x86: cleanup numa_64.c
[linux-2.6.git] / arch / x86 / mm / numa_64.c
blob4faed6a8f3aebe40984beeca756daf8e6f218a42
1 /*
2 * Generic VM initialization for x86-64 NUMA setups.
3 * Copyright 2002,2003 Andi Kleen, SuSE Labs.
4 */
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/string.h>
8 #include <linux/init.h>
9 #include <linux/bootmem.h>
10 #include <linux/mmzone.h>
11 #include <linux/ctype.h>
12 #include <linux/module.h>
13 #include <linux/nodemask.h>
15 #include <asm/e820.h>
16 #include <asm/proto.h>
17 #include <asm/dma.h>
18 #include <asm/numa.h>
19 #include <asm/acpi.h>
20 #include <asm/k8.h>
22 #ifndef Dprintk
23 #define Dprintk(x...)
24 #endif
26 struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
27 EXPORT_SYMBOL(node_data);
29 bootmem_data_t plat_node_bdata[MAX_NUMNODES];
31 struct memnode memnode;
33 unsigned char cpu_to_node[NR_CPUS] __read_mostly = {
34 [0 ... NR_CPUS-1] = NUMA_NO_NODE
36 EXPORT_SYMBOL(cpu_to_node);
38 unsigned char apicid_to_node[MAX_LOCAL_APIC] __cpuinitdata = {
39 [0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE
42 cpumask_t node_to_cpumask[MAX_NUMNODES] __read_mostly;
43 EXPORT_SYMBOL(node_to_cpumask);
45 int numa_off __initdata;
46 unsigned long __initdata nodemap_addr;
47 unsigned long __initdata nodemap_size;
50 * Given a shift value, try to populate memnodemap[]
51 * Returns :
52 * 1 if OK
53 * 0 if memnodmap[] too small (of shift too small)
54 * -1 if node overlap or lost ram (shift too big)
56 static int __init populate_memnodemap(const struct bootnode *nodes,
57 int numnodes, int shift)
59 unsigned long addr, end;
60 int i, res = -1;
62 memset(memnodemap, 0xff, memnodemapsize);
63 for (i = 0; i < numnodes; i++) {
64 addr = nodes[i].start;
65 end = nodes[i].end;
66 if (addr >= end)
67 continue;
68 if ((end >> shift) >= memnodemapsize)
69 return 0;
70 do {
71 if (memnodemap[addr >> shift] != 0xff)
72 return -1;
73 memnodemap[addr >> shift] = i;
74 addr += (1UL << shift);
75 } while (addr < end);
76 res = 1;
78 return res;
81 static int __init allocate_cachealigned_memnodemap(void)
83 unsigned long pad, pad_addr;
85 memnodemap = memnode.embedded_map;
86 if (memnodemapsize <= 48)
87 return 0;
89 pad = L1_CACHE_BYTES - 1;
90 pad_addr = 0x8000;
91 nodemap_size = pad + memnodemapsize;
92 nodemap_addr = find_e820_area(pad_addr, end_pfn<<PAGE_SHIFT,
93 nodemap_size);
94 if (nodemap_addr == -1UL) {
95 printk(KERN_ERR
96 "NUMA: Unable to allocate Memory to Node hash map\n");
97 nodemap_addr = nodemap_size = 0;
98 return -1;
100 pad_addr = (nodemap_addr + pad) & ~pad;
101 memnodemap = phys_to_virt(pad_addr);
103 printk(KERN_DEBUG "NUMA: Allocated memnodemap from %lx - %lx\n",
104 nodemap_addr, nodemap_addr + nodemap_size);
105 return 0;
109 * The LSB of all start and end addresses in the node map is the value of the
110 * maximum possible shift.
112 static int __init extract_lsb_from_nodes(const struct bootnode *nodes,
113 int numnodes)
115 int i, nodes_used = 0;
116 unsigned long start, end;
117 unsigned long bitfield = 0, memtop = 0;
119 for (i = 0; i < numnodes; i++) {
120 start = nodes[i].start;
121 end = nodes[i].end;
122 if (start >= end)
123 continue;
124 bitfield |= start;
125 nodes_used++;
126 if (end > memtop)
127 memtop = end;
129 if (nodes_used <= 1)
130 i = 63;
131 else
132 i = find_first_bit(&bitfield, sizeof(unsigned long)*8);
133 memnodemapsize = (memtop >> i)+1;
134 return i;
137 int __init compute_hash_shift(struct bootnode *nodes, int numnodes)
139 int shift;
141 shift = extract_lsb_from_nodes(nodes, numnodes);
142 if (allocate_cachealigned_memnodemap())
143 return -1;
144 printk(KERN_DEBUG "NUMA: Using %d for the hash shift.\n",
145 shift);
147 if (populate_memnodemap(nodes, numnodes, shift) != 1) {
148 printk(KERN_INFO "Your memory is not aligned you need to "
149 "rebuild your kernel with a bigger NODEMAPSIZE "
150 "shift=%d\n", shift);
151 return -1;
153 return shift;
156 #ifdef CONFIG_SPARSEMEM
157 int early_pfn_to_nid(unsigned long pfn)
159 return phys_to_nid(pfn << PAGE_SHIFT);
161 #endif
163 static void * __init early_node_mem(int nodeid, unsigned long start,
164 unsigned long end, unsigned long size)
166 unsigned long mem = find_e820_area(start, end, size);
167 void *ptr;
169 if (mem != -1L)
170 return __va(mem);
171 ptr = __alloc_bootmem_nopanic(size,
172 SMP_CACHE_BYTES, __pa(MAX_DMA_ADDRESS));
173 if (ptr == NULL) {
174 printk(KERN_ERR "Cannot find %lu bytes in node %d\n",
175 size, nodeid);
176 return NULL;
178 return ptr;
181 /* Initialize bootmem allocator for a node */
182 void __init setup_node_bootmem(int nodeid, unsigned long start,
183 unsigned long end)
185 unsigned long start_pfn, end_pfn, bootmap_pages, bootmap_size;
186 unsigned long bootmap_start, nodedata_phys;
187 void *bootmap;
188 const int pgdat_size = round_up(sizeof(pg_data_t), PAGE_SIZE);
190 start = round_up(start, ZONE_ALIGN);
192 printk(KERN_INFO "Bootmem setup node %d %016lx-%016lx\n", nodeid,
193 start, end);
195 start_pfn = start >> PAGE_SHIFT;
196 end_pfn = end >> PAGE_SHIFT;
198 node_data[nodeid] = early_node_mem(nodeid, start, end, pgdat_size);
199 if (node_data[nodeid] == NULL)
200 return;
201 nodedata_phys = __pa(node_data[nodeid]);
203 memset(NODE_DATA(nodeid), 0, sizeof(pg_data_t));
204 NODE_DATA(nodeid)->bdata = &plat_node_bdata[nodeid];
205 NODE_DATA(nodeid)->node_start_pfn = start_pfn;
206 NODE_DATA(nodeid)->node_spanned_pages = end_pfn - start_pfn;
208 /* Find a place for the bootmem map */
209 bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
210 bootmap_start = round_up(nodedata_phys + pgdat_size, PAGE_SIZE);
211 bootmap = early_node_mem(nodeid, bootmap_start, end,
212 bootmap_pages<<PAGE_SHIFT);
213 if (bootmap == NULL) {
214 if (nodedata_phys < start || nodedata_phys >= end)
215 free_bootmem((unsigned long)node_data[nodeid],
216 pgdat_size);
217 node_data[nodeid] = NULL;
218 return;
220 bootmap_start = __pa(bootmap);
221 Dprintk("bootmap start %lu pages %lu\n", bootmap_start, bootmap_pages);
223 bootmap_size = init_bootmem_node(NODE_DATA(nodeid),
224 bootmap_start >> PAGE_SHIFT,
225 start_pfn, end_pfn);
227 free_bootmem_with_active_regions(nodeid, end);
229 reserve_bootmem_node(NODE_DATA(nodeid), nodedata_phys, pgdat_size);
230 reserve_bootmem_node(NODE_DATA(nodeid), bootmap_start,
231 bootmap_pages<<PAGE_SHIFT);
232 #ifdef CONFIG_ACPI_NUMA
233 srat_reserve_add_area(nodeid);
234 #endif
235 node_set_online(nodeid);
238 /* Initialize final allocator for a zone */
239 void __init setup_node_zones(int nodeid)
241 unsigned long start_pfn, end_pfn, memmapsize, limit;
243 start_pfn = node_start_pfn(nodeid);
244 end_pfn = node_end_pfn(nodeid);
246 Dprintk(KERN_INFO "Setting up memmap for node %d %lx-%lx\n",
247 nodeid, start_pfn, end_pfn);
250 * Try to allocate mem_map at end to not fill up precious <4GB
251 * memory.
253 memmapsize = sizeof(struct page) * (end_pfn-start_pfn);
254 limit = end_pfn << PAGE_SHIFT;
255 #ifdef CONFIG_FLAT_NODE_MEM_MAP
256 NODE_DATA(nodeid)->node_mem_map =
257 __alloc_bootmem_core(NODE_DATA(nodeid)->bdata,
258 memmapsize, SMP_CACHE_BYTES,
259 round_down(limit - memmapsize, PAGE_SIZE),
260 limit);
261 #endif
265 * There are unfortunately some poorly designed mainboards around that
266 * only connect memory to a single CPU. This breaks the 1:1 cpu->node
267 * mapping. To avoid this fill in the mapping for all possible CPUs,
268 * as the number of CPUs is not known yet. We round robin the existing
269 * nodes.
271 void __init numa_init_array(void)
273 int rr, i;
275 rr = first_node(node_online_map);
276 for (i = 0; i < NR_CPUS; i++) {
277 if (cpu_to_node(i) != NUMA_NO_NODE)
278 continue;
279 numa_set_node(i, rr);
280 rr = next_node(rr, node_online_map);
281 if (rr == MAX_NUMNODES)
282 rr = first_node(node_online_map);
286 #ifdef CONFIG_NUMA_EMU
287 /* Numa emulation */
288 char *cmdline __initdata;
291 * Setups up nid to range from addr to addr + size. If the end
292 * boundary is greater than max_addr, then max_addr is used instead.
293 * The return value is 0 if there is additional memory left for
294 * allocation past addr and -1 otherwise. addr is adjusted to be at
295 * the end of the node.
297 static int __init setup_node_range(int nid, struct bootnode *nodes, u64 *addr,
298 u64 size, u64 max_addr)
300 int ret = 0;
302 nodes[nid].start = *addr;
303 *addr += size;
304 if (*addr >= max_addr) {
305 *addr = max_addr;
306 ret = -1;
308 nodes[nid].end = *addr;
309 node_set(nid, node_possible_map);
310 printk(KERN_INFO "Faking node %d at %016Lx-%016Lx (%LuMB)\n", nid,
311 nodes[nid].start, nodes[nid].end,
312 (nodes[nid].end - nodes[nid].start) >> 20);
313 return ret;
317 * Splits num_nodes nodes up equally starting at node_start. The return value
318 * is the number of nodes split up and addr is adjusted to be at the end of the
319 * last node allocated.
321 static int __init split_nodes_equally(struct bootnode *nodes, u64 *addr,
322 u64 max_addr, int node_start,
323 int num_nodes)
325 unsigned int big;
326 u64 size;
327 int i;
329 if (num_nodes <= 0)
330 return -1;
331 if (num_nodes > MAX_NUMNODES)
332 num_nodes = MAX_NUMNODES;
333 size = (max_addr - *addr - e820_hole_size(*addr, max_addr)) /
334 num_nodes;
336 * Calculate the number of big nodes that can be allocated as a result
337 * of consolidating the leftovers.
339 big = ((size & ~FAKE_NODE_MIN_HASH_MASK) * num_nodes) /
340 FAKE_NODE_MIN_SIZE;
342 /* Round down to nearest FAKE_NODE_MIN_SIZE. */
343 size &= FAKE_NODE_MIN_HASH_MASK;
344 if (!size) {
345 printk(KERN_ERR "Not enough memory for each node. "
346 "NUMA emulation disabled.\n");
347 return -1;
350 for (i = node_start; i < num_nodes + node_start; i++) {
351 u64 end = *addr + size;
353 if (i < big)
354 end += FAKE_NODE_MIN_SIZE;
356 * The final node can have the remaining system RAM. Other
357 * nodes receive roughly the same amount of available pages.
359 if (i == num_nodes + node_start - 1)
360 end = max_addr;
361 else
362 while (end - *addr - e820_hole_size(*addr, end) <
363 size) {
364 end += FAKE_NODE_MIN_SIZE;
365 if (end > max_addr) {
366 end = max_addr;
367 break;
370 if (setup_node_range(i, nodes, addr, end - *addr, max_addr) < 0)
371 break;
373 return i - node_start + 1;
377 * Splits the remaining system RAM into chunks of size. The remaining memory is
378 * always assigned to a final node and can be asymmetric. Returns the number of
379 * nodes split.
381 static int __init split_nodes_by_size(struct bootnode *nodes, u64 *addr,
382 u64 max_addr, int node_start, u64 size)
384 int i = node_start;
385 size = (size << 20) & FAKE_NODE_MIN_HASH_MASK;
386 while (!setup_node_range(i++, nodes, addr, size, max_addr))
388 return i - node_start;
392 * Sets up the system RAM area from start_pfn to end_pfn according to the
393 * numa=fake command-line option.
395 static int __init numa_emulation(unsigned long start_pfn, unsigned long end_pfn)
397 struct bootnode nodes[MAX_NUMNODES];
398 u64 size, addr = start_pfn << PAGE_SHIFT;
399 u64 max_addr = end_pfn << PAGE_SHIFT;
400 int num_nodes = 0, num = 0, coeff_flag, coeff = -1, i;
402 memset(&nodes, 0, sizeof(nodes));
404 * If the numa=fake command-line is just a single number N, split the
405 * system RAM into N fake nodes.
407 if (!strchr(cmdline, '*') && !strchr(cmdline, ',')) {
408 long n = simple_strtol(cmdline, NULL, 0);
410 num_nodes = split_nodes_equally(nodes, &addr, max_addr, 0, n);
411 if (num_nodes < 0)
412 return num_nodes;
413 goto out;
416 /* Parse the command line. */
417 for (coeff_flag = 0; ; cmdline++) {
418 if (*cmdline && isdigit(*cmdline)) {
419 num = num * 10 + *cmdline - '0';
420 continue;
422 if (*cmdline == '*') {
423 if (num > 0)
424 coeff = num;
425 coeff_flag = 1;
427 if (!*cmdline || *cmdline == ',') {
428 if (!coeff_flag)
429 coeff = 1;
431 * Round down to the nearest FAKE_NODE_MIN_SIZE.
432 * Command-line coefficients are in megabytes.
434 size = ((u64)num << 20) & FAKE_NODE_MIN_HASH_MASK;
435 if (size)
436 for (i = 0; i < coeff; i++, num_nodes++)
437 if (setup_node_range(num_nodes, nodes,
438 &addr, size, max_addr) < 0)
439 goto done;
440 if (!*cmdline)
441 break;
442 coeff_flag = 0;
443 coeff = -1;
445 num = 0;
447 done:
448 if (!num_nodes)
449 return -1;
450 /* Fill remainder of system RAM, if appropriate. */
451 if (addr < max_addr) {
452 if (coeff_flag && coeff < 0) {
453 /* Split remaining nodes into num-sized chunks */
454 num_nodes += split_nodes_by_size(nodes, &addr, max_addr,
455 num_nodes, num);
456 goto out;
458 switch (*(cmdline - 1)) {
459 case '*':
460 /* Split remaining nodes into coeff chunks */
461 if (coeff <= 0)
462 break;
463 num_nodes += split_nodes_equally(nodes, &addr, max_addr,
464 num_nodes, coeff);
465 break;
466 case ',':
467 /* Do not allocate remaining system RAM */
468 break;
469 default:
470 /* Give one final node */
471 setup_node_range(num_nodes, nodes, &addr,
472 max_addr - addr, max_addr);
473 num_nodes++;
476 out:
477 memnode_shift = compute_hash_shift(nodes, num_nodes);
478 if (memnode_shift < 0) {
479 memnode_shift = 0;
480 printk(KERN_ERR "No NUMA hash function found. NUMA emulation "
481 "disabled.\n");
482 return -1;
486 * We need to vacate all active ranges that may have been registered by
487 * SRAT and set acpi_numa to -1 so that srat_disabled() always returns
488 * true. NUMA emulation has succeeded so we will not scan ACPI nodes.
490 remove_all_active_ranges();
491 #ifdef CONFIG_ACPI_NUMA
492 acpi_numa = -1;
493 #endif
494 for_each_node_mask(i, node_possible_map) {
495 e820_register_active_regions(i, nodes[i].start >> PAGE_SHIFT,
496 nodes[i].end >> PAGE_SHIFT);
497 setup_node_bootmem(i, nodes[i].start, nodes[i].end);
499 acpi_fake_nodes(nodes, num_nodes);
500 numa_init_array();
501 return 0;
503 #endif /* CONFIG_NUMA_EMU */
505 void __init numa_initmem_init(unsigned long start_pfn, unsigned long end_pfn)
507 int i;
509 nodes_clear(node_possible_map);
511 #ifdef CONFIG_NUMA_EMU
512 if (cmdline && !numa_emulation(start_pfn, end_pfn))
513 return;
514 nodes_clear(node_possible_map);
515 #endif
517 #ifdef CONFIG_ACPI_NUMA
518 if (!numa_off && !acpi_scan_nodes(start_pfn << PAGE_SHIFT,
519 end_pfn << PAGE_SHIFT))
520 return;
521 nodes_clear(node_possible_map);
522 #endif
524 #ifdef CONFIG_K8_NUMA
525 if (!numa_off && !k8_scan_nodes(start_pfn<<PAGE_SHIFT,
526 end_pfn<<PAGE_SHIFT))
527 return;
528 nodes_clear(node_possible_map);
529 #endif
530 printk(KERN_INFO "%s\n",
531 numa_off ? "NUMA turned off" : "No NUMA configuration found");
533 printk(KERN_INFO "Faking a node at %016lx-%016lx\n",
534 start_pfn << PAGE_SHIFT,
535 end_pfn << PAGE_SHIFT);
536 /* setup dummy node covering all memory */
537 memnode_shift = 63;
538 memnodemap = memnode.embedded_map;
539 memnodemap[0] = 0;
540 nodes_clear(node_online_map);
541 node_set_online(0);
542 node_set(0, node_possible_map);
543 for (i = 0; i < NR_CPUS; i++)
544 numa_set_node(i, 0);
545 node_to_cpumask[0] = cpumask_of_cpu(0);
546 e820_register_active_regions(0, start_pfn, end_pfn);
547 setup_node_bootmem(0, start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
550 __cpuinit void numa_add_cpu(int cpu)
552 set_bit(cpu, &node_to_cpumask[cpu_to_node(cpu)]);
555 void __cpuinit numa_set_node(int cpu, int node)
557 cpu_pda(cpu)->nodenumber = node;
558 cpu_to_node(cpu) = node;
561 unsigned long __init numa_free_all_bootmem(void)
563 unsigned long pages = 0;
564 int i;
566 for_each_online_node(i)
567 pages += free_all_bootmem_node(NODE_DATA(i));
569 return pages;
572 void __init paging_init(void)
574 unsigned long max_zone_pfns[MAX_NR_ZONES];
575 int i;
577 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
578 max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
579 max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
580 max_zone_pfns[ZONE_NORMAL] = end_pfn;
582 sparse_memory_present_with_active_regions(MAX_NUMNODES);
583 sparse_init();
585 for_each_online_node(i)
586 setup_node_zones(i);
588 free_area_init_nodes(max_zone_pfns);
591 static __init int numa_setup(char *opt)
593 if (!opt)
594 return -EINVAL;
595 if (!strncmp(opt, "off", 3))
596 numa_off = 1;
597 #ifdef CONFIG_NUMA_EMU
598 if (!strncmp(opt, "fake=", 5))
599 cmdline = opt + 5;
600 #endif
601 #ifdef CONFIG_ACPI_NUMA
602 if (!strncmp(opt, "noacpi", 6))
603 acpi_numa = -1;
604 if (!strncmp(opt, "hotadd=", 7))
605 hotadd_percent = simple_strtoul(opt+7, NULL, 10);
606 #endif
607 return 0;
609 early_param("numa", numa_setup);
612 * Setup early cpu_to_node.
614 * Populate cpu_to_node[] only if x86_cpu_to_apicid[],
615 * and apicid_to_node[] tables have valid entries for a CPU.
616 * This means we skip cpu_to_node[] initialisation for NUMA
617 * emulation and faking node case (when running a kernel compiled
618 * for NUMA on a non NUMA box), which is OK as cpu_to_node[]
619 * is already initialized in a round robin manner at numa_init_array,
620 * prior to this call, and this initialization is good enough
621 * for the fake NUMA cases.
623 void __init init_cpu_to_node(void)
625 int i;
627 for (i = 0; i < NR_CPUS; i++) {
628 u8 apicid = x86_cpu_to_apicid_init[i];
630 if (apicid == BAD_APICID)
631 continue;
632 if (apicid_to_node[apicid] == NUMA_NO_NODE)
633 continue;
634 numa_set_node(i, apicid_to_node[apicid]);
638 #ifdef CONFIG_DISCONTIGMEM
640 * Functions to convert PFNs from/to per node page addresses.
641 * These are out of line because they are quite big.
642 * They could be all tuned by pre caching more state.
643 * Should do that.
646 int pfn_valid(unsigned long pfn)
648 unsigned nid;
649 if (pfn >= num_physpages)
650 return 0;
651 nid = pfn_to_nid(pfn);
652 if (nid == 0xff)
653 return 0;
654 return pfn >= node_start_pfn(nid) && (pfn) < node_end_pfn(nid);
656 EXPORT_SYMBOL(pfn_valid);
657 #endif