4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
50 #include <linux/swapops.h>
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
58 * reclaim_mode determines how the inactive list is shrunk
59 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60 * RECLAIM_MODE_ASYNC: Do not block
61 * RECLAIM_MODE_SYNC: Allow blocking e.g. call wait_on_page_writeback
62 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63 * page from the LRU and reclaim all pages within a
64 * naturally aligned range
65 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66 * order-0 pages and then compact the zone
68 typedef unsigned __bitwise__ reclaim_mode_t
;
69 #define RECLAIM_MODE_SINGLE ((__force reclaim_mode_t)0x01u)
70 #define RECLAIM_MODE_ASYNC ((__force reclaim_mode_t)0x02u)
71 #define RECLAIM_MODE_SYNC ((__force reclaim_mode_t)0x04u)
72 #define RECLAIM_MODE_LUMPYRECLAIM ((__force reclaim_mode_t)0x08u)
73 #define RECLAIM_MODE_COMPACTION ((__force reclaim_mode_t)0x10u)
76 /* Incremented by the number of inactive pages that were scanned */
77 unsigned long nr_scanned
;
79 /* Number of pages freed so far during a call to shrink_zones() */
80 unsigned long nr_reclaimed
;
82 /* How many pages shrink_list() should reclaim */
83 unsigned long nr_to_reclaim
;
85 unsigned long hibernation_mode
;
87 /* This context's GFP mask */
92 /* Can mapped pages be reclaimed? */
95 /* Can pages be swapped as part of reclaim? */
101 * Intend to reclaim enough continuous memory rather than reclaim
102 * enough amount of memory. i.e, mode for high order allocation.
104 reclaim_mode_t reclaim_mode
;
106 /* Which cgroup do we reclaim from */
107 struct mem_cgroup
*mem_cgroup
;
108 struct memcg_scanrecord
*memcg_record
;
111 * Nodemask of nodes allowed by the caller. If NULL, all nodes
114 nodemask_t
*nodemask
;
117 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
119 #ifdef ARCH_HAS_PREFETCH
120 #define prefetch_prev_lru_page(_page, _base, _field) \
122 if ((_page)->lru.prev != _base) { \
125 prev = lru_to_page(&(_page->lru)); \
126 prefetch(&prev->_field); \
130 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
133 #ifdef ARCH_HAS_PREFETCHW
134 #define prefetchw_prev_lru_page(_page, _base, _field) \
136 if ((_page)->lru.prev != _base) { \
139 prev = lru_to_page(&(_page->lru)); \
140 prefetchw(&prev->_field); \
144 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
148 * From 0 .. 100. Higher means more swappy.
150 int vm_swappiness
= 60;
151 long vm_total_pages
; /* The total number of pages which the VM controls */
153 static LIST_HEAD(shrinker_list
);
154 static DECLARE_RWSEM(shrinker_rwsem
);
156 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
157 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
159 #define scanning_global_lru(sc) (1)
162 static struct zone_reclaim_stat
*get_reclaim_stat(struct zone
*zone
,
163 struct scan_control
*sc
)
165 if (!scanning_global_lru(sc
))
166 return mem_cgroup_get_reclaim_stat(sc
->mem_cgroup
, zone
);
168 return &zone
->reclaim_stat
;
171 static unsigned long zone_nr_lru_pages(struct zone
*zone
,
172 struct scan_control
*sc
, enum lru_list lru
)
174 if (!scanning_global_lru(sc
))
175 return mem_cgroup_zone_nr_lru_pages(sc
->mem_cgroup
,
176 zone_to_nid(zone
), zone_idx(zone
), BIT(lru
));
178 return zone_page_state(zone
, NR_LRU_BASE
+ lru
);
183 * Add a shrinker callback to be called from the vm
185 void register_shrinker(struct shrinker
*shrinker
)
188 down_write(&shrinker_rwsem
);
189 list_add_tail(&shrinker
->list
, &shrinker_list
);
190 up_write(&shrinker_rwsem
);
192 EXPORT_SYMBOL(register_shrinker
);
197 void unregister_shrinker(struct shrinker
*shrinker
)
199 down_write(&shrinker_rwsem
);
200 list_del(&shrinker
->list
);
201 up_write(&shrinker_rwsem
);
203 EXPORT_SYMBOL(unregister_shrinker
);
205 static inline int do_shrinker_shrink(struct shrinker
*shrinker
,
206 struct shrink_control
*sc
,
207 unsigned long nr_to_scan
)
209 sc
->nr_to_scan
= nr_to_scan
;
210 return (*shrinker
->shrink
)(shrinker
, sc
);
213 #define SHRINK_BATCH 128
215 * Call the shrink functions to age shrinkable caches
217 * Here we assume it costs one seek to replace a lru page and that it also
218 * takes a seek to recreate a cache object. With this in mind we age equal
219 * percentages of the lru and ageable caches. This should balance the seeks
220 * generated by these structures.
222 * If the vm encountered mapped pages on the LRU it increase the pressure on
223 * slab to avoid swapping.
225 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
227 * `lru_pages' represents the number of on-LRU pages in all the zones which
228 * are eligible for the caller's allocation attempt. It is used for balancing
229 * slab reclaim versus page reclaim.
231 * Returns the number of slab objects which we shrunk.
233 unsigned long shrink_slab(struct shrink_control
*shrink
,
234 unsigned long nr_pages_scanned
,
235 unsigned long lru_pages
)
237 struct shrinker
*shrinker
;
238 unsigned long ret
= 0;
240 if (nr_pages_scanned
== 0)
241 nr_pages_scanned
= SWAP_CLUSTER_MAX
;
243 if (!down_read_trylock(&shrinker_rwsem
)) {
244 /* Assume we'll be able to shrink next time */
249 list_for_each_entry(shrinker
, &shrinker_list
, list
) {
250 unsigned long long delta
;
251 unsigned long total_scan
;
252 unsigned long max_pass
;
256 long batch_size
= shrinker
->batch
? shrinker
->batch
260 * copy the current shrinker scan count into a local variable
261 * and zero it so that other concurrent shrinker invocations
262 * don't also do this scanning work.
266 } while (cmpxchg(&shrinker
->nr
, nr
, 0) != nr
);
269 max_pass
= do_shrinker_shrink(shrinker
, shrink
, 0);
270 delta
= (4 * nr_pages_scanned
) / shrinker
->seeks
;
272 do_div(delta
, lru_pages
+ 1);
274 if (total_scan
< 0) {
275 printk(KERN_ERR
"shrink_slab: %pF negative objects to "
277 shrinker
->shrink
, total_scan
);
278 total_scan
= max_pass
;
282 * We need to avoid excessive windup on filesystem shrinkers
283 * due to large numbers of GFP_NOFS allocations causing the
284 * shrinkers to return -1 all the time. This results in a large
285 * nr being built up so when a shrink that can do some work
286 * comes along it empties the entire cache due to nr >>>
287 * max_pass. This is bad for sustaining a working set in
290 * Hence only allow the shrinker to scan the entire cache when
291 * a large delta change is calculated directly.
293 if (delta
< max_pass
/ 4)
294 total_scan
= min(total_scan
, max_pass
/ 2);
297 * Avoid risking looping forever due to too large nr value:
298 * never try to free more than twice the estimate number of
301 if (total_scan
> max_pass
* 2)
302 total_scan
= max_pass
* 2;
304 trace_mm_shrink_slab_start(shrinker
, shrink
, nr
,
305 nr_pages_scanned
, lru_pages
,
306 max_pass
, delta
, total_scan
);
308 while (total_scan
>= batch_size
) {
311 nr_before
= do_shrinker_shrink(shrinker
, shrink
, 0);
312 shrink_ret
= do_shrinker_shrink(shrinker
, shrink
,
314 if (shrink_ret
== -1)
316 if (shrink_ret
< nr_before
)
317 ret
+= nr_before
- shrink_ret
;
318 count_vm_events(SLABS_SCANNED
, batch_size
);
319 total_scan
-= batch_size
;
325 * move the unused scan count back into the shrinker in a
326 * manner that handles concurrent updates. If we exhausted the
327 * scan, there is no need to do an update.
331 new_nr
= total_scan
+ nr
;
334 } while (cmpxchg(&shrinker
->nr
, nr
, new_nr
) != nr
);
336 trace_mm_shrink_slab_end(shrinker
, shrink_ret
, nr
, new_nr
);
338 up_read(&shrinker_rwsem
);
344 static void set_reclaim_mode(int priority
, struct scan_control
*sc
,
347 reclaim_mode_t syncmode
= sync
? RECLAIM_MODE_SYNC
: RECLAIM_MODE_ASYNC
;
350 * Initially assume we are entering either lumpy reclaim or
351 * reclaim/compaction.Depending on the order, we will either set the
352 * sync mode or just reclaim order-0 pages later.
354 if (COMPACTION_BUILD
)
355 sc
->reclaim_mode
= RECLAIM_MODE_COMPACTION
;
357 sc
->reclaim_mode
= RECLAIM_MODE_LUMPYRECLAIM
;
360 * Avoid using lumpy reclaim or reclaim/compaction if possible by
361 * restricting when its set to either costly allocations or when
362 * under memory pressure
364 if (sc
->order
> PAGE_ALLOC_COSTLY_ORDER
)
365 sc
->reclaim_mode
|= syncmode
;
366 else if (sc
->order
&& priority
< DEF_PRIORITY
- 2)
367 sc
->reclaim_mode
|= syncmode
;
369 sc
->reclaim_mode
= RECLAIM_MODE_SINGLE
| RECLAIM_MODE_ASYNC
;
372 static void reset_reclaim_mode(struct scan_control
*sc
)
374 sc
->reclaim_mode
= RECLAIM_MODE_SINGLE
| RECLAIM_MODE_ASYNC
;
377 static inline int is_page_cache_freeable(struct page
*page
)
380 * A freeable page cache page is referenced only by the caller
381 * that isolated the page, the page cache radix tree and
382 * optional buffer heads at page->private.
384 return page_count(page
) - page_has_private(page
) == 2;
387 static int may_write_to_queue(struct backing_dev_info
*bdi
,
388 struct scan_control
*sc
)
390 if (current
->flags
& PF_SWAPWRITE
)
392 if (!bdi_write_congested(bdi
))
394 if (bdi
== current
->backing_dev_info
)
397 /* lumpy reclaim for hugepage often need a lot of write */
398 if (sc
->order
> PAGE_ALLOC_COSTLY_ORDER
)
404 * We detected a synchronous write error writing a page out. Probably
405 * -ENOSPC. We need to propagate that into the address_space for a subsequent
406 * fsync(), msync() or close().
408 * The tricky part is that after writepage we cannot touch the mapping: nothing
409 * prevents it from being freed up. But we have a ref on the page and once
410 * that page is locked, the mapping is pinned.
412 * We're allowed to run sleeping lock_page() here because we know the caller has
415 static void handle_write_error(struct address_space
*mapping
,
416 struct page
*page
, int error
)
419 if (page_mapping(page
) == mapping
)
420 mapping_set_error(mapping
, error
);
424 /* possible outcome of pageout() */
426 /* failed to write page out, page is locked */
428 /* move page to the active list, page is locked */
430 /* page has been sent to the disk successfully, page is unlocked */
432 /* page is clean and locked */
437 * pageout is called by shrink_page_list() for each dirty page.
438 * Calls ->writepage().
440 static pageout_t
pageout(struct page
*page
, struct address_space
*mapping
,
441 struct scan_control
*sc
)
444 * If the page is dirty, only perform writeback if that write
445 * will be non-blocking. To prevent this allocation from being
446 * stalled by pagecache activity. But note that there may be
447 * stalls if we need to run get_block(). We could test
448 * PagePrivate for that.
450 * If this process is currently in __generic_file_aio_write() against
451 * this page's queue, we can perform writeback even if that
454 * If the page is swapcache, write it back even if that would
455 * block, for some throttling. This happens by accident, because
456 * swap_backing_dev_info is bust: it doesn't reflect the
457 * congestion state of the swapdevs. Easy to fix, if needed.
459 if (!is_page_cache_freeable(page
))
463 * Some data journaling orphaned pages can have
464 * page->mapping == NULL while being dirty with clean buffers.
466 if (page_has_private(page
)) {
467 if (try_to_free_buffers(page
)) {
468 ClearPageDirty(page
);
469 printk("%s: orphaned page\n", __func__
);
475 if (mapping
->a_ops
->writepage
== NULL
)
476 return PAGE_ACTIVATE
;
477 if (!may_write_to_queue(mapping
->backing_dev_info
, sc
))
480 if (clear_page_dirty_for_io(page
)) {
482 struct writeback_control wbc
= {
483 .sync_mode
= WB_SYNC_NONE
,
484 .nr_to_write
= SWAP_CLUSTER_MAX
,
486 .range_end
= LLONG_MAX
,
490 SetPageReclaim(page
);
491 res
= mapping
->a_ops
->writepage(page
, &wbc
);
493 handle_write_error(mapping
, page
, res
);
494 if (res
== AOP_WRITEPAGE_ACTIVATE
) {
495 ClearPageReclaim(page
);
496 return PAGE_ACTIVATE
;
500 * Wait on writeback if requested to. This happens when
501 * direct reclaiming a large contiguous area and the
502 * first attempt to free a range of pages fails.
504 if (PageWriteback(page
) &&
505 (sc
->reclaim_mode
& RECLAIM_MODE_SYNC
))
506 wait_on_page_writeback(page
);
508 if (!PageWriteback(page
)) {
509 /* synchronous write or broken a_ops? */
510 ClearPageReclaim(page
);
512 trace_mm_vmscan_writepage(page
,
513 trace_reclaim_flags(page
, sc
->reclaim_mode
));
514 inc_zone_page_state(page
, NR_VMSCAN_WRITE
);
522 * Same as remove_mapping, but if the page is removed from the mapping, it
523 * gets returned with a refcount of 0.
525 static int __remove_mapping(struct address_space
*mapping
, struct page
*page
)
527 BUG_ON(!PageLocked(page
));
528 BUG_ON(mapping
!= page_mapping(page
));
530 spin_lock_irq(&mapping
->tree_lock
);
532 * The non racy check for a busy page.
534 * Must be careful with the order of the tests. When someone has
535 * a ref to the page, it may be possible that they dirty it then
536 * drop the reference. So if PageDirty is tested before page_count
537 * here, then the following race may occur:
539 * get_user_pages(&page);
540 * [user mapping goes away]
542 * !PageDirty(page) [good]
543 * SetPageDirty(page);
545 * !page_count(page) [good, discard it]
547 * [oops, our write_to data is lost]
549 * Reversing the order of the tests ensures such a situation cannot
550 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
551 * load is not satisfied before that of page->_count.
553 * Note that if SetPageDirty is always performed via set_page_dirty,
554 * and thus under tree_lock, then this ordering is not required.
556 if (!page_freeze_refs(page
, 2))
558 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
559 if (unlikely(PageDirty(page
))) {
560 page_unfreeze_refs(page
, 2);
564 if (PageSwapCache(page
)) {
565 swp_entry_t swap
= { .val
= page_private(page
) };
566 __delete_from_swap_cache(page
);
567 spin_unlock_irq(&mapping
->tree_lock
);
568 swapcache_free(swap
, page
);
570 void (*freepage
)(struct page
*);
572 freepage
= mapping
->a_ops
->freepage
;
574 __delete_from_page_cache(page
);
575 spin_unlock_irq(&mapping
->tree_lock
);
576 mem_cgroup_uncharge_cache_page(page
);
578 if (freepage
!= NULL
)
585 spin_unlock_irq(&mapping
->tree_lock
);
590 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
591 * someone else has a ref on the page, abort and return 0. If it was
592 * successfully detached, return 1. Assumes the caller has a single ref on
595 int remove_mapping(struct address_space
*mapping
, struct page
*page
)
597 if (__remove_mapping(mapping
, page
)) {
599 * Unfreezing the refcount with 1 rather than 2 effectively
600 * drops the pagecache ref for us without requiring another
603 page_unfreeze_refs(page
, 1);
610 * putback_lru_page - put previously isolated page onto appropriate LRU list
611 * @page: page to be put back to appropriate lru list
613 * Add previously isolated @page to appropriate LRU list.
614 * Page may still be unevictable for other reasons.
616 * lru_lock must not be held, interrupts must be enabled.
618 void putback_lru_page(struct page
*page
)
621 int active
= !!TestClearPageActive(page
);
622 int was_unevictable
= PageUnevictable(page
);
624 VM_BUG_ON(PageLRU(page
));
627 ClearPageUnevictable(page
);
629 if (page_evictable(page
, NULL
)) {
631 * For evictable pages, we can use the cache.
632 * In event of a race, worst case is we end up with an
633 * unevictable page on [in]active list.
634 * We know how to handle that.
636 lru
= active
+ page_lru_base_type(page
);
637 lru_cache_add_lru(page
, lru
);
640 * Put unevictable pages directly on zone's unevictable
643 lru
= LRU_UNEVICTABLE
;
644 add_page_to_unevictable_list(page
);
646 * When racing with an mlock clearing (page is
647 * unlocked), make sure that if the other thread does
648 * not observe our setting of PG_lru and fails
649 * isolation, we see PG_mlocked cleared below and move
650 * the page back to the evictable list.
652 * The other side is TestClearPageMlocked().
658 * page's status can change while we move it among lru. If an evictable
659 * page is on unevictable list, it never be freed. To avoid that,
660 * check after we added it to the list, again.
662 if (lru
== LRU_UNEVICTABLE
&& page_evictable(page
, NULL
)) {
663 if (!isolate_lru_page(page
)) {
667 /* This means someone else dropped this page from LRU
668 * So, it will be freed or putback to LRU again. There is
669 * nothing to do here.
673 if (was_unevictable
&& lru
!= LRU_UNEVICTABLE
)
674 count_vm_event(UNEVICTABLE_PGRESCUED
);
675 else if (!was_unevictable
&& lru
== LRU_UNEVICTABLE
)
676 count_vm_event(UNEVICTABLE_PGCULLED
);
678 put_page(page
); /* drop ref from isolate */
681 enum page_references
{
683 PAGEREF_RECLAIM_CLEAN
,
688 static enum page_references
page_check_references(struct page
*page
,
689 struct scan_control
*sc
)
691 int referenced_ptes
, referenced_page
;
692 unsigned long vm_flags
;
694 referenced_ptes
= page_referenced(page
, 1, sc
->mem_cgroup
, &vm_flags
);
695 referenced_page
= TestClearPageReferenced(page
);
697 /* Lumpy reclaim - ignore references */
698 if (sc
->reclaim_mode
& RECLAIM_MODE_LUMPYRECLAIM
)
699 return PAGEREF_RECLAIM
;
702 * Mlock lost the isolation race with us. Let try_to_unmap()
703 * move the page to the unevictable list.
705 if (vm_flags
& VM_LOCKED
)
706 return PAGEREF_RECLAIM
;
708 if (referenced_ptes
) {
710 return PAGEREF_ACTIVATE
;
712 * All mapped pages start out with page table
713 * references from the instantiating fault, so we need
714 * to look twice if a mapped file page is used more
717 * Mark it and spare it for another trip around the
718 * inactive list. Another page table reference will
719 * lead to its activation.
721 * Note: the mark is set for activated pages as well
722 * so that recently deactivated but used pages are
725 SetPageReferenced(page
);
728 return PAGEREF_ACTIVATE
;
733 /* Reclaim if clean, defer dirty pages to writeback */
734 if (referenced_page
&& !PageSwapBacked(page
))
735 return PAGEREF_RECLAIM_CLEAN
;
737 return PAGEREF_RECLAIM
;
740 static noinline_for_stack
void free_page_list(struct list_head
*free_pages
)
742 struct pagevec freed_pvec
;
743 struct page
*page
, *tmp
;
745 pagevec_init(&freed_pvec
, 1);
747 list_for_each_entry_safe(page
, tmp
, free_pages
, lru
) {
748 list_del(&page
->lru
);
749 if (!pagevec_add(&freed_pvec
, page
)) {
750 __pagevec_free(&freed_pvec
);
751 pagevec_reinit(&freed_pvec
);
755 pagevec_free(&freed_pvec
);
759 * shrink_page_list() returns the number of reclaimed pages
761 static unsigned long shrink_page_list(struct list_head
*page_list
,
763 struct scan_control
*sc
)
765 LIST_HEAD(ret_pages
);
766 LIST_HEAD(free_pages
);
768 unsigned long nr_dirty
= 0;
769 unsigned long nr_congested
= 0;
770 unsigned long nr_reclaimed
= 0;
774 while (!list_empty(page_list
)) {
775 enum page_references references
;
776 struct address_space
*mapping
;
782 page
= lru_to_page(page_list
);
783 list_del(&page
->lru
);
785 if (!trylock_page(page
))
788 VM_BUG_ON(PageActive(page
));
789 VM_BUG_ON(page_zone(page
) != zone
);
793 if (unlikely(!page_evictable(page
, NULL
)))
796 if (!sc
->may_unmap
&& page_mapped(page
))
799 /* Double the slab pressure for mapped and swapcache pages */
800 if (page_mapped(page
) || PageSwapCache(page
))
803 may_enter_fs
= (sc
->gfp_mask
& __GFP_FS
) ||
804 (PageSwapCache(page
) && (sc
->gfp_mask
& __GFP_IO
));
806 if (PageWriteback(page
)) {
808 * Synchronous reclaim is performed in two passes,
809 * first an asynchronous pass over the list to
810 * start parallel writeback, and a second synchronous
811 * pass to wait for the IO to complete. Wait here
812 * for any page for which writeback has already
815 if ((sc
->reclaim_mode
& RECLAIM_MODE_SYNC
) &&
817 wait_on_page_writeback(page
);
824 references
= page_check_references(page
, sc
);
825 switch (references
) {
826 case PAGEREF_ACTIVATE
:
827 goto activate_locked
;
830 case PAGEREF_RECLAIM
:
831 case PAGEREF_RECLAIM_CLEAN
:
832 ; /* try to reclaim the page below */
836 * Anonymous process memory has backing store?
837 * Try to allocate it some swap space here.
839 if (PageAnon(page
) && !PageSwapCache(page
)) {
840 if (!(sc
->gfp_mask
& __GFP_IO
))
842 if (!add_to_swap(page
))
843 goto activate_locked
;
847 mapping
= page_mapping(page
);
850 * The page is mapped into the page tables of one or more
851 * processes. Try to unmap it here.
853 if (page_mapped(page
) && mapping
) {
854 switch (try_to_unmap(page
, TTU_UNMAP
)) {
856 goto activate_locked
;
862 ; /* try to free the page below */
866 if (PageDirty(page
)) {
869 if (references
== PAGEREF_RECLAIM_CLEAN
)
873 if (!sc
->may_writepage
)
876 /* Page is dirty, try to write it out here */
877 switch (pageout(page
, mapping
, sc
)) {
882 goto activate_locked
;
884 if (PageWriteback(page
))
890 * A synchronous write - probably a ramdisk. Go
891 * ahead and try to reclaim the page.
893 if (!trylock_page(page
))
895 if (PageDirty(page
) || PageWriteback(page
))
897 mapping
= page_mapping(page
);
899 ; /* try to free the page below */
904 * If the page has buffers, try to free the buffer mappings
905 * associated with this page. If we succeed we try to free
908 * We do this even if the page is PageDirty().
909 * try_to_release_page() does not perform I/O, but it is
910 * possible for a page to have PageDirty set, but it is actually
911 * clean (all its buffers are clean). This happens if the
912 * buffers were written out directly, with submit_bh(). ext3
913 * will do this, as well as the blockdev mapping.
914 * try_to_release_page() will discover that cleanness and will
915 * drop the buffers and mark the page clean - it can be freed.
917 * Rarely, pages can have buffers and no ->mapping. These are
918 * the pages which were not successfully invalidated in
919 * truncate_complete_page(). We try to drop those buffers here
920 * and if that worked, and the page is no longer mapped into
921 * process address space (page_count == 1) it can be freed.
922 * Otherwise, leave the page on the LRU so it is swappable.
924 if (page_has_private(page
)) {
925 if (!try_to_release_page(page
, sc
->gfp_mask
))
926 goto activate_locked
;
927 if (!mapping
&& page_count(page
) == 1) {
929 if (put_page_testzero(page
))
933 * rare race with speculative reference.
934 * the speculative reference will free
935 * this page shortly, so we may
936 * increment nr_reclaimed here (and
937 * leave it off the LRU).
945 if (!mapping
|| !__remove_mapping(mapping
, page
))
949 * At this point, we have no other references and there is
950 * no way to pick any more up (removed from LRU, removed
951 * from pagecache). Can use non-atomic bitops now (and
952 * we obviously don't have to worry about waking up a process
953 * waiting on the page lock, because there are no references.
955 __clear_page_locked(page
);
960 * Is there need to periodically free_page_list? It would
961 * appear not as the counts should be low
963 list_add(&page
->lru
, &free_pages
);
967 if (PageSwapCache(page
))
968 try_to_free_swap(page
);
970 putback_lru_page(page
);
971 reset_reclaim_mode(sc
);
975 /* Not a candidate for swapping, so reclaim swap space. */
976 if (PageSwapCache(page
) && vm_swap_full())
977 try_to_free_swap(page
);
978 VM_BUG_ON(PageActive(page
));
984 reset_reclaim_mode(sc
);
986 list_add(&page
->lru
, &ret_pages
);
987 VM_BUG_ON(PageLRU(page
) || PageUnevictable(page
));
991 * Tag a zone as congested if all the dirty pages encountered were
992 * backed by a congested BDI. In this case, reclaimers should just
993 * back off and wait for congestion to clear because further reclaim
994 * will encounter the same problem
996 if (nr_dirty
&& nr_dirty
== nr_congested
&& scanning_global_lru(sc
))
997 zone_set_flag(zone
, ZONE_CONGESTED
);
999 free_page_list(&free_pages
);
1001 list_splice(&ret_pages
, page_list
);
1002 count_vm_events(PGACTIVATE
, pgactivate
);
1003 return nr_reclaimed
;
1007 * Attempt to remove the specified page from its LRU. Only take this page
1008 * if it is of the appropriate PageActive status. Pages which are being
1009 * freed elsewhere are also ignored.
1011 * page: page to consider
1012 * mode: one of the LRU isolation modes defined above
1014 * returns 0 on success, -ve errno on failure.
1016 int __isolate_lru_page(struct page
*page
, int mode
, int file
)
1020 /* Only take pages on the LRU. */
1025 * When checking the active state, we need to be sure we are
1026 * dealing with comparible boolean values. Take the logical not
1029 if (mode
!= ISOLATE_BOTH
&& (!PageActive(page
) != !mode
))
1032 if (mode
!= ISOLATE_BOTH
&& page_is_file_cache(page
) != file
)
1036 * When this function is being called for lumpy reclaim, we
1037 * initially look into all LRU pages, active, inactive and
1038 * unevictable; only give shrink_page_list evictable pages.
1040 if (PageUnevictable(page
))
1045 if (likely(get_page_unless_zero(page
))) {
1047 * Be careful not to clear PageLRU until after we're
1048 * sure the page is not being freed elsewhere -- the
1049 * page release code relies on it.
1059 * zone->lru_lock is heavily contended. Some of the functions that
1060 * shrink the lists perform better by taking out a batch of pages
1061 * and working on them outside the LRU lock.
1063 * For pagecache intensive workloads, this function is the hottest
1064 * spot in the kernel (apart from copy_*_user functions).
1066 * Appropriate locks must be held before calling this function.
1068 * @nr_to_scan: The number of pages to look through on the list.
1069 * @src: The LRU list to pull pages off.
1070 * @dst: The temp list to put pages on to.
1071 * @scanned: The number of pages that were scanned.
1072 * @order: The caller's attempted allocation order
1073 * @mode: One of the LRU isolation modes
1074 * @file: True [1] if isolating file [!anon] pages
1076 * returns how many pages were moved onto *@dst.
1078 static unsigned long isolate_lru_pages(unsigned long nr_to_scan
,
1079 struct list_head
*src
, struct list_head
*dst
,
1080 unsigned long *scanned
, int order
, int mode
, int file
)
1082 unsigned long nr_taken
= 0;
1083 unsigned long nr_lumpy_taken
= 0;
1084 unsigned long nr_lumpy_dirty
= 0;
1085 unsigned long nr_lumpy_failed
= 0;
1088 for (scan
= 0; scan
< nr_to_scan
&& !list_empty(src
); scan
++) {
1091 unsigned long end_pfn
;
1092 unsigned long page_pfn
;
1095 page
= lru_to_page(src
);
1096 prefetchw_prev_lru_page(page
, src
, flags
);
1098 VM_BUG_ON(!PageLRU(page
));
1100 switch (__isolate_lru_page(page
, mode
, file
)) {
1102 list_move(&page
->lru
, dst
);
1103 mem_cgroup_del_lru(page
);
1104 nr_taken
+= hpage_nr_pages(page
);
1108 /* else it is being freed elsewhere */
1109 list_move(&page
->lru
, src
);
1110 mem_cgroup_rotate_lru_list(page
, page_lru(page
));
1121 * Attempt to take all pages in the order aligned region
1122 * surrounding the tag page. Only take those pages of
1123 * the same active state as that tag page. We may safely
1124 * round the target page pfn down to the requested order
1125 * as the mem_map is guaranteed valid out to MAX_ORDER,
1126 * where that page is in a different zone we will detect
1127 * it from its zone id and abort this block scan.
1129 zone_id
= page_zone_id(page
);
1130 page_pfn
= page_to_pfn(page
);
1131 pfn
= page_pfn
& ~((1 << order
) - 1);
1132 end_pfn
= pfn
+ (1 << order
);
1133 for (; pfn
< end_pfn
; pfn
++) {
1134 struct page
*cursor_page
;
1136 /* The target page is in the block, ignore it. */
1137 if (unlikely(pfn
== page_pfn
))
1140 /* Avoid holes within the zone. */
1141 if (unlikely(!pfn_valid_within(pfn
)))
1144 cursor_page
= pfn_to_page(pfn
);
1146 /* Check that we have not crossed a zone boundary. */
1147 if (unlikely(page_zone_id(cursor_page
) != zone_id
))
1151 * If we don't have enough swap space, reclaiming of
1152 * anon page which don't already have a swap slot is
1155 if (nr_swap_pages
<= 0 && PageAnon(cursor_page
) &&
1156 !PageSwapCache(cursor_page
))
1159 if (__isolate_lru_page(cursor_page
, mode
, file
) == 0) {
1160 list_move(&cursor_page
->lru
, dst
);
1161 mem_cgroup_del_lru(cursor_page
);
1162 nr_taken
+= hpage_nr_pages(page
);
1164 if (PageDirty(cursor_page
))
1169 * Check if the page is freed already.
1171 * We can't use page_count() as that
1172 * requires compound_head and we don't
1173 * have a pin on the page here. If a
1174 * page is tail, we may or may not
1175 * have isolated the head, so assume
1176 * it's not free, it'd be tricky to
1177 * track the head status without a
1180 if (!PageTail(cursor_page
) &&
1181 !atomic_read(&cursor_page
->_count
))
1187 /* If we break out of the loop above, lumpy reclaim failed */
1194 trace_mm_vmscan_lru_isolate(order
,
1197 nr_lumpy_taken
, nr_lumpy_dirty
, nr_lumpy_failed
,
1202 static unsigned long isolate_pages_global(unsigned long nr
,
1203 struct list_head
*dst
,
1204 unsigned long *scanned
, int order
,
1205 int mode
, struct zone
*z
,
1206 int active
, int file
)
1213 return isolate_lru_pages(nr
, &z
->lru
[lru
].list
, dst
, scanned
, order
,
1218 * clear_active_flags() is a helper for shrink_active_list(), clearing
1219 * any active bits from the pages in the list.
1221 static unsigned long clear_active_flags(struct list_head
*page_list
,
1222 unsigned int *count
)
1228 list_for_each_entry(page
, page_list
, lru
) {
1229 int numpages
= hpage_nr_pages(page
);
1230 lru
= page_lru_base_type(page
);
1231 if (PageActive(page
)) {
1233 ClearPageActive(page
);
1234 nr_active
+= numpages
;
1237 count
[lru
] += numpages
;
1244 * isolate_lru_page - tries to isolate a page from its LRU list
1245 * @page: page to isolate from its LRU list
1247 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1248 * vmstat statistic corresponding to whatever LRU list the page was on.
1250 * Returns 0 if the page was removed from an LRU list.
1251 * Returns -EBUSY if the page was not on an LRU list.
1253 * The returned page will have PageLRU() cleared. If it was found on
1254 * the active list, it will have PageActive set. If it was found on
1255 * the unevictable list, it will have the PageUnevictable bit set. That flag
1256 * may need to be cleared by the caller before letting the page go.
1258 * The vmstat statistic corresponding to the list on which the page was
1259 * found will be decremented.
1262 * (1) Must be called with an elevated refcount on the page. This is a
1263 * fundamentnal difference from isolate_lru_pages (which is called
1264 * without a stable reference).
1265 * (2) the lru_lock must not be held.
1266 * (3) interrupts must be enabled.
1268 int isolate_lru_page(struct page
*page
)
1272 VM_BUG_ON(!page_count(page
));
1274 if (PageLRU(page
)) {
1275 struct zone
*zone
= page_zone(page
);
1277 spin_lock_irq(&zone
->lru_lock
);
1278 if (PageLRU(page
)) {
1279 int lru
= page_lru(page
);
1284 del_page_from_lru_list(zone
, page
, lru
);
1286 spin_unlock_irq(&zone
->lru_lock
);
1292 * Are there way too many processes in the direct reclaim path already?
1294 static int too_many_isolated(struct zone
*zone
, int file
,
1295 struct scan_control
*sc
)
1297 unsigned long inactive
, isolated
;
1299 if (current_is_kswapd())
1302 if (!scanning_global_lru(sc
))
1306 inactive
= zone_page_state(zone
, NR_INACTIVE_FILE
);
1307 isolated
= zone_page_state(zone
, NR_ISOLATED_FILE
);
1309 inactive
= zone_page_state(zone
, NR_INACTIVE_ANON
);
1310 isolated
= zone_page_state(zone
, NR_ISOLATED_ANON
);
1313 return isolated
> inactive
;
1317 * TODO: Try merging with migrations version of putback_lru_pages
1319 static noinline_for_stack
void
1320 putback_lru_pages(struct zone
*zone
, struct scan_control
*sc
,
1321 unsigned long nr_anon
, unsigned long nr_file
,
1322 struct list_head
*page_list
)
1325 struct pagevec pvec
;
1326 struct zone_reclaim_stat
*reclaim_stat
= get_reclaim_stat(zone
, sc
);
1328 pagevec_init(&pvec
, 1);
1331 * Put back any unfreeable pages.
1333 spin_lock(&zone
->lru_lock
);
1334 while (!list_empty(page_list
)) {
1336 page
= lru_to_page(page_list
);
1337 VM_BUG_ON(PageLRU(page
));
1338 list_del(&page
->lru
);
1339 if (unlikely(!page_evictable(page
, NULL
))) {
1340 spin_unlock_irq(&zone
->lru_lock
);
1341 putback_lru_page(page
);
1342 spin_lock_irq(&zone
->lru_lock
);
1346 lru
= page_lru(page
);
1347 add_page_to_lru_list(zone
, page
, lru
);
1348 if (is_active_lru(lru
)) {
1349 int file
= is_file_lru(lru
);
1350 int numpages
= hpage_nr_pages(page
);
1351 reclaim_stat
->recent_rotated
[file
] += numpages
;
1352 if (!scanning_global_lru(sc
))
1353 sc
->memcg_record
->nr_rotated
[file
] += numpages
;
1355 if (!pagevec_add(&pvec
, page
)) {
1356 spin_unlock_irq(&zone
->lru_lock
);
1357 __pagevec_release(&pvec
);
1358 spin_lock_irq(&zone
->lru_lock
);
1361 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
, -nr_anon
);
1362 __mod_zone_page_state(zone
, NR_ISOLATED_FILE
, -nr_file
);
1364 spin_unlock_irq(&zone
->lru_lock
);
1365 pagevec_release(&pvec
);
1368 static noinline_for_stack
void update_isolated_counts(struct zone
*zone
,
1369 struct scan_control
*sc
,
1370 unsigned long *nr_anon
,
1371 unsigned long *nr_file
,
1372 struct list_head
*isolated_list
)
1374 unsigned long nr_active
;
1375 unsigned int count
[NR_LRU_LISTS
] = { 0, };
1376 struct zone_reclaim_stat
*reclaim_stat
= get_reclaim_stat(zone
, sc
);
1378 nr_active
= clear_active_flags(isolated_list
, count
);
1379 __count_vm_events(PGDEACTIVATE
, nr_active
);
1381 __mod_zone_page_state(zone
, NR_ACTIVE_FILE
,
1382 -count
[LRU_ACTIVE_FILE
]);
1383 __mod_zone_page_state(zone
, NR_INACTIVE_FILE
,
1384 -count
[LRU_INACTIVE_FILE
]);
1385 __mod_zone_page_state(zone
, NR_ACTIVE_ANON
,
1386 -count
[LRU_ACTIVE_ANON
]);
1387 __mod_zone_page_state(zone
, NR_INACTIVE_ANON
,
1388 -count
[LRU_INACTIVE_ANON
]);
1390 *nr_anon
= count
[LRU_ACTIVE_ANON
] + count
[LRU_INACTIVE_ANON
];
1391 *nr_file
= count
[LRU_ACTIVE_FILE
] + count
[LRU_INACTIVE_FILE
];
1392 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
, *nr_anon
);
1393 __mod_zone_page_state(zone
, NR_ISOLATED_FILE
, *nr_file
);
1395 reclaim_stat
->recent_scanned
[0] += *nr_anon
;
1396 reclaim_stat
->recent_scanned
[1] += *nr_file
;
1397 if (!scanning_global_lru(sc
)) {
1398 sc
->memcg_record
->nr_scanned
[0] += *nr_anon
;
1399 sc
->memcg_record
->nr_scanned
[1] += *nr_file
;
1404 * Returns true if the caller should wait to clean dirty/writeback pages.
1406 * If we are direct reclaiming for contiguous pages and we do not reclaim
1407 * everything in the list, try again and wait for writeback IO to complete.
1408 * This will stall high-order allocations noticeably. Only do that when really
1409 * need to free the pages under high memory pressure.
1411 static inline bool should_reclaim_stall(unsigned long nr_taken
,
1412 unsigned long nr_freed
,
1414 struct scan_control
*sc
)
1416 int lumpy_stall_priority
;
1418 /* kswapd should not stall on sync IO */
1419 if (current_is_kswapd())
1422 /* Only stall on lumpy reclaim */
1423 if (sc
->reclaim_mode
& RECLAIM_MODE_SINGLE
)
1426 /* If we have relaimed everything on the isolated list, no stall */
1427 if (nr_freed
== nr_taken
)
1431 * For high-order allocations, there are two stall thresholds.
1432 * High-cost allocations stall immediately where as lower
1433 * order allocations such as stacks require the scanning
1434 * priority to be much higher before stalling.
1436 if (sc
->order
> PAGE_ALLOC_COSTLY_ORDER
)
1437 lumpy_stall_priority
= DEF_PRIORITY
;
1439 lumpy_stall_priority
= DEF_PRIORITY
/ 3;
1441 return priority
<= lumpy_stall_priority
;
1445 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1446 * of reclaimed pages
1448 static noinline_for_stack
unsigned long
1449 shrink_inactive_list(unsigned long nr_to_scan
, struct zone
*zone
,
1450 struct scan_control
*sc
, int priority
, int file
)
1452 LIST_HEAD(page_list
);
1453 unsigned long nr_scanned
;
1454 unsigned long nr_reclaimed
= 0;
1455 unsigned long nr_taken
;
1456 unsigned long nr_anon
;
1457 unsigned long nr_file
;
1459 while (unlikely(too_many_isolated(zone
, file
, sc
))) {
1460 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
1462 /* We are about to die and free our memory. Return now. */
1463 if (fatal_signal_pending(current
))
1464 return SWAP_CLUSTER_MAX
;
1467 set_reclaim_mode(priority
, sc
, false);
1469 spin_lock_irq(&zone
->lru_lock
);
1471 if (scanning_global_lru(sc
)) {
1472 nr_taken
= isolate_pages_global(nr_to_scan
,
1473 &page_list
, &nr_scanned
, sc
->order
,
1474 sc
->reclaim_mode
& RECLAIM_MODE_LUMPYRECLAIM
?
1475 ISOLATE_BOTH
: ISOLATE_INACTIVE
,
1477 zone
->pages_scanned
+= nr_scanned
;
1478 if (current_is_kswapd())
1479 __count_zone_vm_events(PGSCAN_KSWAPD
, zone
,
1482 __count_zone_vm_events(PGSCAN_DIRECT
, zone
,
1485 nr_taken
= mem_cgroup_isolate_pages(nr_to_scan
,
1486 &page_list
, &nr_scanned
, sc
->order
,
1487 sc
->reclaim_mode
& RECLAIM_MODE_LUMPYRECLAIM
?
1488 ISOLATE_BOTH
: ISOLATE_INACTIVE
,
1489 zone
, sc
->mem_cgroup
,
1492 * mem_cgroup_isolate_pages() keeps track of
1493 * scanned pages on its own.
1497 if (nr_taken
== 0) {
1498 spin_unlock_irq(&zone
->lru_lock
);
1502 update_isolated_counts(zone
, sc
, &nr_anon
, &nr_file
, &page_list
);
1504 spin_unlock_irq(&zone
->lru_lock
);
1506 nr_reclaimed
= shrink_page_list(&page_list
, zone
, sc
);
1508 /* Check if we should syncronously wait for writeback */
1509 if (should_reclaim_stall(nr_taken
, nr_reclaimed
, priority
, sc
)) {
1510 set_reclaim_mode(priority
, sc
, true);
1511 nr_reclaimed
+= shrink_page_list(&page_list
, zone
, sc
);
1514 if (!scanning_global_lru(sc
))
1515 sc
->memcg_record
->nr_freed
[file
] += nr_reclaimed
;
1517 local_irq_disable();
1518 if (current_is_kswapd())
1519 __count_vm_events(KSWAPD_STEAL
, nr_reclaimed
);
1520 __count_zone_vm_events(PGSTEAL
, zone
, nr_reclaimed
);
1522 putback_lru_pages(zone
, sc
, nr_anon
, nr_file
, &page_list
);
1524 trace_mm_vmscan_lru_shrink_inactive(zone
->zone_pgdat
->node_id
,
1526 nr_scanned
, nr_reclaimed
,
1528 trace_shrink_flags(file
, sc
->reclaim_mode
));
1529 return nr_reclaimed
;
1533 * This moves pages from the active list to the inactive list.
1535 * We move them the other way if the page is referenced by one or more
1536 * processes, from rmap.
1538 * If the pages are mostly unmapped, the processing is fast and it is
1539 * appropriate to hold zone->lru_lock across the whole operation. But if
1540 * the pages are mapped, the processing is slow (page_referenced()) so we
1541 * should drop zone->lru_lock around each page. It's impossible to balance
1542 * this, so instead we remove the pages from the LRU while processing them.
1543 * It is safe to rely on PG_active against the non-LRU pages in here because
1544 * nobody will play with that bit on a non-LRU page.
1546 * The downside is that we have to touch page->_count against each page.
1547 * But we had to alter page->flags anyway.
1550 static void move_active_pages_to_lru(struct zone
*zone
,
1551 struct list_head
*list
,
1554 unsigned long pgmoved
= 0;
1555 struct pagevec pvec
;
1558 pagevec_init(&pvec
, 1);
1560 while (!list_empty(list
)) {
1561 page
= lru_to_page(list
);
1563 VM_BUG_ON(PageLRU(page
));
1566 list_move(&page
->lru
, &zone
->lru
[lru
].list
);
1567 mem_cgroup_add_lru_list(page
, lru
);
1568 pgmoved
+= hpage_nr_pages(page
);
1570 if (!pagevec_add(&pvec
, page
) || list_empty(list
)) {
1571 spin_unlock_irq(&zone
->lru_lock
);
1572 if (buffer_heads_over_limit
)
1573 pagevec_strip(&pvec
);
1574 __pagevec_release(&pvec
);
1575 spin_lock_irq(&zone
->lru_lock
);
1578 __mod_zone_page_state(zone
, NR_LRU_BASE
+ lru
, pgmoved
);
1579 if (!is_active_lru(lru
))
1580 __count_vm_events(PGDEACTIVATE
, pgmoved
);
1583 static void shrink_active_list(unsigned long nr_pages
, struct zone
*zone
,
1584 struct scan_control
*sc
, int priority
, int file
)
1586 unsigned long nr_taken
;
1587 unsigned long pgscanned
;
1588 unsigned long vm_flags
;
1589 LIST_HEAD(l_hold
); /* The pages which were snipped off */
1590 LIST_HEAD(l_active
);
1591 LIST_HEAD(l_inactive
);
1593 struct zone_reclaim_stat
*reclaim_stat
= get_reclaim_stat(zone
, sc
);
1594 unsigned long nr_rotated
= 0;
1597 spin_lock_irq(&zone
->lru_lock
);
1598 if (scanning_global_lru(sc
)) {
1599 nr_taken
= isolate_pages_global(nr_pages
, &l_hold
,
1600 &pgscanned
, sc
->order
,
1601 ISOLATE_ACTIVE
, zone
,
1603 zone
->pages_scanned
+= pgscanned
;
1605 nr_taken
= mem_cgroup_isolate_pages(nr_pages
, &l_hold
,
1606 &pgscanned
, sc
->order
,
1607 ISOLATE_ACTIVE
, zone
,
1608 sc
->mem_cgroup
, 1, file
);
1610 * mem_cgroup_isolate_pages() keeps track of
1611 * scanned pages on its own.
1615 reclaim_stat
->recent_scanned
[file
] += nr_taken
;
1616 if (!scanning_global_lru(sc
))
1617 sc
->memcg_record
->nr_scanned
[file
] += nr_taken
;
1619 __count_zone_vm_events(PGREFILL
, zone
, pgscanned
);
1621 __mod_zone_page_state(zone
, NR_ACTIVE_FILE
, -nr_taken
);
1623 __mod_zone_page_state(zone
, NR_ACTIVE_ANON
, -nr_taken
);
1624 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
+ file
, nr_taken
);
1625 spin_unlock_irq(&zone
->lru_lock
);
1627 while (!list_empty(&l_hold
)) {
1629 page
= lru_to_page(&l_hold
);
1630 list_del(&page
->lru
);
1632 if (unlikely(!page_evictable(page
, NULL
))) {
1633 putback_lru_page(page
);
1637 if (page_referenced(page
, 0, sc
->mem_cgroup
, &vm_flags
)) {
1638 nr_rotated
+= hpage_nr_pages(page
);
1640 * Identify referenced, file-backed active pages and
1641 * give them one more trip around the active list. So
1642 * that executable code get better chances to stay in
1643 * memory under moderate memory pressure. Anon pages
1644 * are not likely to be evicted by use-once streaming
1645 * IO, plus JVM can create lots of anon VM_EXEC pages,
1646 * so we ignore them here.
1648 if ((vm_flags
& VM_EXEC
) && page_is_file_cache(page
)) {
1649 list_add(&page
->lru
, &l_active
);
1654 ClearPageActive(page
); /* we are de-activating */
1655 list_add(&page
->lru
, &l_inactive
);
1659 * Move pages back to the lru list.
1661 spin_lock_irq(&zone
->lru_lock
);
1663 * Count referenced pages from currently used mappings as rotated,
1664 * even though only some of them are actually re-activated. This
1665 * helps balance scan pressure between file and anonymous pages in
1668 reclaim_stat
->recent_rotated
[file
] += nr_rotated
;
1669 if (!scanning_global_lru(sc
))
1670 sc
->memcg_record
->nr_rotated
[file
] += nr_rotated
;
1672 move_active_pages_to_lru(zone
, &l_active
,
1673 LRU_ACTIVE
+ file
* LRU_FILE
);
1674 move_active_pages_to_lru(zone
, &l_inactive
,
1675 LRU_BASE
+ file
* LRU_FILE
);
1676 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
+ file
, -nr_taken
);
1677 spin_unlock_irq(&zone
->lru_lock
);
1681 static int inactive_anon_is_low_global(struct zone
*zone
)
1683 unsigned long active
, inactive
;
1685 active
= zone_page_state(zone
, NR_ACTIVE_ANON
);
1686 inactive
= zone_page_state(zone
, NR_INACTIVE_ANON
);
1688 if (inactive
* zone
->inactive_ratio
< active
)
1695 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1696 * @zone: zone to check
1697 * @sc: scan control of this context
1699 * Returns true if the zone does not have enough inactive anon pages,
1700 * meaning some active anon pages need to be deactivated.
1702 static int inactive_anon_is_low(struct zone
*zone
, struct scan_control
*sc
)
1707 * If we don't have swap space, anonymous page deactivation
1710 if (!total_swap_pages
)
1713 if (scanning_global_lru(sc
))
1714 low
= inactive_anon_is_low_global(zone
);
1716 low
= mem_cgroup_inactive_anon_is_low(sc
->mem_cgroup
);
1720 static inline int inactive_anon_is_low(struct zone
*zone
,
1721 struct scan_control
*sc
)
1727 static int inactive_file_is_low_global(struct zone
*zone
)
1729 unsigned long active
, inactive
;
1731 active
= zone_page_state(zone
, NR_ACTIVE_FILE
);
1732 inactive
= zone_page_state(zone
, NR_INACTIVE_FILE
);
1734 return (active
> inactive
);
1738 * inactive_file_is_low - check if file pages need to be deactivated
1739 * @zone: zone to check
1740 * @sc: scan control of this context
1742 * When the system is doing streaming IO, memory pressure here
1743 * ensures that active file pages get deactivated, until more
1744 * than half of the file pages are on the inactive list.
1746 * Once we get to that situation, protect the system's working
1747 * set from being evicted by disabling active file page aging.
1749 * This uses a different ratio than the anonymous pages, because
1750 * the page cache uses a use-once replacement algorithm.
1752 static int inactive_file_is_low(struct zone
*zone
, struct scan_control
*sc
)
1756 if (scanning_global_lru(sc
))
1757 low
= inactive_file_is_low_global(zone
);
1759 low
= mem_cgroup_inactive_file_is_low(sc
->mem_cgroup
);
1763 static int inactive_list_is_low(struct zone
*zone
, struct scan_control
*sc
,
1767 return inactive_file_is_low(zone
, sc
);
1769 return inactive_anon_is_low(zone
, sc
);
1772 static unsigned long shrink_list(enum lru_list lru
, unsigned long nr_to_scan
,
1773 struct zone
*zone
, struct scan_control
*sc
, int priority
)
1775 int file
= is_file_lru(lru
);
1777 if (is_active_lru(lru
)) {
1778 if (inactive_list_is_low(zone
, sc
, file
))
1779 shrink_active_list(nr_to_scan
, zone
, sc
, priority
, file
);
1783 return shrink_inactive_list(nr_to_scan
, zone
, sc
, priority
, file
);
1786 static int vmscan_swappiness(struct scan_control
*sc
)
1788 if (scanning_global_lru(sc
))
1789 return vm_swappiness
;
1790 return mem_cgroup_swappiness(sc
->mem_cgroup
);
1794 * Determine how aggressively the anon and file LRU lists should be
1795 * scanned. The relative value of each set of LRU lists is determined
1796 * by looking at the fraction of the pages scanned we did rotate back
1797 * onto the active list instead of evict.
1799 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1801 static void get_scan_count(struct zone
*zone
, struct scan_control
*sc
,
1802 unsigned long *nr
, int priority
)
1804 unsigned long anon
, file
, free
;
1805 unsigned long anon_prio
, file_prio
;
1806 unsigned long ap
, fp
;
1807 struct zone_reclaim_stat
*reclaim_stat
= get_reclaim_stat(zone
, sc
);
1808 u64 fraction
[2], denominator
;
1812 unsigned long nr_force_scan
[2];
1815 anon
= zone_nr_lru_pages(zone
, sc
, LRU_ACTIVE_ANON
) +
1816 zone_nr_lru_pages(zone
, sc
, LRU_INACTIVE_ANON
);
1817 file
= zone_nr_lru_pages(zone
, sc
, LRU_ACTIVE_FILE
) +
1818 zone_nr_lru_pages(zone
, sc
, LRU_INACTIVE_FILE
);
1820 if (((anon
+ file
) >> priority
) < SWAP_CLUSTER_MAX
) {
1821 /* kswapd does zone balancing and need to scan this zone */
1822 if (scanning_global_lru(sc
) && current_is_kswapd())
1824 /* memcg may have small limit and need to avoid priority drop */
1825 if (!scanning_global_lru(sc
))
1829 /* If we have no swap space, do not bother scanning anon pages. */
1830 if (!sc
->may_swap
|| (nr_swap_pages
<= 0)) {
1835 nr_force_scan
[0] = 0;
1836 nr_force_scan
[1] = SWAP_CLUSTER_MAX
;
1840 if (scanning_global_lru(sc
)) {
1841 free
= zone_page_state(zone
, NR_FREE_PAGES
);
1842 /* If we have very few page cache pages,
1843 force-scan anon pages. */
1844 if (unlikely(file
+ free
<= high_wmark_pages(zone
))) {
1848 nr_force_scan
[0] = SWAP_CLUSTER_MAX
;
1849 nr_force_scan
[1] = 0;
1855 * With swappiness at 100, anonymous and file have the same priority.
1856 * This scanning priority is essentially the inverse of IO cost.
1858 anon_prio
= vmscan_swappiness(sc
);
1859 file_prio
= 200 - vmscan_swappiness(sc
);
1862 * OK, so we have swap space and a fair amount of page cache
1863 * pages. We use the recently rotated / recently scanned
1864 * ratios to determine how valuable each cache is.
1866 * Because workloads change over time (and to avoid overflow)
1867 * we keep these statistics as a floating average, which ends
1868 * up weighing recent references more than old ones.
1870 * anon in [0], file in [1]
1872 spin_lock_irq(&zone
->lru_lock
);
1873 if (unlikely(reclaim_stat
->recent_scanned
[0] > anon
/ 4)) {
1874 reclaim_stat
->recent_scanned
[0] /= 2;
1875 reclaim_stat
->recent_rotated
[0] /= 2;
1878 if (unlikely(reclaim_stat
->recent_scanned
[1] > file
/ 4)) {
1879 reclaim_stat
->recent_scanned
[1] /= 2;
1880 reclaim_stat
->recent_rotated
[1] /= 2;
1884 * The amount of pressure on anon vs file pages is inversely
1885 * proportional to the fraction of recently scanned pages on
1886 * each list that were recently referenced and in active use.
1888 ap
= (anon_prio
+ 1) * (reclaim_stat
->recent_scanned
[0] + 1);
1889 ap
/= reclaim_stat
->recent_rotated
[0] + 1;
1891 fp
= (file_prio
+ 1) * (reclaim_stat
->recent_scanned
[1] + 1);
1892 fp
/= reclaim_stat
->recent_rotated
[1] + 1;
1893 spin_unlock_irq(&zone
->lru_lock
);
1897 denominator
= ap
+ fp
+ 1;
1899 unsigned long scan
= SWAP_CLUSTER_MAX
;
1900 nr_force_scan
[0] = div64_u64(scan
* ap
, denominator
);
1901 nr_force_scan
[1] = div64_u64(scan
* fp
, denominator
);
1904 for_each_evictable_lru(l
) {
1905 int file
= is_file_lru(l
);
1908 scan
= zone_nr_lru_pages(zone
, sc
, l
);
1909 if (priority
|| noswap
) {
1911 scan
= div64_u64(scan
* fraction
[file
], denominator
);
1915 * If zone is small or memcg is small, nr[l] can be 0.
1916 * This results no-scan on this priority and priority drop down.
1917 * For global direct reclaim, it can visit next zone and tend
1918 * not to have problems. For global kswapd, it's for zone
1919 * balancing and it need to scan a small amounts. When using
1920 * memcg, priority drop can cause big latency. So, it's better
1921 * to scan small amount. See may_noscan above.
1923 if (!scan
&& force_scan
)
1924 scan
= nr_force_scan
[file
];
1930 * Reclaim/compaction depends on a number of pages being freed. To avoid
1931 * disruption to the system, a small number of order-0 pages continue to be
1932 * rotated and reclaimed in the normal fashion. However, by the time we get
1933 * back to the allocator and call try_to_compact_zone(), we ensure that
1934 * there are enough free pages for it to be likely successful
1936 static inline bool should_continue_reclaim(struct zone
*zone
,
1937 unsigned long nr_reclaimed
,
1938 unsigned long nr_scanned
,
1939 struct scan_control
*sc
)
1941 unsigned long pages_for_compaction
;
1942 unsigned long inactive_lru_pages
;
1944 /* If not in reclaim/compaction mode, stop */
1945 if (!(sc
->reclaim_mode
& RECLAIM_MODE_COMPACTION
))
1948 /* Consider stopping depending on scan and reclaim activity */
1949 if (sc
->gfp_mask
& __GFP_REPEAT
) {
1951 * For __GFP_REPEAT allocations, stop reclaiming if the
1952 * full LRU list has been scanned and we are still failing
1953 * to reclaim pages. This full LRU scan is potentially
1954 * expensive but a __GFP_REPEAT caller really wants to succeed
1956 if (!nr_reclaimed
&& !nr_scanned
)
1960 * For non-__GFP_REPEAT allocations which can presumably
1961 * fail without consequence, stop if we failed to reclaim
1962 * any pages from the last SWAP_CLUSTER_MAX number of
1963 * pages that were scanned. This will return to the
1964 * caller faster at the risk reclaim/compaction and
1965 * the resulting allocation attempt fails
1972 * If we have not reclaimed enough pages for compaction and the
1973 * inactive lists are large enough, continue reclaiming
1975 pages_for_compaction
= (2UL << sc
->order
);
1976 inactive_lru_pages
= zone_nr_lru_pages(zone
, sc
, LRU_INACTIVE_ANON
) +
1977 zone_nr_lru_pages(zone
, sc
, LRU_INACTIVE_FILE
);
1978 if (sc
->nr_reclaimed
< pages_for_compaction
&&
1979 inactive_lru_pages
> pages_for_compaction
)
1982 /* If compaction would go ahead or the allocation would succeed, stop */
1983 switch (compaction_suitable(zone
, sc
->order
)) {
1984 case COMPACT_PARTIAL
:
1985 case COMPACT_CONTINUE
:
1993 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1995 static void shrink_zone(int priority
, struct zone
*zone
,
1996 struct scan_control
*sc
)
1998 unsigned long nr
[NR_LRU_LISTS
];
1999 unsigned long nr_to_scan
;
2001 unsigned long nr_reclaimed
, nr_scanned
;
2002 unsigned long nr_to_reclaim
= sc
->nr_to_reclaim
;
2006 nr_scanned
= sc
->nr_scanned
;
2007 get_scan_count(zone
, sc
, nr
, priority
);
2009 while (nr
[LRU_INACTIVE_ANON
] || nr
[LRU_ACTIVE_FILE
] ||
2010 nr
[LRU_INACTIVE_FILE
]) {
2011 for_each_evictable_lru(l
) {
2013 nr_to_scan
= min_t(unsigned long,
2014 nr
[l
], SWAP_CLUSTER_MAX
);
2015 nr
[l
] -= nr_to_scan
;
2017 nr_reclaimed
+= shrink_list(l
, nr_to_scan
,
2018 zone
, sc
, priority
);
2022 * On large memory systems, scan >> priority can become
2023 * really large. This is fine for the starting priority;
2024 * we want to put equal scanning pressure on each zone.
2025 * However, if the VM has a harder time of freeing pages,
2026 * with multiple processes reclaiming pages, the total
2027 * freeing target can get unreasonably large.
2029 if (nr_reclaimed
>= nr_to_reclaim
&& priority
< DEF_PRIORITY
)
2032 sc
->nr_reclaimed
+= nr_reclaimed
;
2035 * Even if we did not try to evict anon pages at all, we want to
2036 * rebalance the anon lru active/inactive ratio.
2038 if (inactive_anon_is_low(zone
, sc
))
2039 shrink_active_list(SWAP_CLUSTER_MAX
, zone
, sc
, priority
, 0);
2041 /* reclaim/compaction might need reclaim to continue */
2042 if (should_continue_reclaim(zone
, nr_reclaimed
,
2043 sc
->nr_scanned
- nr_scanned
, sc
))
2046 throttle_vm_writeout(sc
->gfp_mask
);
2050 * This is the direct reclaim path, for page-allocating processes. We only
2051 * try to reclaim pages from zones which will satisfy the caller's allocation
2054 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2056 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2058 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2059 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2060 * zone defense algorithm.
2062 * If a zone is deemed to be full of pinned pages then just give it a light
2063 * scan then give up on it.
2065 static void shrink_zones(int priority
, struct zonelist
*zonelist
,
2066 struct scan_control
*sc
)
2070 unsigned long nr_soft_reclaimed
;
2071 unsigned long nr_soft_scanned
;
2073 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
2074 gfp_zone(sc
->gfp_mask
), sc
->nodemask
) {
2075 if (!populated_zone(zone
))
2078 * Take care memory controller reclaiming has small influence
2081 if (scanning_global_lru(sc
)) {
2082 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
2084 if (zone
->all_unreclaimable
&& priority
!= DEF_PRIORITY
)
2085 continue; /* Let kswapd poll it */
2087 * This steals pages from memory cgroups over softlimit
2088 * and returns the number of reclaimed pages and
2089 * scanned pages. This works for global memory pressure
2090 * and balancing, not for a memcg's limit.
2092 nr_soft_scanned
= 0;
2093 nr_soft_reclaimed
= mem_cgroup_soft_limit_reclaim(zone
,
2094 sc
->order
, sc
->gfp_mask
,
2096 sc
->nr_reclaimed
+= nr_soft_reclaimed
;
2097 sc
->nr_scanned
+= nr_soft_scanned
;
2098 /* need some check for avoid more shrink_zone() */
2101 shrink_zone(priority
, zone
, sc
);
2105 static bool zone_reclaimable(struct zone
*zone
)
2107 return zone
->pages_scanned
< zone_reclaimable_pages(zone
) * 6;
2110 /* All zones in zonelist are unreclaimable? */
2111 static bool all_unreclaimable(struct zonelist
*zonelist
,
2112 struct scan_control
*sc
)
2117 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
2118 gfp_zone(sc
->gfp_mask
), sc
->nodemask
) {
2119 if (!populated_zone(zone
))
2121 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
2123 if (!zone
->all_unreclaimable
)
2131 * This is the main entry point to direct page reclaim.
2133 * If a full scan of the inactive list fails to free enough memory then we
2134 * are "out of memory" and something needs to be killed.
2136 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2137 * high - the zone may be full of dirty or under-writeback pages, which this
2138 * caller can't do much about. We kick the writeback threads and take explicit
2139 * naps in the hope that some of these pages can be written. But if the
2140 * allocating task holds filesystem locks which prevent writeout this might not
2141 * work, and the allocation attempt will fail.
2143 * returns: 0, if no pages reclaimed
2144 * else, the number of pages reclaimed
2146 static unsigned long do_try_to_free_pages(struct zonelist
*zonelist
,
2147 struct scan_control
*sc
,
2148 struct shrink_control
*shrink
)
2151 unsigned long total_scanned
= 0;
2152 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
2155 unsigned long writeback_threshold
;
2158 delayacct_freepages_start();
2160 if (scanning_global_lru(sc
))
2161 count_vm_event(ALLOCSTALL
);
2163 for (priority
= DEF_PRIORITY
; priority
>= 0; priority
--) {
2166 disable_swap_token(sc
->mem_cgroup
);
2167 shrink_zones(priority
, zonelist
, sc
);
2169 * Don't shrink slabs when reclaiming memory from
2170 * over limit cgroups
2172 if (scanning_global_lru(sc
)) {
2173 unsigned long lru_pages
= 0;
2174 for_each_zone_zonelist(zone
, z
, zonelist
,
2175 gfp_zone(sc
->gfp_mask
)) {
2176 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
2179 lru_pages
+= zone_reclaimable_pages(zone
);
2182 shrink_slab(shrink
, sc
->nr_scanned
, lru_pages
);
2183 if (reclaim_state
) {
2184 sc
->nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
2185 reclaim_state
->reclaimed_slab
= 0;
2188 total_scanned
+= sc
->nr_scanned
;
2189 if (sc
->nr_reclaimed
>= sc
->nr_to_reclaim
)
2193 * Try to write back as many pages as we just scanned. This
2194 * tends to cause slow streaming writers to write data to the
2195 * disk smoothly, at the dirtying rate, which is nice. But
2196 * that's undesirable in laptop mode, where we *want* lumpy
2197 * writeout. So in laptop mode, write out the whole world.
2199 writeback_threshold
= sc
->nr_to_reclaim
+ sc
->nr_to_reclaim
/ 2;
2200 if (total_scanned
> writeback_threshold
) {
2201 wakeup_flusher_threads(laptop_mode
? 0 : total_scanned
);
2202 sc
->may_writepage
= 1;
2205 /* Take a nap, wait for some writeback to complete */
2206 if (!sc
->hibernation_mode
&& sc
->nr_scanned
&&
2207 priority
< DEF_PRIORITY
- 2) {
2208 struct zone
*preferred_zone
;
2210 first_zones_zonelist(zonelist
, gfp_zone(sc
->gfp_mask
),
2211 &cpuset_current_mems_allowed
,
2213 wait_iff_congested(preferred_zone
, BLK_RW_ASYNC
, HZ
/10);
2218 delayacct_freepages_end();
2221 if (sc
->nr_reclaimed
)
2222 return sc
->nr_reclaimed
;
2225 * As hibernation is going on, kswapd is freezed so that it can't mark
2226 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2229 if (oom_killer_disabled
)
2232 /* top priority shrink_zones still had more to do? don't OOM, then */
2233 if (scanning_global_lru(sc
) && !all_unreclaimable(zonelist
, sc
))
2239 unsigned long try_to_free_pages(struct zonelist
*zonelist
, int order
,
2240 gfp_t gfp_mask
, nodemask_t
*nodemask
)
2242 unsigned long nr_reclaimed
;
2243 struct scan_control sc
= {
2244 .gfp_mask
= gfp_mask
,
2245 .may_writepage
= !laptop_mode
,
2246 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
2251 .nodemask
= nodemask
,
2253 struct shrink_control shrink
= {
2254 .gfp_mask
= sc
.gfp_mask
,
2257 trace_mm_vmscan_direct_reclaim_begin(order
,
2261 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
, &shrink
);
2263 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed
);
2265 return nr_reclaimed
;
2268 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2270 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup
*mem
,
2271 gfp_t gfp_mask
, bool noswap
,
2273 struct memcg_scanrecord
*rec
,
2274 unsigned long *scanned
)
2276 struct scan_control sc
= {
2278 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
2279 .may_writepage
= !laptop_mode
,
2281 .may_swap
= !noswap
,
2284 .memcg_record
= rec
,
2288 sc
.gfp_mask
= (gfp_mask
& GFP_RECLAIM_MASK
) |
2289 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
);
2291 trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2295 start
= ktime_get();
2297 * NOTE: Although we can get the priority field, using it
2298 * here is not a good idea, since it limits the pages we can scan.
2299 * if we don't reclaim here, the shrink_zone from balance_pgdat
2300 * will pick up pages from other mem cgroup's as well. We hack
2301 * the priority and make it zero.
2303 shrink_zone(0, zone
, &sc
);
2307 rec
->elapsed
+= ktime_to_ns(ktime_sub(end
, start
));
2308 *scanned
= sc
.nr_scanned
;
2310 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc
.nr_reclaimed
);
2312 return sc
.nr_reclaimed
;
2315 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup
*mem_cont
,
2318 struct memcg_scanrecord
*rec
)
2320 struct zonelist
*zonelist
;
2321 unsigned long nr_reclaimed
;
2324 struct scan_control sc
= {
2325 .may_writepage
= !laptop_mode
,
2327 .may_swap
= !noswap
,
2328 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
2330 .mem_cgroup
= mem_cont
,
2331 .memcg_record
= rec
,
2332 .nodemask
= NULL
, /* we don't care the placement */
2333 .gfp_mask
= (gfp_mask
& GFP_RECLAIM_MASK
) |
2334 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
),
2336 struct shrink_control shrink
= {
2337 .gfp_mask
= sc
.gfp_mask
,
2340 start
= ktime_get();
2342 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2343 * take care of from where we get pages. So the node where we start the
2344 * scan does not need to be the current node.
2346 nid
= mem_cgroup_select_victim_node(mem_cont
);
2348 zonelist
= NODE_DATA(nid
)->node_zonelists
;
2350 trace_mm_vmscan_memcg_reclaim_begin(0,
2354 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
, &shrink
);
2357 rec
->elapsed
+= ktime_to_ns(ktime_sub(end
, start
));
2359 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed
);
2361 return nr_reclaimed
;
2366 * pgdat_balanced is used when checking if a node is balanced for high-order
2367 * allocations. Only zones that meet watermarks and are in a zone allowed
2368 * by the callers classzone_idx are added to balanced_pages. The total of
2369 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2370 * for the node to be considered balanced. Forcing all zones to be balanced
2371 * for high orders can cause excessive reclaim when there are imbalanced zones.
2372 * The choice of 25% is due to
2373 * o a 16M DMA zone that is balanced will not balance a zone on any
2374 * reasonable sized machine
2375 * o On all other machines, the top zone must be at least a reasonable
2376 * percentage of the middle zones. For example, on 32-bit x86, highmem
2377 * would need to be at least 256M for it to be balance a whole node.
2378 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2379 * to balance a node on its own. These seemed like reasonable ratios.
2381 static bool pgdat_balanced(pg_data_t
*pgdat
, unsigned long balanced_pages
,
2384 unsigned long present_pages
= 0;
2387 for (i
= 0; i
<= classzone_idx
; i
++)
2388 present_pages
+= pgdat
->node_zones
[i
].present_pages
;
2390 /* A special case here: if zone has no page, we think it's balanced */
2391 return balanced_pages
>= (present_pages
>> 2);
2394 /* is kswapd sleeping prematurely? */
2395 static bool sleeping_prematurely(pg_data_t
*pgdat
, int order
, long remaining
,
2399 unsigned long balanced
= 0;
2400 bool all_zones_ok
= true;
2402 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2406 /* Check the watermark levels */
2407 for (i
= 0; i
<= classzone_idx
; i
++) {
2408 struct zone
*zone
= pgdat
->node_zones
+ i
;
2410 if (!populated_zone(zone
))
2414 * balance_pgdat() skips over all_unreclaimable after
2415 * DEF_PRIORITY. Effectively, it considers them balanced so
2416 * they must be considered balanced here as well if kswapd
2419 if (zone
->all_unreclaimable
) {
2420 balanced
+= zone
->present_pages
;
2424 if (!zone_watermark_ok_safe(zone
, order
, high_wmark_pages(zone
),
2426 all_zones_ok
= false;
2428 balanced
+= zone
->present_pages
;
2432 * For high-order requests, the balanced zones must contain at least
2433 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2437 return !pgdat_balanced(pgdat
, balanced
, classzone_idx
);
2439 return !all_zones_ok
;
2443 * For kswapd, balance_pgdat() will work across all this node's zones until
2444 * they are all at high_wmark_pages(zone).
2446 * Returns the final order kswapd was reclaiming at
2448 * There is special handling here for zones which are full of pinned pages.
2449 * This can happen if the pages are all mlocked, or if they are all used by
2450 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2451 * What we do is to detect the case where all pages in the zone have been
2452 * scanned twice and there has been zero successful reclaim. Mark the zone as
2453 * dead and from now on, only perform a short scan. Basically we're polling
2454 * the zone for when the problem goes away.
2456 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2457 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2458 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2459 * lower zones regardless of the number of free pages in the lower zones. This
2460 * interoperates with the page allocator fallback scheme to ensure that aging
2461 * of pages is balanced across the zones.
2463 static unsigned long balance_pgdat(pg_data_t
*pgdat
, int order
,
2467 unsigned long balanced
;
2470 int end_zone
= 0; /* Inclusive. 0 = ZONE_DMA */
2471 unsigned long total_scanned
;
2472 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
2473 unsigned long nr_soft_reclaimed
;
2474 unsigned long nr_soft_scanned
;
2475 struct scan_control sc
= {
2476 .gfp_mask
= GFP_KERNEL
,
2480 * kswapd doesn't want to be bailed out while reclaim. because
2481 * we want to put equal scanning pressure on each zone.
2483 .nr_to_reclaim
= ULONG_MAX
,
2487 struct shrink_control shrink
= {
2488 .gfp_mask
= sc
.gfp_mask
,
2492 sc
.nr_reclaimed
= 0;
2493 sc
.may_writepage
= !laptop_mode
;
2494 count_vm_event(PAGEOUTRUN
);
2496 for (priority
= DEF_PRIORITY
; priority
>= 0; priority
--) {
2497 unsigned long lru_pages
= 0;
2498 int has_under_min_watermark_zone
= 0;
2500 /* The swap token gets in the way of swapout... */
2502 disable_swap_token(NULL
);
2508 * Scan in the highmem->dma direction for the highest
2509 * zone which needs scanning
2511 for (i
= pgdat
->nr_zones
- 1; i
>= 0; i
--) {
2512 struct zone
*zone
= pgdat
->node_zones
+ i
;
2514 if (!populated_zone(zone
))
2517 if (zone
->all_unreclaimable
&& priority
!= DEF_PRIORITY
)
2521 * Do some background aging of the anon list, to give
2522 * pages a chance to be referenced before reclaiming.
2524 if (inactive_anon_is_low(zone
, &sc
))
2525 shrink_active_list(SWAP_CLUSTER_MAX
, zone
,
2528 if (!zone_watermark_ok_safe(zone
, order
,
2529 high_wmark_pages(zone
), 0, 0)) {
2533 /* If balanced, clear the congested flag */
2534 zone_clear_flag(zone
, ZONE_CONGESTED
);
2540 for (i
= 0; i
<= end_zone
; i
++) {
2541 struct zone
*zone
= pgdat
->node_zones
+ i
;
2543 lru_pages
+= zone_reclaimable_pages(zone
);
2547 * Now scan the zone in the dma->highmem direction, stopping
2548 * at the last zone which needs scanning.
2550 * We do this because the page allocator works in the opposite
2551 * direction. This prevents the page allocator from allocating
2552 * pages behind kswapd's direction of progress, which would
2553 * cause too much scanning of the lower zones.
2555 for (i
= 0; i
<= end_zone
; i
++) {
2556 struct zone
*zone
= pgdat
->node_zones
+ i
;
2558 unsigned long balance_gap
;
2560 if (!populated_zone(zone
))
2563 if (zone
->all_unreclaimable
&& priority
!= DEF_PRIORITY
)
2568 nr_soft_scanned
= 0;
2570 * Call soft limit reclaim before calling shrink_zone.
2572 nr_soft_reclaimed
= mem_cgroup_soft_limit_reclaim(zone
,
2575 sc
.nr_reclaimed
+= nr_soft_reclaimed
;
2576 total_scanned
+= nr_soft_scanned
;
2579 * We put equal pressure on every zone, unless
2580 * one zone has way too many pages free
2581 * already. The "too many pages" is defined
2582 * as the high wmark plus a "gap" where the
2583 * gap is either the low watermark or 1%
2584 * of the zone, whichever is smaller.
2586 balance_gap
= min(low_wmark_pages(zone
),
2587 (zone
->present_pages
+
2588 KSWAPD_ZONE_BALANCE_GAP_RATIO
-1) /
2589 KSWAPD_ZONE_BALANCE_GAP_RATIO
);
2590 if (!zone_watermark_ok_safe(zone
, order
,
2591 high_wmark_pages(zone
) + balance_gap
,
2593 shrink_zone(priority
, zone
, &sc
);
2595 reclaim_state
->reclaimed_slab
= 0;
2596 nr_slab
= shrink_slab(&shrink
, sc
.nr_scanned
, lru_pages
);
2597 sc
.nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
2598 total_scanned
+= sc
.nr_scanned
;
2600 if (nr_slab
== 0 && !zone_reclaimable(zone
))
2601 zone
->all_unreclaimable
= 1;
2605 * If we've done a decent amount of scanning and
2606 * the reclaim ratio is low, start doing writepage
2607 * even in laptop mode
2609 if (total_scanned
> SWAP_CLUSTER_MAX
* 2 &&
2610 total_scanned
> sc
.nr_reclaimed
+ sc
.nr_reclaimed
/ 2)
2611 sc
.may_writepage
= 1;
2613 if (zone
->all_unreclaimable
) {
2614 if (end_zone
&& end_zone
== i
)
2619 if (!zone_watermark_ok_safe(zone
, order
,
2620 high_wmark_pages(zone
), end_zone
, 0)) {
2623 * We are still under min water mark. This
2624 * means that we have a GFP_ATOMIC allocation
2625 * failure risk. Hurry up!
2627 if (!zone_watermark_ok_safe(zone
, order
,
2628 min_wmark_pages(zone
), end_zone
, 0))
2629 has_under_min_watermark_zone
= 1;
2632 * If a zone reaches its high watermark,
2633 * consider it to be no longer congested. It's
2634 * possible there are dirty pages backed by
2635 * congested BDIs but as pressure is relieved,
2636 * spectulatively avoid congestion waits
2638 zone_clear_flag(zone
, ZONE_CONGESTED
);
2639 if (i
<= *classzone_idx
)
2640 balanced
+= zone
->present_pages
;
2644 if (all_zones_ok
|| (order
&& pgdat_balanced(pgdat
, balanced
, *classzone_idx
)))
2645 break; /* kswapd: all done */
2647 * OK, kswapd is getting into trouble. Take a nap, then take
2648 * another pass across the zones.
2650 if (total_scanned
&& (priority
< DEF_PRIORITY
- 2)) {
2651 if (has_under_min_watermark_zone
)
2652 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT
);
2654 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
2658 * We do this so kswapd doesn't build up large priorities for
2659 * example when it is freeing in parallel with allocators. It
2660 * matches the direct reclaim path behaviour in terms of impact
2661 * on zone->*_priority.
2663 if (sc
.nr_reclaimed
>= SWAP_CLUSTER_MAX
)
2669 * order-0: All zones must meet high watermark for a balanced node
2670 * high-order: Balanced zones must make up at least 25% of the node
2671 * for the node to be balanced
2673 if (!(all_zones_ok
|| (order
&& pgdat_balanced(pgdat
, balanced
, *classzone_idx
)))) {
2679 * Fragmentation may mean that the system cannot be
2680 * rebalanced for high-order allocations in all zones.
2681 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2682 * it means the zones have been fully scanned and are still
2683 * not balanced. For high-order allocations, there is
2684 * little point trying all over again as kswapd may
2687 * Instead, recheck all watermarks at order-0 as they
2688 * are the most important. If watermarks are ok, kswapd will go
2689 * back to sleep. High-order users can still perform direct
2690 * reclaim if they wish.
2692 if (sc
.nr_reclaimed
< SWAP_CLUSTER_MAX
)
2693 order
= sc
.order
= 0;
2699 * If kswapd was reclaiming at a higher order, it has the option of
2700 * sleeping without all zones being balanced. Before it does, it must
2701 * ensure that the watermarks for order-0 on *all* zones are met and
2702 * that the congestion flags are cleared. The congestion flag must
2703 * be cleared as kswapd is the only mechanism that clears the flag
2704 * and it is potentially going to sleep here.
2707 for (i
= 0; i
<= end_zone
; i
++) {
2708 struct zone
*zone
= pgdat
->node_zones
+ i
;
2710 if (!populated_zone(zone
))
2713 if (zone
->all_unreclaimable
&& priority
!= DEF_PRIORITY
)
2716 /* Confirm the zone is balanced for order-0 */
2717 if (!zone_watermark_ok(zone
, 0,
2718 high_wmark_pages(zone
), 0, 0)) {
2719 order
= sc
.order
= 0;
2723 /* If balanced, clear the congested flag */
2724 zone_clear_flag(zone
, ZONE_CONGESTED
);
2729 * Return the order we were reclaiming at so sleeping_prematurely()
2730 * makes a decision on the order we were last reclaiming at. However,
2731 * if another caller entered the allocator slow path while kswapd
2732 * was awake, order will remain at the higher level
2734 *classzone_idx
= end_zone
;
2738 static void kswapd_try_to_sleep(pg_data_t
*pgdat
, int order
, int classzone_idx
)
2743 if (freezing(current
) || kthread_should_stop())
2746 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
2748 /* Try to sleep for a short interval */
2749 if (!sleeping_prematurely(pgdat
, order
, remaining
, classzone_idx
)) {
2750 remaining
= schedule_timeout(HZ
/10);
2751 finish_wait(&pgdat
->kswapd_wait
, &wait
);
2752 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
2756 * After a short sleep, check if it was a premature sleep. If not, then
2757 * go fully to sleep until explicitly woken up.
2759 if (!sleeping_prematurely(pgdat
, order
, remaining
, classzone_idx
)) {
2760 trace_mm_vmscan_kswapd_sleep(pgdat
->node_id
);
2763 * vmstat counters are not perfectly accurate and the estimated
2764 * value for counters such as NR_FREE_PAGES can deviate from the
2765 * true value by nr_online_cpus * threshold. To avoid the zone
2766 * watermarks being breached while under pressure, we reduce the
2767 * per-cpu vmstat threshold while kswapd is awake and restore
2768 * them before going back to sleep.
2770 set_pgdat_percpu_threshold(pgdat
, calculate_normal_threshold
);
2772 set_pgdat_percpu_threshold(pgdat
, calculate_pressure_threshold
);
2775 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY
);
2777 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY
);
2779 finish_wait(&pgdat
->kswapd_wait
, &wait
);
2783 * The background pageout daemon, started as a kernel thread
2784 * from the init process.
2786 * This basically trickles out pages so that we have _some_
2787 * free memory available even if there is no other activity
2788 * that frees anything up. This is needed for things like routing
2789 * etc, where we otherwise might have all activity going on in
2790 * asynchronous contexts that cannot page things out.
2792 * If there are applications that are active memory-allocators
2793 * (most normal use), this basically shouldn't matter.
2795 static int kswapd(void *p
)
2797 unsigned long order
, new_order
;
2798 int classzone_idx
, new_classzone_idx
;
2799 pg_data_t
*pgdat
= (pg_data_t
*)p
;
2800 struct task_struct
*tsk
= current
;
2802 struct reclaim_state reclaim_state
= {
2803 .reclaimed_slab
= 0,
2805 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
2807 lockdep_set_current_reclaim_state(GFP_KERNEL
);
2809 if (!cpumask_empty(cpumask
))
2810 set_cpus_allowed_ptr(tsk
, cpumask
);
2811 current
->reclaim_state
= &reclaim_state
;
2814 * Tell the memory management that we're a "memory allocator",
2815 * and that if we need more memory we should get access to it
2816 * regardless (see "__alloc_pages()"). "kswapd" should
2817 * never get caught in the normal page freeing logic.
2819 * (Kswapd normally doesn't need memory anyway, but sometimes
2820 * you need a small amount of memory in order to be able to
2821 * page out something else, and this flag essentially protects
2822 * us from recursively trying to free more memory as we're
2823 * trying to free the first piece of memory in the first place).
2825 tsk
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
;
2828 order
= new_order
= 0;
2829 classzone_idx
= new_classzone_idx
= pgdat
->nr_zones
- 1;
2834 * If the last balance_pgdat was unsuccessful it's unlikely a
2835 * new request of a similar or harder type will succeed soon
2836 * so consider going to sleep on the basis we reclaimed at
2838 if (classzone_idx
>= new_classzone_idx
&& order
== new_order
) {
2839 new_order
= pgdat
->kswapd_max_order
;
2840 new_classzone_idx
= pgdat
->classzone_idx
;
2841 pgdat
->kswapd_max_order
= 0;
2842 pgdat
->classzone_idx
= pgdat
->nr_zones
- 1;
2845 if (order
< new_order
|| classzone_idx
> new_classzone_idx
) {
2847 * Don't sleep if someone wants a larger 'order'
2848 * allocation or has tigher zone constraints
2851 classzone_idx
= new_classzone_idx
;
2853 kswapd_try_to_sleep(pgdat
, order
, classzone_idx
);
2854 order
= pgdat
->kswapd_max_order
;
2855 classzone_idx
= pgdat
->classzone_idx
;
2856 pgdat
->kswapd_max_order
= 0;
2857 pgdat
->classzone_idx
= pgdat
->nr_zones
- 1;
2860 ret
= try_to_freeze();
2861 if (kthread_should_stop())
2865 * We can speed up thawing tasks if we don't call balance_pgdat
2866 * after returning from the refrigerator
2869 trace_mm_vmscan_kswapd_wake(pgdat
->node_id
, order
);
2870 order
= balance_pgdat(pgdat
, order
, &classzone_idx
);
2877 * A zone is low on free memory, so wake its kswapd task to service it.
2879 void wakeup_kswapd(struct zone
*zone
, int order
, enum zone_type classzone_idx
)
2883 if (!populated_zone(zone
))
2886 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
2888 pgdat
= zone
->zone_pgdat
;
2889 if (pgdat
->kswapd_max_order
< order
) {
2890 pgdat
->kswapd_max_order
= order
;
2891 pgdat
->classzone_idx
= min(pgdat
->classzone_idx
, classzone_idx
);
2893 if (!waitqueue_active(&pgdat
->kswapd_wait
))
2895 if (zone_watermark_ok_safe(zone
, order
, low_wmark_pages(zone
), 0, 0))
2898 trace_mm_vmscan_wakeup_kswapd(pgdat
->node_id
, zone_idx(zone
), order
);
2899 wake_up_interruptible(&pgdat
->kswapd_wait
);
2903 * The reclaimable count would be mostly accurate.
2904 * The less reclaimable pages may be
2905 * - mlocked pages, which will be moved to unevictable list when encountered
2906 * - mapped pages, which may require several travels to be reclaimed
2907 * - dirty pages, which is not "instantly" reclaimable
2909 unsigned long global_reclaimable_pages(void)
2913 nr
= global_page_state(NR_ACTIVE_FILE
) +
2914 global_page_state(NR_INACTIVE_FILE
);
2916 if (nr_swap_pages
> 0)
2917 nr
+= global_page_state(NR_ACTIVE_ANON
) +
2918 global_page_state(NR_INACTIVE_ANON
);
2923 unsigned long zone_reclaimable_pages(struct zone
*zone
)
2927 nr
= zone_page_state(zone
, NR_ACTIVE_FILE
) +
2928 zone_page_state(zone
, NR_INACTIVE_FILE
);
2930 if (nr_swap_pages
> 0)
2931 nr
+= zone_page_state(zone
, NR_ACTIVE_ANON
) +
2932 zone_page_state(zone
, NR_INACTIVE_ANON
);
2937 #ifdef CONFIG_HIBERNATION
2939 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2942 * Rather than trying to age LRUs the aim is to preserve the overall
2943 * LRU order by reclaiming preferentially
2944 * inactive > active > active referenced > active mapped
2946 unsigned long shrink_all_memory(unsigned long nr_to_reclaim
)
2948 struct reclaim_state reclaim_state
;
2949 struct scan_control sc
= {
2950 .gfp_mask
= GFP_HIGHUSER_MOVABLE
,
2954 .nr_to_reclaim
= nr_to_reclaim
,
2955 .hibernation_mode
= 1,
2958 struct shrink_control shrink
= {
2959 .gfp_mask
= sc
.gfp_mask
,
2961 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), sc
.gfp_mask
);
2962 struct task_struct
*p
= current
;
2963 unsigned long nr_reclaimed
;
2965 p
->flags
|= PF_MEMALLOC
;
2966 lockdep_set_current_reclaim_state(sc
.gfp_mask
);
2967 reclaim_state
.reclaimed_slab
= 0;
2968 p
->reclaim_state
= &reclaim_state
;
2970 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
, &shrink
);
2972 p
->reclaim_state
= NULL
;
2973 lockdep_clear_current_reclaim_state();
2974 p
->flags
&= ~PF_MEMALLOC
;
2976 return nr_reclaimed
;
2978 #endif /* CONFIG_HIBERNATION */
2980 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2981 not required for correctness. So if the last cpu in a node goes
2982 away, we get changed to run anywhere: as the first one comes back,
2983 restore their cpu bindings. */
2984 static int __devinit
cpu_callback(struct notifier_block
*nfb
,
2985 unsigned long action
, void *hcpu
)
2989 if (action
== CPU_ONLINE
|| action
== CPU_ONLINE_FROZEN
) {
2990 for_each_node_state(nid
, N_HIGH_MEMORY
) {
2991 pg_data_t
*pgdat
= NODE_DATA(nid
);
2992 const struct cpumask
*mask
;
2994 mask
= cpumask_of_node(pgdat
->node_id
);
2996 if (cpumask_any_and(cpu_online_mask
, mask
) < nr_cpu_ids
)
2997 /* One of our CPUs online: restore mask */
2998 set_cpus_allowed_ptr(pgdat
->kswapd
, mask
);
3005 * This kswapd start function will be called by init and node-hot-add.
3006 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3008 int kswapd_run(int nid
)
3010 pg_data_t
*pgdat
= NODE_DATA(nid
);
3016 pgdat
->kswapd
= kthread_run(kswapd
, pgdat
, "kswapd%d", nid
);
3017 if (IS_ERR(pgdat
->kswapd
)) {
3018 /* failure at boot is fatal */
3019 BUG_ON(system_state
== SYSTEM_BOOTING
);
3020 printk("Failed to start kswapd on node %d\n",nid
);
3027 * Called by memory hotplug when all memory in a node is offlined.
3029 void kswapd_stop(int nid
)
3031 struct task_struct
*kswapd
= NODE_DATA(nid
)->kswapd
;
3034 kthread_stop(kswapd
);
3037 static int __init
kswapd_init(void)
3042 for_each_node_state(nid
, N_HIGH_MEMORY
)
3044 hotcpu_notifier(cpu_callback
, 0);
3048 module_init(kswapd_init
)
3054 * If non-zero call zone_reclaim when the number of free pages falls below
3057 int zone_reclaim_mode __read_mostly
;
3059 #define RECLAIM_OFF 0
3060 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3061 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3062 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3065 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3066 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3069 #define ZONE_RECLAIM_PRIORITY 4
3072 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3075 int sysctl_min_unmapped_ratio
= 1;
3078 * If the number of slab pages in a zone grows beyond this percentage then
3079 * slab reclaim needs to occur.
3081 int sysctl_min_slab_ratio
= 5;
3083 static inline unsigned long zone_unmapped_file_pages(struct zone
*zone
)
3085 unsigned long file_mapped
= zone_page_state(zone
, NR_FILE_MAPPED
);
3086 unsigned long file_lru
= zone_page_state(zone
, NR_INACTIVE_FILE
) +
3087 zone_page_state(zone
, NR_ACTIVE_FILE
);
3090 * It's possible for there to be more file mapped pages than
3091 * accounted for by the pages on the file LRU lists because
3092 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3094 return (file_lru
> file_mapped
) ? (file_lru
- file_mapped
) : 0;
3097 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3098 static long zone_pagecache_reclaimable(struct zone
*zone
)
3100 long nr_pagecache_reclaimable
;
3104 * If RECLAIM_SWAP is set, then all file pages are considered
3105 * potentially reclaimable. Otherwise, we have to worry about
3106 * pages like swapcache and zone_unmapped_file_pages() provides
3109 if (zone_reclaim_mode
& RECLAIM_SWAP
)
3110 nr_pagecache_reclaimable
= zone_page_state(zone
, NR_FILE_PAGES
);
3112 nr_pagecache_reclaimable
= zone_unmapped_file_pages(zone
);
3114 /* If we can't clean pages, remove dirty pages from consideration */
3115 if (!(zone_reclaim_mode
& RECLAIM_WRITE
))
3116 delta
+= zone_page_state(zone
, NR_FILE_DIRTY
);
3118 /* Watch for any possible underflows due to delta */
3119 if (unlikely(delta
> nr_pagecache_reclaimable
))
3120 delta
= nr_pagecache_reclaimable
;
3122 return nr_pagecache_reclaimable
- delta
;
3126 * Try to free up some pages from this zone through reclaim.
3128 static int __zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
3130 /* Minimum pages needed in order to stay on node */
3131 const unsigned long nr_pages
= 1 << order
;
3132 struct task_struct
*p
= current
;
3133 struct reclaim_state reclaim_state
;
3135 struct scan_control sc
= {
3136 .may_writepage
= !!(zone_reclaim_mode
& RECLAIM_WRITE
),
3137 .may_unmap
= !!(zone_reclaim_mode
& RECLAIM_SWAP
),
3139 .nr_to_reclaim
= max_t(unsigned long, nr_pages
,
3141 .gfp_mask
= gfp_mask
,
3144 struct shrink_control shrink
= {
3145 .gfp_mask
= sc
.gfp_mask
,
3147 unsigned long nr_slab_pages0
, nr_slab_pages1
;
3151 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3152 * and we also need to be able to write out pages for RECLAIM_WRITE
3155 p
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
;
3156 lockdep_set_current_reclaim_state(gfp_mask
);
3157 reclaim_state
.reclaimed_slab
= 0;
3158 p
->reclaim_state
= &reclaim_state
;
3160 if (zone_pagecache_reclaimable(zone
) > zone
->min_unmapped_pages
) {
3162 * Free memory by calling shrink zone with increasing
3163 * priorities until we have enough memory freed.
3165 priority
= ZONE_RECLAIM_PRIORITY
;
3167 shrink_zone(priority
, zone
, &sc
);
3169 } while (priority
>= 0 && sc
.nr_reclaimed
< nr_pages
);
3172 nr_slab_pages0
= zone_page_state(zone
, NR_SLAB_RECLAIMABLE
);
3173 if (nr_slab_pages0
> zone
->min_slab_pages
) {
3175 * shrink_slab() does not currently allow us to determine how
3176 * many pages were freed in this zone. So we take the current
3177 * number of slab pages and shake the slab until it is reduced
3178 * by the same nr_pages that we used for reclaiming unmapped
3181 * Note that shrink_slab will free memory on all zones and may
3185 unsigned long lru_pages
= zone_reclaimable_pages(zone
);
3187 /* No reclaimable slab or very low memory pressure */
3188 if (!shrink_slab(&shrink
, sc
.nr_scanned
, lru_pages
))
3191 /* Freed enough memory */
3192 nr_slab_pages1
= zone_page_state(zone
,
3193 NR_SLAB_RECLAIMABLE
);
3194 if (nr_slab_pages1
+ nr_pages
<= nr_slab_pages0
)
3199 * Update nr_reclaimed by the number of slab pages we
3200 * reclaimed from this zone.
3202 nr_slab_pages1
= zone_page_state(zone
, NR_SLAB_RECLAIMABLE
);
3203 if (nr_slab_pages1
< nr_slab_pages0
)
3204 sc
.nr_reclaimed
+= nr_slab_pages0
- nr_slab_pages1
;
3207 p
->reclaim_state
= NULL
;
3208 current
->flags
&= ~(PF_MEMALLOC
| PF_SWAPWRITE
);
3209 lockdep_clear_current_reclaim_state();
3210 return sc
.nr_reclaimed
>= nr_pages
;
3213 int zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
3219 * Zone reclaim reclaims unmapped file backed pages and
3220 * slab pages if we are over the defined limits.
3222 * A small portion of unmapped file backed pages is needed for
3223 * file I/O otherwise pages read by file I/O will be immediately
3224 * thrown out if the zone is overallocated. So we do not reclaim
3225 * if less than a specified percentage of the zone is used by
3226 * unmapped file backed pages.
3228 if (zone_pagecache_reclaimable(zone
) <= zone
->min_unmapped_pages
&&
3229 zone_page_state(zone
, NR_SLAB_RECLAIMABLE
) <= zone
->min_slab_pages
)
3230 return ZONE_RECLAIM_FULL
;
3232 if (zone
->all_unreclaimable
)
3233 return ZONE_RECLAIM_FULL
;
3236 * Do not scan if the allocation should not be delayed.
3238 if (!(gfp_mask
& __GFP_WAIT
) || (current
->flags
& PF_MEMALLOC
))
3239 return ZONE_RECLAIM_NOSCAN
;
3242 * Only run zone reclaim on the local zone or on zones that do not
3243 * have associated processors. This will favor the local processor
3244 * over remote processors and spread off node memory allocations
3245 * as wide as possible.
3247 node_id
= zone_to_nid(zone
);
3248 if (node_state(node_id
, N_CPU
) && node_id
!= numa_node_id())
3249 return ZONE_RECLAIM_NOSCAN
;
3251 if (zone_test_and_set_flag(zone
, ZONE_RECLAIM_LOCKED
))
3252 return ZONE_RECLAIM_NOSCAN
;
3254 ret
= __zone_reclaim(zone
, gfp_mask
, order
);
3255 zone_clear_flag(zone
, ZONE_RECLAIM_LOCKED
);
3258 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED
);
3265 * page_evictable - test whether a page is evictable
3266 * @page: the page to test
3267 * @vma: the VMA in which the page is or will be mapped, may be NULL
3269 * Test whether page is evictable--i.e., should be placed on active/inactive
3270 * lists vs unevictable list. The vma argument is !NULL when called from the
3271 * fault path to determine how to instantate a new page.
3273 * Reasons page might not be evictable:
3274 * (1) page's mapping marked unevictable
3275 * (2) page is part of an mlocked VMA
3278 int page_evictable(struct page
*page
, struct vm_area_struct
*vma
)
3281 if (mapping_unevictable(page_mapping(page
)))
3284 if (PageMlocked(page
) || (vma
&& is_mlocked_vma(vma
, page
)))
3291 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3292 * @page: page to check evictability and move to appropriate lru list
3293 * @zone: zone page is in
3295 * Checks a page for evictability and moves the page to the appropriate
3298 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3299 * have PageUnevictable set.
3301 static void check_move_unevictable_page(struct page
*page
, struct zone
*zone
)
3303 VM_BUG_ON(PageActive(page
));
3306 ClearPageUnevictable(page
);
3307 if (page_evictable(page
, NULL
)) {
3308 enum lru_list l
= page_lru_base_type(page
);
3310 __dec_zone_state(zone
, NR_UNEVICTABLE
);
3311 list_move(&page
->lru
, &zone
->lru
[l
].list
);
3312 mem_cgroup_move_lists(page
, LRU_UNEVICTABLE
, l
);
3313 __inc_zone_state(zone
, NR_INACTIVE_ANON
+ l
);
3314 __count_vm_event(UNEVICTABLE_PGRESCUED
);
3317 * rotate unevictable list
3319 SetPageUnevictable(page
);
3320 list_move(&page
->lru
, &zone
->lru
[LRU_UNEVICTABLE
].list
);
3321 mem_cgroup_rotate_lru_list(page
, LRU_UNEVICTABLE
);
3322 if (page_evictable(page
, NULL
))
3328 * scan_mapping_unevictable_pages - scan an address space for evictable pages
3329 * @mapping: struct address_space to scan for evictable pages
3331 * Scan all pages in mapping. Check unevictable pages for
3332 * evictability and move them to the appropriate zone lru list.
3334 void scan_mapping_unevictable_pages(struct address_space
*mapping
)
3337 pgoff_t end
= (i_size_read(mapping
->host
) + PAGE_CACHE_SIZE
- 1) >>
3340 struct pagevec pvec
;
3342 if (mapping
->nrpages
== 0)
3345 pagevec_init(&pvec
, 0);
3346 while (next
< end
&&
3347 pagevec_lookup(&pvec
, mapping
, next
, PAGEVEC_SIZE
)) {
3353 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
3354 struct page
*page
= pvec
.pages
[i
];
3355 pgoff_t page_index
= page
->index
;
3356 struct zone
*pagezone
= page_zone(page
);
3359 if (page_index
> next
)
3363 if (pagezone
!= zone
) {
3365 spin_unlock_irq(&zone
->lru_lock
);
3367 spin_lock_irq(&zone
->lru_lock
);
3370 if (PageLRU(page
) && PageUnevictable(page
))
3371 check_move_unevictable_page(page
, zone
);
3374 spin_unlock_irq(&zone
->lru_lock
);
3375 pagevec_release(&pvec
);
3377 count_vm_events(UNEVICTABLE_PGSCANNED
, pg_scanned
);
3383 * scan_zone_unevictable_pages - check unevictable list for evictable pages
3384 * @zone - zone of which to scan the unevictable list
3386 * Scan @zone's unevictable LRU lists to check for pages that have become
3387 * evictable. Move those that have to @zone's inactive list where they
3388 * become candidates for reclaim, unless shrink_inactive_zone() decides
3389 * to reactivate them. Pages that are still unevictable are rotated
3390 * back onto @zone's unevictable list.
3392 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
3393 static void scan_zone_unevictable_pages(struct zone
*zone
)
3395 struct list_head
*l_unevictable
= &zone
->lru
[LRU_UNEVICTABLE
].list
;
3397 unsigned long nr_to_scan
= zone_page_state(zone
, NR_UNEVICTABLE
);
3399 while (nr_to_scan
> 0) {
3400 unsigned long batch_size
= min(nr_to_scan
,
3401 SCAN_UNEVICTABLE_BATCH_SIZE
);
3403 spin_lock_irq(&zone
->lru_lock
);
3404 for (scan
= 0; scan
< batch_size
; scan
++) {
3405 struct page
*page
= lru_to_page(l_unevictable
);
3407 if (!trylock_page(page
))
3410 prefetchw_prev_lru_page(page
, l_unevictable
, flags
);
3412 if (likely(PageLRU(page
) && PageUnevictable(page
)))
3413 check_move_unevictable_page(page
, zone
);
3417 spin_unlock_irq(&zone
->lru_lock
);
3419 nr_to_scan
-= batch_size
;
3425 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
3427 * A really big hammer: scan all zones' unevictable LRU lists to check for
3428 * pages that have become evictable. Move those back to the zones'
3429 * inactive list where they become candidates for reclaim.
3430 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
3431 * and we add swap to the system. As such, it runs in the context of a task
3432 * that has possibly/probably made some previously unevictable pages
3435 static void scan_all_zones_unevictable_pages(void)
3439 for_each_zone(zone
) {
3440 scan_zone_unevictable_pages(zone
);
3445 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3446 * all nodes' unevictable lists for evictable pages
3448 unsigned long scan_unevictable_pages
;
3450 int scan_unevictable_handler(struct ctl_table
*table
, int write
,
3451 void __user
*buffer
,
3452 size_t *length
, loff_t
*ppos
)
3454 proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
3456 if (write
&& *(unsigned long *)table
->data
)
3457 scan_all_zones_unevictable_pages();
3459 scan_unevictable_pages
= 0;
3465 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3466 * a specified node's per zone unevictable lists for evictable pages.
3469 static ssize_t
read_scan_unevictable_node(struct sys_device
*dev
,
3470 struct sysdev_attribute
*attr
,
3473 return sprintf(buf
, "0\n"); /* always zero; should fit... */
3476 static ssize_t
write_scan_unevictable_node(struct sys_device
*dev
,
3477 struct sysdev_attribute
*attr
,
3478 const char *buf
, size_t count
)
3480 struct zone
*node_zones
= NODE_DATA(dev
->id
)->node_zones
;
3483 unsigned long req
= strict_strtoul(buf
, 10, &res
);
3486 return 1; /* zero is no-op */
3488 for (zone
= node_zones
; zone
- node_zones
< MAX_NR_ZONES
; ++zone
) {
3489 if (!populated_zone(zone
))
3491 scan_zone_unevictable_pages(zone
);
3497 static SYSDEV_ATTR(scan_unevictable_pages
, S_IRUGO
| S_IWUSR
,
3498 read_scan_unevictable_node
,
3499 write_scan_unevictable_node
);
3501 int scan_unevictable_register_node(struct node
*node
)
3503 return sysdev_create_file(&node
->sysdev
, &attr_scan_unevictable_pages
);
3506 void scan_unevictable_unregister_node(struct node
*node
)
3508 sysdev_remove_file(&node
->sysdev
, &attr_scan_unevictable_pages
);