dm thin metadata: split __open or format metadata
[linux-2.6.git] / fs / super.c
blobc743fb3be4b8a45d8d99f9b757bfc44bbb949683
1 /*
2 * linux/fs/super.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * super.c contains code to handle: - mount structures
7 * - super-block tables
8 * - filesystem drivers list
9 * - mount system call
10 * - umount system call
11 * - ustat system call
13 * GK 2/5/95 - Changed to support mounting the root fs via NFS
15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17 * Added options to /proc/mounts:
18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/acct.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h> /* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fsnotify.h>
36 #include "internal.h"
39 LIST_HEAD(super_blocks);
40 DEFINE_SPINLOCK(sb_lock);
43 * One thing we have to be careful of with a per-sb shrinker is that we don't
44 * drop the last active reference to the superblock from within the shrinker.
45 * If that happens we could trigger unregistering the shrinker from within the
46 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
47 * take a passive reference to the superblock to avoid this from occurring.
49 static int prune_super(struct shrinker *shrink, struct shrink_control *sc)
51 struct super_block *sb;
52 int fs_objects = 0;
53 int total_objects;
55 sb = container_of(shrink, struct super_block, s_shrink);
58 * Deadlock avoidance. We may hold various FS locks, and we don't want
59 * to recurse into the FS that called us in clear_inode() and friends..
61 if (sc->nr_to_scan && !(sc->gfp_mask & __GFP_FS))
62 return -1;
64 if (!grab_super_passive(sb))
65 return !sc->nr_to_scan ? 0 : -1;
67 if (sb->s_op && sb->s_op->nr_cached_objects)
68 fs_objects = sb->s_op->nr_cached_objects(sb);
70 total_objects = sb->s_nr_dentry_unused +
71 sb->s_nr_inodes_unused + fs_objects + 1;
73 if (sc->nr_to_scan) {
74 int dentries;
75 int inodes;
77 /* proportion the scan between the caches */
78 dentries = (sc->nr_to_scan * sb->s_nr_dentry_unused) /
79 total_objects;
80 inodes = (sc->nr_to_scan * sb->s_nr_inodes_unused) /
81 total_objects;
82 if (fs_objects)
83 fs_objects = (sc->nr_to_scan * fs_objects) /
84 total_objects;
86 * prune the dcache first as the icache is pinned by it, then
87 * prune the icache, followed by the filesystem specific caches
89 prune_dcache_sb(sb, dentries);
90 prune_icache_sb(sb, inodes);
92 if (fs_objects && sb->s_op->free_cached_objects) {
93 sb->s_op->free_cached_objects(sb, fs_objects);
94 fs_objects = sb->s_op->nr_cached_objects(sb);
96 total_objects = sb->s_nr_dentry_unused +
97 sb->s_nr_inodes_unused + fs_objects;
100 total_objects = (total_objects / 100) * sysctl_vfs_cache_pressure;
101 drop_super(sb);
102 return total_objects;
106 * alloc_super - create new superblock
107 * @type: filesystem type superblock should belong to
108 * @flags: the mount flags
110 * Allocates and initializes a new &struct super_block. alloc_super()
111 * returns a pointer new superblock or %NULL if allocation had failed.
113 static struct super_block *alloc_super(struct file_system_type *type, int flags)
115 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
116 static const struct super_operations default_op;
118 if (s) {
119 if (security_sb_alloc(s)) {
120 kfree(s);
121 s = NULL;
122 goto out;
124 #ifdef CONFIG_SMP
125 s->s_files = alloc_percpu(struct list_head);
126 if (!s->s_files) {
127 security_sb_free(s);
128 kfree(s);
129 s = NULL;
130 goto out;
131 } else {
132 int i;
134 for_each_possible_cpu(i)
135 INIT_LIST_HEAD(per_cpu_ptr(s->s_files, i));
137 #else
138 INIT_LIST_HEAD(&s->s_files);
139 #endif
140 s->s_flags = flags;
141 s->s_bdi = &default_backing_dev_info;
142 INIT_HLIST_NODE(&s->s_instances);
143 INIT_HLIST_BL_HEAD(&s->s_anon);
144 INIT_LIST_HEAD(&s->s_inodes);
145 INIT_LIST_HEAD(&s->s_dentry_lru);
146 INIT_LIST_HEAD(&s->s_inode_lru);
147 spin_lock_init(&s->s_inode_lru_lock);
148 INIT_LIST_HEAD(&s->s_mounts);
149 init_rwsem(&s->s_umount);
150 mutex_init(&s->s_lock);
151 lockdep_set_class(&s->s_umount, &type->s_umount_key);
153 * The locking rules for s_lock are up to the
154 * filesystem. For example ext3fs has different
155 * lock ordering than usbfs:
157 lockdep_set_class(&s->s_lock, &type->s_lock_key);
159 * sget() can have s_umount recursion.
161 * When it cannot find a suitable sb, it allocates a new
162 * one (this one), and tries again to find a suitable old
163 * one.
165 * In case that succeeds, it will acquire the s_umount
166 * lock of the old one. Since these are clearly distrinct
167 * locks, and this object isn't exposed yet, there's no
168 * risk of deadlocks.
170 * Annotate this by putting this lock in a different
171 * subclass.
173 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
174 s->s_count = 1;
175 atomic_set(&s->s_active, 1);
176 mutex_init(&s->s_vfs_rename_mutex);
177 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
178 mutex_init(&s->s_dquot.dqio_mutex);
179 mutex_init(&s->s_dquot.dqonoff_mutex);
180 init_rwsem(&s->s_dquot.dqptr_sem);
181 init_waitqueue_head(&s->s_wait_unfrozen);
182 s->s_maxbytes = MAX_NON_LFS;
183 s->s_op = &default_op;
184 s->s_time_gran = 1000000000;
185 s->cleancache_poolid = -1;
187 s->s_shrink.seeks = DEFAULT_SEEKS;
188 s->s_shrink.shrink = prune_super;
189 s->s_shrink.batch = 1024;
191 out:
192 return s;
196 * destroy_super - frees a superblock
197 * @s: superblock to free
199 * Frees a superblock.
201 static inline void destroy_super(struct super_block *s)
203 #ifdef CONFIG_SMP
204 free_percpu(s->s_files);
205 #endif
206 security_sb_free(s);
207 WARN_ON(!list_empty(&s->s_mounts));
208 kfree(s->s_subtype);
209 kfree(s->s_options);
210 kfree(s);
213 /* Superblock refcounting */
216 * Drop a superblock's refcount. The caller must hold sb_lock.
218 static void __put_super(struct super_block *sb)
220 if (!--sb->s_count) {
221 list_del_init(&sb->s_list);
222 destroy_super(sb);
227 * put_super - drop a temporary reference to superblock
228 * @sb: superblock in question
230 * Drops a temporary reference, frees superblock if there's no
231 * references left.
233 static void put_super(struct super_block *sb)
235 spin_lock(&sb_lock);
236 __put_super(sb);
237 spin_unlock(&sb_lock);
242 * deactivate_locked_super - drop an active reference to superblock
243 * @s: superblock to deactivate
245 * Drops an active reference to superblock, converting it into a temprory
246 * one if there is no other active references left. In that case we
247 * tell fs driver to shut it down and drop the temporary reference we
248 * had just acquired.
250 * Caller holds exclusive lock on superblock; that lock is released.
252 void deactivate_locked_super(struct super_block *s)
254 struct file_system_type *fs = s->s_type;
255 if (atomic_dec_and_test(&s->s_active)) {
256 cleancache_invalidate_fs(s);
257 fs->kill_sb(s);
259 /* caches are now gone, we can safely kill the shrinker now */
260 unregister_shrinker(&s->s_shrink);
263 * We need to call rcu_barrier so all the delayed rcu free
264 * inodes are flushed before we release the fs module.
266 rcu_barrier();
267 put_filesystem(fs);
268 put_super(s);
269 } else {
270 up_write(&s->s_umount);
274 EXPORT_SYMBOL(deactivate_locked_super);
277 * deactivate_super - drop an active reference to superblock
278 * @s: superblock to deactivate
280 * Variant of deactivate_locked_super(), except that superblock is *not*
281 * locked by caller. If we are going to drop the final active reference,
282 * lock will be acquired prior to that.
284 void deactivate_super(struct super_block *s)
286 if (!atomic_add_unless(&s->s_active, -1, 1)) {
287 down_write(&s->s_umount);
288 deactivate_locked_super(s);
292 EXPORT_SYMBOL(deactivate_super);
295 * grab_super - acquire an active reference
296 * @s: reference we are trying to make active
298 * Tries to acquire an active reference. grab_super() is used when we
299 * had just found a superblock in super_blocks or fs_type->fs_supers
300 * and want to turn it into a full-blown active reference. grab_super()
301 * is called with sb_lock held and drops it. Returns 1 in case of
302 * success, 0 if we had failed (superblock contents was already dead or
303 * dying when grab_super() had been called).
305 static int grab_super(struct super_block *s) __releases(sb_lock)
307 if (atomic_inc_not_zero(&s->s_active)) {
308 spin_unlock(&sb_lock);
309 return 1;
311 /* it's going away */
312 s->s_count++;
313 spin_unlock(&sb_lock);
314 /* wait for it to die */
315 down_write(&s->s_umount);
316 up_write(&s->s_umount);
317 put_super(s);
318 return 0;
322 * grab_super_passive - acquire a passive reference
323 * @s: reference we are trying to grab
325 * Tries to acquire a passive reference. This is used in places where we
326 * cannot take an active reference but we need to ensure that the
327 * superblock does not go away while we are working on it. It returns
328 * false if a reference was not gained, and returns true with the s_umount
329 * lock held in read mode if a reference is gained. On successful return,
330 * the caller must drop the s_umount lock and the passive reference when
331 * done.
333 bool grab_super_passive(struct super_block *sb)
335 spin_lock(&sb_lock);
336 if (hlist_unhashed(&sb->s_instances)) {
337 spin_unlock(&sb_lock);
338 return false;
341 sb->s_count++;
342 spin_unlock(&sb_lock);
344 if (down_read_trylock(&sb->s_umount)) {
345 if (sb->s_root && (sb->s_flags & MS_BORN))
346 return true;
347 up_read(&sb->s_umount);
350 put_super(sb);
351 return false;
355 * Superblock locking. We really ought to get rid of these two.
357 void lock_super(struct super_block * sb)
359 mutex_lock(&sb->s_lock);
362 void unlock_super(struct super_block * sb)
364 mutex_unlock(&sb->s_lock);
367 EXPORT_SYMBOL(lock_super);
368 EXPORT_SYMBOL(unlock_super);
371 * generic_shutdown_super - common helper for ->kill_sb()
372 * @sb: superblock to kill
374 * generic_shutdown_super() does all fs-independent work on superblock
375 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
376 * that need destruction out of superblock, call generic_shutdown_super()
377 * and release aforementioned objects. Note: dentries and inodes _are_
378 * taken care of and do not need specific handling.
380 * Upon calling this function, the filesystem may no longer alter or
381 * rearrange the set of dentries belonging to this super_block, nor may it
382 * change the attachments of dentries to inodes.
384 void generic_shutdown_super(struct super_block *sb)
386 const struct super_operations *sop = sb->s_op;
388 if (sb->s_root) {
389 shrink_dcache_for_umount(sb);
390 sync_filesystem(sb);
391 sb->s_flags &= ~MS_ACTIVE;
393 fsnotify_unmount_inodes(&sb->s_inodes);
395 evict_inodes(sb);
397 if (sop->put_super)
398 sop->put_super(sb);
400 if (!list_empty(&sb->s_inodes)) {
401 printk("VFS: Busy inodes after unmount of %s. "
402 "Self-destruct in 5 seconds. Have a nice day...\n",
403 sb->s_id);
406 spin_lock(&sb_lock);
407 /* should be initialized for __put_super_and_need_restart() */
408 hlist_del_init(&sb->s_instances);
409 spin_unlock(&sb_lock);
410 up_write(&sb->s_umount);
413 EXPORT_SYMBOL(generic_shutdown_super);
416 * sget - find or create a superblock
417 * @type: filesystem type superblock should belong to
418 * @test: comparison callback
419 * @set: setup callback
420 * @flags: mount flags
421 * @data: argument to each of them
423 struct super_block *sget(struct file_system_type *type,
424 int (*test)(struct super_block *,void *),
425 int (*set)(struct super_block *,void *),
426 int flags,
427 void *data)
429 struct super_block *s = NULL;
430 struct hlist_node *node;
431 struct super_block *old;
432 int err;
434 retry:
435 spin_lock(&sb_lock);
436 if (test) {
437 hlist_for_each_entry(old, node, &type->fs_supers, s_instances) {
438 if (!test(old, data))
439 continue;
440 if (!grab_super(old))
441 goto retry;
442 if (s) {
443 up_write(&s->s_umount);
444 destroy_super(s);
445 s = NULL;
447 down_write(&old->s_umount);
448 if (unlikely(!(old->s_flags & MS_BORN))) {
449 deactivate_locked_super(old);
450 goto retry;
452 return old;
455 if (!s) {
456 spin_unlock(&sb_lock);
457 s = alloc_super(type, flags);
458 if (!s)
459 return ERR_PTR(-ENOMEM);
460 goto retry;
463 err = set(s, data);
464 if (err) {
465 spin_unlock(&sb_lock);
466 up_write(&s->s_umount);
467 destroy_super(s);
468 return ERR_PTR(err);
470 s->s_type = type;
471 strlcpy(s->s_id, type->name, sizeof(s->s_id));
472 list_add_tail(&s->s_list, &super_blocks);
473 hlist_add_head(&s->s_instances, &type->fs_supers);
474 spin_unlock(&sb_lock);
475 get_filesystem(type);
476 register_shrinker(&s->s_shrink);
477 return s;
480 EXPORT_SYMBOL(sget);
482 void drop_super(struct super_block *sb)
484 up_read(&sb->s_umount);
485 put_super(sb);
488 EXPORT_SYMBOL(drop_super);
491 * sync_supers - helper for periodic superblock writeback
493 * Call the write_super method if present on all dirty superblocks in
494 * the system. This is for the periodic writeback used by most older
495 * filesystems. For data integrity superblock writeback use
496 * sync_filesystems() instead.
498 * Note: check the dirty flag before waiting, so we don't
499 * hold up the sync while mounting a device. (The newly
500 * mounted device won't need syncing.)
502 void sync_supers(void)
504 struct super_block *sb, *p = NULL;
506 spin_lock(&sb_lock);
507 list_for_each_entry(sb, &super_blocks, s_list) {
508 if (hlist_unhashed(&sb->s_instances))
509 continue;
510 if (sb->s_op->write_super && sb->s_dirt) {
511 sb->s_count++;
512 spin_unlock(&sb_lock);
514 down_read(&sb->s_umount);
515 if (sb->s_root && sb->s_dirt && (sb->s_flags & MS_BORN))
516 sb->s_op->write_super(sb);
517 up_read(&sb->s_umount);
519 spin_lock(&sb_lock);
520 if (p)
521 __put_super(p);
522 p = sb;
525 if (p)
526 __put_super(p);
527 spin_unlock(&sb_lock);
531 * iterate_supers - call function for all active superblocks
532 * @f: function to call
533 * @arg: argument to pass to it
535 * Scans the superblock list and calls given function, passing it
536 * locked superblock and given argument.
538 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
540 struct super_block *sb, *p = NULL;
542 spin_lock(&sb_lock);
543 list_for_each_entry(sb, &super_blocks, s_list) {
544 if (hlist_unhashed(&sb->s_instances))
545 continue;
546 sb->s_count++;
547 spin_unlock(&sb_lock);
549 down_read(&sb->s_umount);
550 if (sb->s_root && (sb->s_flags & MS_BORN))
551 f(sb, arg);
552 up_read(&sb->s_umount);
554 spin_lock(&sb_lock);
555 if (p)
556 __put_super(p);
557 p = sb;
559 if (p)
560 __put_super(p);
561 spin_unlock(&sb_lock);
565 * iterate_supers_type - call function for superblocks of given type
566 * @type: fs type
567 * @f: function to call
568 * @arg: argument to pass to it
570 * Scans the superblock list and calls given function, passing it
571 * locked superblock and given argument.
573 void iterate_supers_type(struct file_system_type *type,
574 void (*f)(struct super_block *, void *), void *arg)
576 struct super_block *sb, *p = NULL;
577 struct hlist_node *node;
579 spin_lock(&sb_lock);
580 hlist_for_each_entry(sb, node, &type->fs_supers, s_instances) {
581 sb->s_count++;
582 spin_unlock(&sb_lock);
584 down_read(&sb->s_umount);
585 if (sb->s_root && (sb->s_flags & MS_BORN))
586 f(sb, arg);
587 up_read(&sb->s_umount);
589 spin_lock(&sb_lock);
590 if (p)
591 __put_super(p);
592 p = sb;
594 if (p)
595 __put_super(p);
596 spin_unlock(&sb_lock);
599 EXPORT_SYMBOL(iterate_supers_type);
602 * get_super - get the superblock of a device
603 * @bdev: device to get the superblock for
605 * Scans the superblock list and finds the superblock of the file system
606 * mounted on the device given. %NULL is returned if no match is found.
609 struct super_block *get_super(struct block_device *bdev)
611 struct super_block *sb;
613 if (!bdev)
614 return NULL;
616 spin_lock(&sb_lock);
617 rescan:
618 list_for_each_entry(sb, &super_blocks, s_list) {
619 if (hlist_unhashed(&sb->s_instances))
620 continue;
621 if (sb->s_bdev == bdev) {
622 sb->s_count++;
623 spin_unlock(&sb_lock);
624 down_read(&sb->s_umount);
625 /* still alive? */
626 if (sb->s_root && (sb->s_flags & MS_BORN))
627 return sb;
628 up_read(&sb->s_umount);
629 /* nope, got unmounted */
630 spin_lock(&sb_lock);
631 __put_super(sb);
632 goto rescan;
635 spin_unlock(&sb_lock);
636 return NULL;
639 EXPORT_SYMBOL(get_super);
642 * get_super_thawed - get thawed superblock of a device
643 * @bdev: device to get the superblock for
645 * Scans the superblock list and finds the superblock of the file system
646 * mounted on the device. The superblock is returned once it is thawed
647 * (or immediately if it was not frozen). %NULL is returned if no match
648 * is found.
650 struct super_block *get_super_thawed(struct block_device *bdev)
652 while (1) {
653 struct super_block *s = get_super(bdev);
654 if (!s || s->s_frozen == SB_UNFROZEN)
655 return s;
656 up_read(&s->s_umount);
657 vfs_check_frozen(s, SB_FREEZE_WRITE);
658 put_super(s);
661 EXPORT_SYMBOL(get_super_thawed);
664 * get_active_super - get an active reference to the superblock of a device
665 * @bdev: device to get the superblock for
667 * Scans the superblock list and finds the superblock of the file system
668 * mounted on the device given. Returns the superblock with an active
669 * reference or %NULL if none was found.
671 struct super_block *get_active_super(struct block_device *bdev)
673 struct super_block *sb;
675 if (!bdev)
676 return NULL;
678 restart:
679 spin_lock(&sb_lock);
680 list_for_each_entry(sb, &super_blocks, s_list) {
681 if (hlist_unhashed(&sb->s_instances))
682 continue;
683 if (sb->s_bdev == bdev) {
684 if (grab_super(sb)) /* drops sb_lock */
685 return sb;
686 else
687 goto restart;
690 spin_unlock(&sb_lock);
691 return NULL;
694 struct super_block *user_get_super(dev_t dev)
696 struct super_block *sb;
698 spin_lock(&sb_lock);
699 rescan:
700 list_for_each_entry(sb, &super_blocks, s_list) {
701 if (hlist_unhashed(&sb->s_instances))
702 continue;
703 if (sb->s_dev == dev) {
704 sb->s_count++;
705 spin_unlock(&sb_lock);
706 down_read(&sb->s_umount);
707 /* still alive? */
708 if (sb->s_root && (sb->s_flags & MS_BORN))
709 return sb;
710 up_read(&sb->s_umount);
711 /* nope, got unmounted */
712 spin_lock(&sb_lock);
713 __put_super(sb);
714 goto rescan;
717 spin_unlock(&sb_lock);
718 return NULL;
722 * do_remount_sb - asks filesystem to change mount options.
723 * @sb: superblock in question
724 * @flags: numeric part of options
725 * @data: the rest of options
726 * @force: whether or not to force the change
728 * Alters the mount options of a mounted file system.
730 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
732 int retval;
733 int remount_ro;
735 if (sb->s_frozen != SB_UNFROZEN)
736 return -EBUSY;
738 #ifdef CONFIG_BLOCK
739 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
740 return -EACCES;
741 #endif
743 if (flags & MS_RDONLY)
744 acct_auto_close(sb);
745 shrink_dcache_sb(sb);
746 sync_filesystem(sb);
748 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
750 /* If we are remounting RDONLY and current sb is read/write,
751 make sure there are no rw files opened */
752 if (remount_ro) {
753 if (force) {
754 mark_files_ro(sb);
755 } else {
756 retval = sb_prepare_remount_readonly(sb);
757 if (retval)
758 return retval;
762 if (sb->s_op->remount_fs) {
763 retval = sb->s_op->remount_fs(sb, &flags, data);
764 if (retval) {
765 if (!force)
766 goto cancel_readonly;
767 /* If forced remount, go ahead despite any errors */
768 WARN(1, "forced remount of a %s fs returned %i\n",
769 sb->s_type->name, retval);
772 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
773 /* Needs to be ordered wrt mnt_is_readonly() */
774 smp_wmb();
775 sb->s_readonly_remount = 0;
778 * Some filesystems modify their metadata via some other path than the
779 * bdev buffer cache (eg. use a private mapping, or directories in
780 * pagecache, etc). Also file data modifications go via their own
781 * mappings. So If we try to mount readonly then copy the filesystem
782 * from bdev, we could get stale data, so invalidate it to give a best
783 * effort at coherency.
785 if (remount_ro && sb->s_bdev)
786 invalidate_bdev(sb->s_bdev);
787 return 0;
789 cancel_readonly:
790 sb->s_readonly_remount = 0;
791 return retval;
794 static void do_emergency_remount(struct work_struct *work)
796 struct super_block *sb, *p = NULL;
798 spin_lock(&sb_lock);
799 list_for_each_entry(sb, &super_blocks, s_list) {
800 if (hlist_unhashed(&sb->s_instances))
801 continue;
802 sb->s_count++;
803 spin_unlock(&sb_lock);
804 down_write(&sb->s_umount);
805 if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
806 !(sb->s_flags & MS_RDONLY)) {
808 * What lock protects sb->s_flags??
810 do_remount_sb(sb, MS_RDONLY, NULL, 1);
812 up_write(&sb->s_umount);
813 spin_lock(&sb_lock);
814 if (p)
815 __put_super(p);
816 p = sb;
818 if (p)
819 __put_super(p);
820 spin_unlock(&sb_lock);
821 kfree(work);
822 printk("Emergency Remount complete\n");
825 void emergency_remount(void)
827 struct work_struct *work;
829 work = kmalloc(sizeof(*work), GFP_ATOMIC);
830 if (work) {
831 INIT_WORK(work, do_emergency_remount);
832 schedule_work(work);
837 * Unnamed block devices are dummy devices used by virtual
838 * filesystems which don't use real block-devices. -- jrs
841 static DEFINE_IDA(unnamed_dev_ida);
842 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
843 static int unnamed_dev_start = 0; /* don't bother trying below it */
845 int get_anon_bdev(dev_t *p)
847 int dev;
848 int error;
850 retry:
851 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
852 return -ENOMEM;
853 spin_lock(&unnamed_dev_lock);
854 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
855 if (!error)
856 unnamed_dev_start = dev + 1;
857 spin_unlock(&unnamed_dev_lock);
858 if (error == -EAGAIN)
859 /* We raced and lost with another CPU. */
860 goto retry;
861 else if (error)
862 return -EAGAIN;
864 if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) {
865 spin_lock(&unnamed_dev_lock);
866 ida_remove(&unnamed_dev_ida, dev);
867 if (unnamed_dev_start > dev)
868 unnamed_dev_start = dev;
869 spin_unlock(&unnamed_dev_lock);
870 return -EMFILE;
872 *p = MKDEV(0, dev & MINORMASK);
873 return 0;
875 EXPORT_SYMBOL(get_anon_bdev);
877 void free_anon_bdev(dev_t dev)
879 int slot = MINOR(dev);
880 spin_lock(&unnamed_dev_lock);
881 ida_remove(&unnamed_dev_ida, slot);
882 if (slot < unnamed_dev_start)
883 unnamed_dev_start = slot;
884 spin_unlock(&unnamed_dev_lock);
886 EXPORT_SYMBOL(free_anon_bdev);
888 int set_anon_super(struct super_block *s, void *data)
890 int error = get_anon_bdev(&s->s_dev);
891 if (!error)
892 s->s_bdi = &noop_backing_dev_info;
893 return error;
896 EXPORT_SYMBOL(set_anon_super);
898 void kill_anon_super(struct super_block *sb)
900 dev_t dev = sb->s_dev;
901 generic_shutdown_super(sb);
902 free_anon_bdev(dev);
905 EXPORT_SYMBOL(kill_anon_super);
907 void kill_litter_super(struct super_block *sb)
909 if (sb->s_root)
910 d_genocide(sb->s_root);
911 kill_anon_super(sb);
914 EXPORT_SYMBOL(kill_litter_super);
916 static int ns_test_super(struct super_block *sb, void *data)
918 return sb->s_fs_info == data;
921 static int ns_set_super(struct super_block *sb, void *data)
923 sb->s_fs_info = data;
924 return set_anon_super(sb, NULL);
927 struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
928 void *data, int (*fill_super)(struct super_block *, void *, int))
930 struct super_block *sb;
932 sb = sget(fs_type, ns_test_super, ns_set_super, flags, data);
933 if (IS_ERR(sb))
934 return ERR_CAST(sb);
936 if (!sb->s_root) {
937 int err;
938 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
939 if (err) {
940 deactivate_locked_super(sb);
941 return ERR_PTR(err);
944 sb->s_flags |= MS_ACTIVE;
947 return dget(sb->s_root);
950 EXPORT_SYMBOL(mount_ns);
952 #ifdef CONFIG_BLOCK
953 static int set_bdev_super(struct super_block *s, void *data)
955 s->s_bdev = data;
956 s->s_dev = s->s_bdev->bd_dev;
959 * We set the bdi here to the queue backing, file systems can
960 * overwrite this in ->fill_super()
962 s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
963 return 0;
966 static int test_bdev_super(struct super_block *s, void *data)
968 return (void *)s->s_bdev == data;
971 struct dentry *mount_bdev(struct file_system_type *fs_type,
972 int flags, const char *dev_name, void *data,
973 int (*fill_super)(struct super_block *, void *, int))
975 struct block_device *bdev;
976 struct super_block *s;
977 fmode_t mode = FMODE_READ | FMODE_EXCL;
978 int error = 0;
980 if (!(flags & MS_RDONLY))
981 mode |= FMODE_WRITE;
983 bdev = blkdev_get_by_path(dev_name, mode, fs_type);
984 if (IS_ERR(bdev))
985 return ERR_CAST(bdev);
988 * once the super is inserted into the list by sget, s_umount
989 * will protect the lockfs code from trying to start a snapshot
990 * while we are mounting
992 mutex_lock(&bdev->bd_fsfreeze_mutex);
993 if (bdev->bd_fsfreeze_count > 0) {
994 mutex_unlock(&bdev->bd_fsfreeze_mutex);
995 error = -EBUSY;
996 goto error_bdev;
998 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC,
999 bdev);
1000 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1001 if (IS_ERR(s))
1002 goto error_s;
1004 if (s->s_root) {
1005 if ((flags ^ s->s_flags) & MS_RDONLY) {
1006 deactivate_locked_super(s);
1007 error = -EBUSY;
1008 goto error_bdev;
1012 * s_umount nests inside bd_mutex during
1013 * __invalidate_device(). blkdev_put() acquires
1014 * bd_mutex and can't be called under s_umount. Drop
1015 * s_umount temporarily. This is safe as we're
1016 * holding an active reference.
1018 up_write(&s->s_umount);
1019 blkdev_put(bdev, mode);
1020 down_write(&s->s_umount);
1021 } else {
1022 char b[BDEVNAME_SIZE];
1024 s->s_mode = mode;
1025 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1026 sb_set_blocksize(s, block_size(bdev));
1027 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1028 if (error) {
1029 deactivate_locked_super(s);
1030 goto error;
1033 s->s_flags |= MS_ACTIVE;
1034 bdev->bd_super = s;
1037 return dget(s->s_root);
1039 error_s:
1040 error = PTR_ERR(s);
1041 error_bdev:
1042 blkdev_put(bdev, mode);
1043 error:
1044 return ERR_PTR(error);
1046 EXPORT_SYMBOL(mount_bdev);
1048 void kill_block_super(struct super_block *sb)
1050 struct block_device *bdev = sb->s_bdev;
1051 fmode_t mode = sb->s_mode;
1053 bdev->bd_super = NULL;
1054 generic_shutdown_super(sb);
1055 sync_blockdev(bdev);
1056 WARN_ON_ONCE(!(mode & FMODE_EXCL));
1057 blkdev_put(bdev, mode | FMODE_EXCL);
1060 EXPORT_SYMBOL(kill_block_super);
1061 #endif
1063 struct dentry *mount_nodev(struct file_system_type *fs_type,
1064 int flags, void *data,
1065 int (*fill_super)(struct super_block *, void *, int))
1067 int error;
1068 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1070 if (IS_ERR(s))
1071 return ERR_CAST(s);
1073 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1074 if (error) {
1075 deactivate_locked_super(s);
1076 return ERR_PTR(error);
1078 s->s_flags |= MS_ACTIVE;
1079 return dget(s->s_root);
1081 EXPORT_SYMBOL(mount_nodev);
1083 static int compare_single(struct super_block *s, void *p)
1085 return 1;
1088 struct dentry *mount_single(struct file_system_type *fs_type,
1089 int flags, void *data,
1090 int (*fill_super)(struct super_block *, void *, int))
1092 struct super_block *s;
1093 int error;
1095 s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1096 if (IS_ERR(s))
1097 return ERR_CAST(s);
1098 if (!s->s_root) {
1099 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1100 if (error) {
1101 deactivate_locked_super(s);
1102 return ERR_PTR(error);
1104 s->s_flags |= MS_ACTIVE;
1105 } else {
1106 do_remount_sb(s, flags, data, 0);
1108 return dget(s->s_root);
1110 EXPORT_SYMBOL(mount_single);
1112 struct dentry *
1113 mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1115 struct dentry *root;
1116 struct super_block *sb;
1117 char *secdata = NULL;
1118 int error = -ENOMEM;
1120 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1121 secdata = alloc_secdata();
1122 if (!secdata)
1123 goto out;
1125 error = security_sb_copy_data(data, secdata);
1126 if (error)
1127 goto out_free_secdata;
1130 root = type->mount(type, flags, name, data);
1131 if (IS_ERR(root)) {
1132 error = PTR_ERR(root);
1133 goto out_free_secdata;
1135 sb = root->d_sb;
1136 BUG_ON(!sb);
1137 WARN_ON(!sb->s_bdi);
1138 WARN_ON(sb->s_bdi == &default_backing_dev_info);
1139 sb->s_flags |= MS_BORN;
1141 error = security_sb_kern_mount(sb, flags, secdata);
1142 if (error)
1143 goto out_sb;
1146 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1147 * but s_maxbytes was an unsigned long long for many releases. Throw
1148 * this warning for a little while to try and catch filesystems that
1149 * violate this rule.
1151 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1152 "negative value (%lld)\n", type->name, sb->s_maxbytes);
1154 up_write(&sb->s_umount);
1155 free_secdata(secdata);
1156 return root;
1157 out_sb:
1158 dput(root);
1159 deactivate_locked_super(sb);
1160 out_free_secdata:
1161 free_secdata(secdata);
1162 out:
1163 return ERR_PTR(error);
1167 * freeze_super - lock the filesystem and force it into a consistent state
1168 * @sb: the super to lock
1170 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1171 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1172 * -EBUSY.
1174 int freeze_super(struct super_block *sb)
1176 int ret;
1178 atomic_inc(&sb->s_active);
1179 down_write(&sb->s_umount);
1180 if (sb->s_frozen) {
1181 deactivate_locked_super(sb);
1182 return -EBUSY;
1185 if (!(sb->s_flags & MS_BORN)) {
1186 up_write(&sb->s_umount);
1187 return 0; /* sic - it's "nothing to do" */
1190 if (sb->s_flags & MS_RDONLY) {
1191 sb->s_frozen = SB_FREEZE_TRANS;
1192 smp_wmb();
1193 up_write(&sb->s_umount);
1194 return 0;
1197 sb->s_frozen = SB_FREEZE_WRITE;
1198 smp_wmb();
1200 sync_filesystem(sb);
1202 sb->s_frozen = SB_FREEZE_TRANS;
1203 smp_wmb();
1205 sync_blockdev(sb->s_bdev);
1206 if (sb->s_op->freeze_fs) {
1207 ret = sb->s_op->freeze_fs(sb);
1208 if (ret) {
1209 printk(KERN_ERR
1210 "VFS:Filesystem freeze failed\n");
1211 sb->s_frozen = SB_UNFROZEN;
1212 smp_wmb();
1213 wake_up(&sb->s_wait_unfrozen);
1214 deactivate_locked_super(sb);
1215 return ret;
1218 up_write(&sb->s_umount);
1219 return 0;
1221 EXPORT_SYMBOL(freeze_super);
1224 * thaw_super -- unlock filesystem
1225 * @sb: the super to thaw
1227 * Unlocks the filesystem and marks it writeable again after freeze_super().
1229 int thaw_super(struct super_block *sb)
1231 int error;
1233 down_write(&sb->s_umount);
1234 if (sb->s_frozen == SB_UNFROZEN) {
1235 up_write(&sb->s_umount);
1236 return -EINVAL;
1239 if (sb->s_flags & MS_RDONLY)
1240 goto out;
1242 if (sb->s_op->unfreeze_fs) {
1243 error = sb->s_op->unfreeze_fs(sb);
1244 if (error) {
1245 printk(KERN_ERR
1246 "VFS:Filesystem thaw failed\n");
1247 sb->s_frozen = SB_FREEZE_TRANS;
1248 up_write(&sb->s_umount);
1249 return error;
1253 out:
1254 sb->s_frozen = SB_UNFROZEN;
1255 smp_wmb();
1256 wake_up(&sb->s_wait_unfrozen);
1257 deactivate_locked_super(sb);
1259 return 0;
1261 EXPORT_SYMBOL(thaw_super);