bnx2: Update version to 2.0.16.
[linux-2.6.git] / drivers / net / 8139cp.c
blob4a4f6b81e32de9ae8c85f9dd6aa379927d0ffaa0
1 /* 8139cp.c: A Linux PCI Ethernet driver for the RealTek 8139C+ chips. */
2 /*
3 Copyright 2001-2004 Jeff Garzik <jgarzik@pobox.com>
5 Copyright (C) 2001, 2002 David S. Miller (davem@redhat.com) [tg3.c]
6 Copyright (C) 2000, 2001 David S. Miller (davem@redhat.com) [sungem.c]
7 Copyright 2001 Manfred Spraul [natsemi.c]
8 Copyright 1999-2001 by Donald Becker. [natsemi.c]
9 Written 1997-2001 by Donald Becker. [8139too.c]
10 Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. [acenic.c]
12 This software may be used and distributed according to the terms of
13 the GNU General Public License (GPL), incorporated herein by reference.
14 Drivers based on or derived from this code fall under the GPL and must
15 retain the authorship, copyright and license notice. This file is not
16 a complete program and may only be used when the entire operating
17 system is licensed under the GPL.
19 See the file COPYING in this distribution for more information.
21 Contributors:
23 Wake-on-LAN support - Felipe Damasio <felipewd@terra.com.br>
24 PCI suspend/resume - Felipe Damasio <felipewd@terra.com.br>
25 LinkChg interrupt - Felipe Damasio <felipewd@terra.com.br>
27 TODO:
28 * Test Tx checksumming thoroughly
30 Low priority TODO:
31 * Complete reset on PciErr
32 * Consider Rx interrupt mitigation using TimerIntr
33 * Investigate using skb->priority with h/w VLAN priority
34 * Investigate using High Priority Tx Queue with skb->priority
35 * Adjust Rx FIFO threshold and Max Rx DMA burst on Rx FIFO error
36 * Adjust Tx FIFO threshold and Max Tx DMA burst on Tx FIFO error
37 * Implement Tx software interrupt mitigation via
38 Tx descriptor bit
39 * The real minimum of CP_MIN_MTU is 4 bytes. However,
40 for this to be supported, one must(?) turn on packet padding.
41 * Support external MII transceivers (patch available)
43 NOTES:
44 * TX checksumming is considered experimental. It is off by
45 default, use ethtool to turn it on.
49 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
51 #define DRV_NAME "8139cp"
52 #define DRV_VERSION "1.3"
53 #define DRV_RELDATE "Mar 22, 2004"
56 #include <linux/module.h>
57 #include <linux/moduleparam.h>
58 #include <linux/kernel.h>
59 #include <linux/compiler.h>
60 #include <linux/netdevice.h>
61 #include <linux/etherdevice.h>
62 #include <linux/init.h>
63 #include <linux/pci.h>
64 #include <linux/dma-mapping.h>
65 #include <linux/delay.h>
66 #include <linux/ethtool.h>
67 #include <linux/gfp.h>
68 #include <linux/mii.h>
69 #include <linux/if_vlan.h>
70 #include <linux/crc32.h>
71 #include <linux/in.h>
72 #include <linux/ip.h>
73 #include <linux/tcp.h>
74 #include <linux/udp.h>
75 #include <linux/cache.h>
76 #include <asm/io.h>
77 #include <asm/irq.h>
78 #include <asm/uaccess.h>
80 /* VLAN tagging feature enable/disable */
81 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
82 #define CP_VLAN_TAG_USED 1
83 #define CP_VLAN_TX_TAG(tx_desc,vlan_tag_value) \
84 do { (tx_desc)->opts2 = cpu_to_le32(vlan_tag_value); } while (0)
85 #else
86 #define CP_VLAN_TAG_USED 0
87 #define CP_VLAN_TX_TAG(tx_desc,vlan_tag_value) \
88 do { (tx_desc)->opts2 = 0; } while (0)
89 #endif
91 /* These identify the driver base version and may not be removed. */
92 static char version[] =
93 DRV_NAME ": 10/100 PCI Ethernet driver v" DRV_VERSION " (" DRV_RELDATE ")\n";
95 MODULE_AUTHOR("Jeff Garzik <jgarzik@pobox.com>");
96 MODULE_DESCRIPTION("RealTek RTL-8139C+ series 10/100 PCI Ethernet driver");
97 MODULE_VERSION(DRV_VERSION);
98 MODULE_LICENSE("GPL");
100 static int debug = -1;
101 module_param(debug, int, 0);
102 MODULE_PARM_DESC (debug, "8139cp: bitmapped message enable number");
104 /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
105 The RTL chips use a 64 element hash table based on the Ethernet CRC. */
106 static int multicast_filter_limit = 32;
107 module_param(multicast_filter_limit, int, 0);
108 MODULE_PARM_DESC (multicast_filter_limit, "8139cp: maximum number of filtered multicast addresses");
110 #define CP_DEF_MSG_ENABLE (NETIF_MSG_DRV | \
111 NETIF_MSG_PROBE | \
112 NETIF_MSG_LINK)
113 #define CP_NUM_STATS 14 /* struct cp_dma_stats, plus one */
114 #define CP_STATS_SIZE 64 /* size in bytes of DMA stats block */
115 #define CP_REGS_SIZE (0xff + 1)
116 #define CP_REGS_VER 1 /* version 1 */
117 #define CP_RX_RING_SIZE 64
118 #define CP_TX_RING_SIZE 64
119 #define CP_RING_BYTES \
120 ((sizeof(struct cp_desc) * CP_RX_RING_SIZE) + \
121 (sizeof(struct cp_desc) * CP_TX_RING_SIZE) + \
122 CP_STATS_SIZE)
123 #define NEXT_TX(N) (((N) + 1) & (CP_TX_RING_SIZE - 1))
124 #define NEXT_RX(N) (((N) + 1) & (CP_RX_RING_SIZE - 1))
125 #define TX_BUFFS_AVAIL(CP) \
126 (((CP)->tx_tail <= (CP)->tx_head) ? \
127 (CP)->tx_tail + (CP_TX_RING_SIZE - 1) - (CP)->tx_head : \
128 (CP)->tx_tail - (CP)->tx_head - 1)
130 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
131 #define CP_INTERNAL_PHY 32
133 /* The following settings are log_2(bytes)-4: 0 == 16 bytes .. 6==1024, 7==end of packet. */
134 #define RX_FIFO_THRESH 5 /* Rx buffer level before first PCI xfer. */
135 #define RX_DMA_BURST 4 /* Maximum PCI burst, '4' is 256 */
136 #define TX_DMA_BURST 6 /* Maximum PCI burst, '6' is 1024 */
137 #define TX_EARLY_THRESH 256 /* Early Tx threshold, in bytes */
139 /* Time in jiffies before concluding the transmitter is hung. */
140 #define TX_TIMEOUT (6*HZ)
142 /* hardware minimum and maximum for a single frame's data payload */
143 #define CP_MIN_MTU 60 /* TODO: allow lower, but pad */
144 #define CP_MAX_MTU 4096
146 enum {
147 /* NIC register offsets */
148 MAC0 = 0x00, /* Ethernet hardware address. */
149 MAR0 = 0x08, /* Multicast filter. */
150 StatsAddr = 0x10, /* 64-bit start addr of 64-byte DMA stats blk */
151 TxRingAddr = 0x20, /* 64-bit start addr of Tx ring */
152 HiTxRingAddr = 0x28, /* 64-bit start addr of high priority Tx ring */
153 Cmd = 0x37, /* Command register */
154 IntrMask = 0x3C, /* Interrupt mask */
155 IntrStatus = 0x3E, /* Interrupt status */
156 TxConfig = 0x40, /* Tx configuration */
157 ChipVersion = 0x43, /* 8-bit chip version, inside TxConfig */
158 RxConfig = 0x44, /* Rx configuration */
159 RxMissed = 0x4C, /* 24 bits valid, write clears */
160 Cfg9346 = 0x50, /* EEPROM select/control; Cfg reg [un]lock */
161 Config1 = 0x52, /* Config1 */
162 Config3 = 0x59, /* Config3 */
163 Config4 = 0x5A, /* Config4 */
164 MultiIntr = 0x5C, /* Multiple interrupt select */
165 BasicModeCtrl = 0x62, /* MII BMCR */
166 BasicModeStatus = 0x64, /* MII BMSR */
167 NWayAdvert = 0x66, /* MII ADVERTISE */
168 NWayLPAR = 0x68, /* MII LPA */
169 NWayExpansion = 0x6A, /* MII Expansion */
170 Config5 = 0xD8, /* Config5 */
171 TxPoll = 0xD9, /* Tell chip to check Tx descriptors for work */
172 RxMaxSize = 0xDA, /* Max size of an Rx packet (8169 only) */
173 CpCmd = 0xE0, /* C+ Command register (C+ mode only) */
174 IntrMitigate = 0xE2, /* rx/tx interrupt mitigation control */
175 RxRingAddr = 0xE4, /* 64-bit start addr of Rx ring */
176 TxThresh = 0xEC, /* Early Tx threshold */
177 OldRxBufAddr = 0x30, /* DMA address of Rx ring buffer (C mode) */
178 OldTSD0 = 0x10, /* DMA address of first Tx desc (C mode) */
180 /* Tx and Rx status descriptors */
181 DescOwn = (1 << 31), /* Descriptor is owned by NIC */
182 RingEnd = (1 << 30), /* End of descriptor ring */
183 FirstFrag = (1 << 29), /* First segment of a packet */
184 LastFrag = (1 << 28), /* Final segment of a packet */
185 LargeSend = (1 << 27), /* TCP Large Send Offload (TSO) */
186 MSSShift = 16, /* MSS value position */
187 MSSMask = 0xfff, /* MSS value: 11 bits */
188 TxError = (1 << 23), /* Tx error summary */
189 RxError = (1 << 20), /* Rx error summary */
190 IPCS = (1 << 18), /* Calculate IP checksum */
191 UDPCS = (1 << 17), /* Calculate UDP/IP checksum */
192 TCPCS = (1 << 16), /* Calculate TCP/IP checksum */
193 TxVlanTag = (1 << 17), /* Add VLAN tag */
194 RxVlanTagged = (1 << 16), /* Rx VLAN tag available */
195 IPFail = (1 << 15), /* IP checksum failed */
196 UDPFail = (1 << 14), /* UDP/IP checksum failed */
197 TCPFail = (1 << 13), /* TCP/IP checksum failed */
198 NormalTxPoll = (1 << 6), /* One or more normal Tx packets to send */
199 PID1 = (1 << 17), /* 2 protocol id bits: 0==non-IP, */
200 PID0 = (1 << 16), /* 1==UDP/IP, 2==TCP/IP, 3==IP */
201 RxProtoTCP = 1,
202 RxProtoUDP = 2,
203 RxProtoIP = 3,
204 TxFIFOUnder = (1 << 25), /* Tx FIFO underrun */
205 TxOWC = (1 << 22), /* Tx Out-of-window collision */
206 TxLinkFail = (1 << 21), /* Link failed during Tx of packet */
207 TxMaxCol = (1 << 20), /* Tx aborted due to excessive collisions */
208 TxColCntShift = 16, /* Shift, to get 4-bit Tx collision cnt */
209 TxColCntMask = 0x01 | 0x02 | 0x04 | 0x08, /* 4-bit collision count */
210 RxErrFrame = (1 << 27), /* Rx frame alignment error */
211 RxMcast = (1 << 26), /* Rx multicast packet rcv'd */
212 RxErrCRC = (1 << 18), /* Rx CRC error */
213 RxErrRunt = (1 << 19), /* Rx error, packet < 64 bytes */
214 RxErrLong = (1 << 21), /* Rx error, packet > 4096 bytes */
215 RxErrFIFO = (1 << 22), /* Rx error, FIFO overflowed, pkt bad */
217 /* StatsAddr register */
218 DumpStats = (1 << 3), /* Begin stats dump */
220 /* RxConfig register */
221 RxCfgFIFOShift = 13, /* Shift, to get Rx FIFO thresh value */
222 RxCfgDMAShift = 8, /* Shift, to get Rx Max DMA value */
223 AcceptErr = 0x20, /* Accept packets with CRC errors */
224 AcceptRunt = 0x10, /* Accept runt (<64 bytes) packets */
225 AcceptBroadcast = 0x08, /* Accept broadcast packets */
226 AcceptMulticast = 0x04, /* Accept multicast packets */
227 AcceptMyPhys = 0x02, /* Accept pkts with our MAC as dest */
228 AcceptAllPhys = 0x01, /* Accept all pkts w/ physical dest */
230 /* IntrMask / IntrStatus registers */
231 PciErr = (1 << 15), /* System error on the PCI bus */
232 TimerIntr = (1 << 14), /* Asserted when TCTR reaches TimerInt value */
233 LenChg = (1 << 13), /* Cable length change */
234 SWInt = (1 << 8), /* Software-requested interrupt */
235 TxEmpty = (1 << 7), /* No Tx descriptors available */
236 RxFIFOOvr = (1 << 6), /* Rx FIFO Overflow */
237 LinkChg = (1 << 5), /* Packet underrun, or link change */
238 RxEmpty = (1 << 4), /* No Rx descriptors available */
239 TxErr = (1 << 3), /* Tx error */
240 TxOK = (1 << 2), /* Tx packet sent */
241 RxErr = (1 << 1), /* Rx error */
242 RxOK = (1 << 0), /* Rx packet received */
243 IntrResvd = (1 << 10), /* reserved, according to RealTek engineers,
244 but hardware likes to raise it */
246 IntrAll = PciErr | TimerIntr | LenChg | SWInt | TxEmpty |
247 RxFIFOOvr | LinkChg | RxEmpty | TxErr | TxOK |
248 RxErr | RxOK | IntrResvd,
250 /* C mode command register */
251 CmdReset = (1 << 4), /* Enable to reset; self-clearing */
252 RxOn = (1 << 3), /* Rx mode enable */
253 TxOn = (1 << 2), /* Tx mode enable */
255 /* C+ mode command register */
256 RxVlanOn = (1 << 6), /* Rx VLAN de-tagging enable */
257 RxChkSum = (1 << 5), /* Rx checksum offload enable */
258 PCIDAC = (1 << 4), /* PCI Dual Address Cycle (64-bit PCI) */
259 PCIMulRW = (1 << 3), /* Enable PCI read/write multiple */
260 CpRxOn = (1 << 1), /* Rx mode enable */
261 CpTxOn = (1 << 0), /* Tx mode enable */
263 /* Cfg9436 EEPROM control register */
264 Cfg9346_Lock = 0x00, /* Lock ConfigX/MII register access */
265 Cfg9346_Unlock = 0xC0, /* Unlock ConfigX/MII register access */
267 /* TxConfig register */
268 IFG = (1 << 25) | (1 << 24), /* standard IEEE interframe gap */
269 TxDMAShift = 8, /* DMA burst value (0-7) is shift this many bits */
271 /* Early Tx Threshold register */
272 TxThreshMask = 0x3f, /* Mask bits 5-0 */
273 TxThreshMax = 2048, /* Max early Tx threshold */
275 /* Config1 register */
276 DriverLoaded = (1 << 5), /* Software marker, driver is loaded */
277 LWACT = (1 << 4), /* LWAKE active mode */
278 PMEnable = (1 << 0), /* Enable various PM features of chip */
280 /* Config3 register */
281 PARMEnable = (1 << 6), /* Enable auto-loading of PHY parms */
282 MagicPacket = (1 << 5), /* Wake up when receives a Magic Packet */
283 LinkUp = (1 << 4), /* Wake up when the cable connection is re-established */
285 /* Config4 register */
286 LWPTN = (1 << 1), /* LWAKE Pattern */
287 LWPME = (1 << 4), /* LANWAKE vs PMEB */
289 /* Config5 register */
290 BWF = (1 << 6), /* Accept Broadcast wakeup frame */
291 MWF = (1 << 5), /* Accept Multicast wakeup frame */
292 UWF = (1 << 4), /* Accept Unicast wakeup frame */
293 LANWake = (1 << 1), /* Enable LANWake signal */
294 PMEStatus = (1 << 0), /* PME status can be reset by PCI RST# */
296 cp_norx_intr_mask = PciErr | LinkChg | TxOK | TxErr | TxEmpty,
297 cp_rx_intr_mask = RxOK | RxErr | RxEmpty | RxFIFOOvr,
298 cp_intr_mask = cp_rx_intr_mask | cp_norx_intr_mask,
301 static const unsigned int cp_rx_config =
302 (RX_FIFO_THRESH << RxCfgFIFOShift) |
303 (RX_DMA_BURST << RxCfgDMAShift);
305 struct cp_desc {
306 __le32 opts1;
307 __le32 opts2;
308 __le64 addr;
311 struct cp_dma_stats {
312 __le64 tx_ok;
313 __le64 rx_ok;
314 __le64 tx_err;
315 __le32 rx_err;
316 __le16 rx_fifo;
317 __le16 frame_align;
318 __le32 tx_ok_1col;
319 __le32 tx_ok_mcol;
320 __le64 rx_ok_phys;
321 __le64 rx_ok_bcast;
322 __le32 rx_ok_mcast;
323 __le16 tx_abort;
324 __le16 tx_underrun;
325 } __packed;
327 struct cp_extra_stats {
328 unsigned long rx_frags;
331 struct cp_private {
332 void __iomem *regs;
333 struct net_device *dev;
334 spinlock_t lock;
335 u32 msg_enable;
337 struct napi_struct napi;
339 struct pci_dev *pdev;
340 u32 rx_config;
341 u16 cpcmd;
343 struct cp_extra_stats cp_stats;
345 unsigned rx_head ____cacheline_aligned;
346 unsigned rx_tail;
347 struct cp_desc *rx_ring;
348 struct sk_buff *rx_skb[CP_RX_RING_SIZE];
350 unsigned tx_head ____cacheline_aligned;
351 unsigned tx_tail;
352 struct cp_desc *tx_ring;
353 struct sk_buff *tx_skb[CP_TX_RING_SIZE];
355 unsigned rx_buf_sz;
356 unsigned wol_enabled : 1; /* Is Wake-on-LAN enabled? */
358 #if CP_VLAN_TAG_USED
359 struct vlan_group *vlgrp;
360 #endif
361 dma_addr_t ring_dma;
363 struct mii_if_info mii_if;
366 #define cpr8(reg) readb(cp->regs + (reg))
367 #define cpr16(reg) readw(cp->regs + (reg))
368 #define cpr32(reg) readl(cp->regs + (reg))
369 #define cpw8(reg,val) writeb((val), cp->regs + (reg))
370 #define cpw16(reg,val) writew((val), cp->regs + (reg))
371 #define cpw32(reg,val) writel((val), cp->regs + (reg))
372 #define cpw8_f(reg,val) do { \
373 writeb((val), cp->regs + (reg)); \
374 readb(cp->regs + (reg)); \
375 } while (0)
376 #define cpw16_f(reg,val) do { \
377 writew((val), cp->regs + (reg)); \
378 readw(cp->regs + (reg)); \
379 } while (0)
380 #define cpw32_f(reg,val) do { \
381 writel((val), cp->regs + (reg)); \
382 readl(cp->regs + (reg)); \
383 } while (0)
386 static void __cp_set_rx_mode (struct net_device *dev);
387 static void cp_tx (struct cp_private *cp);
388 static void cp_clean_rings (struct cp_private *cp);
389 #ifdef CONFIG_NET_POLL_CONTROLLER
390 static void cp_poll_controller(struct net_device *dev);
391 #endif
392 static int cp_get_eeprom_len(struct net_device *dev);
393 static int cp_get_eeprom(struct net_device *dev,
394 struct ethtool_eeprom *eeprom, u8 *data);
395 static int cp_set_eeprom(struct net_device *dev,
396 struct ethtool_eeprom *eeprom, u8 *data);
398 static DEFINE_PCI_DEVICE_TABLE(cp_pci_tbl) = {
399 { PCI_DEVICE(PCI_VENDOR_ID_REALTEK, PCI_DEVICE_ID_REALTEK_8139), },
400 { PCI_DEVICE(PCI_VENDOR_ID_TTTECH, PCI_DEVICE_ID_TTTECH_MC322), },
401 { },
403 MODULE_DEVICE_TABLE(pci, cp_pci_tbl);
405 static struct {
406 const char str[ETH_GSTRING_LEN];
407 } ethtool_stats_keys[] = {
408 { "tx_ok" },
409 { "rx_ok" },
410 { "tx_err" },
411 { "rx_err" },
412 { "rx_fifo" },
413 { "frame_align" },
414 { "tx_ok_1col" },
415 { "tx_ok_mcol" },
416 { "rx_ok_phys" },
417 { "rx_ok_bcast" },
418 { "rx_ok_mcast" },
419 { "tx_abort" },
420 { "tx_underrun" },
421 { "rx_frags" },
425 #if CP_VLAN_TAG_USED
426 static void cp_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
428 struct cp_private *cp = netdev_priv(dev);
429 unsigned long flags;
431 spin_lock_irqsave(&cp->lock, flags);
432 cp->vlgrp = grp;
433 if (grp)
434 cp->cpcmd |= RxVlanOn;
435 else
436 cp->cpcmd &= ~RxVlanOn;
438 cpw16(CpCmd, cp->cpcmd);
439 spin_unlock_irqrestore(&cp->lock, flags);
441 #endif /* CP_VLAN_TAG_USED */
443 static inline void cp_set_rxbufsize (struct cp_private *cp)
445 unsigned int mtu = cp->dev->mtu;
447 if (mtu > ETH_DATA_LEN)
448 /* MTU + ethernet header + FCS + optional VLAN tag */
449 cp->rx_buf_sz = mtu + ETH_HLEN + 8;
450 else
451 cp->rx_buf_sz = PKT_BUF_SZ;
454 static inline void cp_rx_skb (struct cp_private *cp, struct sk_buff *skb,
455 struct cp_desc *desc)
457 skb->protocol = eth_type_trans (skb, cp->dev);
459 cp->dev->stats.rx_packets++;
460 cp->dev->stats.rx_bytes += skb->len;
462 #if CP_VLAN_TAG_USED
463 if (cp->vlgrp && (desc->opts2 & cpu_to_le32(RxVlanTagged))) {
464 vlan_hwaccel_receive_skb(skb, cp->vlgrp,
465 swab16(le32_to_cpu(desc->opts2) & 0xffff));
466 } else
467 #endif
468 netif_receive_skb(skb);
471 static void cp_rx_err_acct (struct cp_private *cp, unsigned rx_tail,
472 u32 status, u32 len)
474 netif_dbg(cp, rx_err, cp->dev, "rx err, slot %d status 0x%x len %d\n",
475 rx_tail, status, len);
476 cp->dev->stats.rx_errors++;
477 if (status & RxErrFrame)
478 cp->dev->stats.rx_frame_errors++;
479 if (status & RxErrCRC)
480 cp->dev->stats.rx_crc_errors++;
481 if ((status & RxErrRunt) || (status & RxErrLong))
482 cp->dev->stats.rx_length_errors++;
483 if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag))
484 cp->dev->stats.rx_length_errors++;
485 if (status & RxErrFIFO)
486 cp->dev->stats.rx_fifo_errors++;
489 static inline unsigned int cp_rx_csum_ok (u32 status)
491 unsigned int protocol = (status >> 16) & 0x3;
493 if (likely((protocol == RxProtoTCP) && (!(status & TCPFail))))
494 return 1;
495 else if ((protocol == RxProtoUDP) && (!(status & UDPFail)))
496 return 1;
497 else if ((protocol == RxProtoIP) && (!(status & IPFail)))
498 return 1;
499 return 0;
502 static int cp_rx_poll(struct napi_struct *napi, int budget)
504 struct cp_private *cp = container_of(napi, struct cp_private, napi);
505 struct net_device *dev = cp->dev;
506 unsigned int rx_tail = cp->rx_tail;
507 int rx;
509 rx_status_loop:
510 rx = 0;
511 cpw16(IntrStatus, cp_rx_intr_mask);
513 while (1) {
514 u32 status, len;
515 dma_addr_t mapping;
516 struct sk_buff *skb, *new_skb;
517 struct cp_desc *desc;
518 const unsigned buflen = cp->rx_buf_sz;
520 skb = cp->rx_skb[rx_tail];
521 BUG_ON(!skb);
523 desc = &cp->rx_ring[rx_tail];
524 status = le32_to_cpu(desc->opts1);
525 if (status & DescOwn)
526 break;
528 len = (status & 0x1fff) - 4;
529 mapping = le64_to_cpu(desc->addr);
531 if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag)) {
532 /* we don't support incoming fragmented frames.
533 * instead, we attempt to ensure that the
534 * pre-allocated RX skbs are properly sized such
535 * that RX fragments are never encountered
537 cp_rx_err_acct(cp, rx_tail, status, len);
538 dev->stats.rx_dropped++;
539 cp->cp_stats.rx_frags++;
540 goto rx_next;
543 if (status & (RxError | RxErrFIFO)) {
544 cp_rx_err_acct(cp, rx_tail, status, len);
545 goto rx_next;
548 netif_dbg(cp, rx_status, dev, "rx slot %d status 0x%x len %d\n",
549 rx_tail, status, len);
551 new_skb = netdev_alloc_skb_ip_align(dev, buflen);
552 if (!new_skb) {
553 dev->stats.rx_dropped++;
554 goto rx_next;
557 dma_unmap_single(&cp->pdev->dev, mapping,
558 buflen, PCI_DMA_FROMDEVICE);
560 /* Handle checksum offloading for incoming packets. */
561 if (cp_rx_csum_ok(status))
562 skb->ip_summed = CHECKSUM_UNNECESSARY;
563 else
564 skb->ip_summed = CHECKSUM_NONE;
566 skb_put(skb, len);
568 mapping = dma_map_single(&cp->pdev->dev, new_skb->data, buflen,
569 PCI_DMA_FROMDEVICE);
570 cp->rx_skb[rx_tail] = new_skb;
572 cp_rx_skb(cp, skb, desc);
573 rx++;
575 rx_next:
576 cp->rx_ring[rx_tail].opts2 = 0;
577 cp->rx_ring[rx_tail].addr = cpu_to_le64(mapping);
578 if (rx_tail == (CP_RX_RING_SIZE - 1))
579 desc->opts1 = cpu_to_le32(DescOwn | RingEnd |
580 cp->rx_buf_sz);
581 else
582 desc->opts1 = cpu_to_le32(DescOwn | cp->rx_buf_sz);
583 rx_tail = NEXT_RX(rx_tail);
585 if (rx >= budget)
586 break;
589 cp->rx_tail = rx_tail;
591 /* if we did not reach work limit, then we're done with
592 * this round of polling
594 if (rx < budget) {
595 unsigned long flags;
597 if (cpr16(IntrStatus) & cp_rx_intr_mask)
598 goto rx_status_loop;
600 spin_lock_irqsave(&cp->lock, flags);
601 __napi_complete(napi);
602 cpw16_f(IntrMask, cp_intr_mask);
603 spin_unlock_irqrestore(&cp->lock, flags);
606 return rx;
609 static irqreturn_t cp_interrupt (int irq, void *dev_instance)
611 struct net_device *dev = dev_instance;
612 struct cp_private *cp;
613 u16 status;
615 if (unlikely(dev == NULL))
616 return IRQ_NONE;
617 cp = netdev_priv(dev);
619 status = cpr16(IntrStatus);
620 if (!status || (status == 0xFFFF))
621 return IRQ_NONE;
623 netif_dbg(cp, intr, dev, "intr, status %04x cmd %02x cpcmd %04x\n",
624 status, cpr8(Cmd), cpr16(CpCmd));
626 cpw16(IntrStatus, status & ~cp_rx_intr_mask);
628 spin_lock(&cp->lock);
630 /* close possible race's with dev_close */
631 if (unlikely(!netif_running(dev))) {
632 cpw16(IntrMask, 0);
633 spin_unlock(&cp->lock);
634 return IRQ_HANDLED;
637 if (status & (RxOK | RxErr | RxEmpty | RxFIFOOvr))
638 if (napi_schedule_prep(&cp->napi)) {
639 cpw16_f(IntrMask, cp_norx_intr_mask);
640 __napi_schedule(&cp->napi);
643 if (status & (TxOK | TxErr | TxEmpty | SWInt))
644 cp_tx(cp);
645 if (status & LinkChg)
646 mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
648 spin_unlock(&cp->lock);
650 if (status & PciErr) {
651 u16 pci_status;
653 pci_read_config_word(cp->pdev, PCI_STATUS, &pci_status);
654 pci_write_config_word(cp->pdev, PCI_STATUS, pci_status);
655 netdev_err(dev, "PCI bus error, status=%04x, PCI status=%04x\n",
656 status, pci_status);
658 /* TODO: reset hardware */
661 return IRQ_HANDLED;
664 #ifdef CONFIG_NET_POLL_CONTROLLER
666 * Polling receive - used by netconsole and other diagnostic tools
667 * to allow network i/o with interrupts disabled.
669 static void cp_poll_controller(struct net_device *dev)
671 disable_irq(dev->irq);
672 cp_interrupt(dev->irq, dev);
673 enable_irq(dev->irq);
675 #endif
677 static void cp_tx (struct cp_private *cp)
679 unsigned tx_head = cp->tx_head;
680 unsigned tx_tail = cp->tx_tail;
682 while (tx_tail != tx_head) {
683 struct cp_desc *txd = cp->tx_ring + tx_tail;
684 struct sk_buff *skb;
685 u32 status;
687 rmb();
688 status = le32_to_cpu(txd->opts1);
689 if (status & DescOwn)
690 break;
692 skb = cp->tx_skb[tx_tail];
693 BUG_ON(!skb);
695 dma_unmap_single(&cp->pdev->dev, le64_to_cpu(txd->addr),
696 le32_to_cpu(txd->opts1) & 0xffff,
697 PCI_DMA_TODEVICE);
699 if (status & LastFrag) {
700 if (status & (TxError | TxFIFOUnder)) {
701 netif_dbg(cp, tx_err, cp->dev,
702 "tx err, status 0x%x\n", status);
703 cp->dev->stats.tx_errors++;
704 if (status & TxOWC)
705 cp->dev->stats.tx_window_errors++;
706 if (status & TxMaxCol)
707 cp->dev->stats.tx_aborted_errors++;
708 if (status & TxLinkFail)
709 cp->dev->stats.tx_carrier_errors++;
710 if (status & TxFIFOUnder)
711 cp->dev->stats.tx_fifo_errors++;
712 } else {
713 cp->dev->stats.collisions +=
714 ((status >> TxColCntShift) & TxColCntMask);
715 cp->dev->stats.tx_packets++;
716 cp->dev->stats.tx_bytes += skb->len;
717 netif_dbg(cp, tx_done, cp->dev,
718 "tx done, slot %d\n", tx_tail);
720 dev_kfree_skb_irq(skb);
723 cp->tx_skb[tx_tail] = NULL;
725 tx_tail = NEXT_TX(tx_tail);
728 cp->tx_tail = tx_tail;
730 if (TX_BUFFS_AVAIL(cp) > (MAX_SKB_FRAGS + 1))
731 netif_wake_queue(cp->dev);
734 static netdev_tx_t cp_start_xmit (struct sk_buff *skb,
735 struct net_device *dev)
737 struct cp_private *cp = netdev_priv(dev);
738 unsigned entry;
739 u32 eor, flags;
740 unsigned long intr_flags;
741 #if CP_VLAN_TAG_USED
742 u32 vlan_tag = 0;
743 #endif
744 int mss = 0;
746 spin_lock_irqsave(&cp->lock, intr_flags);
748 /* This is a hard error, log it. */
749 if (TX_BUFFS_AVAIL(cp) <= (skb_shinfo(skb)->nr_frags + 1)) {
750 netif_stop_queue(dev);
751 spin_unlock_irqrestore(&cp->lock, intr_flags);
752 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
753 return NETDEV_TX_BUSY;
756 #if CP_VLAN_TAG_USED
757 if (cp->vlgrp && vlan_tx_tag_present(skb))
758 vlan_tag = TxVlanTag | swab16(vlan_tx_tag_get(skb));
759 #endif
761 entry = cp->tx_head;
762 eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
763 if (dev->features & NETIF_F_TSO)
764 mss = skb_shinfo(skb)->gso_size;
766 if (skb_shinfo(skb)->nr_frags == 0) {
767 struct cp_desc *txd = &cp->tx_ring[entry];
768 u32 len;
769 dma_addr_t mapping;
771 len = skb->len;
772 mapping = dma_map_single(&cp->pdev->dev, skb->data, len, PCI_DMA_TODEVICE);
773 CP_VLAN_TX_TAG(txd, vlan_tag);
774 txd->addr = cpu_to_le64(mapping);
775 wmb();
777 flags = eor | len | DescOwn | FirstFrag | LastFrag;
779 if (mss)
780 flags |= LargeSend | ((mss & MSSMask) << MSSShift);
781 else if (skb->ip_summed == CHECKSUM_PARTIAL) {
782 const struct iphdr *ip = ip_hdr(skb);
783 if (ip->protocol == IPPROTO_TCP)
784 flags |= IPCS | TCPCS;
785 else if (ip->protocol == IPPROTO_UDP)
786 flags |= IPCS | UDPCS;
787 else
788 WARN_ON(1); /* we need a WARN() */
791 txd->opts1 = cpu_to_le32(flags);
792 wmb();
794 cp->tx_skb[entry] = skb;
795 entry = NEXT_TX(entry);
796 } else {
797 struct cp_desc *txd;
798 u32 first_len, first_eor;
799 dma_addr_t first_mapping;
800 int frag, first_entry = entry;
801 const struct iphdr *ip = ip_hdr(skb);
803 /* We must give this initial chunk to the device last.
804 * Otherwise we could race with the device.
806 first_eor = eor;
807 first_len = skb_headlen(skb);
808 first_mapping = dma_map_single(&cp->pdev->dev, skb->data,
809 first_len, PCI_DMA_TODEVICE);
810 cp->tx_skb[entry] = skb;
811 entry = NEXT_TX(entry);
813 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
814 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
815 u32 len;
816 u32 ctrl;
817 dma_addr_t mapping;
819 len = this_frag->size;
820 mapping = dma_map_single(&cp->pdev->dev,
821 ((void *) page_address(this_frag->page) +
822 this_frag->page_offset),
823 len, PCI_DMA_TODEVICE);
824 eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
826 ctrl = eor | len | DescOwn;
828 if (mss)
829 ctrl |= LargeSend |
830 ((mss & MSSMask) << MSSShift);
831 else if (skb->ip_summed == CHECKSUM_PARTIAL) {
832 if (ip->protocol == IPPROTO_TCP)
833 ctrl |= IPCS | TCPCS;
834 else if (ip->protocol == IPPROTO_UDP)
835 ctrl |= IPCS | UDPCS;
836 else
837 BUG();
840 if (frag == skb_shinfo(skb)->nr_frags - 1)
841 ctrl |= LastFrag;
843 txd = &cp->tx_ring[entry];
844 CP_VLAN_TX_TAG(txd, vlan_tag);
845 txd->addr = cpu_to_le64(mapping);
846 wmb();
848 txd->opts1 = cpu_to_le32(ctrl);
849 wmb();
851 cp->tx_skb[entry] = skb;
852 entry = NEXT_TX(entry);
855 txd = &cp->tx_ring[first_entry];
856 CP_VLAN_TX_TAG(txd, vlan_tag);
857 txd->addr = cpu_to_le64(first_mapping);
858 wmb();
860 if (skb->ip_summed == CHECKSUM_PARTIAL) {
861 if (ip->protocol == IPPROTO_TCP)
862 txd->opts1 = cpu_to_le32(first_eor | first_len |
863 FirstFrag | DescOwn |
864 IPCS | TCPCS);
865 else if (ip->protocol == IPPROTO_UDP)
866 txd->opts1 = cpu_to_le32(first_eor | first_len |
867 FirstFrag | DescOwn |
868 IPCS | UDPCS);
869 else
870 BUG();
871 } else
872 txd->opts1 = cpu_to_le32(first_eor | first_len |
873 FirstFrag | DescOwn);
874 wmb();
876 cp->tx_head = entry;
877 netif_dbg(cp, tx_queued, cp->dev, "tx queued, slot %d, skblen %d\n",
878 entry, skb->len);
879 if (TX_BUFFS_AVAIL(cp) <= (MAX_SKB_FRAGS + 1))
880 netif_stop_queue(dev);
882 spin_unlock_irqrestore(&cp->lock, intr_flags);
884 cpw8(TxPoll, NormalTxPoll);
886 return NETDEV_TX_OK;
889 /* Set or clear the multicast filter for this adaptor.
890 This routine is not state sensitive and need not be SMP locked. */
892 static void __cp_set_rx_mode (struct net_device *dev)
894 struct cp_private *cp = netdev_priv(dev);
895 u32 mc_filter[2]; /* Multicast hash filter */
896 int rx_mode;
897 u32 tmp;
899 /* Note: do not reorder, GCC is clever about common statements. */
900 if (dev->flags & IFF_PROMISC) {
901 /* Unconditionally log net taps. */
902 rx_mode =
903 AcceptBroadcast | AcceptMulticast | AcceptMyPhys |
904 AcceptAllPhys;
905 mc_filter[1] = mc_filter[0] = 0xffffffff;
906 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
907 (dev->flags & IFF_ALLMULTI)) {
908 /* Too many to filter perfectly -- accept all multicasts. */
909 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
910 mc_filter[1] = mc_filter[0] = 0xffffffff;
911 } else {
912 struct netdev_hw_addr *ha;
913 rx_mode = AcceptBroadcast | AcceptMyPhys;
914 mc_filter[1] = mc_filter[0] = 0;
915 netdev_for_each_mc_addr(ha, dev) {
916 int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
918 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
919 rx_mode |= AcceptMulticast;
923 /* We can safely update without stopping the chip. */
924 tmp = cp_rx_config | rx_mode;
925 if (cp->rx_config != tmp) {
926 cpw32_f (RxConfig, tmp);
927 cp->rx_config = tmp;
929 cpw32_f (MAR0 + 0, mc_filter[0]);
930 cpw32_f (MAR0 + 4, mc_filter[1]);
933 static void cp_set_rx_mode (struct net_device *dev)
935 unsigned long flags;
936 struct cp_private *cp = netdev_priv(dev);
938 spin_lock_irqsave (&cp->lock, flags);
939 __cp_set_rx_mode(dev);
940 spin_unlock_irqrestore (&cp->lock, flags);
943 static void __cp_get_stats(struct cp_private *cp)
945 /* only lower 24 bits valid; write any value to clear */
946 cp->dev->stats.rx_missed_errors += (cpr32 (RxMissed) & 0xffffff);
947 cpw32 (RxMissed, 0);
950 static struct net_device_stats *cp_get_stats(struct net_device *dev)
952 struct cp_private *cp = netdev_priv(dev);
953 unsigned long flags;
955 /* The chip only need report frame silently dropped. */
956 spin_lock_irqsave(&cp->lock, flags);
957 if (netif_running(dev) && netif_device_present(dev))
958 __cp_get_stats(cp);
959 spin_unlock_irqrestore(&cp->lock, flags);
961 return &dev->stats;
964 static void cp_stop_hw (struct cp_private *cp)
966 cpw16(IntrStatus, ~(cpr16(IntrStatus)));
967 cpw16_f(IntrMask, 0);
968 cpw8(Cmd, 0);
969 cpw16_f(CpCmd, 0);
970 cpw16_f(IntrStatus, ~(cpr16(IntrStatus)));
972 cp->rx_tail = 0;
973 cp->tx_head = cp->tx_tail = 0;
976 static void cp_reset_hw (struct cp_private *cp)
978 unsigned work = 1000;
980 cpw8(Cmd, CmdReset);
982 while (work--) {
983 if (!(cpr8(Cmd) & CmdReset))
984 return;
986 schedule_timeout_uninterruptible(10);
989 netdev_err(cp->dev, "hardware reset timeout\n");
992 static inline void cp_start_hw (struct cp_private *cp)
994 cpw16(CpCmd, cp->cpcmd);
995 cpw8(Cmd, RxOn | TxOn);
998 static void cp_init_hw (struct cp_private *cp)
1000 struct net_device *dev = cp->dev;
1001 dma_addr_t ring_dma;
1003 cp_reset_hw(cp);
1005 cpw8_f (Cfg9346, Cfg9346_Unlock);
1007 /* Restore our idea of the MAC address. */
1008 cpw32_f (MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0)));
1009 cpw32_f (MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4)));
1011 cp_start_hw(cp);
1012 cpw8(TxThresh, 0x06); /* XXX convert magic num to a constant */
1014 __cp_set_rx_mode(dev);
1015 cpw32_f (TxConfig, IFG | (TX_DMA_BURST << TxDMAShift));
1017 cpw8(Config1, cpr8(Config1) | DriverLoaded | PMEnable);
1018 /* Disable Wake-on-LAN. Can be turned on with ETHTOOL_SWOL */
1019 cpw8(Config3, PARMEnable);
1020 cp->wol_enabled = 0;
1022 cpw8(Config5, cpr8(Config5) & PMEStatus);
1024 cpw32_f(HiTxRingAddr, 0);
1025 cpw32_f(HiTxRingAddr + 4, 0);
1027 ring_dma = cp->ring_dma;
1028 cpw32_f(RxRingAddr, ring_dma & 0xffffffff);
1029 cpw32_f(RxRingAddr + 4, (ring_dma >> 16) >> 16);
1031 ring_dma += sizeof(struct cp_desc) * CP_RX_RING_SIZE;
1032 cpw32_f(TxRingAddr, ring_dma & 0xffffffff);
1033 cpw32_f(TxRingAddr + 4, (ring_dma >> 16) >> 16);
1035 cpw16(MultiIntr, 0);
1037 cpw16_f(IntrMask, cp_intr_mask);
1039 cpw8_f(Cfg9346, Cfg9346_Lock);
1042 static int cp_refill_rx(struct cp_private *cp)
1044 struct net_device *dev = cp->dev;
1045 unsigned i;
1047 for (i = 0; i < CP_RX_RING_SIZE; i++) {
1048 struct sk_buff *skb;
1049 dma_addr_t mapping;
1051 skb = netdev_alloc_skb_ip_align(dev, cp->rx_buf_sz);
1052 if (!skb)
1053 goto err_out;
1055 mapping = dma_map_single(&cp->pdev->dev, skb->data,
1056 cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1057 cp->rx_skb[i] = skb;
1059 cp->rx_ring[i].opts2 = 0;
1060 cp->rx_ring[i].addr = cpu_to_le64(mapping);
1061 if (i == (CP_RX_RING_SIZE - 1))
1062 cp->rx_ring[i].opts1 =
1063 cpu_to_le32(DescOwn | RingEnd | cp->rx_buf_sz);
1064 else
1065 cp->rx_ring[i].opts1 =
1066 cpu_to_le32(DescOwn | cp->rx_buf_sz);
1069 return 0;
1071 err_out:
1072 cp_clean_rings(cp);
1073 return -ENOMEM;
1076 static void cp_init_rings_index (struct cp_private *cp)
1078 cp->rx_tail = 0;
1079 cp->tx_head = cp->tx_tail = 0;
1082 static int cp_init_rings (struct cp_private *cp)
1084 memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1085 cp->tx_ring[CP_TX_RING_SIZE - 1].opts1 = cpu_to_le32(RingEnd);
1087 cp_init_rings_index(cp);
1089 return cp_refill_rx (cp);
1092 static int cp_alloc_rings (struct cp_private *cp)
1094 void *mem;
1096 mem = dma_alloc_coherent(&cp->pdev->dev, CP_RING_BYTES,
1097 &cp->ring_dma, GFP_KERNEL);
1098 if (!mem)
1099 return -ENOMEM;
1101 cp->rx_ring = mem;
1102 cp->tx_ring = &cp->rx_ring[CP_RX_RING_SIZE];
1104 return cp_init_rings(cp);
1107 static void cp_clean_rings (struct cp_private *cp)
1109 struct cp_desc *desc;
1110 unsigned i;
1112 for (i = 0; i < CP_RX_RING_SIZE; i++) {
1113 if (cp->rx_skb[i]) {
1114 desc = cp->rx_ring + i;
1115 dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr),
1116 cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1117 dev_kfree_skb(cp->rx_skb[i]);
1121 for (i = 0; i < CP_TX_RING_SIZE; i++) {
1122 if (cp->tx_skb[i]) {
1123 struct sk_buff *skb = cp->tx_skb[i];
1125 desc = cp->tx_ring + i;
1126 dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr),
1127 le32_to_cpu(desc->opts1) & 0xffff,
1128 PCI_DMA_TODEVICE);
1129 if (le32_to_cpu(desc->opts1) & LastFrag)
1130 dev_kfree_skb(skb);
1131 cp->dev->stats.tx_dropped++;
1135 memset(cp->rx_ring, 0, sizeof(struct cp_desc) * CP_RX_RING_SIZE);
1136 memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1138 memset(cp->rx_skb, 0, sizeof(struct sk_buff *) * CP_RX_RING_SIZE);
1139 memset(cp->tx_skb, 0, sizeof(struct sk_buff *) * CP_TX_RING_SIZE);
1142 static void cp_free_rings (struct cp_private *cp)
1144 cp_clean_rings(cp);
1145 dma_free_coherent(&cp->pdev->dev, CP_RING_BYTES, cp->rx_ring,
1146 cp->ring_dma);
1147 cp->rx_ring = NULL;
1148 cp->tx_ring = NULL;
1151 static int cp_open (struct net_device *dev)
1153 struct cp_private *cp = netdev_priv(dev);
1154 int rc;
1156 netif_dbg(cp, ifup, dev, "enabling interface\n");
1158 rc = cp_alloc_rings(cp);
1159 if (rc)
1160 return rc;
1162 napi_enable(&cp->napi);
1164 cp_init_hw(cp);
1166 rc = request_irq(dev->irq, cp_interrupt, IRQF_SHARED, dev->name, dev);
1167 if (rc)
1168 goto err_out_hw;
1170 netif_carrier_off(dev);
1171 mii_check_media(&cp->mii_if, netif_msg_link(cp), true);
1172 netif_start_queue(dev);
1174 return 0;
1176 err_out_hw:
1177 napi_disable(&cp->napi);
1178 cp_stop_hw(cp);
1179 cp_free_rings(cp);
1180 return rc;
1183 static int cp_close (struct net_device *dev)
1185 struct cp_private *cp = netdev_priv(dev);
1186 unsigned long flags;
1188 napi_disable(&cp->napi);
1190 netif_dbg(cp, ifdown, dev, "disabling interface\n");
1192 spin_lock_irqsave(&cp->lock, flags);
1194 netif_stop_queue(dev);
1195 netif_carrier_off(dev);
1197 cp_stop_hw(cp);
1199 spin_unlock_irqrestore(&cp->lock, flags);
1201 free_irq(dev->irq, dev);
1203 cp_free_rings(cp);
1204 return 0;
1207 static void cp_tx_timeout(struct net_device *dev)
1209 struct cp_private *cp = netdev_priv(dev);
1210 unsigned long flags;
1211 int rc;
1213 netdev_warn(dev, "Transmit timeout, status %2x %4x %4x %4x\n",
1214 cpr8(Cmd), cpr16(CpCmd),
1215 cpr16(IntrStatus), cpr16(IntrMask));
1217 spin_lock_irqsave(&cp->lock, flags);
1219 cp_stop_hw(cp);
1220 cp_clean_rings(cp);
1221 rc = cp_init_rings(cp);
1222 cp_start_hw(cp);
1224 netif_wake_queue(dev);
1226 spin_unlock_irqrestore(&cp->lock, flags);
1229 #ifdef BROKEN
1230 static int cp_change_mtu(struct net_device *dev, int new_mtu)
1232 struct cp_private *cp = netdev_priv(dev);
1233 int rc;
1234 unsigned long flags;
1236 /* check for invalid MTU, according to hardware limits */
1237 if (new_mtu < CP_MIN_MTU || new_mtu > CP_MAX_MTU)
1238 return -EINVAL;
1240 /* if network interface not up, no need for complexity */
1241 if (!netif_running(dev)) {
1242 dev->mtu = new_mtu;
1243 cp_set_rxbufsize(cp); /* set new rx buf size */
1244 return 0;
1247 spin_lock_irqsave(&cp->lock, flags);
1249 cp_stop_hw(cp); /* stop h/w and free rings */
1250 cp_clean_rings(cp);
1252 dev->mtu = new_mtu;
1253 cp_set_rxbufsize(cp); /* set new rx buf size */
1255 rc = cp_init_rings(cp); /* realloc and restart h/w */
1256 cp_start_hw(cp);
1258 spin_unlock_irqrestore(&cp->lock, flags);
1260 return rc;
1262 #endif /* BROKEN */
1264 static const char mii_2_8139_map[8] = {
1265 BasicModeCtrl,
1266 BasicModeStatus,
1269 NWayAdvert,
1270 NWayLPAR,
1271 NWayExpansion,
1275 static int mdio_read(struct net_device *dev, int phy_id, int location)
1277 struct cp_private *cp = netdev_priv(dev);
1279 return location < 8 && mii_2_8139_map[location] ?
1280 readw(cp->regs + mii_2_8139_map[location]) : 0;
1284 static void mdio_write(struct net_device *dev, int phy_id, int location,
1285 int value)
1287 struct cp_private *cp = netdev_priv(dev);
1289 if (location == 0) {
1290 cpw8(Cfg9346, Cfg9346_Unlock);
1291 cpw16(BasicModeCtrl, value);
1292 cpw8(Cfg9346, Cfg9346_Lock);
1293 } else if (location < 8 && mii_2_8139_map[location])
1294 cpw16(mii_2_8139_map[location], value);
1297 /* Set the ethtool Wake-on-LAN settings */
1298 static int netdev_set_wol (struct cp_private *cp,
1299 const struct ethtool_wolinfo *wol)
1301 u8 options;
1303 options = cpr8 (Config3) & ~(LinkUp | MagicPacket);
1304 /* If WOL is being disabled, no need for complexity */
1305 if (wol->wolopts) {
1306 if (wol->wolopts & WAKE_PHY) options |= LinkUp;
1307 if (wol->wolopts & WAKE_MAGIC) options |= MagicPacket;
1310 cpw8 (Cfg9346, Cfg9346_Unlock);
1311 cpw8 (Config3, options);
1312 cpw8 (Cfg9346, Cfg9346_Lock);
1314 options = 0; /* Paranoia setting */
1315 options = cpr8 (Config5) & ~(UWF | MWF | BWF);
1316 /* If WOL is being disabled, no need for complexity */
1317 if (wol->wolopts) {
1318 if (wol->wolopts & WAKE_UCAST) options |= UWF;
1319 if (wol->wolopts & WAKE_BCAST) options |= BWF;
1320 if (wol->wolopts & WAKE_MCAST) options |= MWF;
1323 cpw8 (Config5, options);
1325 cp->wol_enabled = (wol->wolopts) ? 1 : 0;
1327 return 0;
1330 /* Get the ethtool Wake-on-LAN settings */
1331 static void netdev_get_wol (struct cp_private *cp,
1332 struct ethtool_wolinfo *wol)
1334 u8 options;
1336 wol->wolopts = 0; /* Start from scratch */
1337 wol->supported = WAKE_PHY | WAKE_BCAST | WAKE_MAGIC |
1338 WAKE_MCAST | WAKE_UCAST;
1339 /* We don't need to go on if WOL is disabled */
1340 if (!cp->wol_enabled) return;
1342 options = cpr8 (Config3);
1343 if (options & LinkUp) wol->wolopts |= WAKE_PHY;
1344 if (options & MagicPacket) wol->wolopts |= WAKE_MAGIC;
1346 options = 0; /* Paranoia setting */
1347 options = cpr8 (Config5);
1348 if (options & UWF) wol->wolopts |= WAKE_UCAST;
1349 if (options & BWF) wol->wolopts |= WAKE_BCAST;
1350 if (options & MWF) wol->wolopts |= WAKE_MCAST;
1353 static void cp_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info)
1355 struct cp_private *cp = netdev_priv(dev);
1357 strcpy (info->driver, DRV_NAME);
1358 strcpy (info->version, DRV_VERSION);
1359 strcpy (info->bus_info, pci_name(cp->pdev));
1362 static int cp_get_regs_len(struct net_device *dev)
1364 return CP_REGS_SIZE;
1367 static int cp_get_sset_count (struct net_device *dev, int sset)
1369 switch (sset) {
1370 case ETH_SS_STATS:
1371 return CP_NUM_STATS;
1372 default:
1373 return -EOPNOTSUPP;
1377 static int cp_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1379 struct cp_private *cp = netdev_priv(dev);
1380 int rc;
1381 unsigned long flags;
1383 spin_lock_irqsave(&cp->lock, flags);
1384 rc = mii_ethtool_gset(&cp->mii_if, cmd);
1385 spin_unlock_irqrestore(&cp->lock, flags);
1387 return rc;
1390 static int cp_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1392 struct cp_private *cp = netdev_priv(dev);
1393 int rc;
1394 unsigned long flags;
1396 spin_lock_irqsave(&cp->lock, flags);
1397 rc = mii_ethtool_sset(&cp->mii_if, cmd);
1398 spin_unlock_irqrestore(&cp->lock, flags);
1400 return rc;
1403 static int cp_nway_reset(struct net_device *dev)
1405 struct cp_private *cp = netdev_priv(dev);
1406 return mii_nway_restart(&cp->mii_if);
1409 static u32 cp_get_msglevel(struct net_device *dev)
1411 struct cp_private *cp = netdev_priv(dev);
1412 return cp->msg_enable;
1415 static void cp_set_msglevel(struct net_device *dev, u32 value)
1417 struct cp_private *cp = netdev_priv(dev);
1418 cp->msg_enable = value;
1421 static u32 cp_get_rx_csum(struct net_device *dev)
1423 struct cp_private *cp = netdev_priv(dev);
1424 return (cpr16(CpCmd) & RxChkSum) ? 1 : 0;
1427 static int cp_set_rx_csum(struct net_device *dev, u32 data)
1429 struct cp_private *cp = netdev_priv(dev);
1430 u16 cmd = cp->cpcmd, newcmd;
1432 newcmd = cmd;
1434 if (data)
1435 newcmd |= RxChkSum;
1436 else
1437 newcmd &= ~RxChkSum;
1439 if (newcmd != cmd) {
1440 unsigned long flags;
1442 spin_lock_irqsave(&cp->lock, flags);
1443 cp->cpcmd = newcmd;
1444 cpw16_f(CpCmd, newcmd);
1445 spin_unlock_irqrestore(&cp->lock, flags);
1448 return 0;
1451 static void cp_get_regs(struct net_device *dev, struct ethtool_regs *regs,
1452 void *p)
1454 struct cp_private *cp = netdev_priv(dev);
1455 unsigned long flags;
1457 if (regs->len < CP_REGS_SIZE)
1458 return /* -EINVAL */;
1460 regs->version = CP_REGS_VER;
1462 spin_lock_irqsave(&cp->lock, flags);
1463 memcpy_fromio(p, cp->regs, CP_REGS_SIZE);
1464 spin_unlock_irqrestore(&cp->lock, flags);
1467 static void cp_get_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1469 struct cp_private *cp = netdev_priv(dev);
1470 unsigned long flags;
1472 spin_lock_irqsave (&cp->lock, flags);
1473 netdev_get_wol (cp, wol);
1474 spin_unlock_irqrestore (&cp->lock, flags);
1477 static int cp_set_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1479 struct cp_private *cp = netdev_priv(dev);
1480 unsigned long flags;
1481 int rc;
1483 spin_lock_irqsave (&cp->lock, flags);
1484 rc = netdev_set_wol (cp, wol);
1485 spin_unlock_irqrestore (&cp->lock, flags);
1487 return rc;
1490 static void cp_get_strings (struct net_device *dev, u32 stringset, u8 *buf)
1492 switch (stringset) {
1493 case ETH_SS_STATS:
1494 memcpy(buf, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
1495 break;
1496 default:
1497 BUG();
1498 break;
1502 static void cp_get_ethtool_stats (struct net_device *dev,
1503 struct ethtool_stats *estats, u64 *tmp_stats)
1505 struct cp_private *cp = netdev_priv(dev);
1506 struct cp_dma_stats *nic_stats;
1507 dma_addr_t dma;
1508 int i;
1510 nic_stats = dma_alloc_coherent(&cp->pdev->dev, sizeof(*nic_stats),
1511 &dma, GFP_KERNEL);
1512 if (!nic_stats)
1513 return;
1515 /* begin NIC statistics dump */
1516 cpw32(StatsAddr + 4, (u64)dma >> 32);
1517 cpw32(StatsAddr, ((u64)dma & DMA_BIT_MASK(32)) | DumpStats);
1518 cpr32(StatsAddr);
1520 for (i = 0; i < 1000; i++) {
1521 if ((cpr32(StatsAddr) & DumpStats) == 0)
1522 break;
1523 udelay(10);
1525 cpw32(StatsAddr, 0);
1526 cpw32(StatsAddr + 4, 0);
1527 cpr32(StatsAddr);
1529 i = 0;
1530 tmp_stats[i++] = le64_to_cpu(nic_stats->tx_ok);
1531 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok);
1532 tmp_stats[i++] = le64_to_cpu(nic_stats->tx_err);
1533 tmp_stats[i++] = le32_to_cpu(nic_stats->rx_err);
1534 tmp_stats[i++] = le16_to_cpu(nic_stats->rx_fifo);
1535 tmp_stats[i++] = le16_to_cpu(nic_stats->frame_align);
1536 tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_1col);
1537 tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_mcol);
1538 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_phys);
1539 tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_bcast);
1540 tmp_stats[i++] = le32_to_cpu(nic_stats->rx_ok_mcast);
1541 tmp_stats[i++] = le16_to_cpu(nic_stats->tx_abort);
1542 tmp_stats[i++] = le16_to_cpu(nic_stats->tx_underrun);
1543 tmp_stats[i++] = cp->cp_stats.rx_frags;
1544 BUG_ON(i != CP_NUM_STATS);
1546 dma_free_coherent(&cp->pdev->dev, sizeof(*nic_stats), nic_stats, dma);
1549 static const struct ethtool_ops cp_ethtool_ops = {
1550 .get_drvinfo = cp_get_drvinfo,
1551 .get_regs_len = cp_get_regs_len,
1552 .get_sset_count = cp_get_sset_count,
1553 .get_settings = cp_get_settings,
1554 .set_settings = cp_set_settings,
1555 .nway_reset = cp_nway_reset,
1556 .get_link = ethtool_op_get_link,
1557 .get_msglevel = cp_get_msglevel,
1558 .set_msglevel = cp_set_msglevel,
1559 .get_rx_csum = cp_get_rx_csum,
1560 .set_rx_csum = cp_set_rx_csum,
1561 .set_tx_csum = ethtool_op_set_tx_csum, /* local! */
1562 .set_sg = ethtool_op_set_sg,
1563 .set_tso = ethtool_op_set_tso,
1564 .get_regs = cp_get_regs,
1565 .get_wol = cp_get_wol,
1566 .set_wol = cp_set_wol,
1567 .get_strings = cp_get_strings,
1568 .get_ethtool_stats = cp_get_ethtool_stats,
1569 .get_eeprom_len = cp_get_eeprom_len,
1570 .get_eeprom = cp_get_eeprom,
1571 .set_eeprom = cp_set_eeprom,
1574 static int cp_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1576 struct cp_private *cp = netdev_priv(dev);
1577 int rc;
1578 unsigned long flags;
1580 if (!netif_running(dev))
1581 return -EINVAL;
1583 spin_lock_irqsave(&cp->lock, flags);
1584 rc = generic_mii_ioctl(&cp->mii_if, if_mii(rq), cmd, NULL);
1585 spin_unlock_irqrestore(&cp->lock, flags);
1586 return rc;
1589 static int cp_set_mac_address(struct net_device *dev, void *p)
1591 struct cp_private *cp = netdev_priv(dev);
1592 struct sockaddr *addr = p;
1594 if (!is_valid_ether_addr(addr->sa_data))
1595 return -EADDRNOTAVAIL;
1597 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1599 spin_lock_irq(&cp->lock);
1601 cpw8_f(Cfg9346, Cfg9346_Unlock);
1602 cpw32_f(MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0)));
1603 cpw32_f(MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4)));
1604 cpw8_f(Cfg9346, Cfg9346_Lock);
1606 spin_unlock_irq(&cp->lock);
1608 return 0;
1611 /* Serial EEPROM section. */
1613 /* EEPROM_Ctrl bits. */
1614 #define EE_SHIFT_CLK 0x04 /* EEPROM shift clock. */
1615 #define EE_CS 0x08 /* EEPROM chip select. */
1616 #define EE_DATA_WRITE 0x02 /* EEPROM chip data in. */
1617 #define EE_WRITE_0 0x00
1618 #define EE_WRITE_1 0x02
1619 #define EE_DATA_READ 0x01 /* EEPROM chip data out. */
1620 #define EE_ENB (0x80 | EE_CS)
1622 /* Delay between EEPROM clock transitions.
1623 No extra delay is needed with 33Mhz PCI, but 66Mhz may change this.
1626 #define eeprom_delay() readl(ee_addr)
1628 /* The EEPROM commands include the alway-set leading bit. */
1629 #define EE_EXTEND_CMD (4)
1630 #define EE_WRITE_CMD (5)
1631 #define EE_READ_CMD (6)
1632 #define EE_ERASE_CMD (7)
1634 #define EE_EWDS_ADDR (0)
1635 #define EE_WRAL_ADDR (1)
1636 #define EE_ERAL_ADDR (2)
1637 #define EE_EWEN_ADDR (3)
1639 #define CP_EEPROM_MAGIC PCI_DEVICE_ID_REALTEK_8139
1641 static void eeprom_cmd_start(void __iomem *ee_addr)
1643 writeb (EE_ENB & ~EE_CS, ee_addr);
1644 writeb (EE_ENB, ee_addr);
1645 eeprom_delay ();
1648 static void eeprom_cmd(void __iomem *ee_addr, int cmd, int cmd_len)
1650 int i;
1652 /* Shift the command bits out. */
1653 for (i = cmd_len - 1; i >= 0; i--) {
1654 int dataval = (cmd & (1 << i)) ? EE_DATA_WRITE : 0;
1655 writeb (EE_ENB | dataval, ee_addr);
1656 eeprom_delay ();
1657 writeb (EE_ENB | dataval | EE_SHIFT_CLK, ee_addr);
1658 eeprom_delay ();
1660 writeb (EE_ENB, ee_addr);
1661 eeprom_delay ();
1664 static void eeprom_cmd_end(void __iomem *ee_addr)
1666 writeb (~EE_CS, ee_addr);
1667 eeprom_delay ();
1670 static void eeprom_extend_cmd(void __iomem *ee_addr, int extend_cmd,
1671 int addr_len)
1673 int cmd = (EE_EXTEND_CMD << addr_len) | (extend_cmd << (addr_len - 2));
1675 eeprom_cmd_start(ee_addr);
1676 eeprom_cmd(ee_addr, cmd, 3 + addr_len);
1677 eeprom_cmd_end(ee_addr);
1680 static u16 read_eeprom (void __iomem *ioaddr, int location, int addr_len)
1682 int i;
1683 u16 retval = 0;
1684 void __iomem *ee_addr = ioaddr + Cfg9346;
1685 int read_cmd = location | (EE_READ_CMD << addr_len);
1687 eeprom_cmd_start(ee_addr);
1688 eeprom_cmd(ee_addr, read_cmd, 3 + addr_len);
1690 for (i = 16; i > 0; i--) {
1691 writeb (EE_ENB | EE_SHIFT_CLK, ee_addr);
1692 eeprom_delay ();
1693 retval =
1694 (retval << 1) | ((readb (ee_addr) & EE_DATA_READ) ? 1 :
1696 writeb (EE_ENB, ee_addr);
1697 eeprom_delay ();
1700 eeprom_cmd_end(ee_addr);
1702 return retval;
1705 static void write_eeprom(void __iomem *ioaddr, int location, u16 val,
1706 int addr_len)
1708 int i;
1709 void __iomem *ee_addr = ioaddr + Cfg9346;
1710 int write_cmd = location | (EE_WRITE_CMD << addr_len);
1712 eeprom_extend_cmd(ee_addr, EE_EWEN_ADDR, addr_len);
1714 eeprom_cmd_start(ee_addr);
1715 eeprom_cmd(ee_addr, write_cmd, 3 + addr_len);
1716 eeprom_cmd(ee_addr, val, 16);
1717 eeprom_cmd_end(ee_addr);
1719 eeprom_cmd_start(ee_addr);
1720 for (i = 0; i < 20000; i++)
1721 if (readb(ee_addr) & EE_DATA_READ)
1722 break;
1723 eeprom_cmd_end(ee_addr);
1725 eeprom_extend_cmd(ee_addr, EE_EWDS_ADDR, addr_len);
1728 static int cp_get_eeprom_len(struct net_device *dev)
1730 struct cp_private *cp = netdev_priv(dev);
1731 int size;
1733 spin_lock_irq(&cp->lock);
1734 size = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 256 : 128;
1735 spin_unlock_irq(&cp->lock);
1737 return size;
1740 static int cp_get_eeprom(struct net_device *dev,
1741 struct ethtool_eeprom *eeprom, u8 *data)
1743 struct cp_private *cp = netdev_priv(dev);
1744 unsigned int addr_len;
1745 u16 val;
1746 u32 offset = eeprom->offset >> 1;
1747 u32 len = eeprom->len;
1748 u32 i = 0;
1750 eeprom->magic = CP_EEPROM_MAGIC;
1752 spin_lock_irq(&cp->lock);
1754 addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1756 if (eeprom->offset & 1) {
1757 val = read_eeprom(cp->regs, offset, addr_len);
1758 data[i++] = (u8)(val >> 8);
1759 offset++;
1762 while (i < len - 1) {
1763 val = read_eeprom(cp->regs, offset, addr_len);
1764 data[i++] = (u8)val;
1765 data[i++] = (u8)(val >> 8);
1766 offset++;
1769 if (i < len) {
1770 val = read_eeprom(cp->regs, offset, addr_len);
1771 data[i] = (u8)val;
1774 spin_unlock_irq(&cp->lock);
1775 return 0;
1778 static int cp_set_eeprom(struct net_device *dev,
1779 struct ethtool_eeprom *eeprom, u8 *data)
1781 struct cp_private *cp = netdev_priv(dev);
1782 unsigned int addr_len;
1783 u16 val;
1784 u32 offset = eeprom->offset >> 1;
1785 u32 len = eeprom->len;
1786 u32 i = 0;
1788 if (eeprom->magic != CP_EEPROM_MAGIC)
1789 return -EINVAL;
1791 spin_lock_irq(&cp->lock);
1793 addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1795 if (eeprom->offset & 1) {
1796 val = read_eeprom(cp->regs, offset, addr_len) & 0xff;
1797 val |= (u16)data[i++] << 8;
1798 write_eeprom(cp->regs, offset, val, addr_len);
1799 offset++;
1802 while (i < len - 1) {
1803 val = (u16)data[i++];
1804 val |= (u16)data[i++] << 8;
1805 write_eeprom(cp->regs, offset, val, addr_len);
1806 offset++;
1809 if (i < len) {
1810 val = read_eeprom(cp->regs, offset, addr_len) & 0xff00;
1811 val |= (u16)data[i];
1812 write_eeprom(cp->regs, offset, val, addr_len);
1815 spin_unlock_irq(&cp->lock);
1816 return 0;
1819 /* Put the board into D3cold state and wait for WakeUp signal */
1820 static void cp_set_d3_state (struct cp_private *cp)
1822 pci_enable_wake (cp->pdev, 0, 1); /* Enable PME# generation */
1823 pci_set_power_state (cp->pdev, PCI_D3hot);
1826 static const struct net_device_ops cp_netdev_ops = {
1827 .ndo_open = cp_open,
1828 .ndo_stop = cp_close,
1829 .ndo_validate_addr = eth_validate_addr,
1830 .ndo_set_mac_address = cp_set_mac_address,
1831 .ndo_set_multicast_list = cp_set_rx_mode,
1832 .ndo_get_stats = cp_get_stats,
1833 .ndo_do_ioctl = cp_ioctl,
1834 .ndo_start_xmit = cp_start_xmit,
1835 .ndo_tx_timeout = cp_tx_timeout,
1836 #if CP_VLAN_TAG_USED
1837 .ndo_vlan_rx_register = cp_vlan_rx_register,
1838 #endif
1839 #ifdef BROKEN
1840 .ndo_change_mtu = cp_change_mtu,
1841 #endif
1843 #ifdef CONFIG_NET_POLL_CONTROLLER
1844 .ndo_poll_controller = cp_poll_controller,
1845 #endif
1848 static int cp_init_one (struct pci_dev *pdev, const struct pci_device_id *ent)
1850 struct net_device *dev;
1851 struct cp_private *cp;
1852 int rc;
1853 void __iomem *regs;
1854 resource_size_t pciaddr;
1855 unsigned int addr_len, i, pci_using_dac;
1857 #ifndef MODULE
1858 static int version_printed;
1859 if (version_printed++ == 0)
1860 pr_info("%s", version);
1861 #endif
1863 if (pdev->vendor == PCI_VENDOR_ID_REALTEK &&
1864 pdev->device == PCI_DEVICE_ID_REALTEK_8139 && pdev->revision < 0x20) {
1865 dev_info(&pdev->dev,
1866 "This (id %04x:%04x rev %02x) is not an 8139C+ compatible chip, use 8139too\n",
1867 pdev->vendor, pdev->device, pdev->revision);
1868 return -ENODEV;
1871 dev = alloc_etherdev(sizeof(struct cp_private));
1872 if (!dev)
1873 return -ENOMEM;
1874 SET_NETDEV_DEV(dev, &pdev->dev);
1876 cp = netdev_priv(dev);
1877 cp->pdev = pdev;
1878 cp->dev = dev;
1879 cp->msg_enable = (debug < 0 ? CP_DEF_MSG_ENABLE : debug);
1880 spin_lock_init (&cp->lock);
1881 cp->mii_if.dev = dev;
1882 cp->mii_if.mdio_read = mdio_read;
1883 cp->mii_if.mdio_write = mdio_write;
1884 cp->mii_if.phy_id = CP_INTERNAL_PHY;
1885 cp->mii_if.phy_id_mask = 0x1f;
1886 cp->mii_if.reg_num_mask = 0x1f;
1887 cp_set_rxbufsize(cp);
1889 rc = pci_enable_device(pdev);
1890 if (rc)
1891 goto err_out_free;
1893 rc = pci_set_mwi(pdev);
1894 if (rc)
1895 goto err_out_disable;
1897 rc = pci_request_regions(pdev, DRV_NAME);
1898 if (rc)
1899 goto err_out_mwi;
1901 pciaddr = pci_resource_start(pdev, 1);
1902 if (!pciaddr) {
1903 rc = -EIO;
1904 dev_err(&pdev->dev, "no MMIO resource\n");
1905 goto err_out_res;
1907 if (pci_resource_len(pdev, 1) < CP_REGS_SIZE) {
1908 rc = -EIO;
1909 dev_err(&pdev->dev, "MMIO resource (%llx) too small\n",
1910 (unsigned long long)pci_resource_len(pdev, 1));
1911 goto err_out_res;
1914 /* Configure DMA attributes. */
1915 if ((sizeof(dma_addr_t) > 4) &&
1916 !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)) &&
1917 !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
1918 pci_using_dac = 1;
1919 } else {
1920 pci_using_dac = 0;
1922 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1923 if (rc) {
1924 dev_err(&pdev->dev,
1925 "No usable DMA configuration, aborting\n");
1926 goto err_out_res;
1928 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1929 if (rc) {
1930 dev_err(&pdev->dev,
1931 "No usable consistent DMA configuration, aborting\n");
1932 goto err_out_res;
1936 cp->cpcmd = (pci_using_dac ? PCIDAC : 0) |
1937 PCIMulRW | RxChkSum | CpRxOn | CpTxOn;
1939 regs = ioremap(pciaddr, CP_REGS_SIZE);
1940 if (!regs) {
1941 rc = -EIO;
1942 dev_err(&pdev->dev, "Cannot map PCI MMIO (%Lx@%Lx)\n",
1943 (unsigned long long)pci_resource_len(pdev, 1),
1944 (unsigned long long)pciaddr);
1945 goto err_out_res;
1947 dev->base_addr = (unsigned long) regs;
1948 cp->regs = regs;
1950 cp_stop_hw(cp);
1952 /* read MAC address from EEPROM */
1953 addr_len = read_eeprom (regs, 0, 8) == 0x8129 ? 8 : 6;
1954 for (i = 0; i < 3; i++)
1955 ((__le16 *) (dev->dev_addr))[i] =
1956 cpu_to_le16(read_eeprom (regs, i + 7, addr_len));
1957 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
1959 dev->netdev_ops = &cp_netdev_ops;
1960 netif_napi_add(dev, &cp->napi, cp_rx_poll, 16);
1961 dev->ethtool_ops = &cp_ethtool_ops;
1962 dev->watchdog_timeo = TX_TIMEOUT;
1964 #if CP_VLAN_TAG_USED
1965 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1966 #endif
1968 if (pci_using_dac)
1969 dev->features |= NETIF_F_HIGHDMA;
1971 #if 0 /* disabled by default until verified */
1972 dev->features |= NETIF_F_TSO;
1973 #endif
1975 dev->irq = pdev->irq;
1977 rc = register_netdev(dev);
1978 if (rc)
1979 goto err_out_iomap;
1981 netdev_info(dev, "RTL-8139C+ at 0x%lx, %pM, IRQ %d\n",
1982 dev->base_addr, dev->dev_addr, dev->irq);
1984 pci_set_drvdata(pdev, dev);
1986 /* enable busmastering and memory-write-invalidate */
1987 pci_set_master(pdev);
1989 if (cp->wol_enabled)
1990 cp_set_d3_state (cp);
1992 return 0;
1994 err_out_iomap:
1995 iounmap(regs);
1996 err_out_res:
1997 pci_release_regions(pdev);
1998 err_out_mwi:
1999 pci_clear_mwi(pdev);
2000 err_out_disable:
2001 pci_disable_device(pdev);
2002 err_out_free:
2003 free_netdev(dev);
2004 return rc;
2007 static void cp_remove_one (struct pci_dev *pdev)
2009 struct net_device *dev = pci_get_drvdata(pdev);
2010 struct cp_private *cp = netdev_priv(dev);
2012 unregister_netdev(dev);
2013 iounmap(cp->regs);
2014 if (cp->wol_enabled)
2015 pci_set_power_state (pdev, PCI_D0);
2016 pci_release_regions(pdev);
2017 pci_clear_mwi(pdev);
2018 pci_disable_device(pdev);
2019 pci_set_drvdata(pdev, NULL);
2020 free_netdev(dev);
2023 #ifdef CONFIG_PM
2024 static int cp_suspend (struct pci_dev *pdev, pm_message_t state)
2026 struct net_device *dev = pci_get_drvdata(pdev);
2027 struct cp_private *cp = netdev_priv(dev);
2028 unsigned long flags;
2030 if (!netif_running(dev))
2031 return 0;
2033 netif_device_detach (dev);
2034 netif_stop_queue (dev);
2036 spin_lock_irqsave (&cp->lock, flags);
2038 /* Disable Rx and Tx */
2039 cpw16 (IntrMask, 0);
2040 cpw8 (Cmd, cpr8 (Cmd) & (~RxOn | ~TxOn));
2042 spin_unlock_irqrestore (&cp->lock, flags);
2044 pci_save_state(pdev);
2045 pci_enable_wake(pdev, pci_choose_state(pdev, state), cp->wol_enabled);
2046 pci_set_power_state(pdev, pci_choose_state(pdev, state));
2048 return 0;
2051 static int cp_resume (struct pci_dev *pdev)
2053 struct net_device *dev = pci_get_drvdata (pdev);
2054 struct cp_private *cp = netdev_priv(dev);
2055 unsigned long flags;
2057 if (!netif_running(dev))
2058 return 0;
2060 netif_device_attach (dev);
2062 pci_set_power_state(pdev, PCI_D0);
2063 pci_restore_state(pdev);
2064 pci_enable_wake(pdev, PCI_D0, 0);
2066 /* FIXME: sh*t may happen if the Rx ring buffer is depleted */
2067 cp_init_rings_index (cp);
2068 cp_init_hw (cp);
2069 netif_start_queue (dev);
2071 spin_lock_irqsave (&cp->lock, flags);
2073 mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
2075 spin_unlock_irqrestore (&cp->lock, flags);
2077 return 0;
2079 #endif /* CONFIG_PM */
2081 static struct pci_driver cp_driver = {
2082 .name = DRV_NAME,
2083 .id_table = cp_pci_tbl,
2084 .probe = cp_init_one,
2085 .remove = cp_remove_one,
2086 #ifdef CONFIG_PM
2087 .resume = cp_resume,
2088 .suspend = cp_suspend,
2089 #endif
2092 static int __init cp_init (void)
2094 #ifdef MODULE
2095 pr_info("%s", version);
2096 #endif
2097 return pci_register_driver(&cp_driver);
2100 static void __exit cp_exit (void)
2102 pci_unregister_driver (&cp_driver);
2105 module_init(cp_init);
2106 module_exit(cp_exit);