4 * Internal slab definitions
8 * State of the slab allocator.
10 * This is used to describe the states of the allocator during bootup.
11 * Allocators use this to gradually bootstrap themselves. Most allocators
12 * have the problem that the structures used for managing slab caches are
13 * allocated from slab caches themselves.
16 DOWN
, /* No slab functionality yet */
17 PARTIAL
, /* SLUB: kmem_cache_node available */
18 PARTIAL_ARRAYCACHE
, /* SLAB: kmalloc size for arraycache available */
19 PARTIAL_L3
, /* SLAB: kmalloc size for l3 struct available */
20 UP
, /* Slab caches usable but not all extras yet */
21 FULL
/* Everything is working */
24 extern enum slab_state slab_state
;
26 /* The slab cache mutex protects the management structures during changes */
27 extern struct mutex slab_mutex
;
29 /* The list of all slab caches on the system */
30 extern struct list_head slab_caches
;
32 /* The slab cache that manages slab cache information */
33 extern struct kmem_cache
*kmem_cache
;
35 unsigned long calculate_alignment(unsigned long flags
,
36 unsigned long align
, unsigned long size
);
38 /* Functions provided by the slab allocators */
39 extern int __kmem_cache_create(struct kmem_cache
*, unsigned long flags
);
41 extern struct kmem_cache
*create_kmalloc_cache(const char *name
, size_t size
,
43 extern void create_boot_cache(struct kmem_cache
*, const char *name
,
44 size_t size
, unsigned long flags
);
49 __kmem_cache_alias(struct mem_cgroup
*memcg
, const char *name
, size_t size
,
50 size_t align
, unsigned long flags
, void (*ctor
)(void *));
52 static inline struct kmem_cache
*
53 __kmem_cache_alias(struct mem_cgroup
*memcg
, const char *name
, size_t size
,
54 size_t align
, unsigned long flags
, void (*ctor
)(void *))
59 /* Legal flag mask for kmem_cache_create(), for various configurations */
60 #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \
61 SLAB_DESTROY_BY_RCU | SLAB_DEBUG_OBJECTS )
63 #if defined(CONFIG_DEBUG_SLAB)
64 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
65 #elif defined(CONFIG_SLUB_DEBUG)
66 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
67 SLAB_TRACE | SLAB_DEBUG_FREE)
69 #define SLAB_DEBUG_FLAGS (0)
72 #if defined(CONFIG_SLAB)
73 #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
74 SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | SLAB_NOTRACK)
75 #elif defined(CONFIG_SLUB)
76 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
77 SLAB_TEMPORARY | SLAB_NOTRACK)
79 #define SLAB_CACHE_FLAGS (0)
82 #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
84 int __kmem_cache_shutdown(struct kmem_cache
*);
90 unsigned long active_objs
;
91 unsigned long num_objs
;
92 unsigned long active_slabs
;
93 unsigned long num_slabs
;
94 unsigned long shared_avail
;
96 unsigned int batchcount
;
98 unsigned int objects_per_slab
;
99 unsigned int cache_order
;
102 void get_slabinfo(struct kmem_cache
*s
, struct slabinfo
*sinfo
);
103 void slabinfo_show_stats(struct seq_file
*m
, struct kmem_cache
*s
);
104 ssize_t
slabinfo_write(struct file
*file
, const char __user
*buffer
,
105 size_t count
, loff_t
*ppos
);
107 #ifdef CONFIG_MEMCG_KMEM
108 static inline bool is_root_cache(struct kmem_cache
*s
)
110 return !s
->memcg_params
|| s
->memcg_params
->is_root_cache
;
113 static inline bool cache_match_memcg(struct kmem_cache
*cachep
,
114 struct mem_cgroup
*memcg
)
116 return (is_root_cache(cachep
) && !memcg
) ||
117 (cachep
->memcg_params
->memcg
== memcg
);
120 static inline void memcg_bind_pages(struct kmem_cache
*s
, int order
)
122 if (!is_root_cache(s
))
123 atomic_add(1 << order
, &s
->memcg_params
->nr_pages
);
126 static inline void memcg_release_pages(struct kmem_cache
*s
, int order
)
128 if (is_root_cache(s
))
131 if (atomic_sub_and_test((1 << order
), &s
->memcg_params
->nr_pages
))
132 mem_cgroup_destroy_cache(s
);
135 static inline bool slab_equal_or_root(struct kmem_cache
*s
,
136 struct kmem_cache
*p
)
139 (s
->memcg_params
&& (p
== s
->memcg_params
->root_cache
));
143 * We use suffixes to the name in memcg because we can't have caches
144 * created in the system with the same name. But when we print them
145 * locally, better refer to them with the base name
147 static inline const char *cache_name(struct kmem_cache
*s
)
149 if (!is_root_cache(s
))
150 return s
->memcg_params
->root_cache
->name
;
154 static inline struct kmem_cache
*cache_from_memcg(struct kmem_cache
*s
, int idx
)
156 return s
->memcg_params
->memcg_caches
[idx
];
159 static inline struct kmem_cache
*memcg_root_cache(struct kmem_cache
*s
)
161 if (is_root_cache(s
))
163 return s
->memcg_params
->root_cache
;
166 static inline bool is_root_cache(struct kmem_cache
*s
)
171 static inline bool cache_match_memcg(struct kmem_cache
*cachep
,
172 struct mem_cgroup
*memcg
)
177 static inline void memcg_bind_pages(struct kmem_cache
*s
, int order
)
181 static inline void memcg_release_pages(struct kmem_cache
*s
, int order
)
185 static inline bool slab_equal_or_root(struct kmem_cache
*s
,
186 struct kmem_cache
*p
)
191 static inline const char *cache_name(struct kmem_cache
*s
)
196 static inline struct kmem_cache
*cache_from_memcg(struct kmem_cache
*s
, int idx
)
201 static inline struct kmem_cache
*memcg_root_cache(struct kmem_cache
*s
)
207 static inline struct kmem_cache
*cache_from_obj(struct kmem_cache
*s
, void *x
)
209 struct kmem_cache
*cachep
;
213 * When kmemcg is not being used, both assignments should return the
214 * same value. but we don't want to pay the assignment price in that
215 * case. If it is not compiled in, the compiler should be smart enough
216 * to not do even the assignment. In that case, slab_equal_or_root
217 * will also be a constant.
219 if (!memcg_kmem_enabled() && !unlikely(s
->flags
& SLAB_DEBUG_FREE
))
222 page
= virt_to_head_page(x
);
223 cachep
= page
->slab_cache
;
224 if (slab_equal_or_root(cachep
, s
))
227 pr_err("%s: Wrong slab cache. %s but object is from %s\n",
228 __FUNCTION__
, cachep
->name
, s
->name
);