4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/namei.h>
16 #include <linux/security.h>
17 #include <linux/idr.h>
18 #include <linux/acct.h> /* acct_auto_close_mnt */
19 #include <linux/ramfs.h> /* init_rootfs */
20 #include <linux/fs_struct.h> /* get_fs_root et.al. */
21 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22 #include <linux/uaccess.h>
26 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
27 #define HASH_SIZE (1UL << HASH_SHIFT)
30 static DEFINE_IDA(mnt_id_ida
);
31 static DEFINE_IDA(mnt_group_ida
);
32 static DEFINE_SPINLOCK(mnt_id_lock
);
33 static int mnt_id_start
= 0;
34 static int mnt_group_start
= 1;
36 static struct list_head
*mount_hashtable __read_mostly
;
37 static struct kmem_cache
*mnt_cache __read_mostly
;
38 static struct rw_semaphore namespace_sem
;
41 struct kobject
*fs_kobj
;
42 EXPORT_SYMBOL_GPL(fs_kobj
);
45 * vfsmount lock may be taken for read to prevent changes to the
46 * vfsmount hash, ie. during mountpoint lookups or walking back
49 * It should be taken for write in all cases where the vfsmount
50 * tree or hash is modified or when a vfsmount structure is modified.
52 DEFINE_BRLOCK(vfsmount_lock
);
54 static inline unsigned long hash(struct vfsmount
*mnt
, struct dentry
*dentry
)
56 unsigned long tmp
= ((unsigned long)mnt
/ L1_CACHE_BYTES
);
57 tmp
+= ((unsigned long)dentry
/ L1_CACHE_BYTES
);
58 tmp
= tmp
+ (tmp
>> HASH_SHIFT
);
59 return tmp
& (HASH_SIZE
- 1);
62 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
65 * allocation is serialized by namespace_sem, but we need the spinlock to
66 * serialize with freeing.
68 static int mnt_alloc_id(struct mount
*mnt
)
73 ida_pre_get(&mnt_id_ida
, GFP_KERNEL
);
74 spin_lock(&mnt_id_lock
);
75 res
= ida_get_new_above(&mnt_id_ida
, mnt_id_start
, &mnt
->mnt_id
);
77 mnt_id_start
= mnt
->mnt_id
+ 1;
78 spin_unlock(&mnt_id_lock
);
85 static void mnt_free_id(struct mount
*mnt
)
88 spin_lock(&mnt_id_lock
);
89 ida_remove(&mnt_id_ida
, id
);
90 if (mnt_id_start
> id
)
92 spin_unlock(&mnt_id_lock
);
96 * Allocate a new peer group ID
98 * mnt_group_ida is protected by namespace_sem
100 static int mnt_alloc_group_id(struct mount
*mnt
)
104 if (!ida_pre_get(&mnt_group_ida
, GFP_KERNEL
))
107 res
= ida_get_new_above(&mnt_group_ida
,
111 mnt_group_start
= mnt
->mnt_group_id
+ 1;
117 * Release a peer group ID
119 void mnt_release_group_id(struct mount
*mnt
)
121 int id
= mnt
->mnt_group_id
;
122 ida_remove(&mnt_group_ida
, id
);
123 if (mnt_group_start
> id
)
124 mnt_group_start
= id
;
125 mnt
->mnt_group_id
= 0;
129 * vfsmount lock must be held for read
131 static inline void mnt_add_count(struct mount
*mnt
, int n
)
134 this_cpu_add(mnt
->mnt_pcp
->mnt_count
, n
);
143 * vfsmount lock must be held for write
145 unsigned int mnt_get_count(struct mount
*mnt
)
148 unsigned int count
= 0;
151 for_each_possible_cpu(cpu
) {
152 count
+= per_cpu_ptr(mnt
->mnt_pcp
, cpu
)->mnt_count
;
157 return mnt
->mnt_count
;
161 static struct mount
*alloc_vfsmnt(const char *name
)
163 struct mount
*mnt
= kmem_cache_zalloc(mnt_cache
, GFP_KERNEL
);
167 err
= mnt_alloc_id(mnt
);
172 mnt
->mnt_devname
= kstrdup(name
, GFP_KERNEL
);
173 if (!mnt
->mnt_devname
)
178 mnt
->mnt_pcp
= alloc_percpu(struct mnt_pcp
);
180 goto out_free_devname
;
182 this_cpu_add(mnt
->mnt_pcp
->mnt_count
, 1);
185 mnt
->mnt_writers
= 0;
188 INIT_LIST_HEAD(&mnt
->mnt_hash
);
189 INIT_LIST_HEAD(&mnt
->mnt_child
);
190 INIT_LIST_HEAD(&mnt
->mnt_mounts
);
191 INIT_LIST_HEAD(&mnt
->mnt_list
);
192 INIT_LIST_HEAD(&mnt
->mnt_expire
);
193 INIT_LIST_HEAD(&mnt
->mnt_share
);
194 INIT_LIST_HEAD(&mnt
->mnt_slave_list
);
195 INIT_LIST_HEAD(&mnt
->mnt_slave
);
196 #ifdef CONFIG_FSNOTIFY
197 INIT_HLIST_HEAD(&mnt
->mnt_fsnotify_marks
);
204 kfree(mnt
->mnt_devname
);
209 kmem_cache_free(mnt_cache
, mnt
);
214 * Most r/o checks on a fs are for operations that take
215 * discrete amounts of time, like a write() or unlink().
216 * We must keep track of when those operations start
217 * (for permission checks) and when they end, so that
218 * we can determine when writes are able to occur to
222 * __mnt_is_readonly: check whether a mount is read-only
223 * @mnt: the mount to check for its write status
225 * This shouldn't be used directly ouside of the VFS.
226 * It does not guarantee that the filesystem will stay
227 * r/w, just that it is right *now*. This can not and
228 * should not be used in place of IS_RDONLY(inode).
229 * mnt_want/drop_write() will _keep_ the filesystem
232 int __mnt_is_readonly(struct vfsmount
*mnt
)
234 if (mnt
->mnt_flags
& MNT_READONLY
)
236 if (mnt
->mnt_sb
->s_flags
& MS_RDONLY
)
240 EXPORT_SYMBOL_GPL(__mnt_is_readonly
);
242 static inline void mnt_inc_writers(struct mount
*mnt
)
245 this_cpu_inc(mnt
->mnt_pcp
->mnt_writers
);
251 static inline void mnt_dec_writers(struct mount
*mnt
)
254 this_cpu_dec(mnt
->mnt_pcp
->mnt_writers
);
260 static unsigned int mnt_get_writers(struct mount
*mnt
)
263 unsigned int count
= 0;
266 for_each_possible_cpu(cpu
) {
267 count
+= per_cpu_ptr(mnt
->mnt_pcp
, cpu
)->mnt_writers
;
272 return mnt
->mnt_writers
;
276 static int mnt_is_readonly(struct vfsmount
*mnt
)
278 if (mnt
->mnt_sb
->s_readonly_remount
)
280 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
282 return __mnt_is_readonly(mnt
);
286 * Most r/o checks on a fs are for operations that take
287 * discrete amounts of time, like a write() or unlink().
288 * We must keep track of when those operations start
289 * (for permission checks) and when they end, so that
290 * we can determine when writes are able to occur to
294 * mnt_want_write - get write access to a mount
295 * @m: the mount on which to take a write
297 * This tells the low-level filesystem that a write is
298 * about to be performed to it, and makes sure that
299 * writes are allowed before returning success. When
300 * the write operation is finished, mnt_drop_write()
301 * must be called. This is effectively a refcount.
303 int mnt_want_write(struct vfsmount
*m
)
305 struct mount
*mnt
= real_mount(m
);
309 mnt_inc_writers(mnt
);
311 * The store to mnt_inc_writers must be visible before we pass
312 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
313 * incremented count after it has set MNT_WRITE_HOLD.
316 while (mnt
->mnt
.mnt_flags
& MNT_WRITE_HOLD
)
319 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
320 * be set to match its requirements. So we must not load that until
321 * MNT_WRITE_HOLD is cleared.
324 if (mnt_is_readonly(m
)) {
325 mnt_dec_writers(mnt
);
331 EXPORT_SYMBOL_GPL(mnt_want_write
);
334 * mnt_clone_write - get write access to a mount
335 * @mnt: the mount on which to take a write
337 * This is effectively like mnt_want_write, except
338 * it must only be used to take an extra write reference
339 * on a mountpoint that we already know has a write reference
340 * on it. This allows some optimisation.
342 * After finished, mnt_drop_write must be called as usual to
343 * drop the reference.
345 int mnt_clone_write(struct vfsmount
*mnt
)
347 /* superblock may be r/o */
348 if (__mnt_is_readonly(mnt
))
351 mnt_inc_writers(real_mount(mnt
));
355 EXPORT_SYMBOL_GPL(mnt_clone_write
);
358 * mnt_want_write_file - get write access to a file's mount
359 * @file: the file who's mount on which to take a write
361 * This is like mnt_want_write, but it takes a file and can
362 * do some optimisations if the file is open for write already
364 int mnt_want_write_file(struct file
*file
)
366 struct inode
*inode
= file
->f_dentry
->d_inode
;
367 if (!(file
->f_mode
& FMODE_WRITE
) || special_file(inode
->i_mode
))
368 return mnt_want_write(file
->f_path
.mnt
);
370 return mnt_clone_write(file
->f_path
.mnt
);
372 EXPORT_SYMBOL_GPL(mnt_want_write_file
);
375 * mnt_drop_write - give up write access to a mount
376 * @mnt: the mount on which to give up write access
378 * Tells the low-level filesystem that we are done
379 * performing writes to it. Must be matched with
380 * mnt_want_write() call above.
382 void mnt_drop_write(struct vfsmount
*mnt
)
385 mnt_dec_writers(real_mount(mnt
));
388 EXPORT_SYMBOL_GPL(mnt_drop_write
);
390 void mnt_drop_write_file(struct file
*file
)
392 mnt_drop_write(file
->f_path
.mnt
);
394 EXPORT_SYMBOL(mnt_drop_write_file
);
396 static int mnt_make_readonly(struct mount
*mnt
)
400 br_write_lock(&vfsmount_lock
);
401 mnt
->mnt
.mnt_flags
|= MNT_WRITE_HOLD
;
403 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
404 * should be visible before we do.
409 * With writers on hold, if this value is zero, then there are
410 * definitely no active writers (although held writers may subsequently
411 * increment the count, they'll have to wait, and decrement it after
412 * seeing MNT_READONLY).
414 * It is OK to have counter incremented on one CPU and decremented on
415 * another: the sum will add up correctly. The danger would be when we
416 * sum up each counter, if we read a counter before it is incremented,
417 * but then read another CPU's count which it has been subsequently
418 * decremented from -- we would see more decrements than we should.
419 * MNT_WRITE_HOLD protects against this scenario, because
420 * mnt_want_write first increments count, then smp_mb, then spins on
421 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
422 * we're counting up here.
424 if (mnt_get_writers(mnt
) > 0)
427 mnt
->mnt
.mnt_flags
|= MNT_READONLY
;
429 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
430 * that become unheld will see MNT_READONLY.
433 mnt
->mnt
.mnt_flags
&= ~MNT_WRITE_HOLD
;
434 br_write_unlock(&vfsmount_lock
);
438 static void __mnt_unmake_readonly(struct mount
*mnt
)
440 br_write_lock(&vfsmount_lock
);
441 mnt
->mnt
.mnt_flags
&= ~MNT_READONLY
;
442 br_write_unlock(&vfsmount_lock
);
445 int sb_prepare_remount_readonly(struct super_block
*sb
)
450 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
451 if (atomic_long_read(&sb
->s_remove_count
))
454 br_write_lock(&vfsmount_lock
);
455 list_for_each_entry(mnt
, &sb
->s_mounts
, mnt_instance
) {
456 if (!(mnt
->mnt
.mnt_flags
& MNT_READONLY
)) {
457 mnt
->mnt
.mnt_flags
|= MNT_WRITE_HOLD
;
459 if (mnt_get_writers(mnt
) > 0) {
465 if (!err
&& atomic_long_read(&sb
->s_remove_count
))
469 sb
->s_readonly_remount
= 1;
472 list_for_each_entry(mnt
, &sb
->s_mounts
, mnt_instance
) {
473 if (mnt
->mnt
.mnt_flags
& MNT_WRITE_HOLD
)
474 mnt
->mnt
.mnt_flags
&= ~MNT_WRITE_HOLD
;
476 br_write_unlock(&vfsmount_lock
);
481 static void free_vfsmnt(struct mount
*mnt
)
483 kfree(mnt
->mnt_devname
);
486 free_percpu(mnt
->mnt_pcp
);
488 kmem_cache_free(mnt_cache
, mnt
);
492 * find the first or last mount at @dentry on vfsmount @mnt depending on
493 * @dir. If @dir is set return the first mount else return the last mount.
494 * vfsmount_lock must be held for read or write.
496 struct mount
*__lookup_mnt(struct vfsmount
*mnt
, struct dentry
*dentry
,
499 struct list_head
*head
= mount_hashtable
+ hash(mnt
, dentry
);
500 struct list_head
*tmp
= head
;
501 struct mount
*p
, *found
= NULL
;
504 tmp
= dir
? tmp
->next
: tmp
->prev
;
508 p
= list_entry(tmp
, struct mount
, mnt_hash
);
509 if (&p
->mnt_parent
->mnt
== mnt
&& p
->mnt_mountpoint
== dentry
) {
518 * lookup_mnt - Return the first child mount mounted at path
520 * "First" means first mounted chronologically. If you create the
523 * mount /dev/sda1 /mnt
524 * mount /dev/sda2 /mnt
525 * mount /dev/sda3 /mnt
527 * Then lookup_mnt() on the base /mnt dentry in the root mount will
528 * return successively the root dentry and vfsmount of /dev/sda1, then
529 * /dev/sda2, then /dev/sda3, then NULL.
531 * lookup_mnt takes a reference to the found vfsmount.
533 struct vfsmount
*lookup_mnt(struct path
*path
)
535 struct mount
*child_mnt
;
537 br_read_lock(&vfsmount_lock
);
538 child_mnt
= __lookup_mnt(path
->mnt
, path
->dentry
, 1);
540 mnt_add_count(child_mnt
, 1);
541 br_read_unlock(&vfsmount_lock
);
542 return &child_mnt
->mnt
;
544 br_read_unlock(&vfsmount_lock
);
549 static inline int check_mnt(struct mount
*mnt
)
551 return mnt
->mnt_ns
== current
->nsproxy
->mnt_ns
;
555 * vfsmount lock must be held for write
557 static void touch_mnt_namespace(struct mnt_namespace
*ns
)
561 wake_up_interruptible(&ns
->poll
);
566 * vfsmount lock must be held for write
568 static void __touch_mnt_namespace(struct mnt_namespace
*ns
)
570 if (ns
&& ns
->event
!= event
) {
572 wake_up_interruptible(&ns
->poll
);
577 * Clear dentry's mounted state if it has no remaining mounts.
578 * vfsmount_lock must be held for write.
580 static void dentry_reset_mounted(struct dentry
*dentry
)
584 for (u
= 0; u
< HASH_SIZE
; u
++) {
587 list_for_each_entry(p
, &mount_hashtable
[u
], mnt_hash
) {
588 if (p
->mnt_mountpoint
== dentry
)
592 spin_lock(&dentry
->d_lock
);
593 dentry
->d_flags
&= ~DCACHE_MOUNTED
;
594 spin_unlock(&dentry
->d_lock
);
598 * vfsmount lock must be held for write
600 static void detach_mnt(struct mount
*mnt
, struct path
*old_path
)
602 old_path
->dentry
= mnt
->mnt_mountpoint
;
603 old_path
->mnt
= &mnt
->mnt_parent
->mnt
;
604 mnt
->mnt_parent
= mnt
;
605 mnt
->mnt_mountpoint
= mnt
->mnt
.mnt_root
;
606 list_del_init(&mnt
->mnt_child
);
607 list_del_init(&mnt
->mnt_hash
);
608 dentry_reset_mounted(old_path
->dentry
);
612 * vfsmount lock must be held for write
614 void mnt_set_mountpoint(struct mount
*mnt
, struct dentry
*dentry
,
615 struct mount
*child_mnt
)
617 mnt_add_count(mnt
, 1); /* essentially, that's mntget */
618 child_mnt
->mnt_mountpoint
= dget(dentry
);
619 child_mnt
->mnt_parent
= mnt
;
620 spin_lock(&dentry
->d_lock
);
621 dentry
->d_flags
|= DCACHE_MOUNTED
;
622 spin_unlock(&dentry
->d_lock
);
626 * vfsmount lock must be held for write
628 static void attach_mnt(struct mount
*mnt
, struct path
*path
)
630 mnt_set_mountpoint(real_mount(path
->mnt
), path
->dentry
, mnt
);
631 list_add_tail(&mnt
->mnt_hash
, mount_hashtable
+
632 hash(path
->mnt
, path
->dentry
));
633 list_add_tail(&mnt
->mnt_child
, &real_mount(path
->mnt
)->mnt_mounts
);
637 * vfsmount lock must be held for write
639 static void commit_tree(struct mount
*mnt
)
641 struct mount
*parent
= mnt
->mnt_parent
;
644 struct mnt_namespace
*n
= parent
->mnt_ns
;
646 BUG_ON(parent
== mnt
);
648 list_add_tail(&head
, &mnt
->mnt_list
);
649 list_for_each_entry(m
, &head
, mnt_list
)
652 list_splice(&head
, n
->list
.prev
);
654 list_add_tail(&mnt
->mnt_hash
, mount_hashtable
+
655 hash(&parent
->mnt
, mnt
->mnt_mountpoint
));
656 list_add_tail(&mnt
->mnt_child
, &parent
->mnt_mounts
);
657 touch_mnt_namespace(n
);
660 static struct mount
*next_mnt(struct mount
*p
, struct mount
*root
)
662 struct list_head
*next
= p
->mnt_mounts
.next
;
663 if (next
== &p
->mnt_mounts
) {
667 next
= p
->mnt_child
.next
;
668 if (next
!= &p
->mnt_parent
->mnt_mounts
)
673 return list_entry(next
, struct mount
, mnt_child
);
676 static struct mount
*skip_mnt_tree(struct mount
*p
)
678 struct list_head
*prev
= p
->mnt_mounts
.prev
;
679 while (prev
!= &p
->mnt_mounts
) {
680 p
= list_entry(prev
, struct mount
, mnt_child
);
681 prev
= p
->mnt_mounts
.prev
;
687 vfs_kern_mount(struct file_system_type
*type
, int flags
, const char *name
, void *data
)
693 return ERR_PTR(-ENODEV
);
695 mnt
= alloc_vfsmnt(name
);
697 return ERR_PTR(-ENOMEM
);
699 if (flags
& MS_KERNMOUNT
)
700 mnt
->mnt
.mnt_flags
= MNT_INTERNAL
;
702 root
= mount_fs(type
, flags
, name
, data
);
705 return ERR_CAST(root
);
708 mnt
->mnt
.mnt_root
= root
;
709 mnt
->mnt
.mnt_sb
= root
->d_sb
;
710 mnt
->mnt_mountpoint
= mnt
->mnt
.mnt_root
;
711 mnt
->mnt_parent
= mnt
;
712 br_write_lock(&vfsmount_lock
);
713 list_add_tail(&mnt
->mnt_instance
, &root
->d_sb
->s_mounts
);
714 br_write_unlock(&vfsmount_lock
);
717 EXPORT_SYMBOL_GPL(vfs_kern_mount
);
719 static struct mount
*clone_mnt(struct mount
*old
, struct dentry
*root
,
722 struct super_block
*sb
= old
->mnt
.mnt_sb
;
726 mnt
= alloc_vfsmnt(old
->mnt_devname
);
728 return ERR_PTR(-ENOMEM
);
730 if (flag
& (CL_SLAVE
| CL_PRIVATE
))
731 mnt
->mnt_group_id
= 0; /* not a peer of original */
733 mnt
->mnt_group_id
= old
->mnt_group_id
;
735 if ((flag
& CL_MAKE_SHARED
) && !mnt
->mnt_group_id
) {
736 err
= mnt_alloc_group_id(mnt
);
741 mnt
->mnt
.mnt_flags
= old
->mnt
.mnt_flags
& ~MNT_WRITE_HOLD
;
742 atomic_inc(&sb
->s_active
);
743 mnt
->mnt
.mnt_sb
= sb
;
744 mnt
->mnt
.mnt_root
= dget(root
);
745 mnt
->mnt_mountpoint
= mnt
->mnt
.mnt_root
;
746 mnt
->mnt_parent
= mnt
;
747 br_write_lock(&vfsmount_lock
);
748 list_add_tail(&mnt
->mnt_instance
, &sb
->s_mounts
);
749 br_write_unlock(&vfsmount_lock
);
751 if (flag
& CL_SLAVE
) {
752 list_add(&mnt
->mnt_slave
, &old
->mnt_slave_list
);
753 mnt
->mnt_master
= old
;
754 CLEAR_MNT_SHARED(mnt
);
755 } else if (!(flag
& CL_PRIVATE
)) {
756 if ((flag
& CL_MAKE_SHARED
) || IS_MNT_SHARED(old
))
757 list_add(&mnt
->mnt_share
, &old
->mnt_share
);
758 if (IS_MNT_SLAVE(old
))
759 list_add(&mnt
->mnt_slave
, &old
->mnt_slave
);
760 mnt
->mnt_master
= old
->mnt_master
;
762 if (flag
& CL_MAKE_SHARED
)
765 /* stick the duplicate mount on the same expiry list
766 * as the original if that was on one */
767 if (flag
& CL_EXPIRE
) {
768 if (!list_empty(&old
->mnt_expire
))
769 list_add(&mnt
->mnt_expire
, &old
->mnt_expire
);
779 static inline void mntfree(struct mount
*mnt
)
781 struct vfsmount
*m
= &mnt
->mnt
;
782 struct super_block
*sb
= m
->mnt_sb
;
785 * This probably indicates that somebody messed
786 * up a mnt_want/drop_write() pair. If this
787 * happens, the filesystem was probably unable
788 * to make r/w->r/o transitions.
791 * The locking used to deal with mnt_count decrement provides barriers,
792 * so mnt_get_writers() below is safe.
794 WARN_ON(mnt_get_writers(mnt
));
795 fsnotify_vfsmount_delete(m
);
798 deactivate_super(sb
);
801 static void mntput_no_expire(struct mount
*mnt
)
805 br_read_lock(&vfsmount_lock
);
806 if (likely(mnt
->mnt_ns
)) {
807 /* shouldn't be the last one */
808 mnt_add_count(mnt
, -1);
809 br_read_unlock(&vfsmount_lock
);
812 br_read_unlock(&vfsmount_lock
);
814 br_write_lock(&vfsmount_lock
);
815 mnt_add_count(mnt
, -1);
816 if (mnt_get_count(mnt
)) {
817 br_write_unlock(&vfsmount_lock
);
821 mnt_add_count(mnt
, -1);
822 if (likely(mnt_get_count(mnt
)))
824 br_write_lock(&vfsmount_lock
);
826 if (unlikely(mnt
->mnt_pinned
)) {
827 mnt_add_count(mnt
, mnt
->mnt_pinned
+ 1);
829 br_write_unlock(&vfsmount_lock
);
830 acct_auto_close_mnt(&mnt
->mnt
);
834 list_del(&mnt
->mnt_instance
);
835 br_write_unlock(&vfsmount_lock
);
839 void mntput(struct vfsmount
*mnt
)
842 struct mount
*m
= real_mount(mnt
);
843 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
844 if (unlikely(m
->mnt_expiry_mark
))
845 m
->mnt_expiry_mark
= 0;
849 EXPORT_SYMBOL(mntput
);
851 struct vfsmount
*mntget(struct vfsmount
*mnt
)
854 mnt_add_count(real_mount(mnt
), 1);
857 EXPORT_SYMBOL(mntget
);
859 void mnt_pin(struct vfsmount
*mnt
)
861 br_write_lock(&vfsmount_lock
);
862 real_mount(mnt
)->mnt_pinned
++;
863 br_write_unlock(&vfsmount_lock
);
865 EXPORT_SYMBOL(mnt_pin
);
867 void mnt_unpin(struct vfsmount
*m
)
869 struct mount
*mnt
= real_mount(m
);
870 br_write_lock(&vfsmount_lock
);
871 if (mnt
->mnt_pinned
) {
872 mnt_add_count(mnt
, 1);
875 br_write_unlock(&vfsmount_lock
);
877 EXPORT_SYMBOL(mnt_unpin
);
879 static inline void mangle(struct seq_file
*m
, const char *s
)
881 seq_escape(m
, s
, " \t\n\\");
885 * Simple .show_options callback for filesystems which don't want to
886 * implement more complex mount option showing.
888 * See also save_mount_options().
890 int generic_show_options(struct seq_file
*m
, struct dentry
*root
)
895 options
= rcu_dereference(root
->d_sb
->s_options
);
897 if (options
!= NULL
&& options
[0]) {
905 EXPORT_SYMBOL(generic_show_options
);
908 * If filesystem uses generic_show_options(), this function should be
909 * called from the fill_super() callback.
911 * The .remount_fs callback usually needs to be handled in a special
912 * way, to make sure, that previous options are not overwritten if the
915 * Also note, that if the filesystem's .remount_fs function doesn't
916 * reset all options to their default value, but changes only newly
917 * given options, then the displayed options will not reflect reality
920 void save_mount_options(struct super_block
*sb
, char *options
)
922 BUG_ON(sb
->s_options
);
923 rcu_assign_pointer(sb
->s_options
, kstrdup(options
, GFP_KERNEL
));
925 EXPORT_SYMBOL(save_mount_options
);
927 void replace_mount_options(struct super_block
*sb
, char *options
)
929 char *old
= sb
->s_options
;
930 rcu_assign_pointer(sb
->s_options
, options
);
936 EXPORT_SYMBOL(replace_mount_options
);
938 #ifdef CONFIG_PROC_FS
939 /* iterator; we want it to have access to namespace_sem, thus here... */
940 static void *m_start(struct seq_file
*m
, loff_t
*pos
)
942 struct proc_mounts
*p
= proc_mounts(m
);
944 down_read(&namespace_sem
);
945 return seq_list_start(&p
->ns
->list
, *pos
);
948 static void *m_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
950 struct proc_mounts
*p
= proc_mounts(m
);
952 return seq_list_next(v
, &p
->ns
->list
, pos
);
955 static void m_stop(struct seq_file
*m
, void *v
)
957 up_read(&namespace_sem
);
960 static int m_show(struct seq_file
*m
, void *v
)
962 struct proc_mounts
*p
= proc_mounts(m
);
963 struct mount
*r
= list_entry(v
, struct mount
, mnt_list
);
964 return p
->show(m
, &r
->mnt
);
967 const struct seq_operations mounts_op
= {
973 #endif /* CONFIG_PROC_FS */
976 * may_umount_tree - check if a mount tree is busy
977 * @mnt: root of mount tree
979 * This is called to check if a tree of mounts has any
980 * open files, pwds, chroots or sub mounts that are
983 int may_umount_tree(struct vfsmount
*m
)
985 struct mount
*mnt
= real_mount(m
);
987 int minimum_refs
= 0;
991 /* write lock needed for mnt_get_count */
992 br_write_lock(&vfsmount_lock
);
993 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
994 actual_refs
+= mnt_get_count(p
);
997 br_write_unlock(&vfsmount_lock
);
999 if (actual_refs
> minimum_refs
)
1005 EXPORT_SYMBOL(may_umount_tree
);
1008 * may_umount - check if a mount point is busy
1009 * @mnt: root of mount
1011 * This is called to check if a mount point has any
1012 * open files, pwds, chroots or sub mounts. If the
1013 * mount has sub mounts this will return busy
1014 * regardless of whether the sub mounts are busy.
1016 * Doesn't take quota and stuff into account. IOW, in some cases it will
1017 * give false negatives. The main reason why it's here is that we need
1018 * a non-destructive way to look for easily umountable filesystems.
1020 int may_umount(struct vfsmount
*mnt
)
1023 down_read(&namespace_sem
);
1024 br_write_lock(&vfsmount_lock
);
1025 if (propagate_mount_busy(real_mount(mnt
), 2))
1027 br_write_unlock(&vfsmount_lock
);
1028 up_read(&namespace_sem
);
1032 EXPORT_SYMBOL(may_umount
);
1034 void release_mounts(struct list_head
*head
)
1037 while (!list_empty(head
)) {
1038 mnt
= list_first_entry(head
, struct mount
, mnt_hash
);
1039 list_del_init(&mnt
->mnt_hash
);
1040 if (mnt_has_parent(mnt
)) {
1041 struct dentry
*dentry
;
1044 br_write_lock(&vfsmount_lock
);
1045 dentry
= mnt
->mnt_mountpoint
;
1046 m
= mnt
->mnt_parent
;
1047 mnt
->mnt_mountpoint
= mnt
->mnt
.mnt_root
;
1048 mnt
->mnt_parent
= mnt
;
1050 br_write_unlock(&vfsmount_lock
);
1059 * vfsmount lock must be held for write
1060 * namespace_sem must be held for write
1062 void umount_tree(struct mount
*mnt
, int propagate
, struct list_head
*kill
)
1064 LIST_HEAD(tmp_list
);
1067 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
))
1068 list_move(&p
->mnt_hash
, &tmp_list
);
1071 propagate_umount(&tmp_list
);
1073 list_for_each_entry(p
, &tmp_list
, mnt_hash
) {
1074 list_del_init(&p
->mnt_expire
);
1075 list_del_init(&p
->mnt_list
);
1076 __touch_mnt_namespace(p
->mnt_ns
);
1078 list_del_init(&p
->mnt_child
);
1079 if (mnt_has_parent(p
)) {
1080 p
->mnt_parent
->mnt_ghosts
++;
1081 dentry_reset_mounted(p
->mnt_mountpoint
);
1083 change_mnt_propagation(p
, MS_PRIVATE
);
1085 list_splice(&tmp_list
, kill
);
1088 static void shrink_submounts(struct mount
*mnt
, struct list_head
*umounts
);
1090 static int do_umount(struct mount
*mnt
, int flags
)
1092 struct super_block
*sb
= mnt
->mnt
.mnt_sb
;
1094 LIST_HEAD(umount_list
);
1096 retval
= security_sb_umount(&mnt
->mnt
, flags
);
1101 * Allow userspace to request a mountpoint be expired rather than
1102 * unmounting unconditionally. Unmount only happens if:
1103 * (1) the mark is already set (the mark is cleared by mntput())
1104 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1106 if (flags
& MNT_EXPIRE
) {
1107 if (&mnt
->mnt
== current
->fs
->root
.mnt
||
1108 flags
& (MNT_FORCE
| MNT_DETACH
))
1112 * probably don't strictly need the lock here if we examined
1113 * all race cases, but it's a slowpath.
1115 br_write_lock(&vfsmount_lock
);
1116 if (mnt_get_count(mnt
) != 2) {
1117 br_write_unlock(&vfsmount_lock
);
1120 br_write_unlock(&vfsmount_lock
);
1122 if (!xchg(&mnt
->mnt_expiry_mark
, 1))
1127 * If we may have to abort operations to get out of this
1128 * mount, and they will themselves hold resources we must
1129 * allow the fs to do things. In the Unix tradition of
1130 * 'Gee thats tricky lets do it in userspace' the umount_begin
1131 * might fail to complete on the first run through as other tasks
1132 * must return, and the like. Thats for the mount program to worry
1133 * about for the moment.
1136 if (flags
& MNT_FORCE
&& sb
->s_op
->umount_begin
) {
1137 sb
->s_op
->umount_begin(sb
);
1141 * No sense to grab the lock for this test, but test itself looks
1142 * somewhat bogus. Suggestions for better replacement?
1143 * Ho-hum... In principle, we might treat that as umount + switch
1144 * to rootfs. GC would eventually take care of the old vfsmount.
1145 * Actually it makes sense, especially if rootfs would contain a
1146 * /reboot - static binary that would close all descriptors and
1147 * call reboot(9). Then init(8) could umount root and exec /reboot.
1149 if (&mnt
->mnt
== current
->fs
->root
.mnt
&& !(flags
& MNT_DETACH
)) {
1151 * Special case for "unmounting" root ...
1152 * we just try to remount it readonly.
1154 down_write(&sb
->s_umount
);
1155 if (!(sb
->s_flags
& MS_RDONLY
))
1156 retval
= do_remount_sb(sb
, MS_RDONLY
, NULL
, 0);
1157 up_write(&sb
->s_umount
);
1161 down_write(&namespace_sem
);
1162 br_write_lock(&vfsmount_lock
);
1165 if (!(flags
& MNT_DETACH
))
1166 shrink_submounts(mnt
, &umount_list
);
1169 if (flags
& MNT_DETACH
|| !propagate_mount_busy(mnt
, 2)) {
1170 if (!list_empty(&mnt
->mnt_list
))
1171 umount_tree(mnt
, 1, &umount_list
);
1174 br_write_unlock(&vfsmount_lock
);
1175 up_write(&namespace_sem
);
1176 release_mounts(&umount_list
);
1181 * Now umount can handle mount points as well as block devices.
1182 * This is important for filesystems which use unnamed block devices.
1184 * We now support a flag for forced unmount like the other 'big iron'
1185 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1188 SYSCALL_DEFINE2(umount
, char __user
*, name
, int, flags
)
1193 int lookup_flags
= 0;
1195 if (flags
& ~(MNT_FORCE
| MNT_DETACH
| MNT_EXPIRE
| UMOUNT_NOFOLLOW
))
1198 if (!(flags
& UMOUNT_NOFOLLOW
))
1199 lookup_flags
|= LOOKUP_FOLLOW
;
1201 retval
= user_path_at(AT_FDCWD
, name
, lookup_flags
, &path
);
1204 mnt
= real_mount(path
.mnt
);
1206 if (path
.dentry
!= path
.mnt
->mnt_root
)
1208 if (!check_mnt(mnt
))
1212 if (!capable(CAP_SYS_ADMIN
))
1215 retval
= do_umount(mnt
, flags
);
1217 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1219 mntput_no_expire(mnt
);
1224 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1227 * The 2.0 compatible umount. No flags.
1229 SYSCALL_DEFINE1(oldumount
, char __user
*, name
)
1231 return sys_umount(name
, 0);
1236 static int mount_is_safe(struct path
*path
)
1238 if (capable(CAP_SYS_ADMIN
))
1242 if (S_ISLNK(path
->dentry
->d_inode
->i_mode
))
1244 if (path
->dentry
->d_inode
->i_mode
& S_ISVTX
) {
1245 if (current_uid() != path
->dentry
->d_inode
->i_uid
)
1248 if (inode_permission(path
->dentry
->d_inode
, MAY_WRITE
))
1254 struct mount
*copy_tree(struct mount
*mnt
, struct dentry
*dentry
,
1257 struct mount
*res
, *p
, *q
, *r
;
1260 if (!(flag
& CL_COPY_ALL
) && IS_MNT_UNBINDABLE(mnt
))
1261 return ERR_PTR(-EINVAL
);
1263 res
= q
= clone_mnt(mnt
, dentry
, flag
);
1267 q
->mnt_mountpoint
= mnt
->mnt_mountpoint
;
1270 list_for_each_entry(r
, &mnt
->mnt_mounts
, mnt_child
) {
1272 if (!is_subdir(r
->mnt_mountpoint
, dentry
))
1275 for (s
= r
; s
; s
= next_mnt(s
, r
)) {
1276 if (!(flag
& CL_COPY_ALL
) && IS_MNT_UNBINDABLE(s
)) {
1277 s
= skip_mnt_tree(s
);
1280 while (p
!= s
->mnt_parent
) {
1286 path
.dentry
= p
->mnt_mountpoint
;
1287 q
= clone_mnt(p
, p
->mnt
.mnt_root
, flag
);
1290 br_write_lock(&vfsmount_lock
);
1291 list_add_tail(&q
->mnt_list
, &res
->mnt_list
);
1292 attach_mnt(q
, &path
);
1293 br_write_unlock(&vfsmount_lock
);
1299 LIST_HEAD(umount_list
);
1300 br_write_lock(&vfsmount_lock
);
1301 umount_tree(res
, 0, &umount_list
);
1302 br_write_unlock(&vfsmount_lock
);
1303 release_mounts(&umount_list
);
1308 /* Caller should check returned pointer for errors */
1310 struct vfsmount
*collect_mounts(struct path
*path
)
1313 down_write(&namespace_sem
);
1314 tree
= copy_tree(real_mount(path
->mnt
), path
->dentry
,
1315 CL_COPY_ALL
| CL_PRIVATE
);
1316 up_write(&namespace_sem
);
1322 void drop_collected_mounts(struct vfsmount
*mnt
)
1324 LIST_HEAD(umount_list
);
1325 down_write(&namespace_sem
);
1326 br_write_lock(&vfsmount_lock
);
1327 umount_tree(real_mount(mnt
), 0, &umount_list
);
1328 br_write_unlock(&vfsmount_lock
);
1329 up_write(&namespace_sem
);
1330 release_mounts(&umount_list
);
1333 int iterate_mounts(int (*f
)(struct vfsmount
*, void *), void *arg
,
1334 struct vfsmount
*root
)
1337 int res
= f(root
, arg
);
1340 list_for_each_entry(mnt
, &real_mount(root
)->mnt_list
, mnt_list
) {
1341 res
= f(&mnt
->mnt
, arg
);
1348 static void cleanup_group_ids(struct mount
*mnt
, struct mount
*end
)
1352 for (p
= mnt
; p
!= end
; p
= next_mnt(p
, mnt
)) {
1353 if (p
->mnt_group_id
&& !IS_MNT_SHARED(p
))
1354 mnt_release_group_id(p
);
1358 static int invent_group_ids(struct mount
*mnt
, bool recurse
)
1362 for (p
= mnt
; p
; p
= recurse
? next_mnt(p
, mnt
) : NULL
) {
1363 if (!p
->mnt_group_id
&& !IS_MNT_SHARED(p
)) {
1364 int err
= mnt_alloc_group_id(p
);
1366 cleanup_group_ids(mnt
, p
);
1376 * @source_mnt : mount tree to be attached
1377 * @nd : place the mount tree @source_mnt is attached
1378 * @parent_nd : if non-null, detach the source_mnt from its parent and
1379 * store the parent mount and mountpoint dentry.
1380 * (done when source_mnt is moved)
1382 * NOTE: in the table below explains the semantics when a source mount
1383 * of a given type is attached to a destination mount of a given type.
1384 * ---------------------------------------------------------------------------
1385 * | BIND MOUNT OPERATION |
1386 * |**************************************************************************
1387 * | source-->| shared | private | slave | unbindable |
1391 * |**************************************************************************
1392 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1394 * |non-shared| shared (+) | private | slave (*) | invalid |
1395 * ***************************************************************************
1396 * A bind operation clones the source mount and mounts the clone on the
1397 * destination mount.
1399 * (++) the cloned mount is propagated to all the mounts in the propagation
1400 * tree of the destination mount and the cloned mount is added to
1401 * the peer group of the source mount.
1402 * (+) the cloned mount is created under the destination mount and is marked
1403 * as shared. The cloned mount is added to the peer group of the source
1405 * (+++) the mount is propagated to all the mounts in the propagation tree
1406 * of the destination mount and the cloned mount is made slave
1407 * of the same master as that of the source mount. The cloned mount
1408 * is marked as 'shared and slave'.
1409 * (*) the cloned mount is made a slave of the same master as that of the
1412 * ---------------------------------------------------------------------------
1413 * | MOVE MOUNT OPERATION |
1414 * |**************************************************************************
1415 * | source-->| shared | private | slave | unbindable |
1419 * |**************************************************************************
1420 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1422 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1423 * ***************************************************************************
1425 * (+) the mount is moved to the destination. And is then propagated to
1426 * all the mounts in the propagation tree of the destination mount.
1427 * (+*) the mount is moved to the destination.
1428 * (+++) the mount is moved to the destination and is then propagated to
1429 * all the mounts belonging to the destination mount's propagation tree.
1430 * the mount is marked as 'shared and slave'.
1431 * (*) the mount continues to be a slave at the new location.
1433 * if the source mount is a tree, the operations explained above is
1434 * applied to each mount in the tree.
1435 * Must be called without spinlocks held, since this function can sleep
1438 static int attach_recursive_mnt(struct mount
*source_mnt
,
1439 struct path
*path
, struct path
*parent_path
)
1441 LIST_HEAD(tree_list
);
1442 struct mount
*dest_mnt
= real_mount(path
->mnt
);
1443 struct dentry
*dest_dentry
= path
->dentry
;
1444 struct mount
*child
, *p
;
1447 if (IS_MNT_SHARED(dest_mnt
)) {
1448 err
= invent_group_ids(source_mnt
, true);
1452 err
= propagate_mnt(dest_mnt
, dest_dentry
, source_mnt
, &tree_list
);
1454 goto out_cleanup_ids
;
1456 br_write_lock(&vfsmount_lock
);
1458 if (IS_MNT_SHARED(dest_mnt
)) {
1459 for (p
= source_mnt
; p
; p
= next_mnt(p
, source_mnt
))
1463 detach_mnt(source_mnt
, parent_path
);
1464 attach_mnt(source_mnt
, path
);
1465 touch_mnt_namespace(source_mnt
->mnt_ns
);
1467 mnt_set_mountpoint(dest_mnt
, dest_dentry
, source_mnt
);
1468 commit_tree(source_mnt
);
1471 list_for_each_entry_safe(child
, p
, &tree_list
, mnt_hash
) {
1472 list_del_init(&child
->mnt_hash
);
1475 br_write_unlock(&vfsmount_lock
);
1480 if (IS_MNT_SHARED(dest_mnt
))
1481 cleanup_group_ids(source_mnt
, NULL
);
1486 static int lock_mount(struct path
*path
)
1488 struct vfsmount
*mnt
;
1490 mutex_lock(&path
->dentry
->d_inode
->i_mutex
);
1491 if (unlikely(cant_mount(path
->dentry
))) {
1492 mutex_unlock(&path
->dentry
->d_inode
->i_mutex
);
1495 down_write(&namespace_sem
);
1496 mnt
= lookup_mnt(path
);
1499 up_write(&namespace_sem
);
1500 mutex_unlock(&path
->dentry
->d_inode
->i_mutex
);
1503 path
->dentry
= dget(mnt
->mnt_root
);
1507 static void unlock_mount(struct path
*path
)
1509 up_write(&namespace_sem
);
1510 mutex_unlock(&path
->dentry
->d_inode
->i_mutex
);
1513 static int graft_tree(struct mount
*mnt
, struct path
*path
)
1515 if (mnt
->mnt
.mnt_sb
->s_flags
& MS_NOUSER
)
1518 if (S_ISDIR(path
->dentry
->d_inode
->i_mode
) !=
1519 S_ISDIR(mnt
->mnt
.mnt_root
->d_inode
->i_mode
))
1522 if (d_unlinked(path
->dentry
))
1525 return attach_recursive_mnt(mnt
, path
, NULL
);
1529 * Sanity check the flags to change_mnt_propagation.
1532 static int flags_to_propagation_type(int flags
)
1534 int type
= flags
& ~(MS_REC
| MS_SILENT
);
1536 /* Fail if any non-propagation flags are set */
1537 if (type
& ~(MS_SHARED
| MS_PRIVATE
| MS_SLAVE
| MS_UNBINDABLE
))
1539 /* Only one propagation flag should be set */
1540 if (!is_power_of_2(type
))
1546 * recursively change the type of the mountpoint.
1548 static int do_change_type(struct path
*path
, int flag
)
1551 struct mount
*mnt
= real_mount(path
->mnt
);
1552 int recurse
= flag
& MS_REC
;
1556 if (!capable(CAP_SYS_ADMIN
))
1559 if (path
->dentry
!= path
->mnt
->mnt_root
)
1562 type
= flags_to_propagation_type(flag
);
1566 down_write(&namespace_sem
);
1567 if (type
== MS_SHARED
) {
1568 err
= invent_group_ids(mnt
, recurse
);
1573 br_write_lock(&vfsmount_lock
);
1574 for (m
= mnt
; m
; m
= (recurse
? next_mnt(m
, mnt
) : NULL
))
1575 change_mnt_propagation(m
, type
);
1576 br_write_unlock(&vfsmount_lock
);
1579 up_write(&namespace_sem
);
1584 * do loopback mount.
1586 static int do_loopback(struct path
*path
, char *old_name
,
1589 LIST_HEAD(umount_list
);
1590 struct path old_path
;
1591 struct mount
*mnt
= NULL
, *old
;
1592 int err
= mount_is_safe(path
);
1595 if (!old_name
|| !*old_name
)
1597 err
= kern_path(old_name
, LOOKUP_FOLLOW
|LOOKUP_AUTOMOUNT
, &old_path
);
1601 err
= lock_mount(path
);
1605 old
= real_mount(old_path
.mnt
);
1608 if (IS_MNT_UNBINDABLE(old
))
1611 if (!check_mnt(real_mount(path
->mnt
)) || !check_mnt(old
))
1615 mnt
= copy_tree(old
, old_path
.dentry
, 0);
1617 mnt
= clone_mnt(old
, old_path
.dentry
, 0);
1624 err
= graft_tree(mnt
, path
);
1626 br_write_lock(&vfsmount_lock
);
1627 umount_tree(mnt
, 0, &umount_list
);
1628 br_write_unlock(&vfsmount_lock
);
1632 release_mounts(&umount_list
);
1634 path_put(&old_path
);
1638 static int change_mount_flags(struct vfsmount
*mnt
, int ms_flags
)
1641 int readonly_request
= 0;
1643 if (ms_flags
& MS_RDONLY
)
1644 readonly_request
= 1;
1645 if (readonly_request
== __mnt_is_readonly(mnt
))
1648 if (readonly_request
)
1649 error
= mnt_make_readonly(real_mount(mnt
));
1651 __mnt_unmake_readonly(real_mount(mnt
));
1656 * change filesystem flags. dir should be a physical root of filesystem.
1657 * If you've mounted a non-root directory somewhere and want to do remount
1658 * on it - tough luck.
1660 static int do_remount(struct path
*path
, int flags
, int mnt_flags
,
1664 struct super_block
*sb
= path
->mnt
->mnt_sb
;
1665 struct mount
*mnt
= real_mount(path
->mnt
);
1667 if (!capable(CAP_SYS_ADMIN
))
1670 if (!check_mnt(mnt
))
1673 if (path
->dentry
!= path
->mnt
->mnt_root
)
1676 err
= security_sb_remount(sb
, data
);
1680 down_write(&sb
->s_umount
);
1681 if (flags
& MS_BIND
)
1682 err
= change_mount_flags(path
->mnt
, flags
);
1684 err
= do_remount_sb(sb
, flags
, data
, 0);
1686 br_write_lock(&vfsmount_lock
);
1687 mnt_flags
|= mnt
->mnt
.mnt_flags
& MNT_PROPAGATION_MASK
;
1688 mnt
->mnt
.mnt_flags
= mnt_flags
;
1689 br_write_unlock(&vfsmount_lock
);
1691 up_write(&sb
->s_umount
);
1693 br_write_lock(&vfsmount_lock
);
1694 touch_mnt_namespace(mnt
->mnt_ns
);
1695 br_write_unlock(&vfsmount_lock
);
1700 static inline int tree_contains_unbindable(struct mount
*mnt
)
1703 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
1704 if (IS_MNT_UNBINDABLE(p
))
1710 static int do_move_mount(struct path
*path
, char *old_name
)
1712 struct path old_path
, parent_path
;
1716 if (!capable(CAP_SYS_ADMIN
))
1718 if (!old_name
|| !*old_name
)
1720 err
= kern_path(old_name
, LOOKUP_FOLLOW
, &old_path
);
1724 err
= lock_mount(path
);
1728 old
= real_mount(old_path
.mnt
);
1729 p
= real_mount(path
->mnt
);
1732 if (!check_mnt(p
) || !check_mnt(old
))
1735 if (d_unlinked(path
->dentry
))
1739 if (old_path
.dentry
!= old_path
.mnt
->mnt_root
)
1742 if (!mnt_has_parent(old
))
1745 if (S_ISDIR(path
->dentry
->d_inode
->i_mode
) !=
1746 S_ISDIR(old_path
.dentry
->d_inode
->i_mode
))
1749 * Don't move a mount residing in a shared parent.
1751 if (IS_MNT_SHARED(old
->mnt_parent
))
1754 * Don't move a mount tree containing unbindable mounts to a destination
1755 * mount which is shared.
1757 if (IS_MNT_SHARED(p
) && tree_contains_unbindable(old
))
1760 for (; mnt_has_parent(p
); p
= p
->mnt_parent
)
1764 err
= attach_recursive_mnt(old
, path
, &parent_path
);
1768 /* if the mount is moved, it should no longer be expire
1770 list_del_init(&old
->mnt_expire
);
1775 path_put(&parent_path
);
1776 path_put(&old_path
);
1780 static struct vfsmount
*fs_set_subtype(struct vfsmount
*mnt
, const char *fstype
)
1783 const char *subtype
= strchr(fstype
, '.');
1792 mnt
->mnt_sb
->s_subtype
= kstrdup(subtype
, GFP_KERNEL
);
1794 if (!mnt
->mnt_sb
->s_subtype
)
1800 return ERR_PTR(err
);
1803 static struct vfsmount
*
1804 do_kern_mount(const char *fstype
, int flags
, const char *name
, void *data
)
1806 struct file_system_type
*type
= get_fs_type(fstype
);
1807 struct vfsmount
*mnt
;
1809 return ERR_PTR(-ENODEV
);
1810 mnt
= vfs_kern_mount(type
, flags
, name
, data
);
1811 if (!IS_ERR(mnt
) && (type
->fs_flags
& FS_HAS_SUBTYPE
) &&
1812 !mnt
->mnt_sb
->s_subtype
)
1813 mnt
= fs_set_subtype(mnt
, fstype
);
1814 put_filesystem(type
);
1819 * add a mount into a namespace's mount tree
1821 static int do_add_mount(struct mount
*newmnt
, struct path
*path
, int mnt_flags
)
1825 mnt_flags
&= ~(MNT_SHARED
| MNT_WRITE_HOLD
| MNT_INTERNAL
);
1827 err
= lock_mount(path
);
1832 if (!(mnt_flags
& MNT_SHRINKABLE
) && !check_mnt(real_mount(path
->mnt
)))
1835 /* Refuse the same filesystem on the same mount point */
1837 if (path
->mnt
->mnt_sb
== newmnt
->mnt
.mnt_sb
&&
1838 path
->mnt
->mnt_root
== path
->dentry
)
1842 if (S_ISLNK(newmnt
->mnt
.mnt_root
->d_inode
->i_mode
))
1845 newmnt
->mnt
.mnt_flags
= mnt_flags
;
1846 err
= graft_tree(newmnt
, path
);
1854 * create a new mount for userspace and request it to be added into the
1857 static int do_new_mount(struct path
*path
, char *type
, int flags
,
1858 int mnt_flags
, char *name
, void *data
)
1860 struct vfsmount
*mnt
;
1866 /* we need capabilities... */
1867 if (!capable(CAP_SYS_ADMIN
))
1870 mnt
= do_kern_mount(type
, flags
, name
, data
);
1872 return PTR_ERR(mnt
);
1874 err
= do_add_mount(real_mount(mnt
), path
, mnt_flags
);
1880 int finish_automount(struct vfsmount
*m
, struct path
*path
)
1882 struct mount
*mnt
= real_mount(m
);
1884 /* The new mount record should have at least 2 refs to prevent it being
1885 * expired before we get a chance to add it
1887 BUG_ON(mnt_get_count(mnt
) < 2);
1889 if (m
->mnt_sb
== path
->mnt
->mnt_sb
&&
1890 m
->mnt_root
== path
->dentry
) {
1895 err
= do_add_mount(mnt
, path
, path
->mnt
->mnt_flags
| MNT_SHRINKABLE
);
1899 /* remove m from any expiration list it may be on */
1900 if (!list_empty(&mnt
->mnt_expire
)) {
1901 down_write(&namespace_sem
);
1902 br_write_lock(&vfsmount_lock
);
1903 list_del_init(&mnt
->mnt_expire
);
1904 br_write_unlock(&vfsmount_lock
);
1905 up_write(&namespace_sem
);
1913 * mnt_set_expiry - Put a mount on an expiration list
1914 * @mnt: The mount to list.
1915 * @expiry_list: The list to add the mount to.
1917 void mnt_set_expiry(struct vfsmount
*mnt
, struct list_head
*expiry_list
)
1919 down_write(&namespace_sem
);
1920 br_write_lock(&vfsmount_lock
);
1922 list_add_tail(&real_mount(mnt
)->mnt_expire
, expiry_list
);
1924 br_write_unlock(&vfsmount_lock
);
1925 up_write(&namespace_sem
);
1927 EXPORT_SYMBOL(mnt_set_expiry
);
1930 * process a list of expirable mountpoints with the intent of discarding any
1931 * mountpoints that aren't in use and haven't been touched since last we came
1934 void mark_mounts_for_expiry(struct list_head
*mounts
)
1936 struct mount
*mnt
, *next
;
1937 LIST_HEAD(graveyard
);
1940 if (list_empty(mounts
))
1943 down_write(&namespace_sem
);
1944 br_write_lock(&vfsmount_lock
);
1946 /* extract from the expiration list every vfsmount that matches the
1947 * following criteria:
1948 * - only referenced by its parent vfsmount
1949 * - still marked for expiry (marked on the last call here; marks are
1950 * cleared by mntput())
1952 list_for_each_entry_safe(mnt
, next
, mounts
, mnt_expire
) {
1953 if (!xchg(&mnt
->mnt_expiry_mark
, 1) ||
1954 propagate_mount_busy(mnt
, 1))
1956 list_move(&mnt
->mnt_expire
, &graveyard
);
1958 while (!list_empty(&graveyard
)) {
1959 mnt
= list_first_entry(&graveyard
, struct mount
, mnt_expire
);
1960 touch_mnt_namespace(mnt
->mnt_ns
);
1961 umount_tree(mnt
, 1, &umounts
);
1963 br_write_unlock(&vfsmount_lock
);
1964 up_write(&namespace_sem
);
1966 release_mounts(&umounts
);
1969 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry
);
1972 * Ripoff of 'select_parent()'
1974 * search the list of submounts for a given mountpoint, and move any
1975 * shrinkable submounts to the 'graveyard' list.
1977 static int select_submounts(struct mount
*parent
, struct list_head
*graveyard
)
1979 struct mount
*this_parent
= parent
;
1980 struct list_head
*next
;
1984 next
= this_parent
->mnt_mounts
.next
;
1986 while (next
!= &this_parent
->mnt_mounts
) {
1987 struct list_head
*tmp
= next
;
1988 struct mount
*mnt
= list_entry(tmp
, struct mount
, mnt_child
);
1991 if (!(mnt
->mnt
.mnt_flags
& MNT_SHRINKABLE
))
1994 * Descend a level if the d_mounts list is non-empty.
1996 if (!list_empty(&mnt
->mnt_mounts
)) {
2001 if (!propagate_mount_busy(mnt
, 1)) {
2002 list_move_tail(&mnt
->mnt_expire
, graveyard
);
2007 * All done at this level ... ascend and resume the search
2009 if (this_parent
!= parent
) {
2010 next
= this_parent
->mnt_child
.next
;
2011 this_parent
= this_parent
->mnt_parent
;
2018 * process a list of expirable mountpoints with the intent of discarding any
2019 * submounts of a specific parent mountpoint
2021 * vfsmount_lock must be held for write
2023 static void shrink_submounts(struct mount
*mnt
, struct list_head
*umounts
)
2025 LIST_HEAD(graveyard
);
2028 /* extract submounts of 'mountpoint' from the expiration list */
2029 while (select_submounts(mnt
, &graveyard
)) {
2030 while (!list_empty(&graveyard
)) {
2031 m
= list_first_entry(&graveyard
, struct mount
,
2033 touch_mnt_namespace(m
->mnt_ns
);
2034 umount_tree(m
, 1, umounts
);
2040 * Some copy_from_user() implementations do not return the exact number of
2041 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2042 * Note that this function differs from copy_from_user() in that it will oops
2043 * on bad values of `to', rather than returning a short copy.
2045 static long exact_copy_from_user(void *to
, const void __user
* from
,
2049 const char __user
*f
= from
;
2052 if (!access_ok(VERIFY_READ
, from
, n
))
2056 if (__get_user(c
, f
)) {
2067 int copy_mount_options(const void __user
* data
, unsigned long *where
)
2077 if (!(page
= __get_free_page(GFP_KERNEL
)))
2080 /* We only care that *some* data at the address the user
2081 * gave us is valid. Just in case, we'll zero
2082 * the remainder of the page.
2084 /* copy_from_user cannot cross TASK_SIZE ! */
2085 size
= TASK_SIZE
- (unsigned long)data
;
2086 if (size
> PAGE_SIZE
)
2089 i
= size
- exact_copy_from_user((void *)page
, data
, size
);
2095 memset((char *)page
+ i
, 0, PAGE_SIZE
- i
);
2100 int copy_mount_string(const void __user
*data
, char **where
)
2109 tmp
= strndup_user(data
, PAGE_SIZE
);
2111 return PTR_ERR(tmp
);
2118 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2119 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2121 * data is a (void *) that can point to any structure up to
2122 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2123 * information (or be NULL).
2125 * Pre-0.97 versions of mount() didn't have a flags word.
2126 * When the flags word was introduced its top half was required
2127 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2128 * Therefore, if this magic number is present, it carries no information
2129 * and must be discarded.
2131 long do_mount(char *dev_name
, char *dir_name
, char *type_page
,
2132 unsigned long flags
, void *data_page
)
2139 if ((flags
& MS_MGC_MSK
) == MS_MGC_VAL
)
2140 flags
&= ~MS_MGC_MSK
;
2142 /* Basic sanity checks */
2144 if (!dir_name
|| !*dir_name
|| !memchr(dir_name
, 0, PAGE_SIZE
))
2148 ((char *)data_page
)[PAGE_SIZE
- 1] = 0;
2150 /* ... and get the mountpoint */
2151 retval
= kern_path(dir_name
, LOOKUP_FOLLOW
, &path
);
2155 retval
= security_sb_mount(dev_name
, &path
,
2156 type_page
, flags
, data_page
);
2160 /* Default to relatime unless overriden */
2161 if (!(flags
& MS_NOATIME
))
2162 mnt_flags
|= MNT_RELATIME
;
2164 /* Separate the per-mountpoint flags */
2165 if (flags
& MS_NOSUID
)
2166 mnt_flags
|= MNT_NOSUID
;
2167 if (flags
& MS_NODEV
)
2168 mnt_flags
|= MNT_NODEV
;
2169 if (flags
& MS_NOEXEC
)
2170 mnt_flags
|= MNT_NOEXEC
;
2171 if (flags
& MS_NOATIME
)
2172 mnt_flags
|= MNT_NOATIME
;
2173 if (flags
& MS_NODIRATIME
)
2174 mnt_flags
|= MNT_NODIRATIME
;
2175 if (flags
& MS_STRICTATIME
)
2176 mnt_flags
&= ~(MNT_RELATIME
| MNT_NOATIME
);
2177 if (flags
& MS_RDONLY
)
2178 mnt_flags
|= MNT_READONLY
;
2180 flags
&= ~(MS_NOSUID
| MS_NOEXEC
| MS_NODEV
| MS_ACTIVE
| MS_BORN
|
2181 MS_NOATIME
| MS_NODIRATIME
| MS_RELATIME
| MS_KERNMOUNT
|
2184 if (flags
& MS_REMOUNT
)
2185 retval
= do_remount(&path
, flags
& ~MS_REMOUNT
, mnt_flags
,
2187 else if (flags
& MS_BIND
)
2188 retval
= do_loopback(&path
, dev_name
, flags
& MS_REC
);
2189 else if (flags
& (MS_SHARED
| MS_PRIVATE
| MS_SLAVE
| MS_UNBINDABLE
))
2190 retval
= do_change_type(&path
, flags
);
2191 else if (flags
& MS_MOVE
)
2192 retval
= do_move_mount(&path
, dev_name
);
2194 retval
= do_new_mount(&path
, type_page
, flags
, mnt_flags
,
2195 dev_name
, data_page
);
2201 static struct mnt_namespace
*alloc_mnt_ns(void)
2203 struct mnt_namespace
*new_ns
;
2205 new_ns
= kmalloc(sizeof(struct mnt_namespace
), GFP_KERNEL
);
2207 return ERR_PTR(-ENOMEM
);
2208 atomic_set(&new_ns
->count
, 1);
2209 new_ns
->root
= NULL
;
2210 INIT_LIST_HEAD(&new_ns
->list
);
2211 init_waitqueue_head(&new_ns
->poll
);
2217 * Allocate a new namespace structure and populate it with contents
2218 * copied from the namespace of the passed in task structure.
2220 static struct mnt_namespace
*dup_mnt_ns(struct mnt_namespace
*mnt_ns
,
2221 struct fs_struct
*fs
)
2223 struct mnt_namespace
*new_ns
;
2224 struct vfsmount
*rootmnt
= NULL
, *pwdmnt
= NULL
;
2225 struct mount
*p
, *q
;
2226 struct mount
*old
= mnt_ns
->root
;
2229 new_ns
= alloc_mnt_ns();
2233 down_write(&namespace_sem
);
2234 /* First pass: copy the tree topology */
2235 new = copy_tree(old
, old
->mnt
.mnt_root
, CL_COPY_ALL
| CL_EXPIRE
);
2237 up_write(&namespace_sem
);
2239 return ERR_CAST(new);
2242 br_write_lock(&vfsmount_lock
);
2243 list_add_tail(&new_ns
->list
, &new->mnt_list
);
2244 br_write_unlock(&vfsmount_lock
);
2247 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2248 * as belonging to new namespace. We have already acquired a private
2249 * fs_struct, so tsk->fs->lock is not needed.
2256 if (&p
->mnt
== fs
->root
.mnt
) {
2257 fs
->root
.mnt
= mntget(&q
->mnt
);
2260 if (&p
->mnt
== fs
->pwd
.mnt
) {
2261 fs
->pwd
.mnt
= mntget(&q
->mnt
);
2265 p
= next_mnt(p
, old
);
2266 q
= next_mnt(q
, new);
2268 up_write(&namespace_sem
);
2278 struct mnt_namespace
*copy_mnt_ns(unsigned long flags
, struct mnt_namespace
*ns
,
2279 struct fs_struct
*new_fs
)
2281 struct mnt_namespace
*new_ns
;
2286 if (!(flags
& CLONE_NEWNS
))
2289 new_ns
= dup_mnt_ns(ns
, new_fs
);
2296 * create_mnt_ns - creates a private namespace and adds a root filesystem
2297 * @mnt: pointer to the new root filesystem mountpoint
2299 static struct mnt_namespace
*create_mnt_ns(struct vfsmount
*m
)
2301 struct mnt_namespace
*new_ns
= alloc_mnt_ns();
2302 if (!IS_ERR(new_ns
)) {
2303 struct mount
*mnt
= real_mount(m
);
2304 mnt
->mnt_ns
= new_ns
;
2306 list_add(&new_ns
->list
, &mnt
->mnt_list
);
2313 struct dentry
*mount_subtree(struct vfsmount
*mnt
, const char *name
)
2315 struct mnt_namespace
*ns
;
2316 struct super_block
*s
;
2320 ns
= create_mnt_ns(mnt
);
2322 return ERR_CAST(ns
);
2324 err
= vfs_path_lookup(mnt
->mnt_root
, mnt
,
2325 name
, LOOKUP_FOLLOW
|LOOKUP_AUTOMOUNT
, &path
);
2330 return ERR_PTR(err
);
2332 /* trade a vfsmount reference for active sb one */
2333 s
= path
.mnt
->mnt_sb
;
2334 atomic_inc(&s
->s_active
);
2336 /* lock the sucker */
2337 down_write(&s
->s_umount
);
2338 /* ... and return the root of (sub)tree on it */
2341 EXPORT_SYMBOL(mount_subtree
);
2343 SYSCALL_DEFINE5(mount
, char __user
*, dev_name
, char __user
*, dir_name
,
2344 char __user
*, type
, unsigned long, flags
, void __user
*, data
)
2350 unsigned long data_page
;
2352 ret
= copy_mount_string(type
, &kernel_type
);
2356 kernel_dir
= getname(dir_name
);
2357 if (IS_ERR(kernel_dir
)) {
2358 ret
= PTR_ERR(kernel_dir
);
2362 ret
= copy_mount_string(dev_name
, &kernel_dev
);
2366 ret
= copy_mount_options(data
, &data_page
);
2370 ret
= do_mount(kernel_dev
, kernel_dir
, kernel_type
, flags
,
2371 (void *) data_page
);
2373 free_page(data_page
);
2377 putname(kernel_dir
);
2385 * Return true if path is reachable from root
2387 * namespace_sem or vfsmount_lock is held
2389 bool is_path_reachable(struct mount
*mnt
, struct dentry
*dentry
,
2390 const struct path
*root
)
2392 while (&mnt
->mnt
!= root
->mnt
&& mnt_has_parent(mnt
)) {
2393 dentry
= mnt
->mnt_mountpoint
;
2394 mnt
= mnt
->mnt_parent
;
2396 return &mnt
->mnt
== root
->mnt
&& is_subdir(dentry
, root
->dentry
);
2399 int path_is_under(struct path
*path1
, struct path
*path2
)
2402 br_read_lock(&vfsmount_lock
);
2403 res
= is_path_reachable(real_mount(path1
->mnt
), path1
->dentry
, path2
);
2404 br_read_unlock(&vfsmount_lock
);
2407 EXPORT_SYMBOL(path_is_under
);
2410 * pivot_root Semantics:
2411 * Moves the root file system of the current process to the directory put_old,
2412 * makes new_root as the new root file system of the current process, and sets
2413 * root/cwd of all processes which had them on the current root to new_root.
2416 * The new_root and put_old must be directories, and must not be on the
2417 * same file system as the current process root. The put_old must be
2418 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2419 * pointed to by put_old must yield the same directory as new_root. No other
2420 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2422 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2423 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2424 * in this situation.
2427 * - we don't move root/cwd if they are not at the root (reason: if something
2428 * cared enough to change them, it's probably wrong to force them elsewhere)
2429 * - it's okay to pick a root that isn't the root of a file system, e.g.
2430 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2431 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2434 SYSCALL_DEFINE2(pivot_root
, const char __user
*, new_root
,
2435 const char __user
*, put_old
)
2437 struct path
new, old
, parent_path
, root_parent
, root
;
2438 struct mount
*new_mnt
, *root_mnt
;
2441 if (!capable(CAP_SYS_ADMIN
))
2444 error
= user_path_dir(new_root
, &new);
2448 error
= user_path_dir(put_old
, &old
);
2452 error
= security_sb_pivotroot(&old
, &new);
2456 get_fs_root(current
->fs
, &root
);
2457 error
= lock_mount(&old
);
2462 new_mnt
= real_mount(new.mnt
);
2463 root_mnt
= real_mount(root
.mnt
);
2464 if (IS_MNT_SHARED(real_mount(old
.mnt
)) ||
2465 IS_MNT_SHARED(new_mnt
->mnt_parent
) ||
2466 IS_MNT_SHARED(root_mnt
->mnt_parent
))
2468 if (!check_mnt(root_mnt
) || !check_mnt(new_mnt
))
2471 if (d_unlinked(new.dentry
))
2473 if (d_unlinked(old
.dentry
))
2476 if (new.mnt
== root
.mnt
||
2477 old
.mnt
== root
.mnt
)
2478 goto out4
; /* loop, on the same file system */
2480 if (root
.mnt
->mnt_root
!= root
.dentry
)
2481 goto out4
; /* not a mountpoint */
2482 if (!mnt_has_parent(root_mnt
))
2483 goto out4
; /* not attached */
2484 if (new.mnt
->mnt_root
!= new.dentry
)
2485 goto out4
; /* not a mountpoint */
2486 if (!mnt_has_parent(new_mnt
))
2487 goto out4
; /* not attached */
2488 /* make sure we can reach put_old from new_root */
2489 if (!is_path_reachable(real_mount(old
.mnt
), old
.dentry
, &new))
2491 br_write_lock(&vfsmount_lock
);
2492 detach_mnt(new_mnt
, &parent_path
);
2493 detach_mnt(root_mnt
, &root_parent
);
2494 /* mount old root on put_old */
2495 attach_mnt(root_mnt
, &old
);
2496 /* mount new_root on / */
2497 attach_mnt(new_mnt
, &root_parent
);
2498 touch_mnt_namespace(current
->nsproxy
->mnt_ns
);
2499 br_write_unlock(&vfsmount_lock
);
2500 chroot_fs_refs(&root
, &new);
2505 path_put(&root_parent
);
2506 path_put(&parent_path
);
2518 static void __init
init_mount_tree(void)
2520 struct vfsmount
*mnt
;
2521 struct mnt_namespace
*ns
;
2524 mnt
= do_kern_mount("rootfs", 0, "rootfs", NULL
);
2526 panic("Can't create rootfs");
2528 ns
= create_mnt_ns(mnt
);
2530 panic("Can't allocate initial namespace");
2532 init_task
.nsproxy
->mnt_ns
= ns
;
2536 root
.dentry
= mnt
->mnt_root
;
2538 set_fs_pwd(current
->fs
, &root
);
2539 set_fs_root(current
->fs
, &root
);
2542 void __init
mnt_init(void)
2547 init_rwsem(&namespace_sem
);
2549 mnt_cache
= kmem_cache_create("mnt_cache", sizeof(struct mount
),
2550 0, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
, NULL
);
2552 mount_hashtable
= (struct list_head
*)__get_free_page(GFP_ATOMIC
);
2554 if (!mount_hashtable
)
2555 panic("Failed to allocate mount hash table\n");
2557 printk(KERN_INFO
"Mount-cache hash table entries: %lu\n", HASH_SIZE
);
2559 for (u
= 0; u
< HASH_SIZE
; u
++)
2560 INIT_LIST_HEAD(&mount_hashtable
[u
]);
2562 br_lock_init(&vfsmount_lock
);
2566 printk(KERN_WARNING
"%s: sysfs_init error: %d\n",
2568 fs_kobj
= kobject_create_and_add("fs", NULL
);
2570 printk(KERN_WARNING
"%s: kobj create error\n", __func__
);
2575 void put_mnt_ns(struct mnt_namespace
*ns
)
2577 LIST_HEAD(umount_list
);
2579 if (!atomic_dec_and_test(&ns
->count
))
2581 down_write(&namespace_sem
);
2582 br_write_lock(&vfsmount_lock
);
2583 umount_tree(ns
->root
, 0, &umount_list
);
2584 br_write_unlock(&vfsmount_lock
);
2585 up_write(&namespace_sem
);
2586 release_mounts(&umount_list
);
2590 struct vfsmount
*kern_mount_data(struct file_system_type
*type
, void *data
)
2592 struct vfsmount
*mnt
;
2593 mnt
= vfs_kern_mount(type
, MS_KERNMOUNT
, type
->name
, data
);
2596 * it is a longterm mount, don't release mnt until
2597 * we unmount before file sys is unregistered
2599 real_mount(mnt
)->mnt_ns
= MNT_NS_INTERNAL
;
2603 EXPORT_SYMBOL_GPL(kern_mount_data
);
2605 void kern_unmount(struct vfsmount
*mnt
)
2607 /* release long term mount so mount point can be released */
2608 if (!IS_ERR_OR_NULL(mnt
)) {
2609 br_write_lock(&vfsmount_lock
);
2610 real_mount(mnt
)->mnt_ns
= NULL
;
2611 br_write_unlock(&vfsmount_lock
);
2615 EXPORT_SYMBOL(kern_unmount
);
2617 bool our_mnt(struct vfsmount
*mnt
)
2619 return check_mnt(real_mount(mnt
));