2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
47 #include "transaction.h"
48 #include "btrfs_inode.h"
50 #include "print-tree.h"
53 #include "inode-map.h"
55 #include "rcu-string.h"
57 /* Mask out flags that are inappropriate for the given type of inode. */
58 static inline __u32
btrfs_mask_flags(umode_t mode
, __u32 flags
)
62 else if (S_ISREG(mode
))
63 return flags
& ~FS_DIRSYNC_FL
;
65 return flags
& (FS_NODUMP_FL
| FS_NOATIME_FL
);
69 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
71 static unsigned int btrfs_flags_to_ioctl(unsigned int flags
)
73 unsigned int iflags
= 0;
75 if (flags
& BTRFS_INODE_SYNC
)
77 if (flags
& BTRFS_INODE_IMMUTABLE
)
78 iflags
|= FS_IMMUTABLE_FL
;
79 if (flags
& BTRFS_INODE_APPEND
)
80 iflags
|= FS_APPEND_FL
;
81 if (flags
& BTRFS_INODE_NODUMP
)
82 iflags
|= FS_NODUMP_FL
;
83 if (flags
& BTRFS_INODE_NOATIME
)
84 iflags
|= FS_NOATIME_FL
;
85 if (flags
& BTRFS_INODE_DIRSYNC
)
86 iflags
|= FS_DIRSYNC_FL
;
87 if (flags
& BTRFS_INODE_NODATACOW
)
88 iflags
|= FS_NOCOW_FL
;
90 if ((flags
& BTRFS_INODE_COMPRESS
) && !(flags
& BTRFS_INODE_NOCOMPRESS
))
91 iflags
|= FS_COMPR_FL
;
92 else if (flags
& BTRFS_INODE_NOCOMPRESS
)
93 iflags
|= FS_NOCOMP_FL
;
99 * Update inode->i_flags based on the btrfs internal flags.
101 void btrfs_update_iflags(struct inode
*inode
)
103 struct btrfs_inode
*ip
= BTRFS_I(inode
);
105 inode
->i_flags
&= ~(S_SYNC
|S_APPEND
|S_IMMUTABLE
|S_NOATIME
|S_DIRSYNC
);
107 if (ip
->flags
& BTRFS_INODE_SYNC
)
108 inode
->i_flags
|= S_SYNC
;
109 if (ip
->flags
& BTRFS_INODE_IMMUTABLE
)
110 inode
->i_flags
|= S_IMMUTABLE
;
111 if (ip
->flags
& BTRFS_INODE_APPEND
)
112 inode
->i_flags
|= S_APPEND
;
113 if (ip
->flags
& BTRFS_INODE_NOATIME
)
114 inode
->i_flags
|= S_NOATIME
;
115 if (ip
->flags
& BTRFS_INODE_DIRSYNC
)
116 inode
->i_flags
|= S_DIRSYNC
;
120 * Inherit flags from the parent inode.
122 * Currently only the compression flags and the cow flags are inherited.
124 void btrfs_inherit_iflags(struct inode
*inode
, struct inode
*dir
)
131 flags
= BTRFS_I(dir
)->flags
;
133 if (flags
& BTRFS_INODE_NOCOMPRESS
) {
134 BTRFS_I(inode
)->flags
&= ~BTRFS_INODE_COMPRESS
;
135 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NOCOMPRESS
;
136 } else if (flags
& BTRFS_INODE_COMPRESS
) {
137 BTRFS_I(inode
)->flags
&= ~BTRFS_INODE_NOCOMPRESS
;
138 BTRFS_I(inode
)->flags
|= BTRFS_INODE_COMPRESS
;
141 if (flags
& BTRFS_INODE_NODATACOW
)
142 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATACOW
;
144 btrfs_update_iflags(inode
);
147 static int btrfs_ioctl_getflags(struct file
*file
, void __user
*arg
)
149 struct btrfs_inode
*ip
= BTRFS_I(file
->f_path
.dentry
->d_inode
);
150 unsigned int flags
= btrfs_flags_to_ioctl(ip
->flags
);
152 if (copy_to_user(arg
, &flags
, sizeof(flags
)))
157 static int check_flags(unsigned int flags
)
159 if (flags
& ~(FS_IMMUTABLE_FL
| FS_APPEND_FL
| \
160 FS_NOATIME_FL
| FS_NODUMP_FL
| \
161 FS_SYNC_FL
| FS_DIRSYNC_FL
| \
162 FS_NOCOMP_FL
| FS_COMPR_FL
|
166 if ((flags
& FS_NOCOMP_FL
) && (flags
& FS_COMPR_FL
))
172 static int btrfs_ioctl_setflags(struct file
*file
, void __user
*arg
)
174 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
175 struct btrfs_inode
*ip
= BTRFS_I(inode
);
176 struct btrfs_root
*root
= ip
->root
;
177 struct btrfs_trans_handle
*trans
;
178 unsigned int flags
, oldflags
;
181 unsigned int i_oldflags
;
183 if (btrfs_root_readonly(root
))
186 if (copy_from_user(&flags
, arg
, sizeof(flags
)))
189 ret
= check_flags(flags
);
193 if (!inode_owner_or_capable(inode
))
196 mutex_lock(&inode
->i_mutex
);
198 ip_oldflags
= ip
->flags
;
199 i_oldflags
= inode
->i_flags
;
201 flags
= btrfs_mask_flags(inode
->i_mode
, flags
);
202 oldflags
= btrfs_flags_to_ioctl(ip
->flags
);
203 if ((flags
^ oldflags
) & (FS_APPEND_FL
| FS_IMMUTABLE_FL
)) {
204 if (!capable(CAP_LINUX_IMMUTABLE
)) {
210 ret
= mnt_want_write_file(file
);
214 if (flags
& FS_SYNC_FL
)
215 ip
->flags
|= BTRFS_INODE_SYNC
;
217 ip
->flags
&= ~BTRFS_INODE_SYNC
;
218 if (flags
& FS_IMMUTABLE_FL
)
219 ip
->flags
|= BTRFS_INODE_IMMUTABLE
;
221 ip
->flags
&= ~BTRFS_INODE_IMMUTABLE
;
222 if (flags
& FS_APPEND_FL
)
223 ip
->flags
|= BTRFS_INODE_APPEND
;
225 ip
->flags
&= ~BTRFS_INODE_APPEND
;
226 if (flags
& FS_NODUMP_FL
)
227 ip
->flags
|= BTRFS_INODE_NODUMP
;
229 ip
->flags
&= ~BTRFS_INODE_NODUMP
;
230 if (flags
& FS_NOATIME_FL
)
231 ip
->flags
|= BTRFS_INODE_NOATIME
;
233 ip
->flags
&= ~BTRFS_INODE_NOATIME
;
234 if (flags
& FS_DIRSYNC_FL
)
235 ip
->flags
|= BTRFS_INODE_DIRSYNC
;
237 ip
->flags
&= ~BTRFS_INODE_DIRSYNC
;
238 if (flags
& FS_NOCOW_FL
)
239 ip
->flags
|= BTRFS_INODE_NODATACOW
;
241 ip
->flags
&= ~BTRFS_INODE_NODATACOW
;
244 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
245 * flag may be changed automatically if compression code won't make
248 if (flags
& FS_NOCOMP_FL
) {
249 ip
->flags
&= ~BTRFS_INODE_COMPRESS
;
250 ip
->flags
|= BTRFS_INODE_NOCOMPRESS
;
251 } else if (flags
& FS_COMPR_FL
) {
252 ip
->flags
|= BTRFS_INODE_COMPRESS
;
253 ip
->flags
&= ~BTRFS_INODE_NOCOMPRESS
;
255 ip
->flags
&= ~(BTRFS_INODE_COMPRESS
| BTRFS_INODE_NOCOMPRESS
);
258 trans
= btrfs_start_transaction(root
, 1);
260 ret
= PTR_ERR(trans
);
264 btrfs_update_iflags(inode
);
265 inode_inc_iversion(inode
);
266 inode
->i_ctime
= CURRENT_TIME
;
267 ret
= btrfs_update_inode(trans
, root
, inode
);
269 btrfs_end_transaction(trans
, root
);
272 ip
->flags
= ip_oldflags
;
273 inode
->i_flags
= i_oldflags
;
276 mnt_drop_write_file(file
);
278 mutex_unlock(&inode
->i_mutex
);
282 static int btrfs_ioctl_getversion(struct file
*file
, int __user
*arg
)
284 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
286 return put_user(inode
->i_generation
, arg
);
289 static noinline
int btrfs_ioctl_fitrim(struct file
*file
, void __user
*arg
)
291 struct btrfs_fs_info
*fs_info
= btrfs_sb(fdentry(file
)->d_sb
);
292 struct btrfs_device
*device
;
293 struct request_queue
*q
;
294 struct fstrim_range range
;
295 u64 minlen
= ULLONG_MAX
;
297 u64 total_bytes
= btrfs_super_total_bytes(fs_info
->super_copy
);
300 if (!capable(CAP_SYS_ADMIN
))
304 list_for_each_entry_rcu(device
, &fs_info
->fs_devices
->devices
,
308 q
= bdev_get_queue(device
->bdev
);
309 if (blk_queue_discard(q
)) {
311 minlen
= min((u64
)q
->limits
.discard_granularity
,
319 if (copy_from_user(&range
, arg
, sizeof(range
)))
321 if (range
.start
> total_bytes
)
324 range
.len
= min(range
.len
, total_bytes
- range
.start
);
325 range
.minlen
= max(range
.minlen
, minlen
);
326 ret
= btrfs_trim_fs(fs_info
->tree_root
, &range
);
330 if (copy_to_user(arg
, &range
, sizeof(range
)))
336 static noinline
int create_subvol(struct btrfs_root
*root
,
337 struct dentry
*dentry
,
338 char *name
, int namelen
,
341 struct btrfs_trans_handle
*trans
;
342 struct btrfs_key key
;
343 struct btrfs_root_item root_item
;
344 struct btrfs_inode_item
*inode_item
;
345 struct extent_buffer
*leaf
;
346 struct btrfs_root
*new_root
;
347 struct dentry
*parent
= dentry
->d_parent
;
352 u64 new_dirid
= BTRFS_FIRST_FREE_OBJECTID
;
355 ret
= btrfs_find_free_objectid(root
->fs_info
->tree_root
, &objectid
);
359 dir
= parent
->d_inode
;
367 trans
= btrfs_start_transaction(root
, 6);
369 return PTR_ERR(trans
);
371 leaf
= btrfs_alloc_free_block(trans
, root
, root
->leafsize
,
372 0, objectid
, NULL
, 0, 0, 0);
378 memset_extent_buffer(leaf
, 0, 0, sizeof(struct btrfs_header
));
379 btrfs_set_header_bytenr(leaf
, leaf
->start
);
380 btrfs_set_header_generation(leaf
, trans
->transid
);
381 btrfs_set_header_backref_rev(leaf
, BTRFS_MIXED_BACKREF_REV
);
382 btrfs_set_header_owner(leaf
, objectid
);
384 write_extent_buffer(leaf
, root
->fs_info
->fsid
,
385 (unsigned long)btrfs_header_fsid(leaf
),
387 write_extent_buffer(leaf
, root
->fs_info
->chunk_tree_uuid
,
388 (unsigned long)btrfs_header_chunk_tree_uuid(leaf
),
390 btrfs_mark_buffer_dirty(leaf
);
392 inode_item
= &root_item
.inode
;
393 memset(inode_item
, 0, sizeof(*inode_item
));
394 inode_item
->generation
= cpu_to_le64(1);
395 inode_item
->size
= cpu_to_le64(3);
396 inode_item
->nlink
= cpu_to_le32(1);
397 inode_item
->nbytes
= cpu_to_le64(root
->leafsize
);
398 inode_item
->mode
= cpu_to_le32(S_IFDIR
| 0755);
401 root_item
.byte_limit
= 0;
402 inode_item
->flags
= cpu_to_le64(BTRFS_INODE_ROOT_ITEM_INIT
);
404 btrfs_set_root_bytenr(&root_item
, leaf
->start
);
405 btrfs_set_root_generation(&root_item
, trans
->transid
);
406 btrfs_set_root_level(&root_item
, 0);
407 btrfs_set_root_refs(&root_item
, 1);
408 btrfs_set_root_used(&root_item
, leaf
->len
);
409 btrfs_set_root_last_snapshot(&root_item
, 0);
411 memset(&root_item
.drop_progress
, 0, sizeof(root_item
.drop_progress
));
412 root_item
.drop_level
= 0;
414 btrfs_tree_unlock(leaf
);
415 free_extent_buffer(leaf
);
418 btrfs_set_root_dirid(&root_item
, new_dirid
);
420 key
.objectid
= objectid
;
422 btrfs_set_key_type(&key
, BTRFS_ROOT_ITEM_KEY
);
423 ret
= btrfs_insert_root(trans
, root
->fs_info
->tree_root
, &key
,
428 key
.offset
= (u64
)-1;
429 new_root
= btrfs_read_fs_root_no_name(root
->fs_info
, &key
);
430 if (IS_ERR(new_root
)) {
431 btrfs_abort_transaction(trans
, root
, PTR_ERR(new_root
));
432 ret
= PTR_ERR(new_root
);
436 btrfs_record_root_in_trans(trans
, new_root
);
438 ret
= btrfs_create_subvol_root(trans
, new_root
, new_dirid
);
440 /* We potentially lose an unused inode item here */
441 btrfs_abort_transaction(trans
, root
, ret
);
446 * insert the directory item
448 ret
= btrfs_set_inode_index(dir
, &index
);
450 btrfs_abort_transaction(trans
, root
, ret
);
454 ret
= btrfs_insert_dir_item(trans
, root
,
455 name
, namelen
, dir
, &key
,
456 BTRFS_FT_DIR
, index
);
458 btrfs_abort_transaction(trans
, root
, ret
);
462 btrfs_i_size_write(dir
, dir
->i_size
+ namelen
* 2);
463 ret
= btrfs_update_inode(trans
, root
, dir
);
466 ret
= btrfs_add_root_ref(trans
, root
->fs_info
->tree_root
,
467 objectid
, root
->root_key
.objectid
,
468 btrfs_ino(dir
), index
, name
, namelen
);
472 d_instantiate(dentry
, btrfs_lookup_dentry(dir
, dentry
));
475 *async_transid
= trans
->transid
;
476 err
= btrfs_commit_transaction_async(trans
, root
, 1);
478 err
= btrfs_commit_transaction(trans
, root
);
485 static int create_snapshot(struct btrfs_root
*root
, struct dentry
*dentry
,
486 char *name
, int namelen
, u64
*async_transid
,
490 struct btrfs_pending_snapshot
*pending_snapshot
;
491 struct btrfs_trans_handle
*trans
;
497 pending_snapshot
= kzalloc(sizeof(*pending_snapshot
), GFP_NOFS
);
498 if (!pending_snapshot
)
501 btrfs_init_block_rsv(&pending_snapshot
->block_rsv
);
502 pending_snapshot
->dentry
= dentry
;
503 pending_snapshot
->root
= root
;
504 pending_snapshot
->readonly
= readonly
;
506 trans
= btrfs_start_transaction(root
->fs_info
->extent_root
, 5);
508 ret
= PTR_ERR(trans
);
512 ret
= btrfs_snap_reserve_metadata(trans
, pending_snapshot
);
515 spin_lock(&root
->fs_info
->trans_lock
);
516 list_add(&pending_snapshot
->list
,
517 &trans
->transaction
->pending_snapshots
);
518 spin_unlock(&root
->fs_info
->trans_lock
);
520 *async_transid
= trans
->transid
;
521 ret
= btrfs_commit_transaction_async(trans
,
522 root
->fs_info
->extent_root
, 1);
524 ret
= btrfs_commit_transaction(trans
,
525 root
->fs_info
->extent_root
);
529 ret
= pending_snapshot
->error
;
533 ret
= btrfs_orphan_cleanup(pending_snapshot
->snap
);
537 inode
= btrfs_lookup_dentry(dentry
->d_parent
->d_inode
, dentry
);
539 ret
= PTR_ERR(inode
);
543 d_instantiate(dentry
, inode
);
546 kfree(pending_snapshot
);
550 /* copy of check_sticky in fs/namei.c()
551 * It's inline, so penalty for filesystems that don't use sticky bit is
554 static inline int btrfs_check_sticky(struct inode
*dir
, struct inode
*inode
)
556 uid_t fsuid
= current_fsuid();
558 if (!(dir
->i_mode
& S_ISVTX
))
560 if (inode
->i_uid
== fsuid
)
562 if (dir
->i_uid
== fsuid
)
564 return !capable(CAP_FOWNER
);
567 /* copy of may_delete in fs/namei.c()
568 * Check whether we can remove a link victim from directory dir, check
569 * whether the type of victim is right.
570 * 1. We can't do it if dir is read-only (done in permission())
571 * 2. We should have write and exec permissions on dir
572 * 3. We can't remove anything from append-only dir
573 * 4. We can't do anything with immutable dir (done in permission())
574 * 5. If the sticky bit on dir is set we should either
575 * a. be owner of dir, or
576 * b. be owner of victim, or
577 * c. have CAP_FOWNER capability
578 * 6. If the victim is append-only or immutable we can't do antyhing with
579 * links pointing to it.
580 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
581 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
582 * 9. We can't remove a root or mountpoint.
583 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
584 * nfs_async_unlink().
587 static int btrfs_may_delete(struct inode
*dir
,struct dentry
*victim
,int isdir
)
591 if (!victim
->d_inode
)
594 BUG_ON(victim
->d_parent
->d_inode
!= dir
);
595 audit_inode_child(victim
, dir
);
597 error
= inode_permission(dir
, MAY_WRITE
| MAY_EXEC
);
602 if (btrfs_check_sticky(dir
, victim
->d_inode
)||
603 IS_APPEND(victim
->d_inode
)||
604 IS_IMMUTABLE(victim
->d_inode
) || IS_SWAPFILE(victim
->d_inode
))
607 if (!S_ISDIR(victim
->d_inode
->i_mode
))
611 } else if (S_ISDIR(victim
->d_inode
->i_mode
))
615 if (victim
->d_flags
& DCACHE_NFSFS_RENAMED
)
620 /* copy of may_create in fs/namei.c() */
621 static inline int btrfs_may_create(struct inode
*dir
, struct dentry
*child
)
627 return inode_permission(dir
, MAY_WRITE
| MAY_EXEC
);
631 * Create a new subvolume below @parent. This is largely modeled after
632 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
633 * inside this filesystem so it's quite a bit simpler.
635 static noinline
int btrfs_mksubvol(struct path
*parent
,
636 char *name
, int namelen
,
637 struct btrfs_root
*snap_src
,
638 u64
*async_transid
, bool readonly
)
640 struct inode
*dir
= parent
->dentry
->d_inode
;
641 struct dentry
*dentry
;
644 mutex_lock_nested(&dir
->i_mutex
, I_MUTEX_PARENT
);
646 dentry
= lookup_one_len(name
, parent
->dentry
, namelen
);
647 error
= PTR_ERR(dentry
);
655 error
= mnt_want_write(parent
->mnt
);
659 error
= btrfs_may_create(dir
, dentry
);
663 down_read(&BTRFS_I(dir
)->root
->fs_info
->subvol_sem
);
665 if (btrfs_root_refs(&BTRFS_I(dir
)->root
->root_item
) == 0)
669 error
= create_snapshot(snap_src
, dentry
,
670 name
, namelen
, async_transid
, readonly
);
672 error
= create_subvol(BTRFS_I(dir
)->root
, dentry
,
673 name
, namelen
, async_transid
);
676 fsnotify_mkdir(dir
, dentry
);
678 up_read(&BTRFS_I(dir
)->root
->fs_info
->subvol_sem
);
680 mnt_drop_write(parent
->mnt
);
684 mutex_unlock(&dir
->i_mutex
);
689 * When we're defragging a range, we don't want to kick it off again
690 * if it is really just waiting for delalloc to send it down.
691 * If we find a nice big extent or delalloc range for the bytes in the
692 * file you want to defrag, we return 0 to let you know to skip this
695 static int check_defrag_in_cache(struct inode
*inode
, u64 offset
, int thresh
)
697 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
698 struct extent_map
*em
= NULL
;
699 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
702 read_lock(&em_tree
->lock
);
703 em
= lookup_extent_mapping(em_tree
, offset
, PAGE_CACHE_SIZE
);
704 read_unlock(&em_tree
->lock
);
707 end
= extent_map_end(em
);
709 if (end
- offset
> thresh
)
712 /* if we already have a nice delalloc here, just stop */
714 end
= count_range_bits(io_tree
, &offset
, offset
+ thresh
,
715 thresh
, EXTENT_DELALLOC
, 1);
722 * helper function to walk through a file and find extents
723 * newer than a specific transid, and smaller than thresh.
725 * This is used by the defragging code to find new and small
728 static int find_new_extents(struct btrfs_root
*root
,
729 struct inode
*inode
, u64 newer_than
,
730 u64
*off
, int thresh
)
732 struct btrfs_path
*path
;
733 struct btrfs_key min_key
;
734 struct btrfs_key max_key
;
735 struct extent_buffer
*leaf
;
736 struct btrfs_file_extent_item
*extent
;
739 u64 ino
= btrfs_ino(inode
);
741 path
= btrfs_alloc_path();
745 min_key
.objectid
= ino
;
746 min_key
.type
= BTRFS_EXTENT_DATA_KEY
;
747 min_key
.offset
= *off
;
749 max_key
.objectid
= ino
;
750 max_key
.type
= (u8
)-1;
751 max_key
.offset
= (u64
)-1;
753 path
->keep_locks
= 1;
756 ret
= btrfs_search_forward(root
, &min_key
, &max_key
,
757 path
, 0, newer_than
);
760 if (min_key
.objectid
!= ino
)
762 if (min_key
.type
!= BTRFS_EXTENT_DATA_KEY
)
765 leaf
= path
->nodes
[0];
766 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
767 struct btrfs_file_extent_item
);
769 type
= btrfs_file_extent_type(leaf
, extent
);
770 if (type
== BTRFS_FILE_EXTENT_REG
&&
771 btrfs_file_extent_num_bytes(leaf
, extent
) < thresh
&&
772 check_defrag_in_cache(inode
, min_key
.offset
, thresh
)) {
773 *off
= min_key
.offset
;
774 btrfs_free_path(path
);
778 if (min_key
.offset
== (u64
)-1)
782 btrfs_release_path(path
);
785 btrfs_free_path(path
);
789 static struct extent_map
*defrag_lookup_extent(struct inode
*inode
, u64 start
)
791 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
792 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
793 struct extent_map
*em
;
794 u64 len
= PAGE_CACHE_SIZE
;
797 * hopefully we have this extent in the tree already, try without
798 * the full extent lock
800 read_lock(&em_tree
->lock
);
801 em
= lookup_extent_mapping(em_tree
, start
, len
);
802 read_unlock(&em_tree
->lock
);
805 /* get the big lock and read metadata off disk */
806 lock_extent(io_tree
, start
, start
+ len
- 1);
807 em
= btrfs_get_extent(inode
, NULL
, 0, start
, len
, 0);
808 unlock_extent(io_tree
, start
, start
+ len
- 1);
817 static bool defrag_check_next_extent(struct inode
*inode
, struct extent_map
*em
)
819 struct extent_map
*next
;
822 /* this is the last extent */
823 if (em
->start
+ em
->len
>= i_size_read(inode
))
826 next
= defrag_lookup_extent(inode
, em
->start
+ em
->len
);
827 if (!next
|| next
->block_start
>= EXTENT_MAP_LAST_BYTE
)
830 free_extent_map(next
);
834 static int should_defrag_range(struct inode
*inode
, u64 start
, int thresh
,
835 u64
*last_len
, u64
*skip
, u64
*defrag_end
)
837 struct extent_map
*em
;
839 bool next_mergeable
= true;
842 * make sure that once we start defragging an extent, we keep on
845 if (start
< *defrag_end
)
850 em
= defrag_lookup_extent(inode
, start
);
854 /* this will cover holes, and inline extents */
855 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
) {
860 next_mergeable
= defrag_check_next_extent(inode
, em
);
863 * we hit a real extent, if it is big or the next extent is not a
864 * real extent, don't bother defragging it
866 if ((*last_len
== 0 || *last_len
>= thresh
) &&
867 (em
->len
>= thresh
|| !next_mergeable
))
871 * last_len ends up being a counter of how many bytes we've defragged.
872 * every time we choose not to defrag an extent, we reset *last_len
873 * so that the next tiny extent will force a defrag.
875 * The end result of this is that tiny extents before a single big
876 * extent will force at least part of that big extent to be defragged.
879 *defrag_end
= extent_map_end(em
);
882 *skip
= extent_map_end(em
);
891 * it doesn't do much good to defrag one or two pages
892 * at a time. This pulls in a nice chunk of pages
895 * It also makes sure the delalloc code has enough
896 * dirty data to avoid making new small extents as part
899 * It's a good idea to start RA on this range
900 * before calling this.
902 static int cluster_pages_for_defrag(struct inode
*inode
,
904 unsigned long start_index
,
907 unsigned long file_end
;
908 u64 isize
= i_size_read(inode
);
915 struct btrfs_ordered_extent
*ordered
;
916 struct extent_state
*cached_state
= NULL
;
917 struct extent_io_tree
*tree
;
918 gfp_t mask
= btrfs_alloc_write_mask(inode
->i_mapping
);
920 file_end
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
921 if (!isize
|| start_index
> file_end
)
924 page_cnt
= min_t(u64
, (u64
)num_pages
, (u64
)file_end
- start_index
+ 1);
926 ret
= btrfs_delalloc_reserve_space(inode
,
927 page_cnt
<< PAGE_CACHE_SHIFT
);
931 tree
= &BTRFS_I(inode
)->io_tree
;
933 /* step one, lock all the pages */
934 for (i
= 0; i
< page_cnt
; i
++) {
937 page
= find_or_create_page(inode
->i_mapping
,
938 start_index
+ i
, mask
);
942 page_start
= page_offset(page
);
943 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
945 lock_extent(tree
, page_start
, page_end
);
946 ordered
= btrfs_lookup_ordered_extent(inode
,
948 unlock_extent(tree
, page_start
, page_end
);
953 btrfs_start_ordered_extent(inode
, ordered
, 1);
954 btrfs_put_ordered_extent(ordered
);
957 * we unlocked the page above, so we need check if
958 * it was released or not.
960 if (page
->mapping
!= inode
->i_mapping
) {
962 page_cache_release(page
);
967 if (!PageUptodate(page
)) {
968 btrfs_readpage(NULL
, page
);
970 if (!PageUptodate(page
)) {
972 page_cache_release(page
);
978 if (page
->mapping
!= inode
->i_mapping
) {
980 page_cache_release(page
);
990 if (!(inode
->i_sb
->s_flags
& MS_ACTIVE
))
994 * so now we have a nice long stream of locked
995 * and up to date pages, lets wait on them
997 for (i
= 0; i
< i_done
; i
++)
998 wait_on_page_writeback(pages
[i
]);
1000 page_start
= page_offset(pages
[0]);
1001 page_end
= page_offset(pages
[i_done
- 1]) + PAGE_CACHE_SIZE
;
1003 lock_extent_bits(&BTRFS_I(inode
)->io_tree
,
1004 page_start
, page_end
- 1, 0, &cached_state
);
1005 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
,
1006 page_end
- 1, EXTENT_DIRTY
| EXTENT_DELALLOC
|
1007 EXTENT_DO_ACCOUNTING
, 0, 0, &cached_state
,
1010 if (i_done
!= page_cnt
) {
1011 spin_lock(&BTRFS_I(inode
)->lock
);
1012 BTRFS_I(inode
)->outstanding_extents
++;
1013 spin_unlock(&BTRFS_I(inode
)->lock
);
1014 btrfs_delalloc_release_space(inode
,
1015 (page_cnt
- i_done
) << PAGE_CACHE_SHIFT
);
1019 btrfs_set_extent_delalloc(inode
, page_start
, page_end
- 1,
1022 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
,
1023 page_start
, page_end
- 1, &cached_state
,
1026 for (i
= 0; i
< i_done
; i
++) {
1027 clear_page_dirty_for_io(pages
[i
]);
1028 ClearPageChecked(pages
[i
]);
1029 set_page_extent_mapped(pages
[i
]);
1030 set_page_dirty(pages
[i
]);
1031 unlock_page(pages
[i
]);
1032 page_cache_release(pages
[i
]);
1036 for (i
= 0; i
< i_done
; i
++) {
1037 unlock_page(pages
[i
]);
1038 page_cache_release(pages
[i
]);
1040 btrfs_delalloc_release_space(inode
, page_cnt
<< PAGE_CACHE_SHIFT
);
1045 int btrfs_defrag_file(struct inode
*inode
, struct file
*file
,
1046 struct btrfs_ioctl_defrag_range_args
*range
,
1047 u64 newer_than
, unsigned long max_to_defrag
)
1049 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1050 struct btrfs_super_block
*disk_super
;
1051 struct file_ra_state
*ra
= NULL
;
1052 unsigned long last_index
;
1053 u64 isize
= i_size_read(inode
);
1058 u64 newer_off
= range
->start
;
1060 unsigned long ra_index
= 0;
1062 int defrag_count
= 0;
1063 int compress_type
= BTRFS_COMPRESS_ZLIB
;
1064 int extent_thresh
= range
->extent_thresh
;
1065 int max_cluster
= (256 * 1024) >> PAGE_CACHE_SHIFT
;
1066 int cluster
= max_cluster
;
1067 u64 new_align
= ~((u64
)128 * 1024 - 1);
1068 struct page
**pages
= NULL
;
1070 if (extent_thresh
== 0)
1071 extent_thresh
= 256 * 1024;
1073 if (range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
) {
1074 if (range
->compress_type
> BTRFS_COMPRESS_TYPES
)
1076 if (range
->compress_type
)
1077 compress_type
= range
->compress_type
;
1084 * if we were not given a file, allocate a readahead
1088 ra
= kzalloc(sizeof(*ra
), GFP_NOFS
);
1091 file_ra_state_init(ra
, inode
->i_mapping
);
1096 pages
= kmalloc(sizeof(struct page
*) * max_cluster
,
1103 /* find the last page to defrag */
1104 if (range
->start
+ range
->len
> range
->start
) {
1105 last_index
= min_t(u64
, isize
- 1,
1106 range
->start
+ range
->len
- 1) >> PAGE_CACHE_SHIFT
;
1108 last_index
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
1112 ret
= find_new_extents(root
, inode
, newer_than
,
1113 &newer_off
, 64 * 1024);
1115 range
->start
= newer_off
;
1117 * we always align our defrag to help keep
1118 * the extents in the file evenly spaced
1120 i
= (newer_off
& new_align
) >> PAGE_CACHE_SHIFT
;
1124 i
= range
->start
>> PAGE_CACHE_SHIFT
;
1127 max_to_defrag
= last_index
+ 1;
1130 * make writeback starts from i, so the defrag range can be
1131 * written sequentially.
1133 if (i
< inode
->i_mapping
->writeback_index
)
1134 inode
->i_mapping
->writeback_index
= i
;
1136 while (i
<= last_index
&& defrag_count
< max_to_defrag
&&
1137 (i
< (i_size_read(inode
) + PAGE_CACHE_SIZE
- 1) >>
1138 PAGE_CACHE_SHIFT
)) {
1140 * make sure we stop running if someone unmounts
1143 if (!(inode
->i_sb
->s_flags
& MS_ACTIVE
))
1146 if (!should_defrag_range(inode
, (u64
)i
<< PAGE_CACHE_SHIFT
,
1147 extent_thresh
, &last_len
, &skip
,
1151 * the should_defrag function tells us how much to skip
1152 * bump our counter by the suggested amount
1154 next
= (skip
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1155 i
= max(i
+ 1, next
);
1160 cluster
= (PAGE_CACHE_ALIGN(defrag_end
) >>
1161 PAGE_CACHE_SHIFT
) - i
;
1162 cluster
= min(cluster
, max_cluster
);
1164 cluster
= max_cluster
;
1167 if (range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
)
1168 BTRFS_I(inode
)->force_compress
= compress_type
;
1170 if (i
+ cluster
> ra_index
) {
1171 ra_index
= max(i
, ra_index
);
1172 btrfs_force_ra(inode
->i_mapping
, ra
, file
, ra_index
,
1174 ra_index
+= max_cluster
;
1177 mutex_lock(&inode
->i_mutex
);
1178 ret
= cluster_pages_for_defrag(inode
, pages
, i
, cluster
);
1180 mutex_unlock(&inode
->i_mutex
);
1184 defrag_count
+= ret
;
1185 balance_dirty_pages_ratelimited_nr(inode
->i_mapping
, ret
);
1186 mutex_unlock(&inode
->i_mutex
);
1189 if (newer_off
== (u64
)-1)
1195 newer_off
= max(newer_off
+ 1,
1196 (u64
)i
<< PAGE_CACHE_SHIFT
);
1198 ret
= find_new_extents(root
, inode
,
1199 newer_than
, &newer_off
,
1202 range
->start
= newer_off
;
1203 i
= (newer_off
& new_align
) >> PAGE_CACHE_SHIFT
;
1210 last_len
+= ret
<< PAGE_CACHE_SHIFT
;
1218 if ((range
->flags
& BTRFS_DEFRAG_RANGE_START_IO
))
1219 filemap_flush(inode
->i_mapping
);
1221 if ((range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
)) {
1222 /* the filemap_flush will queue IO into the worker threads, but
1223 * we have to make sure the IO is actually started and that
1224 * ordered extents get created before we return
1226 atomic_inc(&root
->fs_info
->async_submit_draining
);
1227 while (atomic_read(&root
->fs_info
->nr_async_submits
) ||
1228 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
1229 wait_event(root
->fs_info
->async_submit_wait
,
1230 (atomic_read(&root
->fs_info
->nr_async_submits
) == 0 &&
1231 atomic_read(&root
->fs_info
->async_delalloc_pages
) == 0));
1233 atomic_dec(&root
->fs_info
->async_submit_draining
);
1235 mutex_lock(&inode
->i_mutex
);
1236 BTRFS_I(inode
)->force_compress
= BTRFS_COMPRESS_NONE
;
1237 mutex_unlock(&inode
->i_mutex
);
1240 disk_super
= root
->fs_info
->super_copy
;
1241 features
= btrfs_super_incompat_flags(disk_super
);
1242 if (range
->compress_type
== BTRFS_COMPRESS_LZO
) {
1243 features
|= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO
;
1244 btrfs_set_super_incompat_flags(disk_super
, features
);
1256 static noinline
int btrfs_ioctl_resize(struct btrfs_root
*root
,
1262 struct btrfs_ioctl_vol_args
*vol_args
;
1263 struct btrfs_trans_handle
*trans
;
1264 struct btrfs_device
*device
= NULL
;
1266 char *devstr
= NULL
;
1270 if (root
->fs_info
->sb
->s_flags
& MS_RDONLY
)
1273 if (!capable(CAP_SYS_ADMIN
))
1276 mutex_lock(&root
->fs_info
->volume_mutex
);
1277 if (root
->fs_info
->balance_ctl
) {
1278 printk(KERN_INFO
"btrfs: balance in progress\n");
1283 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
1284 if (IS_ERR(vol_args
)) {
1285 ret
= PTR_ERR(vol_args
);
1289 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
1291 sizestr
= vol_args
->name
;
1292 devstr
= strchr(sizestr
, ':');
1295 sizestr
= devstr
+ 1;
1297 devstr
= vol_args
->name
;
1298 devid
= simple_strtoull(devstr
, &end
, 10);
1299 printk(KERN_INFO
"btrfs: resizing devid %llu\n",
1300 (unsigned long long)devid
);
1302 device
= btrfs_find_device(root
, devid
, NULL
, NULL
);
1304 printk(KERN_INFO
"btrfs: resizer unable to find device %llu\n",
1305 (unsigned long long)devid
);
1309 if (device
->fs_devices
&& device
->fs_devices
->seeding
) {
1310 printk(KERN_INFO
"btrfs: resizer unable to apply on "
1311 "seeding device %llu\n",
1312 (unsigned long long)devid
);
1317 if (!strcmp(sizestr
, "max"))
1318 new_size
= device
->bdev
->bd_inode
->i_size
;
1320 if (sizestr
[0] == '-') {
1323 } else if (sizestr
[0] == '+') {
1327 new_size
= memparse(sizestr
, NULL
);
1328 if (new_size
== 0) {
1334 old_size
= device
->total_bytes
;
1337 if (new_size
> old_size
) {
1341 new_size
= old_size
- new_size
;
1342 } else if (mod
> 0) {
1343 new_size
= old_size
+ new_size
;
1346 if (new_size
< 256 * 1024 * 1024) {
1350 if (new_size
> device
->bdev
->bd_inode
->i_size
) {
1355 do_div(new_size
, root
->sectorsize
);
1356 new_size
*= root
->sectorsize
;
1358 printk_in_rcu(KERN_INFO
"btrfs: new size for %s is %llu\n",
1359 rcu_str_deref(device
->name
),
1360 (unsigned long long)new_size
);
1362 if (new_size
> old_size
) {
1363 trans
= btrfs_start_transaction(root
, 0);
1364 if (IS_ERR(trans
)) {
1365 ret
= PTR_ERR(trans
);
1368 ret
= btrfs_grow_device(trans
, device
, new_size
);
1369 btrfs_commit_transaction(trans
, root
);
1370 } else if (new_size
< old_size
) {
1371 ret
= btrfs_shrink_device(device
, new_size
);
1377 mutex_unlock(&root
->fs_info
->volume_mutex
);
1381 static noinline
int btrfs_ioctl_snap_create_transid(struct file
*file
,
1388 struct btrfs_root
*root
= BTRFS_I(fdentry(file
)->d_inode
)->root
;
1389 struct file
*src_file
;
1393 if (root
->fs_info
->sb
->s_flags
& MS_RDONLY
)
1396 namelen
= strlen(name
);
1397 if (strchr(name
, '/')) {
1402 if (name
[0] == '.' &&
1403 (namelen
== 1 || (name
[1] == '.' && namelen
== 2))) {
1409 ret
= btrfs_mksubvol(&file
->f_path
, name
, namelen
,
1410 NULL
, transid
, readonly
);
1412 struct inode
*src_inode
;
1413 src_file
= fget(fd
);
1419 src_inode
= src_file
->f_path
.dentry
->d_inode
;
1420 if (src_inode
->i_sb
!= file
->f_path
.dentry
->d_inode
->i_sb
) {
1421 printk(KERN_INFO
"btrfs: Snapshot src from "
1427 ret
= btrfs_mksubvol(&file
->f_path
, name
, namelen
,
1428 BTRFS_I(src_inode
)->root
,
1436 static noinline
int btrfs_ioctl_snap_create(struct file
*file
,
1437 void __user
*arg
, int subvol
)
1439 struct btrfs_ioctl_vol_args
*vol_args
;
1442 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
1443 if (IS_ERR(vol_args
))
1444 return PTR_ERR(vol_args
);
1445 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
1447 ret
= btrfs_ioctl_snap_create_transid(file
, vol_args
->name
,
1448 vol_args
->fd
, subvol
,
1455 static noinline
int btrfs_ioctl_snap_create_v2(struct file
*file
,
1456 void __user
*arg
, int subvol
)
1458 struct btrfs_ioctl_vol_args_v2
*vol_args
;
1462 bool readonly
= false;
1464 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
1465 if (IS_ERR(vol_args
))
1466 return PTR_ERR(vol_args
);
1467 vol_args
->name
[BTRFS_SUBVOL_NAME_MAX
] = '\0';
1469 if (vol_args
->flags
&
1470 ~(BTRFS_SUBVOL_CREATE_ASYNC
| BTRFS_SUBVOL_RDONLY
)) {
1475 if (vol_args
->flags
& BTRFS_SUBVOL_CREATE_ASYNC
)
1477 if (vol_args
->flags
& BTRFS_SUBVOL_RDONLY
)
1480 ret
= btrfs_ioctl_snap_create_transid(file
, vol_args
->name
,
1481 vol_args
->fd
, subvol
,
1484 if (ret
== 0 && ptr
&&
1486 offsetof(struct btrfs_ioctl_vol_args_v2
,
1487 transid
), ptr
, sizeof(*ptr
)))
1494 static noinline
int btrfs_ioctl_subvol_getflags(struct file
*file
,
1497 struct inode
*inode
= fdentry(file
)->d_inode
;
1498 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1502 if (btrfs_ino(inode
) != BTRFS_FIRST_FREE_OBJECTID
)
1505 down_read(&root
->fs_info
->subvol_sem
);
1506 if (btrfs_root_readonly(root
))
1507 flags
|= BTRFS_SUBVOL_RDONLY
;
1508 up_read(&root
->fs_info
->subvol_sem
);
1510 if (copy_to_user(arg
, &flags
, sizeof(flags
)))
1516 static noinline
int btrfs_ioctl_subvol_setflags(struct file
*file
,
1519 struct inode
*inode
= fdentry(file
)->d_inode
;
1520 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1521 struct btrfs_trans_handle
*trans
;
1526 if (root
->fs_info
->sb
->s_flags
& MS_RDONLY
)
1529 if (btrfs_ino(inode
) != BTRFS_FIRST_FREE_OBJECTID
)
1532 if (copy_from_user(&flags
, arg
, sizeof(flags
)))
1535 if (flags
& BTRFS_SUBVOL_CREATE_ASYNC
)
1538 if (flags
& ~BTRFS_SUBVOL_RDONLY
)
1541 if (!inode_owner_or_capable(inode
))
1544 down_write(&root
->fs_info
->subvol_sem
);
1547 if (!!(flags
& BTRFS_SUBVOL_RDONLY
) == btrfs_root_readonly(root
))
1550 root_flags
= btrfs_root_flags(&root
->root_item
);
1551 if (flags
& BTRFS_SUBVOL_RDONLY
)
1552 btrfs_set_root_flags(&root
->root_item
,
1553 root_flags
| BTRFS_ROOT_SUBVOL_RDONLY
);
1555 btrfs_set_root_flags(&root
->root_item
,
1556 root_flags
& ~BTRFS_ROOT_SUBVOL_RDONLY
);
1558 trans
= btrfs_start_transaction(root
, 1);
1559 if (IS_ERR(trans
)) {
1560 ret
= PTR_ERR(trans
);
1564 ret
= btrfs_update_root(trans
, root
->fs_info
->tree_root
,
1565 &root
->root_key
, &root
->root_item
);
1567 btrfs_commit_transaction(trans
, root
);
1570 btrfs_set_root_flags(&root
->root_item
, root_flags
);
1572 up_write(&root
->fs_info
->subvol_sem
);
1577 * helper to check if the subvolume references other subvolumes
1579 static noinline
int may_destroy_subvol(struct btrfs_root
*root
)
1581 struct btrfs_path
*path
;
1582 struct btrfs_key key
;
1585 path
= btrfs_alloc_path();
1589 key
.objectid
= root
->root_key
.objectid
;
1590 key
.type
= BTRFS_ROOT_REF_KEY
;
1591 key
.offset
= (u64
)-1;
1593 ret
= btrfs_search_slot(NULL
, root
->fs_info
->tree_root
,
1600 if (path
->slots
[0] > 0) {
1602 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1603 if (key
.objectid
== root
->root_key
.objectid
&&
1604 key
.type
== BTRFS_ROOT_REF_KEY
)
1608 btrfs_free_path(path
);
1612 static noinline
int key_in_sk(struct btrfs_key
*key
,
1613 struct btrfs_ioctl_search_key
*sk
)
1615 struct btrfs_key test
;
1618 test
.objectid
= sk
->min_objectid
;
1619 test
.type
= sk
->min_type
;
1620 test
.offset
= sk
->min_offset
;
1622 ret
= btrfs_comp_cpu_keys(key
, &test
);
1626 test
.objectid
= sk
->max_objectid
;
1627 test
.type
= sk
->max_type
;
1628 test
.offset
= sk
->max_offset
;
1630 ret
= btrfs_comp_cpu_keys(key
, &test
);
1636 static noinline
int copy_to_sk(struct btrfs_root
*root
,
1637 struct btrfs_path
*path
,
1638 struct btrfs_key
*key
,
1639 struct btrfs_ioctl_search_key
*sk
,
1641 unsigned long *sk_offset
,
1645 struct extent_buffer
*leaf
;
1646 struct btrfs_ioctl_search_header sh
;
1647 unsigned long item_off
;
1648 unsigned long item_len
;
1654 leaf
= path
->nodes
[0];
1655 slot
= path
->slots
[0];
1656 nritems
= btrfs_header_nritems(leaf
);
1658 if (btrfs_header_generation(leaf
) > sk
->max_transid
) {
1662 found_transid
= btrfs_header_generation(leaf
);
1664 for (i
= slot
; i
< nritems
; i
++) {
1665 item_off
= btrfs_item_ptr_offset(leaf
, i
);
1666 item_len
= btrfs_item_size_nr(leaf
, i
);
1668 if (item_len
> BTRFS_SEARCH_ARGS_BUFSIZE
)
1671 if (sizeof(sh
) + item_len
+ *sk_offset
>
1672 BTRFS_SEARCH_ARGS_BUFSIZE
) {
1677 btrfs_item_key_to_cpu(leaf
, key
, i
);
1678 if (!key_in_sk(key
, sk
))
1681 sh
.objectid
= key
->objectid
;
1682 sh
.offset
= key
->offset
;
1683 sh
.type
= key
->type
;
1685 sh
.transid
= found_transid
;
1687 /* copy search result header */
1688 memcpy(buf
+ *sk_offset
, &sh
, sizeof(sh
));
1689 *sk_offset
+= sizeof(sh
);
1692 char *p
= buf
+ *sk_offset
;
1694 read_extent_buffer(leaf
, p
,
1695 item_off
, item_len
);
1696 *sk_offset
+= item_len
;
1700 if (*num_found
>= sk
->nr_items
)
1705 if (key
->offset
< (u64
)-1 && key
->offset
< sk
->max_offset
)
1707 else if (key
->type
< (u8
)-1 && key
->type
< sk
->max_type
) {
1710 } else if (key
->objectid
< (u64
)-1 && key
->objectid
< sk
->max_objectid
) {
1720 static noinline
int search_ioctl(struct inode
*inode
,
1721 struct btrfs_ioctl_search_args
*args
)
1723 struct btrfs_root
*root
;
1724 struct btrfs_key key
;
1725 struct btrfs_key max_key
;
1726 struct btrfs_path
*path
;
1727 struct btrfs_ioctl_search_key
*sk
= &args
->key
;
1728 struct btrfs_fs_info
*info
= BTRFS_I(inode
)->root
->fs_info
;
1731 unsigned long sk_offset
= 0;
1733 path
= btrfs_alloc_path();
1737 if (sk
->tree_id
== 0) {
1738 /* search the root of the inode that was passed */
1739 root
= BTRFS_I(inode
)->root
;
1741 key
.objectid
= sk
->tree_id
;
1742 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1743 key
.offset
= (u64
)-1;
1744 root
= btrfs_read_fs_root_no_name(info
, &key
);
1746 printk(KERN_ERR
"could not find root %llu\n",
1748 btrfs_free_path(path
);
1753 key
.objectid
= sk
->min_objectid
;
1754 key
.type
= sk
->min_type
;
1755 key
.offset
= sk
->min_offset
;
1757 max_key
.objectid
= sk
->max_objectid
;
1758 max_key
.type
= sk
->max_type
;
1759 max_key
.offset
= sk
->max_offset
;
1761 path
->keep_locks
= 1;
1764 ret
= btrfs_search_forward(root
, &key
, &max_key
, path
, 0,
1771 ret
= copy_to_sk(root
, path
, &key
, sk
, args
->buf
,
1772 &sk_offset
, &num_found
);
1773 btrfs_release_path(path
);
1774 if (ret
|| num_found
>= sk
->nr_items
)
1780 sk
->nr_items
= num_found
;
1781 btrfs_free_path(path
);
1785 static noinline
int btrfs_ioctl_tree_search(struct file
*file
,
1788 struct btrfs_ioctl_search_args
*args
;
1789 struct inode
*inode
;
1792 if (!capable(CAP_SYS_ADMIN
))
1795 args
= memdup_user(argp
, sizeof(*args
));
1797 return PTR_ERR(args
);
1799 inode
= fdentry(file
)->d_inode
;
1800 ret
= search_ioctl(inode
, args
);
1801 if (ret
== 0 && copy_to_user(argp
, args
, sizeof(*args
)))
1808 * Search INODE_REFs to identify path name of 'dirid' directory
1809 * in a 'tree_id' tree. and sets path name to 'name'.
1811 static noinline
int btrfs_search_path_in_tree(struct btrfs_fs_info
*info
,
1812 u64 tree_id
, u64 dirid
, char *name
)
1814 struct btrfs_root
*root
;
1815 struct btrfs_key key
;
1821 struct btrfs_inode_ref
*iref
;
1822 struct extent_buffer
*l
;
1823 struct btrfs_path
*path
;
1825 if (dirid
== BTRFS_FIRST_FREE_OBJECTID
) {
1830 path
= btrfs_alloc_path();
1834 ptr
= &name
[BTRFS_INO_LOOKUP_PATH_MAX
];
1836 key
.objectid
= tree_id
;
1837 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1838 key
.offset
= (u64
)-1;
1839 root
= btrfs_read_fs_root_no_name(info
, &key
);
1841 printk(KERN_ERR
"could not find root %llu\n", tree_id
);
1846 key
.objectid
= dirid
;
1847 key
.type
= BTRFS_INODE_REF_KEY
;
1848 key
.offset
= (u64
)-1;
1851 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1856 slot
= path
->slots
[0];
1857 if (ret
> 0 && slot
> 0)
1859 btrfs_item_key_to_cpu(l
, &key
, slot
);
1861 if (ret
> 0 && (key
.objectid
!= dirid
||
1862 key
.type
!= BTRFS_INODE_REF_KEY
)) {
1867 iref
= btrfs_item_ptr(l
, slot
, struct btrfs_inode_ref
);
1868 len
= btrfs_inode_ref_name_len(l
, iref
);
1870 total_len
+= len
+ 1;
1875 read_extent_buffer(l
, ptr
,(unsigned long)(iref
+ 1), len
);
1877 if (key
.offset
== BTRFS_FIRST_FREE_OBJECTID
)
1880 btrfs_release_path(path
);
1881 key
.objectid
= key
.offset
;
1882 key
.offset
= (u64
)-1;
1883 dirid
= key
.objectid
;
1887 memmove(name
, ptr
, total_len
);
1888 name
[total_len
]='\0';
1891 btrfs_free_path(path
);
1895 static noinline
int btrfs_ioctl_ino_lookup(struct file
*file
,
1898 struct btrfs_ioctl_ino_lookup_args
*args
;
1899 struct inode
*inode
;
1902 if (!capable(CAP_SYS_ADMIN
))
1905 args
= memdup_user(argp
, sizeof(*args
));
1907 return PTR_ERR(args
);
1909 inode
= fdentry(file
)->d_inode
;
1911 if (args
->treeid
== 0)
1912 args
->treeid
= BTRFS_I(inode
)->root
->root_key
.objectid
;
1914 ret
= btrfs_search_path_in_tree(BTRFS_I(inode
)->root
->fs_info
,
1915 args
->treeid
, args
->objectid
,
1918 if (ret
== 0 && copy_to_user(argp
, args
, sizeof(*args
)))
1925 static noinline
int btrfs_ioctl_snap_destroy(struct file
*file
,
1928 struct dentry
*parent
= fdentry(file
);
1929 struct dentry
*dentry
;
1930 struct inode
*dir
= parent
->d_inode
;
1931 struct inode
*inode
;
1932 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
1933 struct btrfs_root
*dest
= NULL
;
1934 struct btrfs_ioctl_vol_args
*vol_args
;
1935 struct btrfs_trans_handle
*trans
;
1940 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
1941 if (IS_ERR(vol_args
))
1942 return PTR_ERR(vol_args
);
1944 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
1945 namelen
= strlen(vol_args
->name
);
1946 if (strchr(vol_args
->name
, '/') ||
1947 strncmp(vol_args
->name
, "..", namelen
) == 0) {
1952 err
= mnt_want_write_file(file
);
1956 mutex_lock_nested(&dir
->i_mutex
, I_MUTEX_PARENT
);
1957 dentry
= lookup_one_len(vol_args
->name
, parent
, namelen
);
1958 if (IS_ERR(dentry
)) {
1959 err
= PTR_ERR(dentry
);
1960 goto out_unlock_dir
;
1963 if (!dentry
->d_inode
) {
1968 inode
= dentry
->d_inode
;
1969 dest
= BTRFS_I(inode
)->root
;
1970 if (!capable(CAP_SYS_ADMIN
)){
1972 * Regular user. Only allow this with a special mount
1973 * option, when the user has write+exec access to the
1974 * subvol root, and when rmdir(2) would have been
1977 * Note that this is _not_ check that the subvol is
1978 * empty or doesn't contain data that we wouldn't
1979 * otherwise be able to delete.
1981 * Users who want to delete empty subvols should try
1985 if (!btrfs_test_opt(root
, USER_SUBVOL_RM_ALLOWED
))
1989 * Do not allow deletion if the parent dir is the same
1990 * as the dir to be deleted. That means the ioctl
1991 * must be called on the dentry referencing the root
1992 * of the subvol, not a random directory contained
1999 err
= inode_permission(inode
, MAY_WRITE
| MAY_EXEC
);
2003 /* check if subvolume may be deleted by a non-root user */
2004 err
= btrfs_may_delete(dir
, dentry
, 1);
2009 if (btrfs_ino(inode
) != BTRFS_FIRST_FREE_OBJECTID
) {
2014 mutex_lock(&inode
->i_mutex
);
2015 err
= d_invalidate(dentry
);
2019 down_write(&root
->fs_info
->subvol_sem
);
2021 err
= may_destroy_subvol(dest
);
2025 trans
= btrfs_start_transaction(root
, 0);
2026 if (IS_ERR(trans
)) {
2027 err
= PTR_ERR(trans
);
2030 trans
->block_rsv
= &root
->fs_info
->global_block_rsv
;
2032 ret
= btrfs_unlink_subvol(trans
, root
, dir
,
2033 dest
->root_key
.objectid
,
2034 dentry
->d_name
.name
,
2035 dentry
->d_name
.len
);
2038 btrfs_abort_transaction(trans
, root
, ret
);
2042 btrfs_record_root_in_trans(trans
, dest
);
2044 memset(&dest
->root_item
.drop_progress
, 0,
2045 sizeof(dest
->root_item
.drop_progress
));
2046 dest
->root_item
.drop_level
= 0;
2047 btrfs_set_root_refs(&dest
->root_item
, 0);
2049 if (!xchg(&dest
->orphan_item_inserted
, 1)) {
2050 ret
= btrfs_insert_orphan_item(trans
,
2051 root
->fs_info
->tree_root
,
2052 dest
->root_key
.objectid
);
2054 btrfs_abort_transaction(trans
, root
, ret
);
2060 ret
= btrfs_end_transaction(trans
, root
);
2063 inode
->i_flags
|= S_DEAD
;
2065 up_write(&root
->fs_info
->subvol_sem
);
2067 mutex_unlock(&inode
->i_mutex
);
2069 shrink_dcache_sb(root
->fs_info
->sb
);
2070 btrfs_invalidate_inodes(dest
);
2076 mutex_unlock(&dir
->i_mutex
);
2077 mnt_drop_write_file(file
);
2083 static int btrfs_ioctl_defrag(struct file
*file
, void __user
*argp
)
2085 struct inode
*inode
= fdentry(file
)->d_inode
;
2086 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2087 struct btrfs_ioctl_defrag_range_args
*range
;
2090 if (btrfs_root_readonly(root
))
2093 ret
= mnt_want_write_file(file
);
2097 switch (inode
->i_mode
& S_IFMT
) {
2099 if (!capable(CAP_SYS_ADMIN
)) {
2103 ret
= btrfs_defrag_root(root
, 0);
2106 ret
= btrfs_defrag_root(root
->fs_info
->extent_root
, 0);
2109 if (!(file
->f_mode
& FMODE_WRITE
)) {
2114 range
= kzalloc(sizeof(*range
), GFP_KERNEL
);
2121 if (copy_from_user(range
, argp
,
2127 /* compression requires us to start the IO */
2128 if ((range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
)) {
2129 range
->flags
|= BTRFS_DEFRAG_RANGE_START_IO
;
2130 range
->extent_thresh
= (u32
)-1;
2133 /* the rest are all set to zero by kzalloc */
2134 range
->len
= (u64
)-1;
2136 ret
= btrfs_defrag_file(fdentry(file
)->d_inode
, file
,
2146 mnt_drop_write_file(file
);
2150 static long btrfs_ioctl_add_dev(struct btrfs_root
*root
, void __user
*arg
)
2152 struct btrfs_ioctl_vol_args
*vol_args
;
2155 if (!capable(CAP_SYS_ADMIN
))
2158 mutex_lock(&root
->fs_info
->volume_mutex
);
2159 if (root
->fs_info
->balance_ctl
) {
2160 printk(KERN_INFO
"btrfs: balance in progress\n");
2165 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
2166 if (IS_ERR(vol_args
)) {
2167 ret
= PTR_ERR(vol_args
);
2171 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
2172 ret
= btrfs_init_new_device(root
, vol_args
->name
);
2176 mutex_unlock(&root
->fs_info
->volume_mutex
);
2180 static long btrfs_ioctl_rm_dev(struct btrfs_root
*root
, void __user
*arg
)
2182 struct btrfs_ioctl_vol_args
*vol_args
;
2185 if (!capable(CAP_SYS_ADMIN
))
2188 if (root
->fs_info
->sb
->s_flags
& MS_RDONLY
)
2191 mutex_lock(&root
->fs_info
->volume_mutex
);
2192 if (root
->fs_info
->balance_ctl
) {
2193 printk(KERN_INFO
"btrfs: balance in progress\n");
2198 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
2199 if (IS_ERR(vol_args
)) {
2200 ret
= PTR_ERR(vol_args
);
2204 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
2205 ret
= btrfs_rm_device(root
, vol_args
->name
);
2209 mutex_unlock(&root
->fs_info
->volume_mutex
);
2213 static long btrfs_ioctl_fs_info(struct btrfs_root
*root
, void __user
*arg
)
2215 struct btrfs_ioctl_fs_info_args
*fi_args
;
2216 struct btrfs_device
*device
;
2217 struct btrfs_device
*next
;
2218 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
2221 if (!capable(CAP_SYS_ADMIN
))
2224 fi_args
= kzalloc(sizeof(*fi_args
), GFP_KERNEL
);
2228 fi_args
->num_devices
= fs_devices
->num_devices
;
2229 memcpy(&fi_args
->fsid
, root
->fs_info
->fsid
, sizeof(fi_args
->fsid
));
2231 mutex_lock(&fs_devices
->device_list_mutex
);
2232 list_for_each_entry_safe(device
, next
, &fs_devices
->devices
, dev_list
) {
2233 if (device
->devid
> fi_args
->max_id
)
2234 fi_args
->max_id
= device
->devid
;
2236 mutex_unlock(&fs_devices
->device_list_mutex
);
2238 if (copy_to_user(arg
, fi_args
, sizeof(*fi_args
)))
2245 static long btrfs_ioctl_dev_info(struct btrfs_root
*root
, void __user
*arg
)
2247 struct btrfs_ioctl_dev_info_args
*di_args
;
2248 struct btrfs_device
*dev
;
2249 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
2251 char *s_uuid
= NULL
;
2252 char empty_uuid
[BTRFS_UUID_SIZE
] = {0};
2254 if (!capable(CAP_SYS_ADMIN
))
2257 di_args
= memdup_user(arg
, sizeof(*di_args
));
2258 if (IS_ERR(di_args
))
2259 return PTR_ERR(di_args
);
2261 if (memcmp(empty_uuid
, di_args
->uuid
, BTRFS_UUID_SIZE
) != 0)
2262 s_uuid
= di_args
->uuid
;
2264 mutex_lock(&fs_devices
->device_list_mutex
);
2265 dev
= btrfs_find_device(root
, di_args
->devid
, s_uuid
, NULL
);
2266 mutex_unlock(&fs_devices
->device_list_mutex
);
2273 di_args
->devid
= dev
->devid
;
2274 di_args
->bytes_used
= dev
->bytes_used
;
2275 di_args
->total_bytes
= dev
->total_bytes
;
2276 memcpy(di_args
->uuid
, dev
->uuid
, sizeof(di_args
->uuid
));
2278 struct rcu_string
*name
;
2281 name
= rcu_dereference(dev
->name
);
2282 strncpy(di_args
->path
, name
->str
, sizeof(di_args
->path
));
2284 di_args
->path
[sizeof(di_args
->path
) - 1] = 0;
2286 di_args
->path
[0] = '\0';
2290 if (ret
== 0 && copy_to_user(arg
, di_args
, sizeof(*di_args
)))
2297 static noinline
long btrfs_ioctl_clone(struct file
*file
, unsigned long srcfd
,
2298 u64 off
, u64 olen
, u64 destoff
)
2300 struct inode
*inode
= fdentry(file
)->d_inode
;
2301 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2302 struct file
*src_file
;
2304 struct btrfs_trans_handle
*trans
;
2305 struct btrfs_path
*path
;
2306 struct extent_buffer
*leaf
;
2308 struct btrfs_key key
;
2313 u64 bs
= root
->fs_info
->sb
->s_blocksize
;
2318 * - split compressed inline extents. annoying: we need to
2319 * decompress into destination's address_space (the file offset
2320 * may change, so source mapping won't do), then recompress (or
2321 * otherwise reinsert) a subrange.
2322 * - allow ranges within the same file to be cloned (provided
2323 * they don't overlap)?
2326 /* the destination must be opened for writing */
2327 if (!(file
->f_mode
& FMODE_WRITE
) || (file
->f_flags
& O_APPEND
))
2330 if (btrfs_root_readonly(root
))
2333 ret
= mnt_want_write_file(file
);
2337 src_file
= fget(srcfd
);
2340 goto out_drop_write
;
2343 src
= src_file
->f_dentry
->d_inode
;
2349 /* the src must be open for reading */
2350 if (!(src_file
->f_mode
& FMODE_READ
))
2353 /* don't make the dst file partly checksummed */
2354 if ((BTRFS_I(src
)->flags
& BTRFS_INODE_NODATASUM
) !=
2355 (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
))
2359 if (S_ISDIR(src
->i_mode
) || S_ISDIR(inode
->i_mode
))
2363 if (src
->i_sb
!= inode
->i_sb
|| BTRFS_I(src
)->root
!= root
)
2367 buf
= vmalloc(btrfs_level_size(root
, 0));
2371 path
= btrfs_alloc_path();
2379 mutex_lock_nested(&inode
->i_mutex
, I_MUTEX_PARENT
);
2380 mutex_lock_nested(&src
->i_mutex
, I_MUTEX_CHILD
);
2382 mutex_lock_nested(&src
->i_mutex
, I_MUTEX_PARENT
);
2383 mutex_lock_nested(&inode
->i_mutex
, I_MUTEX_CHILD
);
2386 /* determine range to clone */
2388 if (off
+ len
> src
->i_size
|| off
+ len
< off
)
2391 olen
= len
= src
->i_size
- off
;
2392 /* if we extend to eof, continue to block boundary */
2393 if (off
+ len
== src
->i_size
)
2394 len
= ALIGN(src
->i_size
, bs
) - off
;
2396 /* verify the end result is block aligned */
2397 if (!IS_ALIGNED(off
, bs
) || !IS_ALIGNED(off
+ len
, bs
) ||
2398 !IS_ALIGNED(destoff
, bs
))
2401 if (destoff
> inode
->i_size
) {
2402 ret
= btrfs_cont_expand(inode
, inode
->i_size
, destoff
);
2407 /* truncate page cache pages from target inode range */
2408 truncate_inode_pages_range(&inode
->i_data
, destoff
,
2409 PAGE_CACHE_ALIGN(destoff
+ len
) - 1);
2411 /* do any pending delalloc/csum calc on src, one way or
2412 another, and lock file content */
2414 struct btrfs_ordered_extent
*ordered
;
2415 lock_extent(&BTRFS_I(src
)->io_tree
, off
, off
+len
);
2416 ordered
= btrfs_lookup_first_ordered_extent(src
, off
+len
);
2418 !test_range_bit(&BTRFS_I(src
)->io_tree
, off
, off
+len
,
2419 EXTENT_DELALLOC
, 0, NULL
))
2421 unlock_extent(&BTRFS_I(src
)->io_tree
, off
, off
+len
);
2423 btrfs_put_ordered_extent(ordered
);
2424 btrfs_wait_ordered_range(src
, off
, len
);
2428 key
.objectid
= btrfs_ino(src
);
2429 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2434 * note the key will change type as we walk through the
2437 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2441 nritems
= btrfs_header_nritems(path
->nodes
[0]);
2442 if (path
->slots
[0] >= nritems
) {
2443 ret
= btrfs_next_leaf(root
, path
);
2448 nritems
= btrfs_header_nritems(path
->nodes
[0]);
2450 leaf
= path
->nodes
[0];
2451 slot
= path
->slots
[0];
2453 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
2454 if (btrfs_key_type(&key
) > BTRFS_EXTENT_DATA_KEY
||
2455 key
.objectid
!= btrfs_ino(src
))
2458 if (btrfs_key_type(&key
) == BTRFS_EXTENT_DATA_KEY
) {
2459 struct btrfs_file_extent_item
*extent
;
2462 struct btrfs_key new_key
;
2463 u64 disko
= 0, diskl
= 0;
2464 u64 datao
= 0, datal
= 0;
2468 size
= btrfs_item_size_nr(leaf
, slot
);
2469 read_extent_buffer(leaf
, buf
,
2470 btrfs_item_ptr_offset(leaf
, slot
),
2473 extent
= btrfs_item_ptr(leaf
, slot
,
2474 struct btrfs_file_extent_item
);
2475 comp
= btrfs_file_extent_compression(leaf
, extent
);
2476 type
= btrfs_file_extent_type(leaf
, extent
);
2477 if (type
== BTRFS_FILE_EXTENT_REG
||
2478 type
== BTRFS_FILE_EXTENT_PREALLOC
) {
2479 disko
= btrfs_file_extent_disk_bytenr(leaf
,
2481 diskl
= btrfs_file_extent_disk_num_bytes(leaf
,
2483 datao
= btrfs_file_extent_offset(leaf
, extent
);
2484 datal
= btrfs_file_extent_num_bytes(leaf
,
2486 } else if (type
== BTRFS_FILE_EXTENT_INLINE
) {
2487 /* take upper bound, may be compressed */
2488 datal
= btrfs_file_extent_ram_bytes(leaf
,
2491 btrfs_release_path(path
);
2493 if (key
.offset
+ datal
<= off
||
2494 key
.offset
>= off
+len
)
2497 memcpy(&new_key
, &key
, sizeof(new_key
));
2498 new_key
.objectid
= btrfs_ino(inode
);
2499 if (off
<= key
.offset
)
2500 new_key
.offset
= key
.offset
+ destoff
- off
;
2502 new_key
.offset
= destoff
;
2505 * 1 - adjusting old extent (we may have to split it)
2506 * 1 - add new extent
2509 trans
= btrfs_start_transaction(root
, 3);
2510 if (IS_ERR(trans
)) {
2511 ret
= PTR_ERR(trans
);
2515 if (type
== BTRFS_FILE_EXTENT_REG
||
2516 type
== BTRFS_FILE_EXTENT_PREALLOC
) {
2518 * a | --- range to clone ---| b
2519 * | ------------- extent ------------- |
2522 /* substract range b */
2523 if (key
.offset
+ datal
> off
+ len
)
2524 datal
= off
+ len
- key
.offset
;
2526 /* substract range a */
2527 if (off
> key
.offset
) {
2528 datao
+= off
- key
.offset
;
2529 datal
-= off
- key
.offset
;
2532 ret
= btrfs_drop_extents(trans
, inode
,
2534 new_key
.offset
+ datal
,
2537 btrfs_abort_transaction(trans
, root
,
2539 btrfs_end_transaction(trans
, root
);
2543 ret
= btrfs_insert_empty_item(trans
, root
, path
,
2546 btrfs_abort_transaction(trans
, root
,
2548 btrfs_end_transaction(trans
, root
);
2552 leaf
= path
->nodes
[0];
2553 slot
= path
->slots
[0];
2554 write_extent_buffer(leaf
, buf
,
2555 btrfs_item_ptr_offset(leaf
, slot
),
2558 extent
= btrfs_item_ptr(leaf
, slot
,
2559 struct btrfs_file_extent_item
);
2561 /* disko == 0 means it's a hole */
2565 btrfs_set_file_extent_offset(leaf
, extent
,
2567 btrfs_set_file_extent_num_bytes(leaf
, extent
,
2570 inode_add_bytes(inode
, datal
);
2571 ret
= btrfs_inc_extent_ref(trans
, root
,
2573 root
->root_key
.objectid
,
2575 new_key
.offset
- datao
,
2578 btrfs_abort_transaction(trans
,
2581 btrfs_end_transaction(trans
,
2587 } else if (type
== BTRFS_FILE_EXTENT_INLINE
) {
2590 if (off
> key
.offset
) {
2591 skip
= off
- key
.offset
;
2592 new_key
.offset
+= skip
;
2595 if (key
.offset
+ datal
> off
+len
)
2596 trim
= key
.offset
+ datal
- (off
+len
);
2598 if (comp
&& (skip
|| trim
)) {
2600 btrfs_end_transaction(trans
, root
);
2603 size
-= skip
+ trim
;
2604 datal
-= skip
+ trim
;
2606 ret
= btrfs_drop_extents(trans
, inode
,
2608 new_key
.offset
+ datal
,
2611 btrfs_abort_transaction(trans
, root
,
2613 btrfs_end_transaction(trans
, root
);
2617 ret
= btrfs_insert_empty_item(trans
, root
, path
,
2620 btrfs_abort_transaction(trans
, root
,
2622 btrfs_end_transaction(trans
, root
);
2628 btrfs_file_extent_calc_inline_size(0);
2629 memmove(buf
+start
, buf
+start
+skip
,
2633 leaf
= path
->nodes
[0];
2634 slot
= path
->slots
[0];
2635 write_extent_buffer(leaf
, buf
,
2636 btrfs_item_ptr_offset(leaf
, slot
),
2638 inode_add_bytes(inode
, datal
);
2641 btrfs_mark_buffer_dirty(leaf
);
2642 btrfs_release_path(path
);
2644 inode_inc_iversion(inode
);
2645 inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
2648 * we round up to the block size at eof when
2649 * determining which extents to clone above,
2650 * but shouldn't round up the file size
2652 endoff
= new_key
.offset
+ datal
;
2653 if (endoff
> destoff
+olen
)
2654 endoff
= destoff
+olen
;
2655 if (endoff
> inode
->i_size
)
2656 btrfs_i_size_write(inode
, endoff
);
2658 ret
= btrfs_update_inode(trans
, root
, inode
);
2660 btrfs_abort_transaction(trans
, root
, ret
);
2661 btrfs_end_transaction(trans
, root
);
2664 ret
= btrfs_end_transaction(trans
, root
);
2667 btrfs_release_path(path
);
2672 btrfs_release_path(path
);
2673 unlock_extent(&BTRFS_I(src
)->io_tree
, off
, off
+len
);
2675 mutex_unlock(&src
->i_mutex
);
2676 mutex_unlock(&inode
->i_mutex
);
2678 btrfs_free_path(path
);
2682 mnt_drop_write_file(file
);
2686 static long btrfs_ioctl_clone_range(struct file
*file
, void __user
*argp
)
2688 struct btrfs_ioctl_clone_range_args args
;
2690 if (copy_from_user(&args
, argp
, sizeof(args
)))
2692 return btrfs_ioctl_clone(file
, args
.src_fd
, args
.src_offset
,
2693 args
.src_length
, args
.dest_offset
);
2697 * there are many ways the trans_start and trans_end ioctls can lead
2698 * to deadlocks. They should only be used by applications that
2699 * basically own the machine, and have a very in depth understanding
2700 * of all the possible deadlocks and enospc problems.
2702 static long btrfs_ioctl_trans_start(struct file
*file
)
2704 struct inode
*inode
= fdentry(file
)->d_inode
;
2705 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2706 struct btrfs_trans_handle
*trans
;
2710 if (!capable(CAP_SYS_ADMIN
))
2714 if (file
->private_data
)
2718 if (btrfs_root_readonly(root
))
2721 ret
= mnt_want_write_file(file
);
2725 atomic_inc(&root
->fs_info
->open_ioctl_trans
);
2728 trans
= btrfs_start_ioctl_transaction(root
);
2732 file
->private_data
= trans
;
2736 atomic_dec(&root
->fs_info
->open_ioctl_trans
);
2737 mnt_drop_write_file(file
);
2742 static long btrfs_ioctl_default_subvol(struct file
*file
, void __user
*argp
)
2744 struct inode
*inode
= fdentry(file
)->d_inode
;
2745 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2746 struct btrfs_root
*new_root
;
2747 struct btrfs_dir_item
*di
;
2748 struct btrfs_trans_handle
*trans
;
2749 struct btrfs_path
*path
;
2750 struct btrfs_key location
;
2751 struct btrfs_disk_key disk_key
;
2752 struct btrfs_super_block
*disk_super
;
2757 if (!capable(CAP_SYS_ADMIN
))
2760 if (copy_from_user(&objectid
, argp
, sizeof(objectid
)))
2764 objectid
= root
->root_key
.objectid
;
2766 location
.objectid
= objectid
;
2767 location
.type
= BTRFS_ROOT_ITEM_KEY
;
2768 location
.offset
= (u64
)-1;
2770 new_root
= btrfs_read_fs_root_no_name(root
->fs_info
, &location
);
2771 if (IS_ERR(new_root
))
2772 return PTR_ERR(new_root
);
2774 if (btrfs_root_refs(&new_root
->root_item
) == 0)
2777 path
= btrfs_alloc_path();
2780 path
->leave_spinning
= 1;
2782 trans
= btrfs_start_transaction(root
, 1);
2783 if (IS_ERR(trans
)) {
2784 btrfs_free_path(path
);
2785 return PTR_ERR(trans
);
2788 dir_id
= btrfs_super_root_dir(root
->fs_info
->super_copy
);
2789 di
= btrfs_lookup_dir_item(trans
, root
->fs_info
->tree_root
, path
,
2790 dir_id
, "default", 7, 1);
2791 if (IS_ERR_OR_NULL(di
)) {
2792 btrfs_free_path(path
);
2793 btrfs_end_transaction(trans
, root
);
2794 printk(KERN_ERR
"Umm, you don't have the default dir item, "
2795 "this isn't going to work\n");
2799 btrfs_cpu_key_to_disk(&disk_key
, &new_root
->root_key
);
2800 btrfs_set_dir_item_key(path
->nodes
[0], di
, &disk_key
);
2801 btrfs_mark_buffer_dirty(path
->nodes
[0]);
2802 btrfs_free_path(path
);
2804 disk_super
= root
->fs_info
->super_copy
;
2805 features
= btrfs_super_incompat_flags(disk_super
);
2806 if (!(features
& BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL
)) {
2807 features
|= BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL
;
2808 btrfs_set_super_incompat_flags(disk_super
, features
);
2810 btrfs_end_transaction(trans
, root
);
2815 static void get_block_group_info(struct list_head
*groups_list
,
2816 struct btrfs_ioctl_space_info
*space
)
2818 struct btrfs_block_group_cache
*block_group
;
2820 space
->total_bytes
= 0;
2821 space
->used_bytes
= 0;
2823 list_for_each_entry(block_group
, groups_list
, list
) {
2824 space
->flags
= block_group
->flags
;
2825 space
->total_bytes
+= block_group
->key
.offset
;
2826 space
->used_bytes
+=
2827 btrfs_block_group_used(&block_group
->item
);
2831 long btrfs_ioctl_space_info(struct btrfs_root
*root
, void __user
*arg
)
2833 struct btrfs_ioctl_space_args space_args
;
2834 struct btrfs_ioctl_space_info space
;
2835 struct btrfs_ioctl_space_info
*dest
;
2836 struct btrfs_ioctl_space_info
*dest_orig
;
2837 struct btrfs_ioctl_space_info __user
*user_dest
;
2838 struct btrfs_space_info
*info
;
2839 u64 types
[] = {BTRFS_BLOCK_GROUP_DATA
,
2840 BTRFS_BLOCK_GROUP_SYSTEM
,
2841 BTRFS_BLOCK_GROUP_METADATA
,
2842 BTRFS_BLOCK_GROUP_DATA
| BTRFS_BLOCK_GROUP_METADATA
};
2849 if (copy_from_user(&space_args
,
2850 (struct btrfs_ioctl_space_args __user
*)arg
,
2851 sizeof(space_args
)))
2854 for (i
= 0; i
< num_types
; i
++) {
2855 struct btrfs_space_info
*tmp
;
2859 list_for_each_entry_rcu(tmp
, &root
->fs_info
->space_info
,
2861 if (tmp
->flags
== types
[i
]) {
2871 down_read(&info
->groups_sem
);
2872 for (c
= 0; c
< BTRFS_NR_RAID_TYPES
; c
++) {
2873 if (!list_empty(&info
->block_groups
[c
]))
2876 up_read(&info
->groups_sem
);
2879 /* space_slots == 0 means they are asking for a count */
2880 if (space_args
.space_slots
== 0) {
2881 space_args
.total_spaces
= slot_count
;
2885 slot_count
= min_t(u64
, space_args
.space_slots
, slot_count
);
2887 alloc_size
= sizeof(*dest
) * slot_count
;
2889 /* we generally have at most 6 or so space infos, one for each raid
2890 * level. So, a whole page should be more than enough for everyone
2892 if (alloc_size
> PAGE_CACHE_SIZE
)
2895 space_args
.total_spaces
= 0;
2896 dest
= kmalloc(alloc_size
, GFP_NOFS
);
2901 /* now we have a buffer to copy into */
2902 for (i
= 0; i
< num_types
; i
++) {
2903 struct btrfs_space_info
*tmp
;
2910 list_for_each_entry_rcu(tmp
, &root
->fs_info
->space_info
,
2912 if (tmp
->flags
== types
[i
]) {
2921 down_read(&info
->groups_sem
);
2922 for (c
= 0; c
< BTRFS_NR_RAID_TYPES
; c
++) {
2923 if (!list_empty(&info
->block_groups
[c
])) {
2924 get_block_group_info(&info
->block_groups
[c
],
2926 memcpy(dest
, &space
, sizeof(space
));
2928 space_args
.total_spaces
++;
2934 up_read(&info
->groups_sem
);
2937 user_dest
= (struct btrfs_ioctl_space_info __user
*)
2938 (arg
+ sizeof(struct btrfs_ioctl_space_args
));
2940 if (copy_to_user(user_dest
, dest_orig
, alloc_size
))
2945 if (ret
== 0 && copy_to_user(arg
, &space_args
, sizeof(space_args
)))
2952 * there are many ways the trans_start and trans_end ioctls can lead
2953 * to deadlocks. They should only be used by applications that
2954 * basically own the machine, and have a very in depth understanding
2955 * of all the possible deadlocks and enospc problems.
2957 long btrfs_ioctl_trans_end(struct file
*file
)
2959 struct inode
*inode
= fdentry(file
)->d_inode
;
2960 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2961 struct btrfs_trans_handle
*trans
;
2963 trans
= file
->private_data
;
2966 file
->private_data
= NULL
;
2968 btrfs_end_transaction(trans
, root
);
2970 atomic_dec(&root
->fs_info
->open_ioctl_trans
);
2972 mnt_drop_write_file(file
);
2976 static noinline
long btrfs_ioctl_start_sync(struct file
*file
, void __user
*argp
)
2978 struct btrfs_root
*root
= BTRFS_I(file
->f_dentry
->d_inode
)->root
;
2979 struct btrfs_trans_handle
*trans
;
2983 trans
= btrfs_start_transaction(root
, 0);
2985 return PTR_ERR(trans
);
2986 transid
= trans
->transid
;
2987 ret
= btrfs_commit_transaction_async(trans
, root
, 0);
2989 btrfs_end_transaction(trans
, root
);
2994 if (copy_to_user(argp
, &transid
, sizeof(transid
)))
2999 static noinline
long btrfs_ioctl_wait_sync(struct file
*file
, void __user
*argp
)
3001 struct btrfs_root
*root
= BTRFS_I(file
->f_dentry
->d_inode
)->root
;
3005 if (copy_from_user(&transid
, argp
, sizeof(transid
)))
3008 transid
= 0; /* current trans */
3010 return btrfs_wait_for_commit(root
, transid
);
3013 static long btrfs_ioctl_scrub(struct btrfs_root
*root
, void __user
*arg
)
3016 struct btrfs_ioctl_scrub_args
*sa
;
3018 if (!capable(CAP_SYS_ADMIN
))
3021 sa
= memdup_user(arg
, sizeof(*sa
));
3025 ret
= btrfs_scrub_dev(root
, sa
->devid
, sa
->start
, sa
->end
,
3026 &sa
->progress
, sa
->flags
& BTRFS_SCRUB_READONLY
);
3028 if (copy_to_user(arg
, sa
, sizeof(*sa
)))
3035 static long btrfs_ioctl_scrub_cancel(struct btrfs_root
*root
, void __user
*arg
)
3037 if (!capable(CAP_SYS_ADMIN
))
3040 return btrfs_scrub_cancel(root
);
3043 static long btrfs_ioctl_scrub_progress(struct btrfs_root
*root
,
3046 struct btrfs_ioctl_scrub_args
*sa
;
3049 if (!capable(CAP_SYS_ADMIN
))
3052 sa
= memdup_user(arg
, sizeof(*sa
));
3056 ret
= btrfs_scrub_progress(root
, sa
->devid
, &sa
->progress
);
3058 if (copy_to_user(arg
, sa
, sizeof(*sa
)))
3065 static long btrfs_ioctl_get_dev_stats(struct btrfs_root
*root
,
3066 void __user
*arg
, int reset_after_read
)
3068 struct btrfs_ioctl_get_dev_stats
*sa
;
3071 if (reset_after_read
&& !capable(CAP_SYS_ADMIN
))
3074 sa
= memdup_user(arg
, sizeof(*sa
));
3078 ret
= btrfs_get_dev_stats(root
, sa
, reset_after_read
);
3080 if (copy_to_user(arg
, sa
, sizeof(*sa
)))
3087 static long btrfs_ioctl_ino_to_path(struct btrfs_root
*root
, void __user
*arg
)
3093 struct btrfs_ioctl_ino_path_args
*ipa
= NULL
;
3094 struct inode_fs_paths
*ipath
= NULL
;
3095 struct btrfs_path
*path
;
3097 if (!capable(CAP_SYS_ADMIN
))
3100 path
= btrfs_alloc_path();
3106 ipa
= memdup_user(arg
, sizeof(*ipa
));
3113 size
= min_t(u32
, ipa
->size
, 4096);
3114 ipath
= init_ipath(size
, root
, path
);
3115 if (IS_ERR(ipath
)) {
3116 ret
= PTR_ERR(ipath
);
3121 ret
= paths_from_inode(ipa
->inum
, ipath
);
3125 for (i
= 0; i
< ipath
->fspath
->elem_cnt
; ++i
) {
3126 rel_ptr
= ipath
->fspath
->val
[i
] -
3127 (u64
)(unsigned long)ipath
->fspath
->val
;
3128 ipath
->fspath
->val
[i
] = rel_ptr
;
3131 ret
= copy_to_user((void *)(unsigned long)ipa
->fspath
,
3132 (void *)(unsigned long)ipath
->fspath
, size
);
3139 btrfs_free_path(path
);
3146 static int build_ino_list(u64 inum
, u64 offset
, u64 root
, void *ctx
)
3148 struct btrfs_data_container
*inodes
= ctx
;
3149 const size_t c
= 3 * sizeof(u64
);
3151 if (inodes
->bytes_left
>= c
) {
3152 inodes
->bytes_left
-= c
;
3153 inodes
->val
[inodes
->elem_cnt
] = inum
;
3154 inodes
->val
[inodes
->elem_cnt
+ 1] = offset
;
3155 inodes
->val
[inodes
->elem_cnt
+ 2] = root
;
3156 inodes
->elem_cnt
+= 3;
3158 inodes
->bytes_missing
+= c
- inodes
->bytes_left
;
3159 inodes
->bytes_left
= 0;
3160 inodes
->elem_missed
+= 3;
3166 static long btrfs_ioctl_logical_to_ino(struct btrfs_root
*root
,
3171 u64 extent_item_pos
;
3172 struct btrfs_ioctl_logical_ino_args
*loi
;
3173 struct btrfs_data_container
*inodes
= NULL
;
3174 struct btrfs_path
*path
= NULL
;
3175 struct btrfs_key key
;
3177 if (!capable(CAP_SYS_ADMIN
))
3180 loi
= memdup_user(arg
, sizeof(*loi
));
3187 path
= btrfs_alloc_path();
3193 size
= min_t(u32
, loi
->size
, 4096);
3194 inodes
= init_data_container(size
);
3195 if (IS_ERR(inodes
)) {
3196 ret
= PTR_ERR(inodes
);
3201 ret
= extent_from_logical(root
->fs_info
, loi
->logical
, path
, &key
);
3202 btrfs_release_path(path
);
3204 if (ret
& BTRFS_EXTENT_FLAG_TREE_BLOCK
)
3209 extent_item_pos
= loi
->logical
- key
.objectid
;
3210 ret
= iterate_extent_inodes(root
->fs_info
, key
.objectid
,
3211 extent_item_pos
, 0, build_ino_list
,
3217 ret
= copy_to_user((void *)(unsigned long)loi
->inodes
,
3218 (void *)(unsigned long)inodes
, size
);
3223 btrfs_free_path(path
);
3230 void update_ioctl_balance_args(struct btrfs_fs_info
*fs_info
, int lock
,
3231 struct btrfs_ioctl_balance_args
*bargs
)
3233 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3235 bargs
->flags
= bctl
->flags
;
3237 if (atomic_read(&fs_info
->balance_running
))
3238 bargs
->state
|= BTRFS_BALANCE_STATE_RUNNING
;
3239 if (atomic_read(&fs_info
->balance_pause_req
))
3240 bargs
->state
|= BTRFS_BALANCE_STATE_PAUSE_REQ
;
3241 if (atomic_read(&fs_info
->balance_cancel_req
))
3242 bargs
->state
|= BTRFS_BALANCE_STATE_CANCEL_REQ
;
3244 memcpy(&bargs
->data
, &bctl
->data
, sizeof(bargs
->data
));
3245 memcpy(&bargs
->meta
, &bctl
->meta
, sizeof(bargs
->meta
));
3246 memcpy(&bargs
->sys
, &bctl
->sys
, sizeof(bargs
->sys
));
3249 spin_lock(&fs_info
->balance_lock
);
3250 memcpy(&bargs
->stat
, &bctl
->stat
, sizeof(bargs
->stat
));
3251 spin_unlock(&fs_info
->balance_lock
);
3253 memcpy(&bargs
->stat
, &bctl
->stat
, sizeof(bargs
->stat
));
3257 static long btrfs_ioctl_balance(struct file
*file
, void __user
*arg
)
3259 struct btrfs_root
*root
= BTRFS_I(fdentry(file
)->d_inode
)->root
;
3260 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3261 struct btrfs_ioctl_balance_args
*bargs
;
3262 struct btrfs_balance_control
*bctl
;
3265 if (!capable(CAP_SYS_ADMIN
))
3268 if (fs_info
->sb
->s_flags
& MS_RDONLY
)
3271 ret
= mnt_want_write_file(file
);
3275 mutex_lock(&fs_info
->volume_mutex
);
3276 mutex_lock(&fs_info
->balance_mutex
);
3279 bargs
= memdup_user(arg
, sizeof(*bargs
));
3280 if (IS_ERR(bargs
)) {
3281 ret
= PTR_ERR(bargs
);
3285 if (bargs
->flags
& BTRFS_BALANCE_RESUME
) {
3286 if (!fs_info
->balance_ctl
) {
3291 bctl
= fs_info
->balance_ctl
;
3292 spin_lock(&fs_info
->balance_lock
);
3293 bctl
->flags
|= BTRFS_BALANCE_RESUME
;
3294 spin_unlock(&fs_info
->balance_lock
);
3302 if (fs_info
->balance_ctl
) {
3307 bctl
= kzalloc(sizeof(*bctl
), GFP_NOFS
);
3313 bctl
->fs_info
= fs_info
;
3315 memcpy(&bctl
->data
, &bargs
->data
, sizeof(bctl
->data
));
3316 memcpy(&bctl
->meta
, &bargs
->meta
, sizeof(bctl
->meta
));
3317 memcpy(&bctl
->sys
, &bargs
->sys
, sizeof(bctl
->sys
));
3319 bctl
->flags
= bargs
->flags
;
3321 /* balance everything - no filters */
3322 bctl
->flags
|= BTRFS_BALANCE_TYPE_MASK
;
3326 ret
= btrfs_balance(bctl
, bargs
);
3328 * bctl is freed in __cancel_balance or in free_fs_info if
3329 * restriper was paused all the way until unmount
3332 if (copy_to_user(arg
, bargs
, sizeof(*bargs
)))
3339 mutex_unlock(&fs_info
->balance_mutex
);
3340 mutex_unlock(&fs_info
->volume_mutex
);
3341 mnt_drop_write_file(file
);
3345 static long btrfs_ioctl_balance_ctl(struct btrfs_root
*root
, int cmd
)
3347 if (!capable(CAP_SYS_ADMIN
))
3351 case BTRFS_BALANCE_CTL_PAUSE
:
3352 return btrfs_pause_balance(root
->fs_info
);
3353 case BTRFS_BALANCE_CTL_CANCEL
:
3354 return btrfs_cancel_balance(root
->fs_info
);
3360 static long btrfs_ioctl_balance_progress(struct btrfs_root
*root
,
3363 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3364 struct btrfs_ioctl_balance_args
*bargs
;
3367 if (!capable(CAP_SYS_ADMIN
))
3370 mutex_lock(&fs_info
->balance_mutex
);
3371 if (!fs_info
->balance_ctl
) {
3376 bargs
= kzalloc(sizeof(*bargs
), GFP_NOFS
);
3382 update_ioctl_balance_args(fs_info
, 1, bargs
);
3384 if (copy_to_user(arg
, bargs
, sizeof(*bargs
)))
3389 mutex_unlock(&fs_info
->balance_mutex
);
3393 long btrfs_ioctl(struct file
*file
, unsigned int
3394 cmd
, unsigned long arg
)
3396 struct btrfs_root
*root
= BTRFS_I(fdentry(file
)->d_inode
)->root
;
3397 void __user
*argp
= (void __user
*)arg
;
3400 case FS_IOC_GETFLAGS
:
3401 return btrfs_ioctl_getflags(file
, argp
);
3402 case FS_IOC_SETFLAGS
:
3403 return btrfs_ioctl_setflags(file
, argp
);
3404 case FS_IOC_GETVERSION
:
3405 return btrfs_ioctl_getversion(file
, argp
);
3407 return btrfs_ioctl_fitrim(file
, argp
);
3408 case BTRFS_IOC_SNAP_CREATE
:
3409 return btrfs_ioctl_snap_create(file
, argp
, 0);
3410 case BTRFS_IOC_SNAP_CREATE_V2
:
3411 return btrfs_ioctl_snap_create_v2(file
, argp
, 0);
3412 case BTRFS_IOC_SUBVOL_CREATE
:
3413 return btrfs_ioctl_snap_create(file
, argp
, 1);
3414 case BTRFS_IOC_SNAP_DESTROY
:
3415 return btrfs_ioctl_snap_destroy(file
, argp
);
3416 case BTRFS_IOC_SUBVOL_GETFLAGS
:
3417 return btrfs_ioctl_subvol_getflags(file
, argp
);
3418 case BTRFS_IOC_SUBVOL_SETFLAGS
:
3419 return btrfs_ioctl_subvol_setflags(file
, argp
);
3420 case BTRFS_IOC_DEFAULT_SUBVOL
:
3421 return btrfs_ioctl_default_subvol(file
, argp
);
3422 case BTRFS_IOC_DEFRAG
:
3423 return btrfs_ioctl_defrag(file
, NULL
);
3424 case BTRFS_IOC_DEFRAG_RANGE
:
3425 return btrfs_ioctl_defrag(file
, argp
);
3426 case BTRFS_IOC_RESIZE
:
3427 return btrfs_ioctl_resize(root
, argp
);
3428 case BTRFS_IOC_ADD_DEV
:
3429 return btrfs_ioctl_add_dev(root
, argp
);
3430 case BTRFS_IOC_RM_DEV
:
3431 return btrfs_ioctl_rm_dev(root
, argp
);
3432 case BTRFS_IOC_FS_INFO
:
3433 return btrfs_ioctl_fs_info(root
, argp
);
3434 case BTRFS_IOC_DEV_INFO
:
3435 return btrfs_ioctl_dev_info(root
, argp
);
3436 case BTRFS_IOC_BALANCE
:
3437 return btrfs_ioctl_balance(file
, NULL
);
3438 case BTRFS_IOC_CLONE
:
3439 return btrfs_ioctl_clone(file
, arg
, 0, 0, 0);
3440 case BTRFS_IOC_CLONE_RANGE
:
3441 return btrfs_ioctl_clone_range(file
, argp
);
3442 case BTRFS_IOC_TRANS_START
:
3443 return btrfs_ioctl_trans_start(file
);
3444 case BTRFS_IOC_TRANS_END
:
3445 return btrfs_ioctl_trans_end(file
);
3446 case BTRFS_IOC_TREE_SEARCH
:
3447 return btrfs_ioctl_tree_search(file
, argp
);
3448 case BTRFS_IOC_INO_LOOKUP
:
3449 return btrfs_ioctl_ino_lookup(file
, argp
);
3450 case BTRFS_IOC_INO_PATHS
:
3451 return btrfs_ioctl_ino_to_path(root
, argp
);
3452 case BTRFS_IOC_LOGICAL_INO
:
3453 return btrfs_ioctl_logical_to_ino(root
, argp
);
3454 case BTRFS_IOC_SPACE_INFO
:
3455 return btrfs_ioctl_space_info(root
, argp
);
3456 case BTRFS_IOC_SYNC
:
3457 btrfs_sync_fs(file
->f_dentry
->d_sb
, 1);
3459 case BTRFS_IOC_START_SYNC
:
3460 return btrfs_ioctl_start_sync(file
, argp
);
3461 case BTRFS_IOC_WAIT_SYNC
:
3462 return btrfs_ioctl_wait_sync(file
, argp
);
3463 case BTRFS_IOC_SCRUB
:
3464 return btrfs_ioctl_scrub(root
, argp
);
3465 case BTRFS_IOC_SCRUB_CANCEL
:
3466 return btrfs_ioctl_scrub_cancel(root
, argp
);
3467 case BTRFS_IOC_SCRUB_PROGRESS
:
3468 return btrfs_ioctl_scrub_progress(root
, argp
);
3469 case BTRFS_IOC_BALANCE_V2
:
3470 return btrfs_ioctl_balance(file
, argp
);
3471 case BTRFS_IOC_BALANCE_CTL
:
3472 return btrfs_ioctl_balance_ctl(root
, arg
);
3473 case BTRFS_IOC_BALANCE_PROGRESS
:
3474 return btrfs_ioctl_balance_progress(root
, argp
);
3475 case BTRFS_IOC_GET_DEV_STATS
:
3476 return btrfs_ioctl_get_dev_stats(root
, argp
, 0);
3477 case BTRFS_IOC_GET_AND_RESET_DEV_STATS
:
3478 return btrfs_ioctl_get_dev_stats(root
, argp
, 1);