mm: use vm_unmapped_area() in hugetlbfs on ia64 architecture
[linux-2.6.git] / fs / ext4 / page-io.c
blob0016fbca2a402095bb401e34cdfaab41f26f7b1e
1 /*
2 * linux/fs/ext4/page-io.c
4 * This contains the new page_io functions for ext4
6 * Written by Theodore Ts'o, 2010.
7 */
9 #include <linux/fs.h>
10 #include <linux/time.h>
11 #include <linux/jbd2.h>
12 #include <linux/highuid.h>
13 #include <linux/pagemap.h>
14 #include <linux/quotaops.h>
15 #include <linux/string.h>
16 #include <linux/buffer_head.h>
17 #include <linux/writeback.h>
18 #include <linux/pagevec.h>
19 #include <linux/mpage.h>
20 #include <linux/namei.h>
21 #include <linux/uio.h>
22 #include <linux/bio.h>
23 #include <linux/workqueue.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
27 #include "ext4_jbd2.h"
28 #include "xattr.h"
29 #include "acl.h"
31 static struct kmem_cache *io_page_cachep, *io_end_cachep;
33 int __init ext4_init_pageio(void)
35 io_page_cachep = KMEM_CACHE(ext4_io_page, SLAB_RECLAIM_ACCOUNT);
36 if (io_page_cachep == NULL)
37 return -ENOMEM;
38 io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT);
39 if (io_end_cachep == NULL) {
40 kmem_cache_destroy(io_page_cachep);
41 return -ENOMEM;
43 return 0;
46 void ext4_exit_pageio(void)
48 kmem_cache_destroy(io_end_cachep);
49 kmem_cache_destroy(io_page_cachep);
52 void ext4_ioend_wait(struct inode *inode)
54 wait_queue_head_t *wq = ext4_ioend_wq(inode);
56 wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_ioend_count) == 0));
59 static void put_io_page(struct ext4_io_page *io_page)
61 if (atomic_dec_and_test(&io_page->p_count)) {
62 end_page_writeback(io_page->p_page);
63 put_page(io_page->p_page);
64 kmem_cache_free(io_page_cachep, io_page);
68 void ext4_free_io_end(ext4_io_end_t *io)
70 int i;
72 BUG_ON(!io);
73 BUG_ON(!list_empty(&io->list));
74 BUG_ON(io->flag & EXT4_IO_END_UNWRITTEN);
76 if (io->page)
77 put_page(io->page);
78 for (i = 0; i < io->num_io_pages; i++)
79 put_io_page(io->pages[i]);
80 io->num_io_pages = 0;
81 if (atomic_dec_and_test(&EXT4_I(io->inode)->i_ioend_count))
82 wake_up_all(ext4_ioend_wq(io->inode));
83 kmem_cache_free(io_end_cachep, io);
86 /* check a range of space and convert unwritten extents to written. */
87 static int ext4_end_io(ext4_io_end_t *io)
89 struct inode *inode = io->inode;
90 loff_t offset = io->offset;
91 ssize_t size = io->size;
92 int ret = 0;
94 ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
95 "list->prev 0x%p\n",
96 io, inode->i_ino, io->list.next, io->list.prev);
98 ret = ext4_convert_unwritten_extents(inode, offset, size);
99 if (ret < 0) {
100 ext4_msg(inode->i_sb, KERN_EMERG,
101 "failed to convert unwritten extents to written "
102 "extents -- potential data loss! "
103 "(inode %lu, offset %llu, size %zd, error %d)",
104 inode->i_ino, offset, size, ret);
106 if (io->iocb)
107 aio_complete(io->iocb, io->result, 0);
109 if (io->flag & EXT4_IO_END_DIRECT)
110 inode_dio_done(inode);
111 /* Wake up anyone waiting on unwritten extent conversion */
112 if (atomic_dec_and_test(&EXT4_I(inode)->i_unwritten))
113 wake_up_all(ext4_ioend_wq(inode));
114 return ret;
117 static void dump_completed_IO(struct inode *inode)
119 #ifdef EXT4FS_DEBUG
120 struct list_head *cur, *before, *after;
121 ext4_io_end_t *io, *io0, *io1;
122 unsigned long flags;
124 if (list_empty(&EXT4_I(inode)->i_completed_io_list)) {
125 ext4_debug("inode %lu completed_io list is empty\n",
126 inode->i_ino);
127 return;
130 ext4_debug("Dump inode %lu completed_io list\n", inode->i_ino);
131 list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list) {
132 cur = &io->list;
133 before = cur->prev;
134 io0 = container_of(before, ext4_io_end_t, list);
135 after = cur->next;
136 io1 = container_of(after, ext4_io_end_t, list);
138 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
139 io, inode->i_ino, io0, io1);
141 #endif
144 /* Add the io_end to per-inode completed end_io list. */
145 void ext4_add_complete_io(ext4_io_end_t *io_end)
147 struct ext4_inode_info *ei = EXT4_I(io_end->inode);
148 struct workqueue_struct *wq;
149 unsigned long flags;
151 BUG_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN));
152 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
154 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
155 if (list_empty(&ei->i_completed_io_list)) {
156 io_end->flag |= EXT4_IO_END_QUEUED;
157 queue_work(wq, &io_end->work);
159 list_add_tail(&io_end->list, &ei->i_completed_io_list);
160 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
163 static int ext4_do_flush_completed_IO(struct inode *inode,
164 ext4_io_end_t *work_io)
166 ext4_io_end_t *io;
167 struct list_head unwritten, complete, to_free;
168 unsigned long flags;
169 struct ext4_inode_info *ei = EXT4_I(inode);
170 int err, ret = 0;
172 INIT_LIST_HEAD(&complete);
173 INIT_LIST_HEAD(&to_free);
175 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
176 dump_completed_IO(inode);
177 list_replace_init(&ei->i_completed_io_list, &unwritten);
178 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
180 while (!list_empty(&unwritten)) {
181 io = list_entry(unwritten.next, ext4_io_end_t, list);
182 BUG_ON(!(io->flag & EXT4_IO_END_UNWRITTEN));
183 list_del_init(&io->list);
185 err = ext4_end_io(io);
186 if (unlikely(!ret && err))
187 ret = err;
189 list_add_tail(&io->list, &complete);
191 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
192 while (!list_empty(&complete)) {
193 io = list_entry(complete.next, ext4_io_end_t, list);
194 io->flag &= ~EXT4_IO_END_UNWRITTEN;
195 /* end_io context can not be destroyed now because it still
196 * used by queued worker. Worker thread will destroy it later */
197 if (io->flag & EXT4_IO_END_QUEUED)
198 list_del_init(&io->list);
199 else
200 list_move(&io->list, &to_free);
202 /* If we are called from worker context, it is time to clear queued
203 * flag, and destroy it's end_io if it was converted already */
204 if (work_io) {
205 work_io->flag &= ~EXT4_IO_END_QUEUED;
206 if (!(work_io->flag & EXT4_IO_END_UNWRITTEN))
207 list_add_tail(&work_io->list, &to_free);
209 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
211 while (!list_empty(&to_free)) {
212 io = list_entry(to_free.next, ext4_io_end_t, list);
213 list_del_init(&io->list);
214 ext4_free_io_end(io);
216 return ret;
220 * work on completed aio dio IO, to convert unwritten extents to extents
222 static void ext4_end_io_work(struct work_struct *work)
224 ext4_io_end_t *io = container_of(work, ext4_io_end_t, work);
225 ext4_do_flush_completed_IO(io->inode, io);
228 int ext4_flush_unwritten_io(struct inode *inode)
230 int ret;
231 WARN_ON_ONCE(!mutex_is_locked(&inode->i_mutex) &&
232 !(inode->i_state & I_FREEING));
233 ret = ext4_do_flush_completed_IO(inode, NULL);
234 ext4_unwritten_wait(inode);
235 return ret;
238 ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags)
240 ext4_io_end_t *io = kmem_cache_zalloc(io_end_cachep, flags);
241 if (io) {
242 atomic_inc(&EXT4_I(inode)->i_ioend_count);
243 io->inode = inode;
244 INIT_WORK(&io->work, ext4_end_io_work);
245 INIT_LIST_HEAD(&io->list);
247 return io;
251 * Print an buffer I/O error compatible with the fs/buffer.c. This
252 * provides compatibility with dmesg scrapers that look for a specific
253 * buffer I/O error message. We really need a unified error reporting
254 * structure to userspace ala Digital Unix's uerf system, but it's
255 * probably not going to happen in my lifetime, due to LKML politics...
257 static void buffer_io_error(struct buffer_head *bh)
259 char b[BDEVNAME_SIZE];
260 printk(KERN_ERR "Buffer I/O error on device %s, logical block %llu\n",
261 bdevname(bh->b_bdev, b),
262 (unsigned long long)bh->b_blocknr);
265 static void ext4_end_bio(struct bio *bio, int error)
267 ext4_io_end_t *io_end = bio->bi_private;
268 struct inode *inode;
269 int i;
270 sector_t bi_sector = bio->bi_sector;
272 BUG_ON(!io_end);
273 bio->bi_private = NULL;
274 bio->bi_end_io = NULL;
275 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
276 error = 0;
277 bio_put(bio);
279 for (i = 0; i < io_end->num_io_pages; i++) {
280 struct page *page = io_end->pages[i]->p_page;
281 struct buffer_head *bh, *head;
282 loff_t offset;
283 loff_t io_end_offset;
285 if (error) {
286 SetPageError(page);
287 set_bit(AS_EIO, &page->mapping->flags);
288 head = page_buffers(page);
289 BUG_ON(!head);
291 io_end_offset = io_end->offset + io_end->size;
293 offset = (sector_t) page->index << PAGE_CACHE_SHIFT;
294 bh = head;
295 do {
296 if ((offset >= io_end->offset) &&
297 (offset+bh->b_size <= io_end_offset))
298 buffer_io_error(bh);
300 offset += bh->b_size;
301 bh = bh->b_this_page;
302 } while (bh != head);
305 put_io_page(io_end->pages[i]);
307 io_end->num_io_pages = 0;
308 inode = io_end->inode;
310 if (error) {
311 io_end->flag |= EXT4_IO_END_ERROR;
312 ext4_warning(inode->i_sb, "I/O error writing to inode %lu "
313 "(offset %llu size %ld starting block %llu)",
314 inode->i_ino,
315 (unsigned long long) io_end->offset,
316 (long) io_end->size,
317 (unsigned long long)
318 bi_sector >> (inode->i_blkbits - 9));
321 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
322 ext4_free_io_end(io_end);
323 return;
326 ext4_add_complete_io(io_end);
329 void ext4_io_submit(struct ext4_io_submit *io)
331 struct bio *bio = io->io_bio;
333 if (bio) {
334 bio_get(io->io_bio);
335 submit_bio(io->io_op, io->io_bio);
336 BUG_ON(bio_flagged(io->io_bio, BIO_EOPNOTSUPP));
337 bio_put(io->io_bio);
339 io->io_bio = NULL;
340 io->io_op = 0;
341 io->io_end = NULL;
344 static int io_submit_init(struct ext4_io_submit *io,
345 struct inode *inode,
346 struct writeback_control *wbc,
347 struct buffer_head *bh)
349 ext4_io_end_t *io_end;
350 struct page *page = bh->b_page;
351 int nvecs = bio_get_nr_vecs(bh->b_bdev);
352 struct bio *bio;
354 io_end = ext4_init_io_end(inode, GFP_NOFS);
355 if (!io_end)
356 return -ENOMEM;
357 bio = bio_alloc(GFP_NOIO, min(nvecs, BIO_MAX_PAGES));
358 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
359 bio->bi_bdev = bh->b_bdev;
360 bio->bi_private = io->io_end = io_end;
361 bio->bi_end_io = ext4_end_bio;
363 io_end->offset = (page->index << PAGE_CACHE_SHIFT) + bh_offset(bh);
365 io->io_bio = bio;
366 io->io_op = (wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE);
367 io->io_next_block = bh->b_blocknr;
368 return 0;
371 static int io_submit_add_bh(struct ext4_io_submit *io,
372 struct ext4_io_page *io_page,
373 struct inode *inode,
374 struct writeback_control *wbc,
375 struct buffer_head *bh)
377 ext4_io_end_t *io_end;
378 int ret;
380 if (buffer_new(bh)) {
381 clear_buffer_new(bh);
382 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
385 if (!buffer_mapped(bh) || buffer_delay(bh)) {
386 if (!buffer_mapped(bh))
387 clear_buffer_dirty(bh);
388 if (io->io_bio)
389 ext4_io_submit(io);
390 return 0;
393 if (io->io_bio && bh->b_blocknr != io->io_next_block) {
394 submit_and_retry:
395 ext4_io_submit(io);
397 if (io->io_bio == NULL) {
398 ret = io_submit_init(io, inode, wbc, bh);
399 if (ret)
400 return ret;
402 io_end = io->io_end;
403 if ((io_end->num_io_pages >= MAX_IO_PAGES) &&
404 (io_end->pages[io_end->num_io_pages-1] != io_page))
405 goto submit_and_retry;
406 if (buffer_uninit(bh))
407 ext4_set_io_unwritten_flag(inode, io_end);
408 io->io_end->size += bh->b_size;
409 io->io_next_block++;
410 ret = bio_add_page(io->io_bio, bh->b_page, bh->b_size, bh_offset(bh));
411 if (ret != bh->b_size)
412 goto submit_and_retry;
413 if ((io_end->num_io_pages == 0) ||
414 (io_end->pages[io_end->num_io_pages-1] != io_page)) {
415 io_end->pages[io_end->num_io_pages++] = io_page;
416 atomic_inc(&io_page->p_count);
418 return 0;
421 int ext4_bio_write_page(struct ext4_io_submit *io,
422 struct page *page,
423 int len,
424 struct writeback_control *wbc)
426 struct inode *inode = page->mapping->host;
427 unsigned block_start, block_end, blocksize;
428 struct ext4_io_page *io_page;
429 struct buffer_head *bh, *head;
430 int ret = 0;
432 blocksize = 1 << inode->i_blkbits;
434 BUG_ON(!PageLocked(page));
435 BUG_ON(PageWriteback(page));
437 io_page = kmem_cache_alloc(io_page_cachep, GFP_NOFS);
438 if (!io_page) {
439 set_page_dirty(page);
440 unlock_page(page);
441 return -ENOMEM;
443 io_page->p_page = page;
444 atomic_set(&io_page->p_count, 1);
445 get_page(page);
446 set_page_writeback(page);
447 ClearPageError(page);
449 for (bh = head = page_buffers(page), block_start = 0;
450 bh != head || !block_start;
451 block_start = block_end, bh = bh->b_this_page) {
453 block_end = block_start + blocksize;
454 if (block_start >= len) {
456 * Comments copied from block_write_full_page_endio:
458 * The page straddles i_size. It must be zeroed out on
459 * each and every writepage invocation because it may
460 * be mmapped. "A file is mapped in multiples of the
461 * page size. For a file that is not a multiple of
462 * the page size, the remaining memory is zeroed when
463 * mapped, and writes to that region are not written
464 * out to the file."
466 zero_user_segment(page, block_start, block_end);
467 clear_buffer_dirty(bh);
468 set_buffer_uptodate(bh);
469 continue;
471 clear_buffer_dirty(bh);
472 ret = io_submit_add_bh(io, io_page, inode, wbc, bh);
473 if (ret) {
475 * We only get here on ENOMEM. Not much else
476 * we can do but mark the page as dirty, and
477 * better luck next time.
479 set_page_dirty(page);
480 break;
483 unlock_page(page);
485 * If the page was truncated before we could do the writeback,
486 * or we had a memory allocation error while trying to write
487 * the first buffer head, we won't have submitted any pages for
488 * I/O. In that case we need to make sure we've cleared the
489 * PageWriteback bit from the page to prevent the system from
490 * wedging later on.
492 put_io_page(io_page);
493 return ret;