mm: consider all swapped back pages in used-once logic
[linux-2.6.git] / kernel / fork.c
blob017fb23d5983dc8eca06220ae9d81e9e37e0a4b9
1 /*
2 * linux/kernel/fork.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/seccomp.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/kthread.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/rmap.h>
54 #include <linux/ksm.h>
55 #include <linux/acct.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/freezer.h>
59 #include <linux/delayacct.h>
60 #include <linux/taskstats_kern.h>
61 #include <linux/random.h>
62 #include <linux/tty.h>
63 #include <linux/blkdev.h>
64 #include <linux/fs_struct.h>
65 #include <linux/magic.h>
66 #include <linux/perf_event.h>
67 #include <linux/posix-timers.h>
68 #include <linux/user-return-notifier.h>
69 #include <linux/oom.h>
70 #include <linux/khugepaged.h>
71 #include <linux/signalfd.h>
72 #include <linux/uprobes.h>
74 #include <asm/pgtable.h>
75 #include <asm/pgalloc.h>
76 #include <asm/uaccess.h>
77 #include <asm/mmu_context.h>
78 #include <asm/cacheflush.h>
79 #include <asm/tlbflush.h>
81 #include <trace/events/sched.h>
83 #define CREATE_TRACE_POINTS
84 #include <trace/events/task.h>
87 * Protected counters by write_lock_irq(&tasklist_lock)
89 unsigned long total_forks; /* Handle normal Linux uptimes. */
90 int nr_threads; /* The idle threads do not count.. */
92 int max_threads; /* tunable limit on nr_threads */
94 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
96 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
98 #ifdef CONFIG_PROVE_RCU
99 int lockdep_tasklist_lock_is_held(void)
101 return lockdep_is_held(&tasklist_lock);
103 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
104 #endif /* #ifdef CONFIG_PROVE_RCU */
106 int nr_processes(void)
108 int cpu;
109 int total = 0;
111 for_each_possible_cpu(cpu)
112 total += per_cpu(process_counts, cpu);
114 return total;
117 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
118 static struct kmem_cache *task_struct_cachep;
120 static inline struct task_struct *alloc_task_struct_node(int node)
122 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
125 void __weak arch_release_task_struct(struct task_struct *tsk) { }
127 static inline void free_task_struct(struct task_struct *tsk)
129 arch_release_task_struct(tsk);
130 kmem_cache_free(task_struct_cachep, tsk);
132 #endif
134 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
135 void __weak arch_release_thread_info(struct thread_info *ti) { }
138 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
139 * kmemcache based allocator.
141 # if THREAD_SIZE >= PAGE_SIZE
142 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
143 int node)
145 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
146 THREAD_SIZE_ORDER);
148 return page ? page_address(page) : NULL;
151 static inline void free_thread_info(struct thread_info *ti)
153 arch_release_thread_info(ti);
154 free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
156 # else
157 static struct kmem_cache *thread_info_cache;
159 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
160 int node)
162 return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
165 static void free_thread_info(struct thread_info *ti)
167 arch_release_thread_info(ti);
168 kmem_cache_free(thread_info_cache, ti);
171 void thread_info_cache_init(void)
173 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
174 THREAD_SIZE, 0, NULL);
175 BUG_ON(thread_info_cache == NULL);
177 # endif
178 #endif
180 /* SLAB cache for signal_struct structures (tsk->signal) */
181 static struct kmem_cache *signal_cachep;
183 /* SLAB cache for sighand_struct structures (tsk->sighand) */
184 struct kmem_cache *sighand_cachep;
186 /* SLAB cache for files_struct structures (tsk->files) */
187 struct kmem_cache *files_cachep;
189 /* SLAB cache for fs_struct structures (tsk->fs) */
190 struct kmem_cache *fs_cachep;
192 /* SLAB cache for vm_area_struct structures */
193 struct kmem_cache *vm_area_cachep;
195 /* SLAB cache for mm_struct structures (tsk->mm) */
196 static struct kmem_cache *mm_cachep;
198 static void account_kernel_stack(struct thread_info *ti, int account)
200 struct zone *zone = page_zone(virt_to_page(ti));
202 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
205 void free_task(struct task_struct *tsk)
207 account_kernel_stack(tsk->stack, -1);
208 free_thread_info(tsk->stack);
209 rt_mutex_debug_task_free(tsk);
210 ftrace_graph_exit_task(tsk);
211 put_seccomp_filter(tsk);
212 free_task_struct(tsk);
214 EXPORT_SYMBOL(free_task);
216 static inline void free_signal_struct(struct signal_struct *sig)
218 taskstats_tgid_free(sig);
219 sched_autogroup_exit(sig);
220 kmem_cache_free(signal_cachep, sig);
223 static inline void put_signal_struct(struct signal_struct *sig)
225 if (atomic_dec_and_test(&sig->sigcnt))
226 free_signal_struct(sig);
229 void __put_task_struct(struct task_struct *tsk)
231 WARN_ON(!tsk->exit_state);
232 WARN_ON(atomic_read(&tsk->usage));
233 WARN_ON(tsk == current);
235 security_task_free(tsk);
236 exit_creds(tsk);
237 delayacct_tsk_free(tsk);
238 put_signal_struct(tsk->signal);
240 if (!profile_handoff_task(tsk))
241 free_task(tsk);
243 EXPORT_SYMBOL_GPL(__put_task_struct);
245 void __init __weak arch_task_cache_init(void) { }
247 void __init fork_init(unsigned long mempages)
249 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
250 #ifndef ARCH_MIN_TASKALIGN
251 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
252 #endif
253 /* create a slab on which task_structs can be allocated */
254 task_struct_cachep =
255 kmem_cache_create("task_struct", sizeof(struct task_struct),
256 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
257 #endif
259 /* do the arch specific task caches init */
260 arch_task_cache_init();
263 * The default maximum number of threads is set to a safe
264 * value: the thread structures can take up at most half
265 * of memory.
267 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
270 * we need to allow at least 20 threads to boot a system
272 if (max_threads < 20)
273 max_threads = 20;
275 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
276 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
277 init_task.signal->rlim[RLIMIT_SIGPENDING] =
278 init_task.signal->rlim[RLIMIT_NPROC];
281 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
282 struct task_struct *src)
284 *dst = *src;
285 return 0;
288 static struct task_struct *dup_task_struct(struct task_struct *orig)
290 struct task_struct *tsk;
291 struct thread_info *ti;
292 unsigned long *stackend;
293 int node = tsk_fork_get_node(orig);
294 int err;
296 tsk = alloc_task_struct_node(node);
297 if (!tsk)
298 return NULL;
300 ti = alloc_thread_info_node(tsk, node);
301 if (!ti) {
302 free_task_struct(tsk);
303 return NULL;
306 err = arch_dup_task_struct(tsk, orig);
307 if (err)
308 goto out;
310 tsk->stack = ti;
312 setup_thread_stack(tsk, orig);
313 clear_user_return_notifier(tsk);
314 clear_tsk_need_resched(tsk);
315 stackend = end_of_stack(tsk);
316 *stackend = STACK_END_MAGIC; /* for overflow detection */
318 #ifdef CONFIG_CC_STACKPROTECTOR
319 tsk->stack_canary = get_random_int();
320 #endif
323 * One for us, one for whoever does the "release_task()" (usually
324 * parent)
326 atomic_set(&tsk->usage, 2);
327 #ifdef CONFIG_BLK_DEV_IO_TRACE
328 tsk->btrace_seq = 0;
329 #endif
330 tsk->splice_pipe = NULL;
332 account_kernel_stack(ti, 1);
334 return tsk;
336 out:
337 free_thread_info(ti);
338 free_task_struct(tsk);
339 return NULL;
342 #ifdef CONFIG_MMU
343 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
345 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
346 struct rb_node **rb_link, *rb_parent;
347 int retval;
348 unsigned long charge;
349 struct mempolicy *pol;
351 down_write(&oldmm->mmap_sem);
352 flush_cache_dup_mm(oldmm);
354 * Not linked in yet - no deadlock potential:
356 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
358 mm->locked_vm = 0;
359 mm->mmap = NULL;
360 mm->mmap_cache = NULL;
361 mm->free_area_cache = oldmm->mmap_base;
362 mm->cached_hole_size = ~0UL;
363 mm->map_count = 0;
364 cpumask_clear(mm_cpumask(mm));
365 mm->mm_rb = RB_ROOT;
366 rb_link = &mm->mm_rb.rb_node;
367 rb_parent = NULL;
368 pprev = &mm->mmap;
369 retval = ksm_fork(mm, oldmm);
370 if (retval)
371 goto out;
372 retval = khugepaged_fork(mm, oldmm);
373 if (retval)
374 goto out;
376 prev = NULL;
377 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
378 struct file *file;
380 if (mpnt->vm_flags & VM_DONTCOPY) {
381 long pages = vma_pages(mpnt);
382 mm->total_vm -= pages;
383 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
384 -pages);
385 continue;
387 charge = 0;
388 if (mpnt->vm_flags & VM_ACCOUNT) {
389 unsigned long len;
390 len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
391 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
392 goto fail_nomem;
393 charge = len;
395 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
396 if (!tmp)
397 goto fail_nomem;
398 *tmp = *mpnt;
399 INIT_LIST_HEAD(&tmp->anon_vma_chain);
400 pol = mpol_dup(vma_policy(mpnt));
401 retval = PTR_ERR(pol);
402 if (IS_ERR(pol))
403 goto fail_nomem_policy;
404 vma_set_policy(tmp, pol);
405 tmp->vm_mm = mm;
406 if (anon_vma_fork(tmp, mpnt))
407 goto fail_nomem_anon_vma_fork;
408 tmp->vm_flags &= ~VM_LOCKED;
409 tmp->vm_next = tmp->vm_prev = NULL;
410 file = tmp->vm_file;
411 if (file) {
412 struct inode *inode = file->f_path.dentry->d_inode;
413 struct address_space *mapping = file->f_mapping;
415 get_file(file);
416 if (tmp->vm_flags & VM_DENYWRITE)
417 atomic_dec(&inode->i_writecount);
418 mutex_lock(&mapping->i_mmap_mutex);
419 if (tmp->vm_flags & VM_SHARED)
420 mapping->i_mmap_writable++;
421 flush_dcache_mmap_lock(mapping);
422 /* insert tmp into the share list, just after mpnt */
423 vma_prio_tree_add(tmp, mpnt);
424 flush_dcache_mmap_unlock(mapping);
425 mutex_unlock(&mapping->i_mmap_mutex);
429 * Clear hugetlb-related page reserves for children. This only
430 * affects MAP_PRIVATE mappings. Faults generated by the child
431 * are not guaranteed to succeed, even if read-only
433 if (is_vm_hugetlb_page(tmp))
434 reset_vma_resv_huge_pages(tmp);
437 * Link in the new vma and copy the page table entries.
439 *pprev = tmp;
440 pprev = &tmp->vm_next;
441 tmp->vm_prev = prev;
442 prev = tmp;
444 __vma_link_rb(mm, tmp, rb_link, rb_parent);
445 rb_link = &tmp->vm_rb.rb_right;
446 rb_parent = &tmp->vm_rb;
448 mm->map_count++;
449 retval = copy_page_range(mm, oldmm, mpnt);
451 if (tmp->vm_ops && tmp->vm_ops->open)
452 tmp->vm_ops->open(tmp);
454 if (retval)
455 goto out;
457 if (file && uprobe_mmap(tmp))
458 goto out;
460 /* a new mm has just been created */
461 arch_dup_mmap(oldmm, mm);
462 retval = 0;
463 out:
464 up_write(&mm->mmap_sem);
465 flush_tlb_mm(oldmm);
466 up_write(&oldmm->mmap_sem);
467 return retval;
468 fail_nomem_anon_vma_fork:
469 mpol_put(pol);
470 fail_nomem_policy:
471 kmem_cache_free(vm_area_cachep, tmp);
472 fail_nomem:
473 retval = -ENOMEM;
474 vm_unacct_memory(charge);
475 goto out;
478 static inline int mm_alloc_pgd(struct mm_struct *mm)
480 mm->pgd = pgd_alloc(mm);
481 if (unlikely(!mm->pgd))
482 return -ENOMEM;
483 return 0;
486 static inline void mm_free_pgd(struct mm_struct *mm)
488 pgd_free(mm, mm->pgd);
490 #else
491 #define dup_mmap(mm, oldmm) (0)
492 #define mm_alloc_pgd(mm) (0)
493 #define mm_free_pgd(mm)
494 #endif /* CONFIG_MMU */
496 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
498 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
499 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
501 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
503 static int __init coredump_filter_setup(char *s)
505 default_dump_filter =
506 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
507 MMF_DUMP_FILTER_MASK;
508 return 1;
511 __setup("coredump_filter=", coredump_filter_setup);
513 #include <linux/init_task.h>
515 static void mm_init_aio(struct mm_struct *mm)
517 #ifdef CONFIG_AIO
518 spin_lock_init(&mm->ioctx_lock);
519 INIT_HLIST_HEAD(&mm->ioctx_list);
520 #endif
523 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
525 atomic_set(&mm->mm_users, 1);
526 atomic_set(&mm->mm_count, 1);
527 init_rwsem(&mm->mmap_sem);
528 INIT_LIST_HEAD(&mm->mmlist);
529 mm->flags = (current->mm) ?
530 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
531 mm->core_state = NULL;
532 mm->nr_ptes = 0;
533 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
534 spin_lock_init(&mm->page_table_lock);
535 mm->free_area_cache = TASK_UNMAPPED_BASE;
536 mm->cached_hole_size = ~0UL;
537 mm_init_aio(mm);
538 mm_init_owner(mm, p);
540 if (likely(!mm_alloc_pgd(mm))) {
541 mm->def_flags = 0;
542 mmu_notifier_mm_init(mm);
543 return mm;
546 free_mm(mm);
547 return NULL;
550 static void check_mm(struct mm_struct *mm)
552 int i;
554 for (i = 0; i < NR_MM_COUNTERS; i++) {
555 long x = atomic_long_read(&mm->rss_stat.count[i]);
557 if (unlikely(x))
558 printk(KERN_ALERT "BUG: Bad rss-counter state "
559 "mm:%p idx:%d val:%ld\n", mm, i, x);
562 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
563 VM_BUG_ON(mm->pmd_huge_pte);
564 #endif
568 * Allocate and initialize an mm_struct.
570 struct mm_struct *mm_alloc(void)
572 struct mm_struct *mm;
574 mm = allocate_mm();
575 if (!mm)
576 return NULL;
578 memset(mm, 0, sizeof(*mm));
579 mm_init_cpumask(mm);
580 return mm_init(mm, current);
584 * Called when the last reference to the mm
585 * is dropped: either by a lazy thread or by
586 * mmput. Free the page directory and the mm.
588 void __mmdrop(struct mm_struct *mm)
590 BUG_ON(mm == &init_mm);
591 mm_free_pgd(mm);
592 destroy_context(mm);
593 mmu_notifier_mm_destroy(mm);
594 check_mm(mm);
595 free_mm(mm);
597 EXPORT_SYMBOL_GPL(__mmdrop);
600 * Decrement the use count and release all resources for an mm.
602 void mmput(struct mm_struct *mm)
604 might_sleep();
606 if (atomic_dec_and_test(&mm->mm_users)) {
607 uprobe_clear_state(mm);
608 exit_aio(mm);
609 ksm_exit(mm);
610 khugepaged_exit(mm); /* must run before exit_mmap */
611 exit_mmap(mm);
612 set_mm_exe_file(mm, NULL);
613 if (!list_empty(&mm->mmlist)) {
614 spin_lock(&mmlist_lock);
615 list_del(&mm->mmlist);
616 spin_unlock(&mmlist_lock);
618 if (mm->binfmt)
619 module_put(mm->binfmt->module);
620 mmdrop(mm);
623 EXPORT_SYMBOL_GPL(mmput);
626 * We added or removed a vma mapping the executable. The vmas are only mapped
627 * during exec and are not mapped with the mmap system call.
628 * Callers must hold down_write() on the mm's mmap_sem for these
630 void added_exe_file_vma(struct mm_struct *mm)
632 mm->num_exe_file_vmas++;
635 void removed_exe_file_vma(struct mm_struct *mm)
637 mm->num_exe_file_vmas--;
638 if ((mm->num_exe_file_vmas == 0) && mm->exe_file) {
639 fput(mm->exe_file);
640 mm->exe_file = NULL;
645 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
647 if (new_exe_file)
648 get_file(new_exe_file);
649 if (mm->exe_file)
650 fput(mm->exe_file);
651 mm->exe_file = new_exe_file;
652 mm->num_exe_file_vmas = 0;
655 struct file *get_mm_exe_file(struct mm_struct *mm)
657 struct file *exe_file;
659 /* We need mmap_sem to protect against races with removal of
660 * VM_EXECUTABLE vmas */
661 down_read(&mm->mmap_sem);
662 exe_file = mm->exe_file;
663 if (exe_file)
664 get_file(exe_file);
665 up_read(&mm->mmap_sem);
666 return exe_file;
669 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
671 /* It's safe to write the exe_file pointer without exe_file_lock because
672 * this is called during fork when the task is not yet in /proc */
673 newmm->exe_file = get_mm_exe_file(oldmm);
677 * get_task_mm - acquire a reference to the task's mm
679 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
680 * this kernel workthread has transiently adopted a user mm with use_mm,
681 * to do its AIO) is not set and if so returns a reference to it, after
682 * bumping up the use count. User must release the mm via mmput()
683 * after use. Typically used by /proc and ptrace.
685 struct mm_struct *get_task_mm(struct task_struct *task)
687 struct mm_struct *mm;
689 task_lock(task);
690 mm = task->mm;
691 if (mm) {
692 if (task->flags & PF_KTHREAD)
693 mm = NULL;
694 else
695 atomic_inc(&mm->mm_users);
697 task_unlock(task);
698 return mm;
700 EXPORT_SYMBOL_GPL(get_task_mm);
702 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
704 struct mm_struct *mm;
705 int err;
707 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
708 if (err)
709 return ERR_PTR(err);
711 mm = get_task_mm(task);
712 if (mm && mm != current->mm &&
713 !ptrace_may_access(task, mode)) {
714 mmput(mm);
715 mm = ERR_PTR(-EACCES);
717 mutex_unlock(&task->signal->cred_guard_mutex);
719 return mm;
722 static void complete_vfork_done(struct task_struct *tsk)
724 struct completion *vfork;
726 task_lock(tsk);
727 vfork = tsk->vfork_done;
728 if (likely(vfork)) {
729 tsk->vfork_done = NULL;
730 complete(vfork);
732 task_unlock(tsk);
735 static int wait_for_vfork_done(struct task_struct *child,
736 struct completion *vfork)
738 int killed;
740 freezer_do_not_count();
741 killed = wait_for_completion_killable(vfork);
742 freezer_count();
744 if (killed) {
745 task_lock(child);
746 child->vfork_done = NULL;
747 task_unlock(child);
750 put_task_struct(child);
751 return killed;
754 /* Please note the differences between mmput and mm_release.
755 * mmput is called whenever we stop holding onto a mm_struct,
756 * error success whatever.
758 * mm_release is called after a mm_struct has been removed
759 * from the current process.
761 * This difference is important for error handling, when we
762 * only half set up a mm_struct for a new process and need to restore
763 * the old one. Because we mmput the new mm_struct before
764 * restoring the old one. . .
765 * Eric Biederman 10 January 1998
767 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
769 /* Get rid of any futexes when releasing the mm */
770 #ifdef CONFIG_FUTEX
771 if (unlikely(tsk->robust_list)) {
772 exit_robust_list(tsk);
773 tsk->robust_list = NULL;
775 #ifdef CONFIG_COMPAT
776 if (unlikely(tsk->compat_robust_list)) {
777 compat_exit_robust_list(tsk);
778 tsk->compat_robust_list = NULL;
780 #endif
781 if (unlikely(!list_empty(&tsk->pi_state_list)))
782 exit_pi_state_list(tsk);
783 #endif
785 uprobe_free_utask(tsk);
787 /* Get rid of any cached register state */
788 deactivate_mm(tsk, mm);
790 if (tsk->vfork_done)
791 complete_vfork_done(tsk);
794 * If we're exiting normally, clear a user-space tid field if
795 * requested. We leave this alone when dying by signal, to leave
796 * the value intact in a core dump, and to save the unnecessary
797 * trouble, say, a killed vfork parent shouldn't touch this mm.
798 * Userland only wants this done for a sys_exit.
800 if (tsk->clear_child_tid) {
801 if (!(tsk->flags & PF_SIGNALED) &&
802 atomic_read(&mm->mm_users) > 1) {
804 * We don't check the error code - if userspace has
805 * not set up a proper pointer then tough luck.
807 put_user(0, tsk->clear_child_tid);
808 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
809 1, NULL, NULL, 0);
811 tsk->clear_child_tid = NULL;
816 * Allocate a new mm structure and copy contents from the
817 * mm structure of the passed in task structure.
819 struct mm_struct *dup_mm(struct task_struct *tsk)
821 struct mm_struct *mm, *oldmm = current->mm;
822 int err;
824 if (!oldmm)
825 return NULL;
827 mm = allocate_mm();
828 if (!mm)
829 goto fail_nomem;
831 memcpy(mm, oldmm, sizeof(*mm));
832 mm_init_cpumask(mm);
834 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
835 mm->pmd_huge_pte = NULL;
836 #endif
837 uprobe_reset_state(mm);
839 if (!mm_init(mm, tsk))
840 goto fail_nomem;
842 if (init_new_context(tsk, mm))
843 goto fail_nocontext;
845 dup_mm_exe_file(oldmm, mm);
847 err = dup_mmap(mm, oldmm);
848 if (err)
849 goto free_pt;
851 mm->hiwater_rss = get_mm_rss(mm);
852 mm->hiwater_vm = mm->total_vm;
854 if (mm->binfmt && !try_module_get(mm->binfmt->module))
855 goto free_pt;
857 return mm;
859 free_pt:
860 /* don't put binfmt in mmput, we haven't got module yet */
861 mm->binfmt = NULL;
862 mmput(mm);
864 fail_nomem:
865 return NULL;
867 fail_nocontext:
869 * If init_new_context() failed, we cannot use mmput() to free the mm
870 * because it calls destroy_context()
872 mm_free_pgd(mm);
873 free_mm(mm);
874 return NULL;
877 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
879 struct mm_struct *mm, *oldmm;
880 int retval;
882 tsk->min_flt = tsk->maj_flt = 0;
883 tsk->nvcsw = tsk->nivcsw = 0;
884 #ifdef CONFIG_DETECT_HUNG_TASK
885 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
886 #endif
888 tsk->mm = NULL;
889 tsk->active_mm = NULL;
892 * Are we cloning a kernel thread?
894 * We need to steal a active VM for that..
896 oldmm = current->mm;
897 if (!oldmm)
898 return 0;
900 if (clone_flags & CLONE_VM) {
901 atomic_inc(&oldmm->mm_users);
902 mm = oldmm;
903 goto good_mm;
906 retval = -ENOMEM;
907 mm = dup_mm(tsk);
908 if (!mm)
909 goto fail_nomem;
911 good_mm:
912 tsk->mm = mm;
913 tsk->active_mm = mm;
914 return 0;
916 fail_nomem:
917 return retval;
920 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
922 struct fs_struct *fs = current->fs;
923 if (clone_flags & CLONE_FS) {
924 /* tsk->fs is already what we want */
925 spin_lock(&fs->lock);
926 if (fs->in_exec) {
927 spin_unlock(&fs->lock);
928 return -EAGAIN;
930 fs->users++;
931 spin_unlock(&fs->lock);
932 return 0;
934 tsk->fs = copy_fs_struct(fs);
935 if (!tsk->fs)
936 return -ENOMEM;
937 return 0;
940 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
942 struct files_struct *oldf, *newf;
943 int error = 0;
946 * A background process may not have any files ...
948 oldf = current->files;
949 if (!oldf)
950 goto out;
952 if (clone_flags & CLONE_FILES) {
953 atomic_inc(&oldf->count);
954 goto out;
957 newf = dup_fd(oldf, &error);
958 if (!newf)
959 goto out;
961 tsk->files = newf;
962 error = 0;
963 out:
964 return error;
967 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
969 #ifdef CONFIG_BLOCK
970 struct io_context *ioc = current->io_context;
971 struct io_context *new_ioc;
973 if (!ioc)
974 return 0;
976 * Share io context with parent, if CLONE_IO is set
978 if (clone_flags & CLONE_IO) {
979 tsk->io_context = ioc_task_link(ioc);
980 if (unlikely(!tsk->io_context))
981 return -ENOMEM;
982 } else if (ioprio_valid(ioc->ioprio)) {
983 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
984 if (unlikely(!new_ioc))
985 return -ENOMEM;
987 new_ioc->ioprio = ioc->ioprio;
988 put_io_context(new_ioc);
990 #endif
991 return 0;
994 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
996 struct sighand_struct *sig;
998 if (clone_flags & CLONE_SIGHAND) {
999 atomic_inc(&current->sighand->count);
1000 return 0;
1002 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1003 rcu_assign_pointer(tsk->sighand, sig);
1004 if (!sig)
1005 return -ENOMEM;
1006 atomic_set(&sig->count, 1);
1007 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1008 return 0;
1011 void __cleanup_sighand(struct sighand_struct *sighand)
1013 if (atomic_dec_and_test(&sighand->count)) {
1014 signalfd_cleanup(sighand);
1015 kmem_cache_free(sighand_cachep, sighand);
1021 * Initialize POSIX timer handling for a thread group.
1023 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1025 unsigned long cpu_limit;
1027 /* Thread group counters. */
1028 thread_group_cputime_init(sig);
1030 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1031 if (cpu_limit != RLIM_INFINITY) {
1032 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1033 sig->cputimer.running = 1;
1036 /* The timer lists. */
1037 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1038 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1039 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1042 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1044 struct signal_struct *sig;
1046 if (clone_flags & CLONE_THREAD)
1047 return 0;
1049 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1050 tsk->signal = sig;
1051 if (!sig)
1052 return -ENOMEM;
1054 sig->nr_threads = 1;
1055 atomic_set(&sig->live, 1);
1056 atomic_set(&sig->sigcnt, 1);
1057 init_waitqueue_head(&sig->wait_chldexit);
1058 if (clone_flags & CLONE_NEWPID)
1059 sig->flags |= SIGNAL_UNKILLABLE;
1060 sig->curr_target = tsk;
1061 init_sigpending(&sig->shared_pending);
1062 INIT_LIST_HEAD(&sig->posix_timers);
1064 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1065 sig->real_timer.function = it_real_fn;
1067 task_lock(current->group_leader);
1068 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1069 task_unlock(current->group_leader);
1071 posix_cpu_timers_init_group(sig);
1073 tty_audit_fork(sig);
1074 sched_autogroup_fork(sig);
1076 #ifdef CONFIG_CGROUPS
1077 init_rwsem(&sig->group_rwsem);
1078 #endif
1080 sig->oom_adj = current->signal->oom_adj;
1081 sig->oom_score_adj = current->signal->oom_score_adj;
1082 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1084 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1085 current->signal->is_child_subreaper;
1087 mutex_init(&sig->cred_guard_mutex);
1089 return 0;
1092 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1094 unsigned long new_flags = p->flags;
1096 new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1097 new_flags |= PF_FORKNOEXEC;
1098 p->flags = new_flags;
1101 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1103 current->clear_child_tid = tidptr;
1105 return task_pid_vnr(current);
1108 static void rt_mutex_init_task(struct task_struct *p)
1110 raw_spin_lock_init(&p->pi_lock);
1111 #ifdef CONFIG_RT_MUTEXES
1112 plist_head_init(&p->pi_waiters);
1113 p->pi_blocked_on = NULL;
1114 #endif
1117 #ifdef CONFIG_MM_OWNER
1118 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1120 mm->owner = p;
1122 #endif /* CONFIG_MM_OWNER */
1125 * Initialize POSIX timer handling for a single task.
1127 static void posix_cpu_timers_init(struct task_struct *tsk)
1129 tsk->cputime_expires.prof_exp = 0;
1130 tsk->cputime_expires.virt_exp = 0;
1131 tsk->cputime_expires.sched_exp = 0;
1132 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1133 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1134 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1138 * This creates a new process as a copy of the old one,
1139 * but does not actually start it yet.
1141 * It copies the registers, and all the appropriate
1142 * parts of the process environment (as per the clone
1143 * flags). The actual kick-off is left to the caller.
1145 static struct task_struct *copy_process(unsigned long clone_flags,
1146 unsigned long stack_start,
1147 struct pt_regs *regs,
1148 unsigned long stack_size,
1149 int __user *child_tidptr,
1150 struct pid *pid,
1151 int trace)
1153 int retval;
1154 struct task_struct *p;
1155 int cgroup_callbacks_done = 0;
1157 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1158 return ERR_PTR(-EINVAL);
1161 * Thread groups must share signals as well, and detached threads
1162 * can only be started up within the thread group.
1164 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1165 return ERR_PTR(-EINVAL);
1168 * Shared signal handlers imply shared VM. By way of the above,
1169 * thread groups also imply shared VM. Blocking this case allows
1170 * for various simplifications in other code.
1172 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1173 return ERR_PTR(-EINVAL);
1176 * Siblings of global init remain as zombies on exit since they are
1177 * not reaped by their parent (swapper). To solve this and to avoid
1178 * multi-rooted process trees, prevent global and container-inits
1179 * from creating siblings.
1181 if ((clone_flags & CLONE_PARENT) &&
1182 current->signal->flags & SIGNAL_UNKILLABLE)
1183 return ERR_PTR(-EINVAL);
1185 retval = security_task_create(clone_flags);
1186 if (retval)
1187 goto fork_out;
1189 retval = -ENOMEM;
1190 p = dup_task_struct(current);
1191 if (!p)
1192 goto fork_out;
1194 ftrace_graph_init_task(p);
1195 get_seccomp_filter(p);
1197 rt_mutex_init_task(p);
1199 #ifdef CONFIG_PROVE_LOCKING
1200 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1201 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1202 #endif
1203 retval = -EAGAIN;
1204 if (atomic_read(&p->real_cred->user->processes) >=
1205 task_rlimit(p, RLIMIT_NPROC)) {
1206 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1207 p->real_cred->user != INIT_USER)
1208 goto bad_fork_free;
1210 current->flags &= ~PF_NPROC_EXCEEDED;
1212 retval = copy_creds(p, clone_flags);
1213 if (retval < 0)
1214 goto bad_fork_free;
1217 * If multiple threads are within copy_process(), then this check
1218 * triggers too late. This doesn't hurt, the check is only there
1219 * to stop root fork bombs.
1221 retval = -EAGAIN;
1222 if (nr_threads >= max_threads)
1223 goto bad_fork_cleanup_count;
1225 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1226 goto bad_fork_cleanup_count;
1228 p->did_exec = 0;
1229 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1230 copy_flags(clone_flags, p);
1231 INIT_LIST_HEAD(&p->children);
1232 INIT_LIST_HEAD(&p->sibling);
1233 rcu_copy_process(p);
1234 p->vfork_done = NULL;
1235 spin_lock_init(&p->alloc_lock);
1237 init_sigpending(&p->pending);
1239 p->utime = p->stime = p->gtime = 0;
1240 p->utimescaled = p->stimescaled = 0;
1241 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1242 p->prev_utime = p->prev_stime = 0;
1243 #endif
1244 #if defined(SPLIT_RSS_COUNTING)
1245 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1246 #endif
1248 p->default_timer_slack_ns = current->timer_slack_ns;
1250 task_io_accounting_init(&p->ioac);
1251 acct_clear_integrals(p);
1253 posix_cpu_timers_init(p);
1255 do_posix_clock_monotonic_gettime(&p->start_time);
1256 p->real_start_time = p->start_time;
1257 monotonic_to_bootbased(&p->real_start_time);
1258 p->io_context = NULL;
1259 p->audit_context = NULL;
1260 if (clone_flags & CLONE_THREAD)
1261 threadgroup_change_begin(current);
1262 cgroup_fork(p);
1263 #ifdef CONFIG_NUMA
1264 p->mempolicy = mpol_dup(p->mempolicy);
1265 if (IS_ERR(p->mempolicy)) {
1266 retval = PTR_ERR(p->mempolicy);
1267 p->mempolicy = NULL;
1268 goto bad_fork_cleanup_cgroup;
1270 mpol_fix_fork_child_flag(p);
1271 #endif
1272 #ifdef CONFIG_CPUSETS
1273 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1274 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1275 seqcount_init(&p->mems_allowed_seq);
1276 #endif
1277 #ifdef CONFIG_TRACE_IRQFLAGS
1278 p->irq_events = 0;
1279 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1280 p->hardirqs_enabled = 1;
1281 #else
1282 p->hardirqs_enabled = 0;
1283 #endif
1284 p->hardirq_enable_ip = 0;
1285 p->hardirq_enable_event = 0;
1286 p->hardirq_disable_ip = _THIS_IP_;
1287 p->hardirq_disable_event = 0;
1288 p->softirqs_enabled = 1;
1289 p->softirq_enable_ip = _THIS_IP_;
1290 p->softirq_enable_event = 0;
1291 p->softirq_disable_ip = 0;
1292 p->softirq_disable_event = 0;
1293 p->hardirq_context = 0;
1294 p->softirq_context = 0;
1295 #endif
1296 #ifdef CONFIG_LOCKDEP
1297 p->lockdep_depth = 0; /* no locks held yet */
1298 p->curr_chain_key = 0;
1299 p->lockdep_recursion = 0;
1300 #endif
1302 #ifdef CONFIG_DEBUG_MUTEXES
1303 p->blocked_on = NULL; /* not blocked yet */
1304 #endif
1305 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1306 p->memcg_batch.do_batch = 0;
1307 p->memcg_batch.memcg = NULL;
1308 #endif
1310 /* Perform scheduler related setup. Assign this task to a CPU. */
1311 sched_fork(p);
1313 retval = perf_event_init_task(p);
1314 if (retval)
1315 goto bad_fork_cleanup_policy;
1316 retval = audit_alloc(p);
1317 if (retval)
1318 goto bad_fork_cleanup_policy;
1319 /* copy all the process information */
1320 retval = copy_semundo(clone_flags, p);
1321 if (retval)
1322 goto bad_fork_cleanup_audit;
1323 retval = copy_files(clone_flags, p);
1324 if (retval)
1325 goto bad_fork_cleanup_semundo;
1326 retval = copy_fs(clone_flags, p);
1327 if (retval)
1328 goto bad_fork_cleanup_files;
1329 retval = copy_sighand(clone_flags, p);
1330 if (retval)
1331 goto bad_fork_cleanup_fs;
1332 retval = copy_signal(clone_flags, p);
1333 if (retval)
1334 goto bad_fork_cleanup_sighand;
1335 retval = copy_mm(clone_flags, p);
1336 if (retval)
1337 goto bad_fork_cleanup_signal;
1338 retval = copy_namespaces(clone_flags, p);
1339 if (retval)
1340 goto bad_fork_cleanup_mm;
1341 retval = copy_io(clone_flags, p);
1342 if (retval)
1343 goto bad_fork_cleanup_namespaces;
1344 retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1345 if (retval)
1346 goto bad_fork_cleanup_io;
1348 if (pid != &init_struct_pid) {
1349 retval = -ENOMEM;
1350 pid = alloc_pid(p->nsproxy->pid_ns);
1351 if (!pid)
1352 goto bad_fork_cleanup_io;
1355 p->pid = pid_nr(pid);
1356 p->tgid = p->pid;
1357 if (clone_flags & CLONE_THREAD)
1358 p->tgid = current->tgid;
1360 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1362 * Clear TID on mm_release()?
1364 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1365 #ifdef CONFIG_BLOCK
1366 p->plug = NULL;
1367 #endif
1368 #ifdef CONFIG_FUTEX
1369 p->robust_list = NULL;
1370 #ifdef CONFIG_COMPAT
1371 p->compat_robust_list = NULL;
1372 #endif
1373 INIT_LIST_HEAD(&p->pi_state_list);
1374 p->pi_state_cache = NULL;
1375 #endif
1376 uprobe_copy_process(p);
1378 * sigaltstack should be cleared when sharing the same VM
1380 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1381 p->sas_ss_sp = p->sas_ss_size = 0;
1384 * Syscall tracing and stepping should be turned off in the
1385 * child regardless of CLONE_PTRACE.
1387 user_disable_single_step(p);
1388 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1389 #ifdef TIF_SYSCALL_EMU
1390 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1391 #endif
1392 clear_all_latency_tracing(p);
1394 /* ok, now we should be set up.. */
1395 if (clone_flags & CLONE_THREAD)
1396 p->exit_signal = -1;
1397 else if (clone_flags & CLONE_PARENT)
1398 p->exit_signal = current->group_leader->exit_signal;
1399 else
1400 p->exit_signal = (clone_flags & CSIGNAL);
1402 p->pdeath_signal = 0;
1403 p->exit_state = 0;
1405 p->nr_dirtied = 0;
1406 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1407 p->dirty_paused_when = 0;
1410 * Ok, make it visible to the rest of the system.
1411 * We dont wake it up yet.
1413 p->group_leader = p;
1414 INIT_LIST_HEAD(&p->thread_group);
1416 /* Now that the task is set up, run cgroup callbacks if
1417 * necessary. We need to run them before the task is visible
1418 * on the tasklist. */
1419 cgroup_fork_callbacks(p);
1420 cgroup_callbacks_done = 1;
1422 /* Need tasklist lock for parent etc handling! */
1423 write_lock_irq(&tasklist_lock);
1425 /* CLONE_PARENT re-uses the old parent */
1426 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1427 p->real_parent = current->real_parent;
1428 p->parent_exec_id = current->parent_exec_id;
1429 } else {
1430 p->real_parent = current;
1431 p->parent_exec_id = current->self_exec_id;
1434 spin_lock(&current->sighand->siglock);
1437 * Process group and session signals need to be delivered to just the
1438 * parent before the fork or both the parent and the child after the
1439 * fork. Restart if a signal comes in before we add the new process to
1440 * it's process group.
1441 * A fatal signal pending means that current will exit, so the new
1442 * thread can't slip out of an OOM kill (or normal SIGKILL).
1444 recalc_sigpending();
1445 if (signal_pending(current)) {
1446 spin_unlock(&current->sighand->siglock);
1447 write_unlock_irq(&tasklist_lock);
1448 retval = -ERESTARTNOINTR;
1449 goto bad_fork_free_pid;
1452 if (clone_flags & CLONE_THREAD) {
1453 current->signal->nr_threads++;
1454 atomic_inc(&current->signal->live);
1455 atomic_inc(&current->signal->sigcnt);
1456 p->group_leader = current->group_leader;
1457 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1460 if (likely(p->pid)) {
1461 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1463 if (thread_group_leader(p)) {
1464 if (is_child_reaper(pid))
1465 p->nsproxy->pid_ns->child_reaper = p;
1467 p->signal->leader_pid = pid;
1468 p->signal->tty = tty_kref_get(current->signal->tty);
1469 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1470 attach_pid(p, PIDTYPE_SID, task_session(current));
1471 list_add_tail(&p->sibling, &p->real_parent->children);
1472 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1473 __this_cpu_inc(process_counts);
1475 attach_pid(p, PIDTYPE_PID, pid);
1476 nr_threads++;
1479 total_forks++;
1480 spin_unlock(&current->sighand->siglock);
1481 write_unlock_irq(&tasklist_lock);
1482 proc_fork_connector(p);
1483 cgroup_post_fork(p);
1484 if (clone_flags & CLONE_THREAD)
1485 threadgroup_change_end(current);
1486 perf_event_fork(p);
1488 trace_task_newtask(p, clone_flags);
1490 return p;
1492 bad_fork_free_pid:
1493 if (pid != &init_struct_pid)
1494 free_pid(pid);
1495 bad_fork_cleanup_io:
1496 if (p->io_context)
1497 exit_io_context(p);
1498 bad_fork_cleanup_namespaces:
1499 if (unlikely(clone_flags & CLONE_NEWPID))
1500 pid_ns_release_proc(p->nsproxy->pid_ns);
1501 exit_task_namespaces(p);
1502 bad_fork_cleanup_mm:
1503 if (p->mm)
1504 mmput(p->mm);
1505 bad_fork_cleanup_signal:
1506 if (!(clone_flags & CLONE_THREAD))
1507 free_signal_struct(p->signal);
1508 bad_fork_cleanup_sighand:
1509 __cleanup_sighand(p->sighand);
1510 bad_fork_cleanup_fs:
1511 exit_fs(p); /* blocking */
1512 bad_fork_cleanup_files:
1513 exit_files(p); /* blocking */
1514 bad_fork_cleanup_semundo:
1515 exit_sem(p);
1516 bad_fork_cleanup_audit:
1517 audit_free(p);
1518 bad_fork_cleanup_policy:
1519 perf_event_free_task(p);
1520 #ifdef CONFIG_NUMA
1521 mpol_put(p->mempolicy);
1522 bad_fork_cleanup_cgroup:
1523 #endif
1524 if (clone_flags & CLONE_THREAD)
1525 threadgroup_change_end(current);
1526 cgroup_exit(p, cgroup_callbacks_done);
1527 delayacct_tsk_free(p);
1528 module_put(task_thread_info(p)->exec_domain->module);
1529 bad_fork_cleanup_count:
1530 atomic_dec(&p->cred->user->processes);
1531 exit_creds(p);
1532 bad_fork_free:
1533 free_task(p);
1534 fork_out:
1535 return ERR_PTR(retval);
1538 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1540 memset(regs, 0, sizeof(struct pt_regs));
1541 return regs;
1544 static inline void init_idle_pids(struct pid_link *links)
1546 enum pid_type type;
1548 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1549 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1550 links[type].pid = &init_struct_pid;
1554 struct task_struct * __cpuinit fork_idle(int cpu)
1556 struct task_struct *task;
1557 struct pt_regs regs;
1559 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1560 &init_struct_pid, 0);
1561 if (!IS_ERR(task)) {
1562 init_idle_pids(task->pids);
1563 init_idle(task, cpu);
1566 return task;
1570 * Ok, this is the main fork-routine.
1572 * It copies the process, and if successful kick-starts
1573 * it and waits for it to finish using the VM if required.
1575 long do_fork(unsigned long clone_flags,
1576 unsigned long stack_start,
1577 struct pt_regs *regs,
1578 unsigned long stack_size,
1579 int __user *parent_tidptr,
1580 int __user *child_tidptr)
1582 struct task_struct *p;
1583 int trace = 0;
1584 long nr;
1587 * Do some preliminary argument and permissions checking before we
1588 * actually start allocating stuff
1590 if (clone_flags & CLONE_NEWUSER) {
1591 if (clone_flags & CLONE_THREAD)
1592 return -EINVAL;
1593 /* hopefully this check will go away when userns support is
1594 * complete
1596 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1597 !capable(CAP_SETGID))
1598 return -EPERM;
1602 * Determine whether and which event to report to ptracer. When
1603 * called from kernel_thread or CLONE_UNTRACED is explicitly
1604 * requested, no event is reported; otherwise, report if the event
1605 * for the type of forking is enabled.
1607 if (likely(user_mode(regs)) && !(clone_flags & CLONE_UNTRACED)) {
1608 if (clone_flags & CLONE_VFORK)
1609 trace = PTRACE_EVENT_VFORK;
1610 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1611 trace = PTRACE_EVENT_CLONE;
1612 else
1613 trace = PTRACE_EVENT_FORK;
1615 if (likely(!ptrace_event_enabled(current, trace)))
1616 trace = 0;
1619 p = copy_process(clone_flags, stack_start, regs, stack_size,
1620 child_tidptr, NULL, trace);
1622 * Do this prior waking up the new thread - the thread pointer
1623 * might get invalid after that point, if the thread exits quickly.
1625 if (!IS_ERR(p)) {
1626 struct completion vfork;
1628 trace_sched_process_fork(current, p);
1630 nr = task_pid_vnr(p);
1632 if (clone_flags & CLONE_PARENT_SETTID)
1633 put_user(nr, parent_tidptr);
1635 if (clone_flags & CLONE_VFORK) {
1636 p->vfork_done = &vfork;
1637 init_completion(&vfork);
1638 get_task_struct(p);
1641 wake_up_new_task(p);
1643 /* forking complete and child started to run, tell ptracer */
1644 if (unlikely(trace))
1645 ptrace_event(trace, nr);
1647 if (clone_flags & CLONE_VFORK) {
1648 if (!wait_for_vfork_done(p, &vfork))
1649 ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1651 } else {
1652 nr = PTR_ERR(p);
1654 return nr;
1657 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1658 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1659 #endif
1661 static void sighand_ctor(void *data)
1663 struct sighand_struct *sighand = data;
1665 spin_lock_init(&sighand->siglock);
1666 init_waitqueue_head(&sighand->signalfd_wqh);
1669 void __init proc_caches_init(void)
1671 sighand_cachep = kmem_cache_create("sighand_cache",
1672 sizeof(struct sighand_struct), 0,
1673 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1674 SLAB_NOTRACK, sighand_ctor);
1675 signal_cachep = kmem_cache_create("signal_cache",
1676 sizeof(struct signal_struct), 0,
1677 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1678 files_cachep = kmem_cache_create("files_cache",
1679 sizeof(struct files_struct), 0,
1680 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1681 fs_cachep = kmem_cache_create("fs_cache",
1682 sizeof(struct fs_struct), 0,
1683 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1685 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1686 * whole struct cpumask for the OFFSTACK case. We could change
1687 * this to *only* allocate as much of it as required by the
1688 * maximum number of CPU's we can ever have. The cpumask_allocation
1689 * is at the end of the structure, exactly for that reason.
1691 mm_cachep = kmem_cache_create("mm_struct",
1692 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1693 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1694 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1695 mmap_init();
1696 nsproxy_cache_init();
1700 * Check constraints on flags passed to the unshare system call.
1702 static int check_unshare_flags(unsigned long unshare_flags)
1704 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1705 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1706 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1707 return -EINVAL;
1709 * Not implemented, but pretend it works if there is nothing to
1710 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1711 * needs to unshare vm.
1713 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1714 /* FIXME: get_task_mm() increments ->mm_users */
1715 if (atomic_read(&current->mm->mm_users) > 1)
1716 return -EINVAL;
1719 return 0;
1723 * Unshare the filesystem structure if it is being shared
1725 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1727 struct fs_struct *fs = current->fs;
1729 if (!(unshare_flags & CLONE_FS) || !fs)
1730 return 0;
1732 /* don't need lock here; in the worst case we'll do useless copy */
1733 if (fs->users == 1)
1734 return 0;
1736 *new_fsp = copy_fs_struct(fs);
1737 if (!*new_fsp)
1738 return -ENOMEM;
1740 return 0;
1744 * Unshare file descriptor table if it is being shared
1746 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1748 struct files_struct *fd = current->files;
1749 int error = 0;
1751 if ((unshare_flags & CLONE_FILES) &&
1752 (fd && atomic_read(&fd->count) > 1)) {
1753 *new_fdp = dup_fd(fd, &error);
1754 if (!*new_fdp)
1755 return error;
1758 return 0;
1762 * unshare allows a process to 'unshare' part of the process
1763 * context which was originally shared using clone. copy_*
1764 * functions used by do_fork() cannot be used here directly
1765 * because they modify an inactive task_struct that is being
1766 * constructed. Here we are modifying the current, active,
1767 * task_struct.
1769 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1771 struct fs_struct *fs, *new_fs = NULL;
1772 struct files_struct *fd, *new_fd = NULL;
1773 struct nsproxy *new_nsproxy = NULL;
1774 int do_sysvsem = 0;
1775 int err;
1777 err = check_unshare_flags(unshare_flags);
1778 if (err)
1779 goto bad_unshare_out;
1782 * If unsharing namespace, must also unshare filesystem information.
1784 if (unshare_flags & CLONE_NEWNS)
1785 unshare_flags |= CLONE_FS;
1787 * CLONE_NEWIPC must also detach from the undolist: after switching
1788 * to a new ipc namespace, the semaphore arrays from the old
1789 * namespace are unreachable.
1791 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1792 do_sysvsem = 1;
1793 err = unshare_fs(unshare_flags, &new_fs);
1794 if (err)
1795 goto bad_unshare_out;
1796 err = unshare_fd(unshare_flags, &new_fd);
1797 if (err)
1798 goto bad_unshare_cleanup_fs;
1799 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_fs);
1800 if (err)
1801 goto bad_unshare_cleanup_fd;
1803 if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
1804 if (do_sysvsem) {
1806 * CLONE_SYSVSEM is equivalent to sys_exit().
1808 exit_sem(current);
1811 if (new_nsproxy) {
1812 switch_task_namespaces(current, new_nsproxy);
1813 new_nsproxy = NULL;
1816 task_lock(current);
1818 if (new_fs) {
1819 fs = current->fs;
1820 spin_lock(&fs->lock);
1821 current->fs = new_fs;
1822 if (--fs->users)
1823 new_fs = NULL;
1824 else
1825 new_fs = fs;
1826 spin_unlock(&fs->lock);
1829 if (new_fd) {
1830 fd = current->files;
1831 current->files = new_fd;
1832 new_fd = fd;
1835 task_unlock(current);
1838 if (new_nsproxy)
1839 put_nsproxy(new_nsproxy);
1841 bad_unshare_cleanup_fd:
1842 if (new_fd)
1843 put_files_struct(new_fd);
1845 bad_unshare_cleanup_fs:
1846 if (new_fs)
1847 free_fs_struct(new_fs);
1849 bad_unshare_out:
1850 return err;
1854 * Helper to unshare the files of the current task.
1855 * We don't want to expose copy_files internals to
1856 * the exec layer of the kernel.
1859 int unshare_files(struct files_struct **displaced)
1861 struct task_struct *task = current;
1862 struct files_struct *copy = NULL;
1863 int error;
1865 error = unshare_fd(CLONE_FILES, &copy);
1866 if (error || !copy) {
1867 *displaced = NULL;
1868 return error;
1870 *displaced = task->files;
1871 task_lock(task);
1872 task->files = copy;
1873 task_unlock(task);
1874 return 0;