2 * Copyright (C) 2011 STRATO. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/blkdev.h>
20 #include <linux/ratelimit.h>
24 #include "ordered-data.h"
25 #include "transaction.h"
27 #include "extent_io.h"
28 #include "check-integrity.h"
29 #include "rcu-string.h"
32 * This is only the first step towards a full-features scrub. It reads all
33 * extent and super block and verifies the checksums. In case a bad checksum
34 * is found or the extent cannot be read, good data will be written back if
37 * Future enhancements:
38 * - In case an unrepairable extent is encountered, track which files are
39 * affected and report them
40 * - track and record media errors, throw out bad devices
41 * - add a mode to also read unallocated space
47 #define SCRUB_PAGES_PER_BIO 16 /* 64k per bio */
48 #define SCRUB_BIOS_PER_DEV 16 /* 1 MB per device in flight */
49 #define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */
52 struct scrub_block
*sblock
;
54 struct btrfs_device
*dev
;
55 u64 flags
; /* extent flags */
60 unsigned int mirror_num
:8;
61 unsigned int have_csum
:1;
62 unsigned int io_error
:1;
64 u8 csum
[BTRFS_CSUM_SIZE
];
69 struct scrub_dev
*sdev
;
74 struct scrub_page
*pagev
[SCRUB_PAGES_PER_BIO
];
77 struct btrfs_work work
;
81 struct scrub_page pagev
[SCRUB_MAX_PAGES_PER_BLOCK
];
83 atomic_t outstanding_pages
;
84 atomic_t ref_count
; /* free mem on transition to zero */
85 struct scrub_dev
*sdev
;
87 unsigned int header_error
:1;
88 unsigned int checksum_error
:1;
89 unsigned int no_io_error_seen
:1;
90 unsigned int generation_error
:1; /* also sets header_error */
95 struct scrub_bio
*bios
[SCRUB_BIOS_PER_DEV
];
96 struct btrfs_device
*dev
;
101 spinlock_t list_lock
;
102 wait_queue_head_t list_wait
;
104 struct list_head csum_list
;
107 int pages_per_bio
; /* <= SCRUB_PAGES_PER_BIO */
114 struct btrfs_scrub_progress stat
;
115 spinlock_t stat_lock
;
118 struct scrub_fixup_nodatasum
{
119 struct scrub_dev
*sdev
;
121 struct btrfs_root
*root
;
122 struct btrfs_work work
;
126 struct scrub_warning
{
127 struct btrfs_path
*path
;
128 u64 extent_item_size
;
134 struct btrfs_device
*dev
;
140 static int scrub_handle_errored_block(struct scrub_block
*sblock_to_check
);
141 static int scrub_setup_recheck_block(struct scrub_dev
*sdev
,
142 struct btrfs_mapping_tree
*map_tree
,
143 u64 length
, u64 logical
,
144 struct scrub_block
*sblock
);
145 static int scrub_recheck_block(struct btrfs_fs_info
*fs_info
,
146 struct scrub_block
*sblock
, int is_metadata
,
147 int have_csum
, u8
*csum
, u64 generation
,
149 static void scrub_recheck_block_checksum(struct btrfs_fs_info
*fs_info
,
150 struct scrub_block
*sblock
,
151 int is_metadata
, int have_csum
,
152 const u8
*csum
, u64 generation
,
154 static void scrub_complete_bio_end_io(struct bio
*bio
, int err
);
155 static int scrub_repair_block_from_good_copy(struct scrub_block
*sblock_bad
,
156 struct scrub_block
*sblock_good
,
158 static int scrub_repair_page_from_good_copy(struct scrub_block
*sblock_bad
,
159 struct scrub_block
*sblock_good
,
160 int page_num
, int force_write
);
161 static int scrub_checksum_data(struct scrub_block
*sblock
);
162 static int scrub_checksum_tree_block(struct scrub_block
*sblock
);
163 static int scrub_checksum_super(struct scrub_block
*sblock
);
164 static void scrub_block_get(struct scrub_block
*sblock
);
165 static void scrub_block_put(struct scrub_block
*sblock
);
166 static int scrub_add_page_to_bio(struct scrub_dev
*sdev
,
167 struct scrub_page
*spage
);
168 static int scrub_pages(struct scrub_dev
*sdev
, u64 logical
, u64 len
,
169 u64 physical
, u64 flags
, u64 gen
, int mirror_num
,
170 u8
*csum
, int force
);
171 static void scrub_bio_end_io(struct bio
*bio
, int err
);
172 static void scrub_bio_end_io_worker(struct btrfs_work
*work
);
173 static void scrub_block_complete(struct scrub_block
*sblock
);
176 static void scrub_free_csums(struct scrub_dev
*sdev
)
178 while (!list_empty(&sdev
->csum_list
)) {
179 struct btrfs_ordered_sum
*sum
;
180 sum
= list_first_entry(&sdev
->csum_list
,
181 struct btrfs_ordered_sum
, list
);
182 list_del(&sum
->list
);
187 static noinline_for_stack
void scrub_free_dev(struct scrub_dev
*sdev
)
194 /* this can happen when scrub is cancelled */
195 if (sdev
->curr
!= -1) {
196 struct scrub_bio
*sbio
= sdev
->bios
[sdev
->curr
];
198 for (i
= 0; i
< sbio
->page_count
; i
++) {
199 BUG_ON(!sbio
->pagev
[i
]);
200 BUG_ON(!sbio
->pagev
[i
]->page
);
201 scrub_block_put(sbio
->pagev
[i
]->sblock
);
206 for (i
= 0; i
< SCRUB_BIOS_PER_DEV
; ++i
) {
207 struct scrub_bio
*sbio
= sdev
->bios
[i
];
214 scrub_free_csums(sdev
);
218 static noinline_for_stack
219 struct scrub_dev
*scrub_setup_dev(struct btrfs_device
*dev
)
221 struct scrub_dev
*sdev
;
223 struct btrfs_fs_info
*fs_info
= dev
->dev_root
->fs_info
;
226 pages_per_bio
= min_t(int, SCRUB_PAGES_PER_BIO
,
227 bio_get_nr_vecs(dev
->bdev
));
228 sdev
= kzalloc(sizeof(*sdev
), GFP_NOFS
);
232 sdev
->pages_per_bio
= pages_per_bio
;
234 for (i
= 0; i
< SCRUB_BIOS_PER_DEV
; ++i
) {
235 struct scrub_bio
*sbio
;
237 sbio
= kzalloc(sizeof(*sbio
), GFP_NOFS
);
240 sdev
->bios
[i
] = sbio
;
244 sbio
->page_count
= 0;
245 sbio
->work
.func
= scrub_bio_end_io_worker
;
247 if (i
!= SCRUB_BIOS_PER_DEV
-1)
248 sdev
->bios
[i
]->next_free
= i
+ 1;
250 sdev
->bios
[i
]->next_free
= -1;
252 sdev
->first_free
= 0;
253 sdev
->nodesize
= dev
->dev_root
->nodesize
;
254 sdev
->leafsize
= dev
->dev_root
->leafsize
;
255 sdev
->sectorsize
= dev
->dev_root
->sectorsize
;
256 atomic_set(&sdev
->in_flight
, 0);
257 atomic_set(&sdev
->fixup_cnt
, 0);
258 atomic_set(&sdev
->cancel_req
, 0);
259 sdev
->csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
260 INIT_LIST_HEAD(&sdev
->csum_list
);
262 spin_lock_init(&sdev
->list_lock
);
263 spin_lock_init(&sdev
->stat_lock
);
264 init_waitqueue_head(&sdev
->list_wait
);
268 scrub_free_dev(sdev
);
269 return ERR_PTR(-ENOMEM
);
272 static int scrub_print_warning_inode(u64 inum
, u64 offset
, u64 root
, void *ctx
)
278 struct extent_buffer
*eb
;
279 struct btrfs_inode_item
*inode_item
;
280 struct scrub_warning
*swarn
= ctx
;
281 struct btrfs_fs_info
*fs_info
= swarn
->dev
->dev_root
->fs_info
;
282 struct inode_fs_paths
*ipath
= NULL
;
283 struct btrfs_root
*local_root
;
284 struct btrfs_key root_key
;
286 root_key
.objectid
= root
;
287 root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
288 root_key
.offset
= (u64
)-1;
289 local_root
= btrfs_read_fs_root_no_name(fs_info
, &root_key
);
290 if (IS_ERR(local_root
)) {
291 ret
= PTR_ERR(local_root
);
295 ret
= inode_item_info(inum
, 0, local_root
, swarn
->path
);
297 btrfs_release_path(swarn
->path
);
301 eb
= swarn
->path
->nodes
[0];
302 inode_item
= btrfs_item_ptr(eb
, swarn
->path
->slots
[0],
303 struct btrfs_inode_item
);
304 isize
= btrfs_inode_size(eb
, inode_item
);
305 nlink
= btrfs_inode_nlink(eb
, inode_item
);
306 btrfs_release_path(swarn
->path
);
308 ipath
= init_ipath(4096, local_root
, swarn
->path
);
310 ret
= PTR_ERR(ipath
);
314 ret
= paths_from_inode(inum
, ipath
);
320 * we deliberately ignore the bit ipath might have been too small to
321 * hold all of the paths here
323 for (i
= 0; i
< ipath
->fspath
->elem_cnt
; ++i
)
324 printk_in_rcu(KERN_WARNING
"btrfs: %s at logical %llu on dev "
325 "%s, sector %llu, root %llu, inode %llu, offset %llu, "
326 "length %llu, links %u (path: %s)\n", swarn
->errstr
,
327 swarn
->logical
, rcu_str_deref(swarn
->dev
->name
),
328 (unsigned long long)swarn
->sector
, root
, inum
, offset
,
329 min(isize
- offset
, (u64
)PAGE_SIZE
), nlink
,
330 (char *)(unsigned long)ipath
->fspath
->val
[i
]);
336 printk_in_rcu(KERN_WARNING
"btrfs: %s at logical %llu on dev "
337 "%s, sector %llu, root %llu, inode %llu, offset %llu: path "
338 "resolving failed with ret=%d\n", swarn
->errstr
,
339 swarn
->logical
, rcu_str_deref(swarn
->dev
->name
),
340 (unsigned long long)swarn
->sector
, root
, inum
, offset
, ret
);
346 static void scrub_print_warning(const char *errstr
, struct scrub_block
*sblock
)
348 struct btrfs_device
*dev
= sblock
->sdev
->dev
;
349 struct btrfs_fs_info
*fs_info
= dev
->dev_root
->fs_info
;
350 struct btrfs_path
*path
;
351 struct btrfs_key found_key
;
352 struct extent_buffer
*eb
;
353 struct btrfs_extent_item
*ei
;
354 struct scrub_warning swarn
;
359 unsigned long ptr
= 0;
360 const int bufsize
= 4096;
363 path
= btrfs_alloc_path();
365 swarn
.scratch_buf
= kmalloc(bufsize
, GFP_NOFS
);
366 swarn
.msg_buf
= kmalloc(bufsize
, GFP_NOFS
);
367 BUG_ON(sblock
->page_count
< 1);
368 swarn
.sector
= (sblock
->pagev
[0].physical
) >> 9;
369 swarn
.logical
= sblock
->pagev
[0].logical
;
370 swarn
.errstr
= errstr
;
372 swarn
.msg_bufsize
= bufsize
;
373 swarn
.scratch_bufsize
= bufsize
;
375 if (!path
|| !swarn
.scratch_buf
|| !swarn
.msg_buf
)
378 ret
= extent_from_logical(fs_info
, swarn
.logical
, path
, &found_key
);
382 extent_item_pos
= swarn
.logical
- found_key
.objectid
;
383 swarn
.extent_item_size
= found_key
.offset
;
386 ei
= btrfs_item_ptr(eb
, path
->slots
[0], struct btrfs_extent_item
);
387 item_size
= btrfs_item_size_nr(eb
, path
->slots
[0]);
388 btrfs_release_path(path
);
390 if (ret
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
392 ret
= tree_backref_for_extent(&ptr
, eb
, ei
, item_size
,
393 &ref_root
, &ref_level
);
394 printk_in_rcu(KERN_WARNING
395 "btrfs: %s at logical %llu on dev %s, "
396 "sector %llu: metadata %s (level %d) in tree "
397 "%llu\n", errstr
, swarn
.logical
,
398 rcu_str_deref(dev
->name
),
399 (unsigned long long)swarn
.sector
,
400 ref_level
? "node" : "leaf",
401 ret
< 0 ? -1 : ref_level
,
402 ret
< 0 ? -1 : ref_root
);
406 iterate_extent_inodes(fs_info
, found_key
.objectid
,
408 scrub_print_warning_inode
, &swarn
);
412 btrfs_free_path(path
);
413 kfree(swarn
.scratch_buf
);
414 kfree(swarn
.msg_buf
);
417 static int scrub_fixup_readpage(u64 inum
, u64 offset
, u64 root
, void *ctx
)
419 struct page
*page
= NULL
;
421 struct scrub_fixup_nodatasum
*fixup
= ctx
;
424 struct btrfs_key key
;
425 struct inode
*inode
= NULL
;
426 u64 end
= offset
+ PAGE_SIZE
- 1;
427 struct btrfs_root
*local_root
;
430 key
.type
= BTRFS_ROOT_ITEM_KEY
;
431 key
.offset
= (u64
)-1;
432 local_root
= btrfs_read_fs_root_no_name(fixup
->root
->fs_info
, &key
);
433 if (IS_ERR(local_root
))
434 return PTR_ERR(local_root
);
436 key
.type
= BTRFS_INODE_ITEM_KEY
;
439 inode
= btrfs_iget(fixup
->root
->fs_info
->sb
, &key
, local_root
, NULL
);
441 return PTR_ERR(inode
);
443 index
= offset
>> PAGE_CACHE_SHIFT
;
445 page
= find_or_create_page(inode
->i_mapping
, index
, GFP_NOFS
);
451 if (PageUptodate(page
)) {
452 struct btrfs_mapping_tree
*map_tree
;
453 if (PageDirty(page
)) {
455 * we need to write the data to the defect sector. the
456 * data that was in that sector is not in memory,
457 * because the page was modified. we must not write the
458 * modified page to that sector.
460 * TODO: what could be done here: wait for the delalloc
461 * runner to write out that page (might involve
462 * COW) and see whether the sector is still
463 * referenced afterwards.
465 * For the meantime, we'll treat this error
466 * incorrectable, although there is a chance that a
467 * later scrub will find the bad sector again and that
468 * there's no dirty page in memory, then.
473 map_tree
= &BTRFS_I(inode
)->root
->fs_info
->mapping_tree
;
474 ret
= repair_io_failure(map_tree
, offset
, PAGE_SIZE
,
475 fixup
->logical
, page
,
481 * we need to get good data first. the general readpage path
482 * will call repair_io_failure for us, we just have to make
483 * sure we read the bad mirror.
485 ret
= set_extent_bits(&BTRFS_I(inode
)->io_tree
, offset
, end
,
486 EXTENT_DAMAGED
, GFP_NOFS
);
488 /* set_extent_bits should give proper error */
495 ret
= extent_read_full_page(&BTRFS_I(inode
)->io_tree
, page
,
498 wait_on_page_locked(page
);
500 corrected
= !test_range_bit(&BTRFS_I(inode
)->io_tree
, offset
,
501 end
, EXTENT_DAMAGED
, 0, NULL
);
503 clear_extent_bits(&BTRFS_I(inode
)->io_tree
, offset
, end
,
504 EXTENT_DAMAGED
, GFP_NOFS
);
516 if (ret
== 0 && corrected
) {
518 * we only need to call readpage for one of the inodes belonging
519 * to this extent. so make iterate_extent_inodes stop
527 static void scrub_fixup_nodatasum(struct btrfs_work
*work
)
530 struct scrub_fixup_nodatasum
*fixup
;
531 struct scrub_dev
*sdev
;
532 struct btrfs_trans_handle
*trans
= NULL
;
533 struct btrfs_fs_info
*fs_info
;
534 struct btrfs_path
*path
;
535 int uncorrectable
= 0;
537 fixup
= container_of(work
, struct scrub_fixup_nodatasum
, work
);
539 fs_info
= fixup
->root
->fs_info
;
541 path
= btrfs_alloc_path();
543 spin_lock(&sdev
->stat_lock
);
544 ++sdev
->stat
.malloc_errors
;
545 spin_unlock(&sdev
->stat_lock
);
550 trans
= btrfs_join_transaction(fixup
->root
);
557 * the idea is to trigger a regular read through the standard path. we
558 * read a page from the (failed) logical address by specifying the
559 * corresponding copynum of the failed sector. thus, that readpage is
561 * that is the point where on-the-fly error correction will kick in
562 * (once it's finished) and rewrite the failed sector if a good copy
565 ret
= iterate_inodes_from_logical(fixup
->logical
, fixup
->root
->fs_info
,
566 path
, scrub_fixup_readpage
,
574 spin_lock(&sdev
->stat_lock
);
575 ++sdev
->stat
.corrected_errors
;
576 spin_unlock(&sdev
->stat_lock
);
579 if (trans
&& !IS_ERR(trans
))
580 btrfs_end_transaction(trans
, fixup
->root
);
582 spin_lock(&sdev
->stat_lock
);
583 ++sdev
->stat
.uncorrectable_errors
;
584 spin_unlock(&sdev
->stat_lock
);
586 printk_ratelimited_in_rcu(KERN_ERR
587 "btrfs: unable to fixup (nodatasum) error at logical %llu on dev %s\n",
588 (unsigned long long)fixup
->logical
,
589 rcu_str_deref(sdev
->dev
->name
));
592 btrfs_free_path(path
);
595 /* see caller why we're pretending to be paused in the scrub counters */
596 mutex_lock(&fs_info
->scrub_lock
);
597 atomic_dec(&fs_info
->scrubs_running
);
598 atomic_dec(&fs_info
->scrubs_paused
);
599 mutex_unlock(&fs_info
->scrub_lock
);
600 atomic_dec(&sdev
->fixup_cnt
);
601 wake_up(&fs_info
->scrub_pause_wait
);
602 wake_up(&sdev
->list_wait
);
606 * scrub_handle_errored_block gets called when either verification of the
607 * pages failed or the bio failed to read, e.g. with EIO. In the latter
608 * case, this function handles all pages in the bio, even though only one
610 * The goal of this function is to repair the errored block by using the
611 * contents of one of the mirrors.
613 static int scrub_handle_errored_block(struct scrub_block
*sblock_to_check
)
615 struct scrub_dev
*sdev
= sblock_to_check
->sdev
;
616 struct btrfs_fs_info
*fs_info
;
620 unsigned int failed_mirror_index
;
621 unsigned int is_metadata
;
622 unsigned int have_csum
;
624 struct scrub_block
*sblocks_for_recheck
; /* holds one for each mirror */
625 struct scrub_block
*sblock_bad
;
630 static DEFINE_RATELIMIT_STATE(_rs
, DEFAULT_RATELIMIT_INTERVAL
,
631 DEFAULT_RATELIMIT_BURST
);
633 BUG_ON(sblock_to_check
->page_count
< 1);
634 fs_info
= sdev
->dev
->dev_root
->fs_info
;
635 length
= sblock_to_check
->page_count
* PAGE_SIZE
;
636 logical
= sblock_to_check
->pagev
[0].logical
;
637 generation
= sblock_to_check
->pagev
[0].generation
;
638 BUG_ON(sblock_to_check
->pagev
[0].mirror_num
< 1);
639 failed_mirror_index
= sblock_to_check
->pagev
[0].mirror_num
- 1;
640 is_metadata
= !(sblock_to_check
->pagev
[0].flags
&
641 BTRFS_EXTENT_FLAG_DATA
);
642 have_csum
= sblock_to_check
->pagev
[0].have_csum
;
643 csum
= sblock_to_check
->pagev
[0].csum
;
646 * read all mirrors one after the other. This includes to
647 * re-read the extent or metadata block that failed (that was
648 * the cause that this fixup code is called) another time,
649 * page by page this time in order to know which pages
650 * caused I/O errors and which ones are good (for all mirrors).
651 * It is the goal to handle the situation when more than one
652 * mirror contains I/O errors, but the errors do not
653 * overlap, i.e. the data can be repaired by selecting the
654 * pages from those mirrors without I/O error on the
655 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
656 * would be that mirror #1 has an I/O error on the first page,
657 * the second page is good, and mirror #2 has an I/O error on
658 * the second page, but the first page is good.
659 * Then the first page of the first mirror can be repaired by
660 * taking the first page of the second mirror, and the
661 * second page of the second mirror can be repaired by
662 * copying the contents of the 2nd page of the 1st mirror.
663 * One more note: if the pages of one mirror contain I/O
664 * errors, the checksum cannot be verified. In order to get
665 * the best data for repairing, the first attempt is to find
666 * a mirror without I/O errors and with a validated checksum.
667 * Only if this is not possible, the pages are picked from
668 * mirrors with I/O errors without considering the checksum.
669 * If the latter is the case, at the end, the checksum of the
670 * repaired area is verified in order to correctly maintain
674 sblocks_for_recheck
= kzalloc(BTRFS_MAX_MIRRORS
*
675 sizeof(*sblocks_for_recheck
),
677 if (!sblocks_for_recheck
) {
678 spin_lock(&sdev
->stat_lock
);
679 sdev
->stat
.malloc_errors
++;
680 sdev
->stat
.read_errors
++;
681 sdev
->stat
.uncorrectable_errors
++;
682 spin_unlock(&sdev
->stat_lock
);
683 btrfs_dev_stat_inc_and_print(sdev
->dev
,
684 BTRFS_DEV_STAT_READ_ERRS
);
688 /* setup the context, map the logical blocks and alloc the pages */
689 ret
= scrub_setup_recheck_block(sdev
, &fs_info
->mapping_tree
, length
,
690 logical
, sblocks_for_recheck
);
692 spin_lock(&sdev
->stat_lock
);
693 sdev
->stat
.read_errors
++;
694 sdev
->stat
.uncorrectable_errors
++;
695 spin_unlock(&sdev
->stat_lock
);
696 btrfs_dev_stat_inc_and_print(sdev
->dev
,
697 BTRFS_DEV_STAT_READ_ERRS
);
700 BUG_ON(failed_mirror_index
>= BTRFS_MAX_MIRRORS
);
701 sblock_bad
= sblocks_for_recheck
+ failed_mirror_index
;
703 /* build and submit the bios for the failed mirror, check checksums */
704 ret
= scrub_recheck_block(fs_info
, sblock_bad
, is_metadata
, have_csum
,
705 csum
, generation
, sdev
->csum_size
);
707 spin_lock(&sdev
->stat_lock
);
708 sdev
->stat
.read_errors
++;
709 sdev
->stat
.uncorrectable_errors
++;
710 spin_unlock(&sdev
->stat_lock
);
711 btrfs_dev_stat_inc_and_print(sdev
->dev
,
712 BTRFS_DEV_STAT_READ_ERRS
);
716 if (!sblock_bad
->header_error
&& !sblock_bad
->checksum_error
&&
717 sblock_bad
->no_io_error_seen
) {
719 * the error disappeared after reading page by page, or
720 * the area was part of a huge bio and other parts of the
721 * bio caused I/O errors, or the block layer merged several
722 * read requests into one and the error is caused by a
723 * different bio (usually one of the two latter cases is
726 spin_lock(&sdev
->stat_lock
);
727 sdev
->stat
.unverified_errors
++;
728 spin_unlock(&sdev
->stat_lock
);
733 if (!sblock_bad
->no_io_error_seen
) {
734 spin_lock(&sdev
->stat_lock
);
735 sdev
->stat
.read_errors
++;
736 spin_unlock(&sdev
->stat_lock
);
737 if (__ratelimit(&_rs
))
738 scrub_print_warning("i/o error", sblock_to_check
);
739 btrfs_dev_stat_inc_and_print(sdev
->dev
,
740 BTRFS_DEV_STAT_READ_ERRS
);
741 } else if (sblock_bad
->checksum_error
) {
742 spin_lock(&sdev
->stat_lock
);
743 sdev
->stat
.csum_errors
++;
744 spin_unlock(&sdev
->stat_lock
);
745 if (__ratelimit(&_rs
))
746 scrub_print_warning("checksum error", sblock_to_check
);
747 btrfs_dev_stat_inc_and_print(sdev
->dev
,
748 BTRFS_DEV_STAT_CORRUPTION_ERRS
);
749 } else if (sblock_bad
->header_error
) {
750 spin_lock(&sdev
->stat_lock
);
751 sdev
->stat
.verify_errors
++;
752 spin_unlock(&sdev
->stat_lock
);
753 if (__ratelimit(&_rs
))
754 scrub_print_warning("checksum/header error",
756 if (sblock_bad
->generation_error
)
757 btrfs_dev_stat_inc_and_print(sdev
->dev
,
758 BTRFS_DEV_STAT_GENERATION_ERRS
);
760 btrfs_dev_stat_inc_and_print(sdev
->dev
,
761 BTRFS_DEV_STAT_CORRUPTION_ERRS
);
765 goto did_not_correct_error
;
767 if (!is_metadata
&& !have_csum
) {
768 struct scrub_fixup_nodatasum
*fixup_nodatasum
;
771 * !is_metadata and !have_csum, this means that the data
772 * might not be COW'ed, that it might be modified
773 * concurrently. The general strategy to work on the
774 * commit root does not help in the case when COW is not
777 fixup_nodatasum
= kzalloc(sizeof(*fixup_nodatasum
), GFP_NOFS
);
778 if (!fixup_nodatasum
)
779 goto did_not_correct_error
;
780 fixup_nodatasum
->sdev
= sdev
;
781 fixup_nodatasum
->logical
= logical
;
782 fixup_nodatasum
->root
= fs_info
->extent_root
;
783 fixup_nodatasum
->mirror_num
= failed_mirror_index
+ 1;
785 * increment scrubs_running to prevent cancel requests from
786 * completing as long as a fixup worker is running. we must also
787 * increment scrubs_paused to prevent deadlocking on pause
788 * requests used for transactions commits (as the worker uses a
789 * transaction context). it is safe to regard the fixup worker
790 * as paused for all matters practical. effectively, we only
791 * avoid cancellation requests from completing.
793 mutex_lock(&fs_info
->scrub_lock
);
794 atomic_inc(&fs_info
->scrubs_running
);
795 atomic_inc(&fs_info
->scrubs_paused
);
796 mutex_unlock(&fs_info
->scrub_lock
);
797 atomic_inc(&sdev
->fixup_cnt
);
798 fixup_nodatasum
->work
.func
= scrub_fixup_nodatasum
;
799 btrfs_queue_worker(&fs_info
->scrub_workers
,
800 &fixup_nodatasum
->work
);
805 * now build and submit the bios for the other mirrors, check
808 for (mirror_index
= 0;
809 mirror_index
< BTRFS_MAX_MIRRORS
&&
810 sblocks_for_recheck
[mirror_index
].page_count
> 0;
812 if (mirror_index
== failed_mirror_index
)
815 /* build and submit the bios, check checksums */
816 ret
= scrub_recheck_block(fs_info
,
817 sblocks_for_recheck
+ mirror_index
,
818 is_metadata
, have_csum
, csum
,
819 generation
, sdev
->csum_size
);
821 goto did_not_correct_error
;
825 * first try to pick the mirror which is completely without I/O
826 * errors and also does not have a checksum error.
827 * If one is found, and if a checksum is present, the full block
828 * that is known to contain an error is rewritten. Afterwards
829 * the block is known to be corrected.
830 * If a mirror is found which is completely correct, and no
831 * checksum is present, only those pages are rewritten that had
832 * an I/O error in the block to be repaired, since it cannot be
833 * determined, which copy of the other pages is better (and it
834 * could happen otherwise that a correct page would be
835 * overwritten by a bad one).
837 for (mirror_index
= 0;
838 mirror_index
< BTRFS_MAX_MIRRORS
&&
839 sblocks_for_recheck
[mirror_index
].page_count
> 0;
841 struct scrub_block
*sblock_other
= sblocks_for_recheck
+
844 if (!sblock_other
->header_error
&&
845 !sblock_other
->checksum_error
&&
846 sblock_other
->no_io_error_seen
) {
847 int force_write
= is_metadata
|| have_csum
;
849 ret
= scrub_repair_block_from_good_copy(sblock_bad
,
853 goto corrected_error
;
858 * in case of I/O errors in the area that is supposed to be
859 * repaired, continue by picking good copies of those pages.
860 * Select the good pages from mirrors to rewrite bad pages from
861 * the area to fix. Afterwards verify the checksum of the block
862 * that is supposed to be repaired. This verification step is
863 * only done for the purpose of statistic counting and for the
864 * final scrub report, whether errors remain.
865 * A perfect algorithm could make use of the checksum and try
866 * all possible combinations of pages from the different mirrors
867 * until the checksum verification succeeds. For example, when
868 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
869 * of mirror #2 is readable but the final checksum test fails,
870 * then the 2nd page of mirror #3 could be tried, whether now
871 * the final checksum succeedes. But this would be a rare
872 * exception and is therefore not implemented. At least it is
873 * avoided that the good copy is overwritten.
874 * A more useful improvement would be to pick the sectors
875 * without I/O error based on sector sizes (512 bytes on legacy
876 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
877 * mirror could be repaired by taking 512 byte of a different
878 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
879 * area are unreadable.
882 /* can only fix I/O errors from here on */
883 if (sblock_bad
->no_io_error_seen
)
884 goto did_not_correct_error
;
887 for (page_num
= 0; page_num
< sblock_bad
->page_count
; page_num
++) {
888 struct scrub_page
*page_bad
= sblock_bad
->pagev
+ page_num
;
890 if (!page_bad
->io_error
)
893 for (mirror_index
= 0;
894 mirror_index
< BTRFS_MAX_MIRRORS
&&
895 sblocks_for_recheck
[mirror_index
].page_count
> 0;
897 struct scrub_block
*sblock_other
= sblocks_for_recheck
+
899 struct scrub_page
*page_other
= sblock_other
->pagev
+
902 if (!page_other
->io_error
) {
903 ret
= scrub_repair_page_from_good_copy(
904 sblock_bad
, sblock_other
, page_num
, 0);
906 page_bad
->io_error
= 0;
907 break; /* succeeded for this page */
912 if (page_bad
->io_error
) {
913 /* did not find a mirror to copy the page from */
919 if (is_metadata
|| have_csum
) {
921 * need to verify the checksum now that all
922 * sectors on disk are repaired (the write
923 * request for data to be repaired is on its way).
924 * Just be lazy and use scrub_recheck_block()
925 * which re-reads the data before the checksum
926 * is verified, but most likely the data comes out
929 ret
= scrub_recheck_block(fs_info
, sblock_bad
,
930 is_metadata
, have_csum
, csum
,
931 generation
, sdev
->csum_size
);
932 if (!ret
&& !sblock_bad
->header_error
&&
933 !sblock_bad
->checksum_error
&&
934 sblock_bad
->no_io_error_seen
)
935 goto corrected_error
;
937 goto did_not_correct_error
;
940 spin_lock(&sdev
->stat_lock
);
941 sdev
->stat
.corrected_errors
++;
942 spin_unlock(&sdev
->stat_lock
);
943 printk_ratelimited_in_rcu(KERN_ERR
944 "btrfs: fixed up error at logical %llu on dev %s\n",
945 (unsigned long long)logical
,
946 rcu_str_deref(sdev
->dev
->name
));
949 did_not_correct_error
:
950 spin_lock(&sdev
->stat_lock
);
951 sdev
->stat
.uncorrectable_errors
++;
952 spin_unlock(&sdev
->stat_lock
);
953 printk_ratelimited_in_rcu(KERN_ERR
954 "btrfs: unable to fixup (regular) error at logical %llu on dev %s\n",
955 (unsigned long long)logical
,
956 rcu_str_deref(sdev
->dev
->name
));
960 if (sblocks_for_recheck
) {
961 for (mirror_index
= 0; mirror_index
< BTRFS_MAX_MIRRORS
;
963 struct scrub_block
*sblock
= sblocks_for_recheck
+
967 for (page_index
= 0; page_index
< SCRUB_PAGES_PER_BIO
;
969 if (sblock
->pagev
[page_index
].page
)
971 sblock
->pagev
[page_index
].page
);
973 kfree(sblocks_for_recheck
);
979 static int scrub_setup_recheck_block(struct scrub_dev
*sdev
,
980 struct btrfs_mapping_tree
*map_tree
,
981 u64 length
, u64 logical
,
982 struct scrub_block
*sblocks_for_recheck
)
989 * note: the three members sdev, ref_count and outstanding_pages
990 * are not used (and not set) in the blocks that are used for
991 * the recheck procedure
996 u64 sublen
= min_t(u64
, length
, PAGE_SIZE
);
997 u64 mapped_length
= sublen
;
998 struct btrfs_bio
*bbio
= NULL
;
1001 * with a length of PAGE_SIZE, each returned stripe
1002 * represents one mirror
1004 ret
= btrfs_map_block(map_tree
, WRITE
, logical
, &mapped_length
,
1006 if (ret
|| !bbio
|| mapped_length
< sublen
) {
1011 BUG_ON(page_index
>= SCRUB_PAGES_PER_BIO
);
1012 for (mirror_index
= 0; mirror_index
< (int)bbio
->num_stripes
;
1014 struct scrub_block
*sblock
;
1015 struct scrub_page
*page
;
1017 if (mirror_index
>= BTRFS_MAX_MIRRORS
)
1020 sblock
= sblocks_for_recheck
+ mirror_index
;
1021 page
= sblock
->pagev
+ page_index
;
1022 page
->logical
= logical
;
1023 page
->physical
= bbio
->stripes
[mirror_index
].physical
;
1024 /* for missing devices, dev->bdev is NULL */
1025 page
->dev
= bbio
->stripes
[mirror_index
].dev
;
1026 page
->mirror_num
= mirror_index
+ 1;
1027 page
->page
= alloc_page(GFP_NOFS
);
1029 spin_lock(&sdev
->stat_lock
);
1030 sdev
->stat
.malloc_errors
++;
1031 spin_unlock(&sdev
->stat_lock
);
1034 sblock
->page_count
++;
1046 * this function will check the on disk data for checksum errors, header
1047 * errors and read I/O errors. If any I/O errors happen, the exact pages
1048 * which are errored are marked as being bad. The goal is to enable scrub
1049 * to take those pages that are not errored from all the mirrors so that
1050 * the pages that are errored in the just handled mirror can be repaired.
1052 static int scrub_recheck_block(struct btrfs_fs_info
*fs_info
,
1053 struct scrub_block
*sblock
, int is_metadata
,
1054 int have_csum
, u8
*csum
, u64 generation
,
1059 sblock
->no_io_error_seen
= 1;
1060 sblock
->header_error
= 0;
1061 sblock
->checksum_error
= 0;
1063 for (page_num
= 0; page_num
< sblock
->page_count
; page_num
++) {
1066 struct scrub_page
*page
= sblock
->pagev
+ page_num
;
1067 DECLARE_COMPLETION_ONSTACK(complete
);
1069 if (page
->dev
->bdev
== NULL
) {
1071 sblock
->no_io_error_seen
= 0;
1075 BUG_ON(!page
->page
);
1076 bio
= bio_alloc(GFP_NOFS
, 1);
1079 bio
->bi_bdev
= page
->dev
->bdev
;
1080 bio
->bi_sector
= page
->physical
>> 9;
1081 bio
->bi_end_io
= scrub_complete_bio_end_io
;
1082 bio
->bi_private
= &complete
;
1084 ret
= bio_add_page(bio
, page
->page
, PAGE_SIZE
, 0);
1085 if (PAGE_SIZE
!= ret
) {
1089 btrfsic_submit_bio(READ
, bio
);
1091 /* this will also unplug the queue */
1092 wait_for_completion(&complete
);
1094 page
->io_error
= !test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1095 if (!test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
1096 sblock
->no_io_error_seen
= 0;
1100 if (sblock
->no_io_error_seen
)
1101 scrub_recheck_block_checksum(fs_info
, sblock
, is_metadata
,
1102 have_csum
, csum
, generation
,
1108 static void scrub_recheck_block_checksum(struct btrfs_fs_info
*fs_info
,
1109 struct scrub_block
*sblock
,
1110 int is_metadata
, int have_csum
,
1111 const u8
*csum
, u64 generation
,
1115 u8 calculated_csum
[BTRFS_CSUM_SIZE
];
1117 struct btrfs_root
*root
= fs_info
->extent_root
;
1118 void *mapped_buffer
;
1120 BUG_ON(!sblock
->pagev
[0].page
);
1122 struct btrfs_header
*h
;
1124 mapped_buffer
= kmap_atomic(sblock
->pagev
[0].page
);
1125 h
= (struct btrfs_header
*)mapped_buffer
;
1127 if (sblock
->pagev
[0].logical
!= le64_to_cpu(h
->bytenr
) ||
1128 memcmp(h
->fsid
, fs_info
->fsid
, BTRFS_UUID_SIZE
) ||
1129 memcmp(h
->chunk_tree_uuid
, fs_info
->chunk_tree_uuid
,
1131 sblock
->header_error
= 1;
1132 } else if (generation
!= le64_to_cpu(h
->generation
)) {
1133 sblock
->header_error
= 1;
1134 sblock
->generation_error
= 1;
1141 mapped_buffer
= kmap_atomic(sblock
->pagev
[0].page
);
1144 for (page_num
= 0;;) {
1145 if (page_num
== 0 && is_metadata
)
1146 crc
= btrfs_csum_data(root
,
1147 ((u8
*)mapped_buffer
) + BTRFS_CSUM_SIZE
,
1148 crc
, PAGE_SIZE
- BTRFS_CSUM_SIZE
);
1150 crc
= btrfs_csum_data(root
, mapped_buffer
, crc
,
1153 kunmap_atomic(mapped_buffer
);
1155 if (page_num
>= sblock
->page_count
)
1157 BUG_ON(!sblock
->pagev
[page_num
].page
);
1159 mapped_buffer
= kmap_atomic(sblock
->pagev
[page_num
].page
);
1162 btrfs_csum_final(crc
, calculated_csum
);
1163 if (memcmp(calculated_csum
, csum
, csum_size
))
1164 sblock
->checksum_error
= 1;
1167 static void scrub_complete_bio_end_io(struct bio
*bio
, int err
)
1169 complete((struct completion
*)bio
->bi_private
);
1172 static int scrub_repair_block_from_good_copy(struct scrub_block
*sblock_bad
,
1173 struct scrub_block
*sblock_good
,
1179 for (page_num
= 0; page_num
< sblock_bad
->page_count
; page_num
++) {
1182 ret_sub
= scrub_repair_page_from_good_copy(sblock_bad
,
1193 static int scrub_repair_page_from_good_copy(struct scrub_block
*sblock_bad
,
1194 struct scrub_block
*sblock_good
,
1195 int page_num
, int force_write
)
1197 struct scrub_page
*page_bad
= sblock_bad
->pagev
+ page_num
;
1198 struct scrub_page
*page_good
= sblock_good
->pagev
+ page_num
;
1200 BUG_ON(sblock_bad
->pagev
[page_num
].page
== NULL
);
1201 BUG_ON(sblock_good
->pagev
[page_num
].page
== NULL
);
1202 if (force_write
|| sblock_bad
->header_error
||
1203 sblock_bad
->checksum_error
|| page_bad
->io_error
) {
1206 DECLARE_COMPLETION_ONSTACK(complete
);
1208 bio
= bio_alloc(GFP_NOFS
, 1);
1211 bio
->bi_bdev
= page_bad
->dev
->bdev
;
1212 bio
->bi_sector
= page_bad
->physical
>> 9;
1213 bio
->bi_end_io
= scrub_complete_bio_end_io
;
1214 bio
->bi_private
= &complete
;
1216 ret
= bio_add_page(bio
, page_good
->page
, PAGE_SIZE
, 0);
1217 if (PAGE_SIZE
!= ret
) {
1221 btrfsic_submit_bio(WRITE
, bio
);
1223 /* this will also unplug the queue */
1224 wait_for_completion(&complete
);
1225 if (!bio_flagged(bio
, BIO_UPTODATE
)) {
1226 btrfs_dev_stat_inc_and_print(page_bad
->dev
,
1227 BTRFS_DEV_STAT_WRITE_ERRS
);
1237 static void scrub_checksum(struct scrub_block
*sblock
)
1242 BUG_ON(sblock
->page_count
< 1);
1243 flags
= sblock
->pagev
[0].flags
;
1245 if (flags
& BTRFS_EXTENT_FLAG_DATA
)
1246 ret
= scrub_checksum_data(sblock
);
1247 else if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
)
1248 ret
= scrub_checksum_tree_block(sblock
);
1249 else if (flags
& BTRFS_EXTENT_FLAG_SUPER
)
1250 (void)scrub_checksum_super(sblock
);
1254 scrub_handle_errored_block(sblock
);
1257 static int scrub_checksum_data(struct scrub_block
*sblock
)
1259 struct scrub_dev
*sdev
= sblock
->sdev
;
1260 u8 csum
[BTRFS_CSUM_SIZE
];
1266 struct btrfs_root
*root
= sdev
->dev
->dev_root
;
1270 BUG_ON(sblock
->page_count
< 1);
1271 if (!sblock
->pagev
[0].have_csum
)
1274 on_disk_csum
= sblock
->pagev
[0].csum
;
1275 page
= sblock
->pagev
[0].page
;
1276 buffer
= kmap_atomic(page
);
1278 len
= sdev
->sectorsize
;
1281 u64 l
= min_t(u64
, len
, PAGE_SIZE
);
1283 crc
= btrfs_csum_data(root
, buffer
, crc
, l
);
1284 kunmap_atomic(buffer
);
1289 BUG_ON(index
>= sblock
->page_count
);
1290 BUG_ON(!sblock
->pagev
[index
].page
);
1291 page
= sblock
->pagev
[index
].page
;
1292 buffer
= kmap_atomic(page
);
1295 btrfs_csum_final(crc
, csum
);
1296 if (memcmp(csum
, on_disk_csum
, sdev
->csum_size
))
1302 static int scrub_checksum_tree_block(struct scrub_block
*sblock
)
1304 struct scrub_dev
*sdev
= sblock
->sdev
;
1305 struct btrfs_header
*h
;
1306 struct btrfs_root
*root
= sdev
->dev
->dev_root
;
1307 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1308 u8 calculated_csum
[BTRFS_CSUM_SIZE
];
1309 u8 on_disk_csum
[BTRFS_CSUM_SIZE
];
1311 void *mapped_buffer
;
1320 BUG_ON(sblock
->page_count
< 1);
1321 page
= sblock
->pagev
[0].page
;
1322 mapped_buffer
= kmap_atomic(page
);
1323 h
= (struct btrfs_header
*)mapped_buffer
;
1324 memcpy(on_disk_csum
, h
->csum
, sdev
->csum_size
);
1327 * we don't use the getter functions here, as we
1328 * a) don't have an extent buffer and
1329 * b) the page is already kmapped
1332 if (sblock
->pagev
[0].logical
!= le64_to_cpu(h
->bytenr
))
1335 if (sblock
->pagev
[0].generation
!= le64_to_cpu(h
->generation
))
1338 if (memcmp(h
->fsid
, fs_info
->fsid
, BTRFS_UUID_SIZE
))
1341 if (memcmp(h
->chunk_tree_uuid
, fs_info
->chunk_tree_uuid
,
1345 BUG_ON(sdev
->nodesize
!= sdev
->leafsize
);
1346 len
= sdev
->nodesize
- BTRFS_CSUM_SIZE
;
1347 mapped_size
= PAGE_SIZE
- BTRFS_CSUM_SIZE
;
1348 p
= ((u8
*)mapped_buffer
) + BTRFS_CSUM_SIZE
;
1351 u64 l
= min_t(u64
, len
, mapped_size
);
1353 crc
= btrfs_csum_data(root
, p
, crc
, l
);
1354 kunmap_atomic(mapped_buffer
);
1359 BUG_ON(index
>= sblock
->page_count
);
1360 BUG_ON(!sblock
->pagev
[index
].page
);
1361 page
= sblock
->pagev
[index
].page
;
1362 mapped_buffer
= kmap_atomic(page
);
1363 mapped_size
= PAGE_SIZE
;
1367 btrfs_csum_final(crc
, calculated_csum
);
1368 if (memcmp(calculated_csum
, on_disk_csum
, sdev
->csum_size
))
1371 return fail
|| crc_fail
;
1374 static int scrub_checksum_super(struct scrub_block
*sblock
)
1376 struct btrfs_super_block
*s
;
1377 struct scrub_dev
*sdev
= sblock
->sdev
;
1378 struct btrfs_root
*root
= sdev
->dev
->dev_root
;
1379 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1380 u8 calculated_csum
[BTRFS_CSUM_SIZE
];
1381 u8 on_disk_csum
[BTRFS_CSUM_SIZE
];
1383 void *mapped_buffer
;
1392 BUG_ON(sblock
->page_count
< 1);
1393 page
= sblock
->pagev
[0].page
;
1394 mapped_buffer
= kmap_atomic(page
);
1395 s
= (struct btrfs_super_block
*)mapped_buffer
;
1396 memcpy(on_disk_csum
, s
->csum
, sdev
->csum_size
);
1398 if (sblock
->pagev
[0].logical
!= le64_to_cpu(s
->bytenr
))
1401 if (sblock
->pagev
[0].generation
!= le64_to_cpu(s
->generation
))
1404 if (memcmp(s
->fsid
, fs_info
->fsid
, BTRFS_UUID_SIZE
))
1407 len
= BTRFS_SUPER_INFO_SIZE
- BTRFS_CSUM_SIZE
;
1408 mapped_size
= PAGE_SIZE
- BTRFS_CSUM_SIZE
;
1409 p
= ((u8
*)mapped_buffer
) + BTRFS_CSUM_SIZE
;
1412 u64 l
= min_t(u64
, len
, mapped_size
);
1414 crc
= btrfs_csum_data(root
, p
, crc
, l
);
1415 kunmap_atomic(mapped_buffer
);
1420 BUG_ON(index
>= sblock
->page_count
);
1421 BUG_ON(!sblock
->pagev
[index
].page
);
1422 page
= sblock
->pagev
[index
].page
;
1423 mapped_buffer
= kmap_atomic(page
);
1424 mapped_size
= PAGE_SIZE
;
1428 btrfs_csum_final(crc
, calculated_csum
);
1429 if (memcmp(calculated_csum
, on_disk_csum
, sdev
->csum_size
))
1432 if (fail_cor
+ fail_gen
) {
1434 * if we find an error in a super block, we just report it.
1435 * They will get written with the next transaction commit
1438 spin_lock(&sdev
->stat_lock
);
1439 ++sdev
->stat
.super_errors
;
1440 spin_unlock(&sdev
->stat_lock
);
1442 btrfs_dev_stat_inc_and_print(sdev
->dev
,
1443 BTRFS_DEV_STAT_CORRUPTION_ERRS
);
1445 btrfs_dev_stat_inc_and_print(sdev
->dev
,
1446 BTRFS_DEV_STAT_GENERATION_ERRS
);
1449 return fail_cor
+ fail_gen
;
1452 static void scrub_block_get(struct scrub_block
*sblock
)
1454 atomic_inc(&sblock
->ref_count
);
1457 static void scrub_block_put(struct scrub_block
*sblock
)
1459 if (atomic_dec_and_test(&sblock
->ref_count
)) {
1462 for (i
= 0; i
< sblock
->page_count
; i
++)
1463 if (sblock
->pagev
[i
].page
)
1464 __free_page(sblock
->pagev
[i
].page
);
1469 static void scrub_submit(struct scrub_dev
*sdev
)
1471 struct scrub_bio
*sbio
;
1473 if (sdev
->curr
== -1)
1476 sbio
= sdev
->bios
[sdev
->curr
];
1478 atomic_inc(&sdev
->in_flight
);
1480 btrfsic_submit_bio(READ
, sbio
->bio
);
1483 static int scrub_add_page_to_bio(struct scrub_dev
*sdev
,
1484 struct scrub_page
*spage
)
1486 struct scrub_block
*sblock
= spage
->sblock
;
1487 struct scrub_bio
*sbio
;
1492 * grab a fresh bio or wait for one to become available
1494 while (sdev
->curr
== -1) {
1495 spin_lock(&sdev
->list_lock
);
1496 sdev
->curr
= sdev
->first_free
;
1497 if (sdev
->curr
!= -1) {
1498 sdev
->first_free
= sdev
->bios
[sdev
->curr
]->next_free
;
1499 sdev
->bios
[sdev
->curr
]->next_free
= -1;
1500 sdev
->bios
[sdev
->curr
]->page_count
= 0;
1501 spin_unlock(&sdev
->list_lock
);
1503 spin_unlock(&sdev
->list_lock
);
1504 wait_event(sdev
->list_wait
, sdev
->first_free
!= -1);
1507 sbio
= sdev
->bios
[sdev
->curr
];
1508 if (sbio
->page_count
== 0) {
1511 sbio
->physical
= spage
->physical
;
1512 sbio
->logical
= spage
->logical
;
1515 bio
= bio_alloc(GFP_NOFS
, sdev
->pages_per_bio
);
1521 bio
->bi_private
= sbio
;
1522 bio
->bi_end_io
= scrub_bio_end_io
;
1523 bio
->bi_bdev
= sdev
->dev
->bdev
;
1524 bio
->bi_sector
= spage
->physical
>> 9;
1526 } else if (sbio
->physical
+ sbio
->page_count
* PAGE_SIZE
!=
1528 sbio
->logical
+ sbio
->page_count
* PAGE_SIZE
!=
1534 sbio
->pagev
[sbio
->page_count
] = spage
;
1535 ret
= bio_add_page(sbio
->bio
, spage
->page
, PAGE_SIZE
, 0);
1536 if (ret
!= PAGE_SIZE
) {
1537 if (sbio
->page_count
< 1) {
1546 scrub_block_get(sblock
); /* one for the added page */
1547 atomic_inc(&sblock
->outstanding_pages
);
1549 if (sbio
->page_count
== sdev
->pages_per_bio
)
1555 static int scrub_pages(struct scrub_dev
*sdev
, u64 logical
, u64 len
,
1556 u64 physical
, u64 flags
, u64 gen
, int mirror_num
,
1557 u8
*csum
, int force
)
1559 struct scrub_block
*sblock
;
1562 sblock
= kzalloc(sizeof(*sblock
), GFP_NOFS
);
1564 spin_lock(&sdev
->stat_lock
);
1565 sdev
->stat
.malloc_errors
++;
1566 spin_unlock(&sdev
->stat_lock
);
1570 /* one ref inside this function, plus one for each page later on */
1571 atomic_set(&sblock
->ref_count
, 1);
1572 sblock
->sdev
= sdev
;
1573 sblock
->no_io_error_seen
= 1;
1575 for (index
= 0; len
> 0; index
++) {
1576 struct scrub_page
*spage
= sblock
->pagev
+ index
;
1577 u64 l
= min_t(u64
, len
, PAGE_SIZE
);
1579 BUG_ON(index
>= SCRUB_MAX_PAGES_PER_BLOCK
);
1580 spage
->page
= alloc_page(GFP_NOFS
);
1582 spin_lock(&sdev
->stat_lock
);
1583 sdev
->stat
.malloc_errors
++;
1584 spin_unlock(&sdev
->stat_lock
);
1587 __free_page(sblock
->pagev
[index
].page
);
1592 spage
->sblock
= sblock
;
1593 spage
->dev
= sdev
->dev
;
1594 spage
->flags
= flags
;
1595 spage
->generation
= gen
;
1596 spage
->logical
= logical
;
1597 spage
->physical
= physical
;
1598 spage
->mirror_num
= mirror_num
;
1600 spage
->have_csum
= 1;
1601 memcpy(spage
->csum
, csum
, sdev
->csum_size
);
1603 spage
->have_csum
= 0;
1605 sblock
->page_count
++;
1611 BUG_ON(sblock
->page_count
== 0);
1612 for (index
= 0; index
< sblock
->page_count
; index
++) {
1613 struct scrub_page
*spage
= sblock
->pagev
+ index
;
1616 ret
= scrub_add_page_to_bio(sdev
, spage
);
1618 scrub_block_put(sblock
);
1626 /* last one frees, either here or in bio completion for last page */
1627 scrub_block_put(sblock
);
1631 static void scrub_bio_end_io(struct bio
*bio
, int err
)
1633 struct scrub_bio
*sbio
= bio
->bi_private
;
1634 struct scrub_dev
*sdev
= sbio
->sdev
;
1635 struct btrfs_fs_info
*fs_info
= sdev
->dev
->dev_root
->fs_info
;
1640 btrfs_queue_worker(&fs_info
->scrub_workers
, &sbio
->work
);
1643 static void scrub_bio_end_io_worker(struct btrfs_work
*work
)
1645 struct scrub_bio
*sbio
= container_of(work
, struct scrub_bio
, work
);
1646 struct scrub_dev
*sdev
= sbio
->sdev
;
1649 BUG_ON(sbio
->page_count
> SCRUB_PAGES_PER_BIO
);
1651 for (i
= 0; i
< sbio
->page_count
; i
++) {
1652 struct scrub_page
*spage
= sbio
->pagev
[i
];
1654 spage
->io_error
= 1;
1655 spage
->sblock
->no_io_error_seen
= 0;
1659 /* now complete the scrub_block items that have all pages completed */
1660 for (i
= 0; i
< sbio
->page_count
; i
++) {
1661 struct scrub_page
*spage
= sbio
->pagev
[i
];
1662 struct scrub_block
*sblock
= spage
->sblock
;
1664 if (atomic_dec_and_test(&sblock
->outstanding_pages
))
1665 scrub_block_complete(sblock
);
1666 scrub_block_put(sblock
);
1670 /* what is this good for??? */
1671 sbio
->bio
->bi_flags
&= ~(BIO_POOL_MASK
- 1);
1672 sbio
->bio
->bi_flags
|= 1 << BIO_UPTODATE
;
1673 sbio
->bio
->bi_phys_segments
= 0;
1674 sbio
->bio
->bi_idx
= 0;
1676 for (i
= 0; i
< sbio
->page_count
; i
++) {
1678 bi
= &sbio
->bio
->bi_io_vec
[i
];
1680 bi
->bv_len
= PAGE_SIZE
;
1686 spin_lock(&sdev
->list_lock
);
1687 sbio
->next_free
= sdev
->first_free
;
1688 sdev
->first_free
= sbio
->index
;
1689 spin_unlock(&sdev
->list_lock
);
1690 atomic_dec(&sdev
->in_flight
);
1691 wake_up(&sdev
->list_wait
);
1694 static void scrub_block_complete(struct scrub_block
*sblock
)
1696 if (!sblock
->no_io_error_seen
)
1697 scrub_handle_errored_block(sblock
);
1699 scrub_checksum(sblock
);
1702 static int scrub_find_csum(struct scrub_dev
*sdev
, u64 logical
, u64 len
,
1705 struct btrfs_ordered_sum
*sum
= NULL
;
1708 unsigned long num_sectors
;
1710 while (!list_empty(&sdev
->csum_list
)) {
1711 sum
= list_first_entry(&sdev
->csum_list
,
1712 struct btrfs_ordered_sum
, list
);
1713 if (sum
->bytenr
> logical
)
1715 if (sum
->bytenr
+ sum
->len
> logical
)
1718 ++sdev
->stat
.csum_discards
;
1719 list_del(&sum
->list
);
1726 num_sectors
= sum
->len
/ sdev
->sectorsize
;
1727 for (i
= 0; i
< num_sectors
; ++i
) {
1728 if (sum
->sums
[i
].bytenr
== logical
) {
1729 memcpy(csum
, &sum
->sums
[i
].sum
, sdev
->csum_size
);
1734 if (ret
&& i
== num_sectors
- 1) {
1735 list_del(&sum
->list
);
1741 /* scrub extent tries to collect up to 64 kB for each bio */
1742 static int scrub_extent(struct scrub_dev
*sdev
, u64 logical
, u64 len
,
1743 u64 physical
, u64 flags
, u64 gen
, int mirror_num
)
1746 u8 csum
[BTRFS_CSUM_SIZE
];
1749 if (flags
& BTRFS_EXTENT_FLAG_DATA
) {
1750 blocksize
= sdev
->sectorsize
;
1751 spin_lock(&sdev
->stat_lock
);
1752 sdev
->stat
.data_extents_scrubbed
++;
1753 sdev
->stat
.data_bytes_scrubbed
+= len
;
1754 spin_unlock(&sdev
->stat_lock
);
1755 } else if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
1756 BUG_ON(sdev
->nodesize
!= sdev
->leafsize
);
1757 blocksize
= sdev
->nodesize
;
1758 spin_lock(&sdev
->stat_lock
);
1759 sdev
->stat
.tree_extents_scrubbed
++;
1760 sdev
->stat
.tree_bytes_scrubbed
+= len
;
1761 spin_unlock(&sdev
->stat_lock
);
1763 blocksize
= sdev
->sectorsize
;
1768 u64 l
= min_t(u64
, len
, blocksize
);
1771 if (flags
& BTRFS_EXTENT_FLAG_DATA
) {
1772 /* push csums to sbio */
1773 have_csum
= scrub_find_csum(sdev
, logical
, l
, csum
);
1775 ++sdev
->stat
.no_csum
;
1777 ret
= scrub_pages(sdev
, logical
, l
, physical
, flags
, gen
,
1778 mirror_num
, have_csum
? csum
: NULL
, 0);
1788 static noinline_for_stack
int scrub_stripe(struct scrub_dev
*sdev
,
1789 struct map_lookup
*map
, int num
, u64 base
, u64 length
)
1791 struct btrfs_path
*path
;
1792 struct btrfs_fs_info
*fs_info
= sdev
->dev
->dev_root
->fs_info
;
1793 struct btrfs_root
*root
= fs_info
->extent_root
;
1794 struct btrfs_root
*csum_root
= fs_info
->csum_root
;
1795 struct btrfs_extent_item
*extent
;
1796 struct blk_plug plug
;
1802 struct extent_buffer
*l
;
1803 struct btrfs_key key
;
1808 struct reada_control
*reada1
;
1809 struct reada_control
*reada2
;
1810 struct btrfs_key key_start
;
1811 struct btrfs_key key_end
;
1813 u64 increment
= map
->stripe_len
;
1818 do_div(nstripes
, map
->stripe_len
);
1819 if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
1820 offset
= map
->stripe_len
* num
;
1821 increment
= map
->stripe_len
* map
->num_stripes
;
1823 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
1824 int factor
= map
->num_stripes
/ map
->sub_stripes
;
1825 offset
= map
->stripe_len
* (num
/ map
->sub_stripes
);
1826 increment
= map
->stripe_len
* factor
;
1827 mirror_num
= num
% map
->sub_stripes
+ 1;
1828 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID1
) {
1829 increment
= map
->stripe_len
;
1830 mirror_num
= num
% map
->num_stripes
+ 1;
1831 } else if (map
->type
& BTRFS_BLOCK_GROUP_DUP
) {
1832 increment
= map
->stripe_len
;
1833 mirror_num
= num
% map
->num_stripes
+ 1;
1835 increment
= map
->stripe_len
;
1839 path
= btrfs_alloc_path();
1844 * work on commit root. The related disk blocks are static as
1845 * long as COW is applied. This means, it is save to rewrite
1846 * them to repair disk errors without any race conditions
1848 path
->search_commit_root
= 1;
1849 path
->skip_locking
= 1;
1852 * trigger the readahead for extent tree csum tree and wait for
1853 * completion. During readahead, the scrub is officially paused
1854 * to not hold off transaction commits
1856 logical
= base
+ offset
;
1858 wait_event(sdev
->list_wait
,
1859 atomic_read(&sdev
->in_flight
) == 0);
1860 atomic_inc(&fs_info
->scrubs_paused
);
1861 wake_up(&fs_info
->scrub_pause_wait
);
1863 /* FIXME it might be better to start readahead at commit root */
1864 key_start
.objectid
= logical
;
1865 key_start
.type
= BTRFS_EXTENT_ITEM_KEY
;
1866 key_start
.offset
= (u64
)0;
1867 key_end
.objectid
= base
+ offset
+ nstripes
* increment
;
1868 key_end
.type
= BTRFS_EXTENT_ITEM_KEY
;
1869 key_end
.offset
= (u64
)0;
1870 reada1
= btrfs_reada_add(root
, &key_start
, &key_end
);
1872 key_start
.objectid
= BTRFS_EXTENT_CSUM_OBJECTID
;
1873 key_start
.type
= BTRFS_EXTENT_CSUM_KEY
;
1874 key_start
.offset
= logical
;
1875 key_end
.objectid
= BTRFS_EXTENT_CSUM_OBJECTID
;
1876 key_end
.type
= BTRFS_EXTENT_CSUM_KEY
;
1877 key_end
.offset
= base
+ offset
+ nstripes
* increment
;
1878 reada2
= btrfs_reada_add(csum_root
, &key_start
, &key_end
);
1880 if (!IS_ERR(reada1
))
1881 btrfs_reada_wait(reada1
);
1882 if (!IS_ERR(reada2
))
1883 btrfs_reada_wait(reada2
);
1885 mutex_lock(&fs_info
->scrub_lock
);
1886 while (atomic_read(&fs_info
->scrub_pause_req
)) {
1887 mutex_unlock(&fs_info
->scrub_lock
);
1888 wait_event(fs_info
->scrub_pause_wait
,
1889 atomic_read(&fs_info
->scrub_pause_req
) == 0);
1890 mutex_lock(&fs_info
->scrub_lock
);
1892 atomic_dec(&fs_info
->scrubs_paused
);
1893 mutex_unlock(&fs_info
->scrub_lock
);
1894 wake_up(&fs_info
->scrub_pause_wait
);
1897 * collect all data csums for the stripe to avoid seeking during
1898 * the scrub. This might currently (crc32) end up to be about 1MB
1900 blk_start_plug(&plug
);
1903 * now find all extents for each stripe and scrub them
1905 logical
= base
+ offset
;
1906 physical
= map
->stripes
[num
].physical
;
1908 for (i
= 0; i
< nstripes
; ++i
) {
1912 if (atomic_read(&fs_info
->scrub_cancel_req
) ||
1913 atomic_read(&sdev
->cancel_req
)) {
1918 * check to see if we have to pause
1920 if (atomic_read(&fs_info
->scrub_pause_req
)) {
1921 /* push queued extents */
1923 wait_event(sdev
->list_wait
,
1924 atomic_read(&sdev
->in_flight
) == 0);
1925 atomic_inc(&fs_info
->scrubs_paused
);
1926 wake_up(&fs_info
->scrub_pause_wait
);
1927 mutex_lock(&fs_info
->scrub_lock
);
1928 while (atomic_read(&fs_info
->scrub_pause_req
)) {
1929 mutex_unlock(&fs_info
->scrub_lock
);
1930 wait_event(fs_info
->scrub_pause_wait
,
1931 atomic_read(&fs_info
->scrub_pause_req
) == 0);
1932 mutex_lock(&fs_info
->scrub_lock
);
1934 atomic_dec(&fs_info
->scrubs_paused
);
1935 mutex_unlock(&fs_info
->scrub_lock
);
1936 wake_up(&fs_info
->scrub_pause_wait
);
1939 ret
= btrfs_lookup_csums_range(csum_root
, logical
,
1940 logical
+ map
->stripe_len
- 1,
1941 &sdev
->csum_list
, 1);
1945 key
.objectid
= logical
;
1946 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1947 key
.offset
= (u64
)0;
1949 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1953 ret
= btrfs_previous_item(root
, path
, 0,
1954 BTRFS_EXTENT_ITEM_KEY
);
1958 /* there's no smaller item, so stick with the
1960 btrfs_release_path(path
);
1961 ret
= btrfs_search_slot(NULL
, root
, &key
,
1970 slot
= path
->slots
[0];
1971 if (slot
>= btrfs_header_nritems(l
)) {
1972 ret
= btrfs_next_leaf(root
, path
);
1980 btrfs_item_key_to_cpu(l
, &key
, slot
);
1982 if (key
.objectid
+ key
.offset
<= logical
)
1985 if (key
.objectid
>= logical
+ map
->stripe_len
)
1988 if (btrfs_key_type(&key
) != BTRFS_EXTENT_ITEM_KEY
)
1991 extent
= btrfs_item_ptr(l
, slot
,
1992 struct btrfs_extent_item
);
1993 flags
= btrfs_extent_flags(l
, extent
);
1994 generation
= btrfs_extent_generation(l
, extent
);
1996 if (key
.objectid
< logical
&&
1997 (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
)) {
1999 "btrfs scrub: tree block %llu spanning "
2000 "stripes, ignored. logical=%llu\n",
2001 (unsigned long long)key
.objectid
,
2002 (unsigned long long)logical
);
2007 * trim extent to this stripe
2009 if (key
.objectid
< logical
) {
2010 key
.offset
-= logical
- key
.objectid
;
2011 key
.objectid
= logical
;
2013 if (key
.objectid
+ key
.offset
>
2014 logical
+ map
->stripe_len
) {
2015 key
.offset
= logical
+ map
->stripe_len
-
2019 ret
= scrub_extent(sdev
, key
.objectid
, key
.offset
,
2020 key
.objectid
- logical
+ physical
,
2021 flags
, generation
, mirror_num
);
2028 btrfs_release_path(path
);
2029 logical
+= increment
;
2030 physical
+= map
->stripe_len
;
2031 spin_lock(&sdev
->stat_lock
);
2032 sdev
->stat
.last_physical
= physical
;
2033 spin_unlock(&sdev
->stat_lock
);
2035 /* push queued extents */
2039 blk_finish_plug(&plug
);
2040 btrfs_free_path(path
);
2041 return ret
< 0 ? ret
: 0;
2044 static noinline_for_stack
int scrub_chunk(struct scrub_dev
*sdev
,
2045 u64 chunk_tree
, u64 chunk_objectid
, u64 chunk_offset
, u64 length
,
2048 struct btrfs_mapping_tree
*map_tree
=
2049 &sdev
->dev
->dev_root
->fs_info
->mapping_tree
;
2050 struct map_lookup
*map
;
2051 struct extent_map
*em
;
2055 read_lock(&map_tree
->map_tree
.lock
);
2056 em
= lookup_extent_mapping(&map_tree
->map_tree
, chunk_offset
, 1);
2057 read_unlock(&map_tree
->map_tree
.lock
);
2062 map
= (struct map_lookup
*)em
->bdev
;
2063 if (em
->start
!= chunk_offset
)
2066 if (em
->len
< length
)
2069 for (i
= 0; i
< map
->num_stripes
; ++i
) {
2070 if (map
->stripes
[i
].dev
== sdev
->dev
&&
2071 map
->stripes
[i
].physical
== dev_offset
) {
2072 ret
= scrub_stripe(sdev
, map
, i
, chunk_offset
, length
);
2078 free_extent_map(em
);
2083 static noinline_for_stack
2084 int scrub_enumerate_chunks(struct scrub_dev
*sdev
, u64 start
, u64 end
)
2086 struct btrfs_dev_extent
*dev_extent
= NULL
;
2087 struct btrfs_path
*path
;
2088 struct btrfs_root
*root
= sdev
->dev
->dev_root
;
2089 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2096 struct extent_buffer
*l
;
2097 struct btrfs_key key
;
2098 struct btrfs_key found_key
;
2099 struct btrfs_block_group_cache
*cache
;
2101 path
= btrfs_alloc_path();
2106 path
->search_commit_root
= 1;
2107 path
->skip_locking
= 1;
2109 key
.objectid
= sdev
->dev
->devid
;
2111 key
.type
= BTRFS_DEV_EXTENT_KEY
;
2115 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2119 if (path
->slots
[0] >=
2120 btrfs_header_nritems(path
->nodes
[0])) {
2121 ret
= btrfs_next_leaf(root
, path
);
2128 slot
= path
->slots
[0];
2130 btrfs_item_key_to_cpu(l
, &found_key
, slot
);
2132 if (found_key
.objectid
!= sdev
->dev
->devid
)
2135 if (btrfs_key_type(&found_key
) != BTRFS_DEV_EXTENT_KEY
)
2138 if (found_key
.offset
>= end
)
2141 if (found_key
.offset
< key
.offset
)
2144 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
2145 length
= btrfs_dev_extent_length(l
, dev_extent
);
2147 if (found_key
.offset
+ length
<= start
) {
2148 key
.offset
= found_key
.offset
+ length
;
2149 btrfs_release_path(path
);
2153 chunk_tree
= btrfs_dev_extent_chunk_tree(l
, dev_extent
);
2154 chunk_objectid
= btrfs_dev_extent_chunk_objectid(l
, dev_extent
);
2155 chunk_offset
= btrfs_dev_extent_chunk_offset(l
, dev_extent
);
2158 * get a reference on the corresponding block group to prevent
2159 * the chunk from going away while we scrub it
2161 cache
= btrfs_lookup_block_group(fs_info
, chunk_offset
);
2166 ret
= scrub_chunk(sdev
, chunk_tree
, chunk_objectid
,
2167 chunk_offset
, length
, found_key
.offset
);
2168 btrfs_put_block_group(cache
);
2172 key
.offset
= found_key
.offset
+ length
;
2173 btrfs_release_path(path
);
2176 btrfs_free_path(path
);
2179 * ret can still be 1 from search_slot or next_leaf,
2180 * that's not an error
2182 return ret
< 0 ? ret
: 0;
2185 static noinline_for_stack
int scrub_supers(struct scrub_dev
*sdev
)
2191 struct btrfs_device
*device
= sdev
->dev
;
2192 struct btrfs_root
*root
= device
->dev_root
;
2194 if (root
->fs_info
->fs_state
& BTRFS_SUPER_FLAG_ERROR
)
2197 gen
= root
->fs_info
->last_trans_committed
;
2199 for (i
= 0; i
< BTRFS_SUPER_MIRROR_MAX
; i
++) {
2200 bytenr
= btrfs_sb_offset(i
);
2201 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
> device
->total_bytes
)
2204 ret
= scrub_pages(sdev
, bytenr
, BTRFS_SUPER_INFO_SIZE
, bytenr
,
2205 BTRFS_EXTENT_FLAG_SUPER
, gen
, i
, NULL
, 1);
2209 wait_event(sdev
->list_wait
, atomic_read(&sdev
->in_flight
) == 0);
2215 * get a reference count on fs_info->scrub_workers. start worker if necessary
2217 static noinline_for_stack
int scrub_workers_get(struct btrfs_root
*root
)
2219 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2222 mutex_lock(&fs_info
->scrub_lock
);
2223 if (fs_info
->scrub_workers_refcnt
== 0) {
2224 btrfs_init_workers(&fs_info
->scrub_workers
, "scrub",
2225 fs_info
->thread_pool_size
, &fs_info
->generic_worker
);
2226 fs_info
->scrub_workers
.idle_thresh
= 4;
2227 ret
= btrfs_start_workers(&fs_info
->scrub_workers
);
2231 ++fs_info
->scrub_workers_refcnt
;
2233 mutex_unlock(&fs_info
->scrub_lock
);
2238 static noinline_for_stack
void scrub_workers_put(struct btrfs_root
*root
)
2240 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2242 mutex_lock(&fs_info
->scrub_lock
);
2243 if (--fs_info
->scrub_workers_refcnt
== 0)
2244 btrfs_stop_workers(&fs_info
->scrub_workers
);
2245 WARN_ON(fs_info
->scrub_workers_refcnt
< 0);
2246 mutex_unlock(&fs_info
->scrub_lock
);
2250 int btrfs_scrub_dev(struct btrfs_root
*root
, u64 devid
, u64 start
, u64 end
,
2251 struct btrfs_scrub_progress
*progress
, int readonly
)
2253 struct scrub_dev
*sdev
;
2254 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2256 struct btrfs_device
*dev
;
2258 if (btrfs_fs_closing(root
->fs_info
))
2262 * check some assumptions
2264 if (root
->nodesize
!= root
->leafsize
) {
2266 "btrfs_scrub: size assumption nodesize == leafsize (%d == %d) fails\n",
2267 root
->nodesize
, root
->leafsize
);
2271 if (root
->nodesize
> BTRFS_STRIPE_LEN
) {
2273 * in this case scrub is unable to calculate the checksum
2274 * the way scrub is implemented. Do not handle this
2275 * situation at all because it won't ever happen.
2278 "btrfs_scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails\n",
2279 root
->nodesize
, BTRFS_STRIPE_LEN
);
2283 if (root
->sectorsize
!= PAGE_SIZE
) {
2284 /* not supported for data w/o checksums */
2286 "btrfs_scrub: size assumption sectorsize != PAGE_SIZE (%d != %lld) fails\n",
2287 root
->sectorsize
, (unsigned long long)PAGE_SIZE
);
2291 ret
= scrub_workers_get(root
);
2295 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2296 dev
= btrfs_find_device(root
, devid
, NULL
, NULL
);
2297 if (!dev
|| dev
->missing
) {
2298 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2299 scrub_workers_put(root
);
2302 mutex_lock(&fs_info
->scrub_lock
);
2304 if (!dev
->in_fs_metadata
) {
2305 mutex_unlock(&fs_info
->scrub_lock
);
2306 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2307 scrub_workers_put(root
);
2311 if (dev
->scrub_device
) {
2312 mutex_unlock(&fs_info
->scrub_lock
);
2313 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2314 scrub_workers_put(root
);
2315 return -EINPROGRESS
;
2317 sdev
= scrub_setup_dev(dev
);
2319 mutex_unlock(&fs_info
->scrub_lock
);
2320 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2321 scrub_workers_put(root
);
2322 return PTR_ERR(sdev
);
2324 sdev
->readonly
= readonly
;
2325 dev
->scrub_device
= sdev
;
2327 atomic_inc(&fs_info
->scrubs_running
);
2328 mutex_unlock(&fs_info
->scrub_lock
);
2329 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2331 down_read(&fs_info
->scrub_super_lock
);
2332 ret
= scrub_supers(sdev
);
2333 up_read(&fs_info
->scrub_super_lock
);
2336 ret
= scrub_enumerate_chunks(sdev
, start
, end
);
2338 wait_event(sdev
->list_wait
, atomic_read(&sdev
->in_flight
) == 0);
2339 atomic_dec(&fs_info
->scrubs_running
);
2340 wake_up(&fs_info
->scrub_pause_wait
);
2342 wait_event(sdev
->list_wait
, atomic_read(&sdev
->fixup_cnt
) == 0);
2345 memcpy(progress
, &sdev
->stat
, sizeof(*progress
));
2347 mutex_lock(&fs_info
->scrub_lock
);
2348 dev
->scrub_device
= NULL
;
2349 mutex_unlock(&fs_info
->scrub_lock
);
2351 scrub_free_dev(sdev
);
2352 scrub_workers_put(root
);
2357 void btrfs_scrub_pause(struct btrfs_root
*root
)
2359 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2361 mutex_lock(&fs_info
->scrub_lock
);
2362 atomic_inc(&fs_info
->scrub_pause_req
);
2363 while (atomic_read(&fs_info
->scrubs_paused
) !=
2364 atomic_read(&fs_info
->scrubs_running
)) {
2365 mutex_unlock(&fs_info
->scrub_lock
);
2366 wait_event(fs_info
->scrub_pause_wait
,
2367 atomic_read(&fs_info
->scrubs_paused
) ==
2368 atomic_read(&fs_info
->scrubs_running
));
2369 mutex_lock(&fs_info
->scrub_lock
);
2371 mutex_unlock(&fs_info
->scrub_lock
);
2374 void btrfs_scrub_continue(struct btrfs_root
*root
)
2376 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2378 atomic_dec(&fs_info
->scrub_pause_req
);
2379 wake_up(&fs_info
->scrub_pause_wait
);
2382 void btrfs_scrub_pause_super(struct btrfs_root
*root
)
2384 down_write(&root
->fs_info
->scrub_super_lock
);
2387 void btrfs_scrub_continue_super(struct btrfs_root
*root
)
2389 up_write(&root
->fs_info
->scrub_super_lock
);
2392 int __btrfs_scrub_cancel(struct btrfs_fs_info
*fs_info
)
2395 mutex_lock(&fs_info
->scrub_lock
);
2396 if (!atomic_read(&fs_info
->scrubs_running
)) {
2397 mutex_unlock(&fs_info
->scrub_lock
);
2401 atomic_inc(&fs_info
->scrub_cancel_req
);
2402 while (atomic_read(&fs_info
->scrubs_running
)) {
2403 mutex_unlock(&fs_info
->scrub_lock
);
2404 wait_event(fs_info
->scrub_pause_wait
,
2405 atomic_read(&fs_info
->scrubs_running
) == 0);
2406 mutex_lock(&fs_info
->scrub_lock
);
2408 atomic_dec(&fs_info
->scrub_cancel_req
);
2409 mutex_unlock(&fs_info
->scrub_lock
);
2414 int btrfs_scrub_cancel(struct btrfs_root
*root
)
2416 return __btrfs_scrub_cancel(root
->fs_info
);
2419 int btrfs_scrub_cancel_dev(struct btrfs_root
*root
, struct btrfs_device
*dev
)
2421 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2422 struct scrub_dev
*sdev
;
2424 mutex_lock(&fs_info
->scrub_lock
);
2425 sdev
= dev
->scrub_device
;
2427 mutex_unlock(&fs_info
->scrub_lock
);
2430 atomic_inc(&sdev
->cancel_req
);
2431 while (dev
->scrub_device
) {
2432 mutex_unlock(&fs_info
->scrub_lock
);
2433 wait_event(fs_info
->scrub_pause_wait
,
2434 dev
->scrub_device
== NULL
);
2435 mutex_lock(&fs_info
->scrub_lock
);
2437 mutex_unlock(&fs_info
->scrub_lock
);
2442 int btrfs_scrub_cancel_devid(struct btrfs_root
*root
, u64 devid
)
2444 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2445 struct btrfs_device
*dev
;
2449 * we have to hold the device_list_mutex here so the device
2450 * does not go away in cancel_dev. FIXME: find a better solution
2452 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
2453 dev
= btrfs_find_device(root
, devid
, NULL
, NULL
);
2455 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2458 ret
= btrfs_scrub_cancel_dev(root
, dev
);
2459 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2464 int btrfs_scrub_progress(struct btrfs_root
*root
, u64 devid
,
2465 struct btrfs_scrub_progress
*progress
)
2467 struct btrfs_device
*dev
;
2468 struct scrub_dev
*sdev
= NULL
;
2470 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2471 dev
= btrfs_find_device(root
, devid
, NULL
, NULL
);
2473 sdev
= dev
->scrub_device
;
2475 memcpy(progress
, &sdev
->stat
, sizeof(*progress
));
2476 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2478 return dev
? (sdev
? 0 : -ENOTCONN
) : -ENODEV
;