 || lna == 2)
1974 offset += 10;
1977 return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
1980 static void rt61pci_fill_rxdone(struct queue_entry *entry,
1981 struct rxdone_entry_desc *rxdesc)
1983 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1984 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1985 u32 word0;
1986 u32 word1;
1988 rt2x00_desc_read(entry_priv->desc, 0, &word0);
1989 rt2x00_desc_read(entry_priv->desc, 1, &word1);
1991 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1992 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1994 rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
1995 rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
1997 if (rxdesc->cipher != CIPHER_NONE) {
1998 _rt2x00_desc_read(entry_priv->desc, 2, &rxdesc->iv[0]);
1999 _rt2x00_desc_read(entry_priv->desc, 3, &rxdesc->iv[1]);
2000 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
2002 _rt2x00_desc_read(entry_priv->desc, 4, &rxdesc->icv);
2003 rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
2006 * Hardware has stripped IV/EIV data from 802.11 frame during
2007 * decryption. It has provided the data separately but rt2x00lib
2008 * should decide if it should be reinserted.
2010 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
2013 * FIXME: Legacy driver indicates that the frame does
2014 * contain the Michael Mic. Unfortunately, in rt2x00
2015 * the MIC seems to be missing completely...
2017 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
2019 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
2020 rxdesc->flags |= RX_FLAG_DECRYPTED;
2021 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
2022 rxdesc->flags |= RX_FLAG_MMIC_ERROR;
2026 * Obtain the status about this packet.
2027 * When frame was received with an OFDM bitrate,
2028 * the signal is the PLCP value. If it was received with
2029 * a CCK bitrate the signal is the rate in 100kbit/s.
2031 rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
2032 rxdesc->rssi = rt61pci_agc_to_rssi(rt2x00dev, word1);
2033 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
2035 if (rt2x00_get_field32(word0, RXD_W0_OFDM))
2036 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
2037 else
2038 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
2039 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
2040 rxdesc->dev_flags |= RXDONE_MY_BSS;
2044 * Interrupt functions.
2046 static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
2048 struct data_queue *queue;
2049 struct queue_entry *entry;
2050 struct queue_entry *entry_done;
2051 struct queue_entry_priv_pci *entry_priv;
2052 struct txdone_entry_desc txdesc;
2053 u32 word;
2054 u32 reg;
2055 int type;
2056 int index;
2057 int i;
2060 * TX_STA_FIFO is a stack of X entries, hence read TX_STA_FIFO
2061 * at most X times and also stop processing once the TX_STA_FIFO_VALID
2062 * flag is not set anymore.
2064 * The legacy drivers use X=TX_RING_SIZE but state in a comment
2065 * that the TX_STA_FIFO stack has a size of 16. We stick to our
2066 * tx ring size for now.
2068 for (i = 0; i < TX_ENTRIES; i++) {
2069 rt2x00pci_register_read(rt2x00dev, STA_CSR4, &reg);
2070 if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
2071 break;
2074 * Skip this entry when it contains an invalid
2075 * queue identication number.
2077 type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
2078 queue = rt2x00queue_get_queue(rt2x00dev, type);
2079 if (unlikely(!queue))
2080 continue;
2083 * Skip this entry when it contains an invalid
2084 * index number.
2086 index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
2087 if (unlikely(index >= queue->limit))
2088 continue;
2090 entry = &queue->entries[index];
2091 entry_priv = entry->priv_data;
2092 rt2x00_desc_read(entry_priv->desc, 0, &word);
2094 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
2095 !rt2x00_get_field32(word, TXD_W0_VALID))
2096 return;
2098 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2099 while (entry != entry_done) {
2100 /* Catch up.
2101 * Just report any entries we missed as failed.
2103 WARNING(rt2x00dev,
2104 "TX status report missed for entry %d\n",
2105 entry_done->entry_idx);
2107 txdesc.flags = 0;
2108 __set_bit(TXDONE_UNKNOWN, &txdesc.flags);
2109 txdesc.retry = 0;
2111 rt2x00pci_txdone(entry_done, &txdesc);
2112 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2116 * Obtain the status about this packet.
2118 txdesc.flags = 0;
2119 switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) {
2120 case 0: /* Success, maybe with retry */
2121 __set_bit(TXDONE_SUCCESS, &txdesc.flags);
2122 break;
2123 case 6: /* Failure, excessive retries */
2124 __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
2125 /* Don't break, this is a failed frame! */
2126 default: /* Failure */
2127 __set_bit(TXDONE_FAILURE, &txdesc.flags);
2129 txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
2132 * the frame was retried at least once
2133 * -> hw used fallback rates
2135 if (txdesc.retry)
2136 __set_bit(TXDONE_FALLBACK, &txdesc.flags);
2138 rt2x00pci_txdone(entry, &txdesc);
2142 static void rt61pci_wakeup(struct rt2x00_dev *rt2x00dev)
2144 struct ieee80211_conf conf = { .flags = 0 };
2145 struct rt2x00lib_conf libconf = { .conf = &conf };
2147 rt61pci_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
2150 static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
2152 struct rt2x00_dev *rt2x00dev = dev_instance;
2153 u32 reg_mcu;
2154 u32 reg;
2157 * Get the interrupt sources & saved to local variable.
2158 * Write register value back to clear pending interrupts.
2160 rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg_mcu);
2161 rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
2163 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
2164 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
2166 if (!reg && !reg_mcu)
2167 return IRQ_NONE;
2169 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2170 return IRQ_HANDLED;
2173 * Handle interrupts, walk through all bits
2174 * and run the tasks, the bits are checked in order of
2175 * priority.
2179 * 1 - Rx ring done interrupt.
2181 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
2182 rt2x00pci_rxdone(rt2x00dev);
2185 * 2 - Tx ring done interrupt.
2187 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
2188 rt61pci_txdone(rt2x00dev);
2191 * 3 - Handle MCU command done.
2193 if (reg_mcu)
2194 rt2x00pci_register_write(rt2x00dev,
2195 M2H_CMD_DONE_CSR, 0xffffffff);
2198 * 4 - MCU Autowakeup interrupt.
2200 if (rt2x00_get_field32(reg_mcu, MCU_INT_SOURCE_CSR_TWAKEUP))
2201 rt61pci_wakeup(rt2x00dev);
2203 return IRQ_HANDLED;
2207 * Device probe functions.
2209 static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
2211 struct eeprom_93cx6 eeprom;
2212 u32 reg;
2213 u16 word;
2214 u8 *mac;
2215 s8 value;
2217 rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
2219 eeprom.data = rt2x00dev;
2220 eeprom.register_read = rt61pci_eepromregister_read;
2221 eeprom.register_write = rt61pci_eepromregister_write;
2222 eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
2223 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
2224 eeprom.reg_data_in = 0;
2225 eeprom.reg_data_out = 0;
2226 eeprom.reg_data_clock = 0;
2227 eeprom.reg_chip_select = 0;
2229 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
2230 EEPROM_SIZE / sizeof(u16));
2233 * Start validation of the data that has been read.
2235 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
2236 if (!is_valid_ether_addr(mac)) {
2237 random_ether_addr(mac);
2238 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
2241 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
2242 if (word == 0xffff) {
2243 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
2244 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
2245 ANTENNA_B);
2246 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
2247 ANTENNA_B);
2248 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
2249 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
2250 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
2251 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
2252 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
2253 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
2256 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
2257 if (word == 0xffff) {
2258 rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
2259 rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
2260 rt2x00_set_field16(&word, EEPROM_NIC_RX_FIXED, 0);
2261 rt2x00_set_field16(&word, EEPROM_NIC_TX_FIXED, 0);
2262 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
2263 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
2264 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
2265 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
2266 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
2269 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
2270 if (word == 0xffff) {
2271 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
2272 LED_MODE_DEFAULT);
2273 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
2274 EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
2277 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
2278 if (word == 0xffff) {
2279 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
2280 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
2281 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
2282 EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
2285 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
2286 if (word == 0xffff) {
2287 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2288 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2289 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2290 EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
2291 } else {
2292 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
2293 if (value < -10 || value > 10)
2294 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2295 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
2296 if (value < -10 || value > 10)
2297 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2298 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2301 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
2302 if (word == 0xffff) {
2303 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2304 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2305 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2306 EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
2307 } else {
2308 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
2309 if (value < -10 || value > 10)
2310 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2311 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
2312 if (value < -10 || value > 10)
2313 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2314 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2317 return 0;
2320 static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
2322 u32 reg;
2323 u16 value;
2324 u16 eeprom;
2327 * Read EEPROM word for configuration.
2329 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
2332 * Identify RF chipset.
2334 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
2335 rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
2336 rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET),
2337 value, rt2x00_get_field32(reg, MAC_CSR0_REVISION));
2339 if (!rt2x00_rf(rt2x00dev, RF5225) &&
2340 !rt2x00_rf(rt2x00dev, RF5325) &&
2341 !rt2x00_rf(rt2x00dev, RF2527) &&
2342 !rt2x00_rf(rt2x00dev, RF2529)) {
2343 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
2344 return -ENODEV;
2348 * Determine number of antennas.
2350 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
2351 __set_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags);
2354 * Identify default antenna configuration.
2356 rt2x00dev->default_ant.tx =
2357 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
2358 rt2x00dev->default_ant.rx =
2359 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
2362 * Read the Frame type.
2364 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
2365 __set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags);
2368 * Detect if this device has a hardware controlled radio.
2370 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
2371 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
2374 * Read frequency offset and RF programming sequence.
2376 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
2377 if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
2378 __set_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags);
2380 rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
2383 * Read external LNA informations.
2385 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
2387 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
2388 __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
2389 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
2390 __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
2393 * When working with a RF2529 chip without double antenna,
2394 * the antenna settings should be gathered from the NIC
2395 * eeprom word.
2397 if (rt2x00_rf(rt2x00dev, RF2529) &&
2398 !test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags)) {
2399 rt2x00dev->default_ant.rx =
2400 ANTENNA_A + rt2x00_get_field16(eeprom, EEPROM_NIC_RX_FIXED);
2401 rt2x00dev->default_ant.tx =
2402 ANTENNA_B - rt2x00_get_field16(eeprom, EEPROM_NIC_TX_FIXED);
2404 if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
2405 rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
2406 if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
2407 rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
2411 * Store led settings, for correct led behaviour.
2412 * If the eeprom value is invalid,
2413 * switch to default led mode.
2415 #ifdef CONFIG_RT2X00_LIB_LEDS
2416 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
2417 value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
2419 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
2420 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
2421 if (value == LED_MODE_SIGNAL_STRENGTH)
2422 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
2423 LED_TYPE_QUALITY);
2425 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
2426 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
2427 rt2x00_get_field16(eeprom,
2428 EEPROM_LED_POLARITY_GPIO_0));
2429 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
2430 rt2x00_get_field16(eeprom,
2431 EEPROM_LED_POLARITY_GPIO_1));
2432 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
2433 rt2x00_get_field16(eeprom,
2434 EEPROM_LED_POLARITY_GPIO_2));
2435 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
2436 rt2x00_get_field16(eeprom,
2437 EEPROM_LED_POLARITY_GPIO_3));
2438 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
2439 rt2x00_get_field16(eeprom,
2440 EEPROM_LED_POLARITY_GPIO_4));
2441 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
2442 rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
2443 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
2444 rt2x00_get_field16(eeprom,
2445 EEPROM_LED_POLARITY_RDY_G));
2446 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
2447 rt2x00_get_field16(eeprom,
2448 EEPROM_LED_POLARITY_RDY_A));
2449 #endif /* CONFIG_RT2X00_LIB_LEDS */
2451 return 0;
2455 * RF value list for RF5225 & RF5325
2456 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2458 static const struct rf_channel rf_vals_noseq[] = {
2459 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2460 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2461 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2462 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2463 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2464 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2465 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2466 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2467 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2468 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2469 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2470 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2471 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2472 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2474 /* 802.11 UNI / HyperLan 2 */
2475 { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2476 { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2477 { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2478 { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2479 { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2480 { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2481 { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2482 { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2484 /* 802.11 HyperLan 2 */
2485 { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2486 { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2487 { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2488 { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2489 { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2490 { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2491 { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2492 { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2493 { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2494 { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2496 /* 802.11 UNII */
2497 { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2498 { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2499 { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2500 { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2501 { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2502 { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2504 /* MMAC(Japan)J52 ch 34,38,42,46 */
2505 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2506 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2507 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2508 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2512 * RF value list for RF5225 & RF5325
2513 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2515 static const struct rf_channel rf_vals_seq[] = {
2516 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2517 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2518 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2519 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2520 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2521 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2522 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2523 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2524 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2525 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2526 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2527 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2528 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2529 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2531 /* 802.11 UNI / HyperLan 2 */
2532 { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2533 { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2534 { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2535 { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2536 { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2537 { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2538 { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2539 { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2541 /* 802.11 HyperLan 2 */
2542 { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2543 { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2544 { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2545 { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2546 { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2547 { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2548 { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2549 { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2550 { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2551 { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2553 /* 802.11 UNII */
2554 { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2555 { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2556 { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2557 { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2558 { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2559 { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2561 /* MMAC(Japan)J52 ch 34,38,42,46 */
2562 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2563 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2564 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2565 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2568 static int rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2570 struct hw_mode_spec *spec = &rt2x00dev->spec;
2571 struct channel_info *info;
2572 char *tx_power;
2573 unsigned int i;
2576 * Disable powersaving as default.
2578 rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
2581 * Initialize all hw fields.
2583 rt2x00dev->hw->flags =
2584 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2585 IEEE80211_HW_SIGNAL_DBM |
2586 IEEE80211_HW_SUPPORTS_PS |
2587 IEEE80211_HW_PS_NULLFUNC_STACK;
2589 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2590 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2591 rt2x00_eeprom_addr(rt2x00dev,
2592 EEPROM_MAC_ADDR_0));
2595 * As rt61 has a global fallback table we cannot specify
2596 * more then one tx rate per frame but since the hw will
2597 * try several rates (based on the fallback table) we should
2598 * still initialize max_rates to the maximum number of rates
2599 * we are going to try. Otherwise mac80211 will truncate our
2600 * reported tx rates and the rc algortihm will end up with
2601 * incorrect data.
2603 rt2x00dev->hw->max_rates = 7;
2604 rt2x00dev->hw->max_rate_tries = 1;
2607 * Initialize hw_mode information.
2609 spec->supported_bands = SUPPORT_BAND_2GHZ;
2610 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2612 if (!test_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags)) {
2613 spec->num_channels = 14;
2614 spec->channels = rf_vals_noseq;
2615 } else {
2616 spec->num_channels = 14;
2617 spec->channels = rf_vals_seq;
2620 if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325)) {
2621 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2622 spec->num_channels = ARRAY_SIZE(rf_vals_seq);
2626 * Create channel information array
2628 info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
2629 if (!info)
2630 return -ENOMEM;
2632 spec->channels_info = info;
2634 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2635 for (i = 0; i < 14; i++)
2636 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2638 if (spec->num_channels > 14) {
2639 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2640 for (i = 14; i < spec->num_channels; i++)
2641 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2644 return 0;
2647 static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
2649 int retval;
2652 * Disable power saving.
2654 rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
2657 * Allocate eeprom data.
2659 retval = rt61pci_validate_eeprom(rt2x00dev);
2660 if (retval)
2661 return retval;
2663 retval = rt61pci_init_eeprom(rt2x00dev);
2664 if (retval)
2665 return retval;
2668 * Initialize hw specifications.
2670 retval = rt61pci_probe_hw_mode(rt2x00dev);
2671 if (retval)
2672 return retval;
2675 * This device has multiple filters for control frames,
2676 * but has no a separate filter for PS Poll frames.
2678 __set_bit(DRIVER_SUPPORT_CONTROL_FILTERS, &rt2x00dev->flags);
2681 * This device requires firmware and DMA mapped skbs.
2683 __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
2684 __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
2685 if (!modparam_nohwcrypt)
2686 __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
2689 * Set the rssi offset.
2691 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2693 return 0;
2697 * IEEE80211 stack callback functions.
2699 static int rt61pci_conf_tx(struct ieee80211_hw *hw, u16 queue_idx,
2700 const struct ieee80211_tx_queue_params *params)
2702 struct rt2x00_dev *rt2x00dev = hw->priv;
2703 struct data_queue *queue;
2704 struct rt2x00_field32 field;
2705 int retval;
2706 u32 reg;
2707 u32 offset;
2710 * First pass the configuration through rt2x00lib, that will
2711 * update the queue settings and validate the input. After that
2712 * we are free to update the registers based on the value
2713 * in the queue parameter.
2715 retval = rt2x00mac_conf_tx(hw, queue_idx, params);
2716 if (retval)
2717 return retval;
2720 * We only need to perform additional register initialization
2721 * for WMM queues.
2723 if (queue_idx >= 4)
2724 return 0;
2726 queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
2728 /* Update WMM TXOP register */
2729 offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
2730 field.bit_offset = (queue_idx & 1) * 16;
2731 field.bit_mask = 0xffff << field.bit_offset;
2733 rt2x00pci_register_read(rt2x00dev, offset, &reg);
2734 rt2x00_set_field32(&reg, field, queue->txop);
2735 rt2x00pci_register_write(rt2x00dev, offset, reg);
2737 /* Update WMM registers */
2738 field.bit_offset = queue_idx * 4;
2739 field.bit_mask = 0xf << field.bit_offset;
2741 rt2x00pci_register_read(rt2x00dev, AIFSN_CSR, &reg);
2742 rt2x00_set_field32(&reg, field, queue->aifs);
2743 rt2x00pci_register_write(rt2x00dev, AIFSN_CSR, reg);
2745 rt2x00pci_register_read(rt2x00dev, CWMIN_CSR, &reg);
2746 rt2x00_set_field32(&reg, field, queue->cw_min);
2747 rt2x00pci_register_write(rt2x00dev, CWMIN_CSR, reg);
2749 rt2x00pci_register_read(rt2x00dev, CWMAX_CSR, &reg);
2750 rt2x00_set_field32(&reg, field, queue->cw_max);
2751 rt2x00pci_register_write(rt2x00dev, CWMAX_CSR, reg);
2753 return 0;
2756 static u64 rt61pci_get_tsf(struct ieee80211_hw *hw)
2758 struct rt2x00_dev *rt2x00dev = hw->priv;
2759 u64 tsf;
2760 u32 reg;
2762 rt2x00pci_register_read(rt2x00dev, TXRX_CSR13, &reg);
2763 tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2764 rt2x00pci_register_read(rt2x00dev, TXRX_CSR12, &reg);
2765 tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2767 return tsf;
2770 static const struct ieee80211_ops rt61pci_mac80211_ops = {
2771 .tx = rt2x00mac_tx,
2772 .start = rt2x00mac_start,
2773 .stop = rt2x00mac_stop,
2774 .add_interface = rt2x00mac_add_interface,
2775 .remove_interface = rt2x00mac_remove_interface,
2776 .config = rt2x00mac_config,
2777 .configure_filter = rt2x00mac_configure_filter,
2778 .set_tim = rt2x00mac_set_tim,
2779 .set_key = rt2x00mac_set_key,
2780 .get_stats = rt2x00mac_get_stats,
2781 .bss_info_changed = rt2x00mac_bss_info_changed,
2782 .conf_tx = rt61pci_conf_tx,
2783 .get_tsf = rt61pci_get_tsf,
2784 .rfkill_poll = rt2x00mac_rfkill_poll,
2787 static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
2788 .irq_handler = rt61pci_interrupt,
2789 .probe_hw = rt61pci_probe_hw,
2790 .get_firmware_name = rt61pci_get_firmware_name,
2791 .check_firmware = rt61pci_check_firmware,
2792 .load_firmware = rt61pci_load_firmware,
2793 .initialize = rt2x00pci_initialize,
2794 .uninitialize = rt2x00pci_uninitialize,
2795 .get_entry_state = rt61pci_get_entry_state,
2796 .clear_entry = rt61pci_clear_entry,
2797 .set_device_state = rt61pci_set_device_state,
2798 .rfkill_poll = rt61pci_rfkill_poll,
2799 .link_stats = rt61pci_link_stats,
2800 .reset_tuner = rt61pci_reset_tuner,
2801 .link_tuner = rt61pci_link_tuner,
2802 .write_tx_desc = rt61pci_write_tx_desc,
2803 .write_tx_data = rt2x00pci_write_tx_data,
2804 .write_beacon = rt61pci_write_beacon,
2805 .kick_tx_queue = rt61pci_kick_tx_queue,
2806 .kill_tx_queue = rt61pci_kill_tx_queue,
2807 .fill_rxdone = rt61pci_fill_rxdone,
2808 .config_shared_key = rt61pci_config_shared_key,
2809 .config_pairwise_key = rt61pci_config_pairwise_key,
2810 .config_filter = rt61pci_config_filter,
2811 .config_intf = rt61pci_config_intf,
2812 .config_erp = rt61pci_config_erp,
2813 .config_ant = rt61pci_config_ant,
2814 .config = rt61pci_config,
2817 static const struct data_queue_desc rt61pci_queue_rx = {
2818 .entry_num = RX_ENTRIES,
2819 .data_size = DATA_FRAME_SIZE,
2820 .desc_size = RXD_DESC_SIZE,
2821 .priv_size = sizeof(struct queue_entry_priv_pci),
2824 static const struct data_queue_desc rt61pci_queue_tx = {
2825 .entry_num = TX_ENTRIES,
2826 .data_size = DATA_FRAME_SIZE,
2827 .desc_size = TXD_DESC_SIZE,
2828 .priv_size = sizeof(struct queue_entry_priv_pci),
2831 static const struct data_queue_desc rt61pci_queue_bcn = {
2832 .entry_num = 4 * BEACON_ENTRIES,
2833 .data_size = 0, /* No DMA required for beacons */
2834 .desc_size = TXINFO_SIZE,
2835 .priv_size = sizeof(struct queue_entry_priv_pci),
2838 static const struct rt2x00_ops rt61pci_ops = {
2839 .name = KBUILD_MODNAME,
2840 .max_sta_intf = 1,
2841 .max_ap_intf = 4,
2842 .eeprom_size = EEPROM_SIZE,
2843 .rf_size = RF_SIZE,
2844 .tx_queues = NUM_TX_QUEUES,
2845 .extra_tx_headroom = 0,
2846 .rx = &rt61pci_queue_rx,
2847 .tx = &rt61pci_queue_tx,
2848 .bcn = &rt61pci_queue_bcn,
2849 .lib = &rt61pci_rt2x00_ops,
2850 .hw = &rt61pci_mac80211_ops,
2851 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2852 .debugfs = &rt61pci_rt2x00debug,
2853 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2857 * RT61pci module information.
2859 static DEFINE_PCI_DEVICE_TABLE(rt61pci_device_table) = {
2860 /* RT2561s */
2861 { PCI_DEVICE(0x1814, 0x0301), PCI_DEVICE_DATA(&rt61pci_ops) },
2862 /* RT2561 v2 */
2863 { PCI_DEVICE(0x1814, 0x0302), PCI_DEVICE_DATA(&rt61pci_ops) },
2864 /* RT2661 */
2865 { PCI_DEVICE(0x1814, 0x0401), PCI_DEVICE_DATA(&rt61pci_ops) },
2866 { 0, }
2869 MODULE_AUTHOR(DRV_PROJECT);
2870 MODULE_VERSION(DRV_VERSION);
2871 MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
2872 MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
2873 "PCI & PCMCIA chipset based cards");
2874 MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
2875 MODULE_FIRMWARE(FIRMWARE_RT2561);
2876 MODULE_FIRMWARE(FIRMWARE_RT2561s);
2877 MODULE_FIRMWARE(FIRMWARE_RT2661);
2878 MODULE_LICENSE("GPL");
2880 static struct pci_driver rt61pci_driver = {
2881 .name = KBUILD_MODNAME,
2882 .id_table = rt61pci_device_table,
2883 .probe = rt2x00pci_probe,
2884 .remove = __devexit_p(rt2x00pci_remove),
2885 .suspend = rt2x00pci_suspend,
2886 .resume = rt2x00pci_resume,
2889 static int __init rt61pci_init(void)
2891 return pci_register_driver(&rt61pci_driver);
2894 static void __exit rt61pci_exit(void)
2896 pci_unregister_driver(&rt61pci_driver);
2899 module_init(rt61pci_init);
2900 module_exit(rt61pci_exit);