4 * Copyright (C) 1991, 1992 Linus Torvalds
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/freezer.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54 #include <linux/writeback.h>
55 #include <linux/shm.h>
57 #include <asm/uaccess.h>
58 #include <asm/unistd.h>
59 #include <asm/pgtable.h>
60 #include <asm/mmu_context.h>
62 static void exit_mm(struct task_struct
* tsk
);
64 static void __unhash_process(struct task_struct
*p
, bool group_dead
)
67 detach_pid(p
, PIDTYPE_PID
);
69 detach_pid(p
, PIDTYPE_PGID
);
70 detach_pid(p
, PIDTYPE_SID
);
72 list_del_rcu(&p
->tasks
);
73 list_del_init(&p
->sibling
);
74 __this_cpu_dec(process_counts
);
76 list_del_rcu(&p
->thread_group
);
80 * This function expects the tasklist_lock write-locked.
82 static void __exit_signal(struct task_struct
*tsk
)
84 struct signal_struct
*sig
= tsk
->signal
;
85 bool group_dead
= thread_group_leader(tsk
);
86 struct sighand_struct
*sighand
;
87 struct tty_struct
*uninitialized_var(tty
);
88 cputime_t utime
, stime
;
90 sighand
= rcu_dereference_check(tsk
->sighand
,
91 lockdep_tasklist_lock_is_held());
92 spin_lock(&sighand
->siglock
);
94 posix_cpu_timers_exit(tsk
);
96 posix_cpu_timers_exit_group(tsk
);
101 * This can only happen if the caller is de_thread().
102 * FIXME: this is the temporary hack, we should teach
103 * posix-cpu-timers to handle this case correctly.
105 if (unlikely(has_group_leader_pid(tsk
)))
106 posix_cpu_timers_exit_group(tsk
);
109 * If there is any task waiting for the group exit
112 if (sig
->notify_count
> 0 && !--sig
->notify_count
)
113 wake_up_process(sig
->group_exit_task
);
115 if (tsk
== sig
->curr_target
)
116 sig
->curr_target
= next_thread(tsk
);
118 * Accumulate here the counters for all threads but the
119 * group leader as they die, so they can be added into
120 * the process-wide totals when those are taken.
121 * The group leader stays around as a zombie as long
122 * as there are other threads. When it gets reaped,
123 * the exit.c code will add its counts into these totals.
124 * We won't ever get here for the group leader, since it
125 * will have been the last reference on the signal_struct.
127 task_cputime(tsk
, &utime
, &stime
);
130 sig
->gtime
+= task_gtime(tsk
);
131 sig
->min_flt
+= tsk
->min_flt
;
132 sig
->maj_flt
+= tsk
->maj_flt
;
133 sig
->nvcsw
+= tsk
->nvcsw
;
134 sig
->nivcsw
+= tsk
->nivcsw
;
135 sig
->inblock
+= task_io_get_inblock(tsk
);
136 sig
->oublock
+= task_io_get_oublock(tsk
);
137 task_io_accounting_add(&sig
->ioac
, &tsk
->ioac
);
138 sig
->sum_sched_runtime
+= tsk
->se
.sum_exec_runtime
;
142 __unhash_process(tsk
, group_dead
);
145 * Do this under ->siglock, we can race with another thread
146 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
148 flush_sigqueue(&tsk
->pending
);
150 spin_unlock(&sighand
->siglock
);
152 __cleanup_sighand(sighand
);
153 clear_tsk_thread_flag(tsk
,TIF_SIGPENDING
);
155 flush_sigqueue(&sig
->shared_pending
);
160 static void delayed_put_task_struct(struct rcu_head
*rhp
)
162 struct task_struct
*tsk
= container_of(rhp
, struct task_struct
, rcu
);
164 perf_event_delayed_put(tsk
);
165 trace_sched_process_free(tsk
);
166 put_task_struct(tsk
);
170 void release_task(struct task_struct
* p
)
172 struct task_struct
*leader
;
175 /* don't need to get the RCU readlock here - the process is dead and
176 * can't be modifying its own credentials. But shut RCU-lockdep up */
178 atomic_dec(&__task_cred(p
)->user
->processes
);
183 write_lock_irq(&tasklist_lock
);
184 ptrace_release_task(p
);
188 * If we are the last non-leader member of the thread
189 * group, and the leader is zombie, then notify the
190 * group leader's parent process. (if it wants notification.)
193 leader
= p
->group_leader
;
194 if (leader
!= p
&& thread_group_empty(leader
) && leader
->exit_state
== EXIT_ZOMBIE
) {
196 * If we were the last child thread and the leader has
197 * exited already, and the leader's parent ignores SIGCHLD,
198 * then we are the one who should release the leader.
200 zap_leader
= do_notify_parent(leader
, leader
->exit_signal
);
202 leader
->exit_state
= EXIT_DEAD
;
205 write_unlock_irq(&tasklist_lock
);
207 call_rcu(&p
->rcu
, delayed_put_task_struct
);
210 if (unlikely(zap_leader
))
215 * This checks not only the pgrp, but falls back on the pid if no
216 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
219 * The caller must hold rcu lock or the tasklist lock.
221 struct pid
*session_of_pgrp(struct pid
*pgrp
)
223 struct task_struct
*p
;
224 struct pid
*sid
= NULL
;
226 p
= pid_task(pgrp
, PIDTYPE_PGID
);
228 p
= pid_task(pgrp
, PIDTYPE_PID
);
230 sid
= task_session(p
);
236 * Determine if a process group is "orphaned", according to the POSIX
237 * definition in 2.2.2.52. Orphaned process groups are not to be affected
238 * by terminal-generated stop signals. Newly orphaned process groups are
239 * to receive a SIGHUP and a SIGCONT.
241 * "I ask you, have you ever known what it is to be an orphan?"
243 static int will_become_orphaned_pgrp(struct pid
*pgrp
, struct task_struct
*ignored_task
)
245 struct task_struct
*p
;
247 do_each_pid_task(pgrp
, PIDTYPE_PGID
, p
) {
248 if ((p
== ignored_task
) ||
249 (p
->exit_state
&& thread_group_empty(p
)) ||
250 is_global_init(p
->real_parent
))
253 if (task_pgrp(p
->real_parent
) != pgrp
&&
254 task_session(p
->real_parent
) == task_session(p
))
256 } while_each_pid_task(pgrp
, PIDTYPE_PGID
, p
);
261 int is_current_pgrp_orphaned(void)
265 read_lock(&tasklist_lock
);
266 retval
= will_become_orphaned_pgrp(task_pgrp(current
), NULL
);
267 read_unlock(&tasklist_lock
);
272 static bool has_stopped_jobs(struct pid
*pgrp
)
274 struct task_struct
*p
;
276 do_each_pid_task(pgrp
, PIDTYPE_PGID
, p
) {
277 if (p
->signal
->flags
& SIGNAL_STOP_STOPPED
)
279 } while_each_pid_task(pgrp
, PIDTYPE_PGID
, p
);
285 * Check to see if any process groups have become orphaned as
286 * a result of our exiting, and if they have any stopped jobs,
287 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
290 kill_orphaned_pgrp(struct task_struct
*tsk
, struct task_struct
*parent
)
292 struct pid
*pgrp
= task_pgrp(tsk
);
293 struct task_struct
*ignored_task
= tsk
;
296 /* exit: our father is in a different pgrp than
297 * we are and we were the only connection outside.
299 parent
= tsk
->real_parent
;
301 /* reparent: our child is in a different pgrp than
302 * we are, and it was the only connection outside.
306 if (task_pgrp(parent
) != pgrp
&&
307 task_session(parent
) == task_session(tsk
) &&
308 will_become_orphaned_pgrp(pgrp
, ignored_task
) &&
309 has_stopped_jobs(pgrp
)) {
310 __kill_pgrp_info(SIGHUP
, SEND_SIG_PRIV
, pgrp
);
311 __kill_pgrp_info(SIGCONT
, SEND_SIG_PRIV
, pgrp
);
315 void __set_special_pids(struct pid
*pid
)
317 struct task_struct
*curr
= current
->group_leader
;
319 if (task_session(curr
) != pid
)
320 change_pid(curr
, PIDTYPE_SID
, pid
);
322 if (task_pgrp(curr
) != pid
)
323 change_pid(curr
, PIDTYPE_PGID
, pid
);
327 * Let kernel threads use this to say that they allow a certain signal.
328 * Must not be used if kthread was cloned with CLONE_SIGHAND.
330 int allow_signal(int sig
)
332 if (!valid_signal(sig
) || sig
< 1)
335 spin_lock_irq(¤t
->sighand
->siglock
);
336 /* This is only needed for daemonize()'ed kthreads */
337 sigdelset(¤t
->blocked
, sig
);
339 * Kernel threads handle their own signals. Let the signal code
340 * know it'll be handled, so that they don't get converted to
341 * SIGKILL or just silently dropped.
343 current
->sighand
->action
[(sig
)-1].sa
.sa_handler
= (void __user
*)2;
345 spin_unlock_irq(¤t
->sighand
->siglock
);
349 EXPORT_SYMBOL(allow_signal
);
351 int disallow_signal(int sig
)
353 if (!valid_signal(sig
) || sig
< 1)
356 spin_lock_irq(¤t
->sighand
->siglock
);
357 current
->sighand
->action
[(sig
)-1].sa
.sa_handler
= SIG_IGN
;
359 spin_unlock_irq(¤t
->sighand
->siglock
);
363 EXPORT_SYMBOL(disallow_signal
);
365 #ifdef CONFIG_MM_OWNER
367 * A task is exiting. If it owned this mm, find a new owner for the mm.
369 void mm_update_next_owner(struct mm_struct
*mm
)
371 struct task_struct
*c
, *g
, *p
= current
;
375 * If the exiting or execing task is not the owner, it's
376 * someone else's problem.
381 * The current owner is exiting/execing and there are no other
382 * candidates. Do not leave the mm pointing to a possibly
383 * freed task structure.
385 if (atomic_read(&mm
->mm_users
) <= 1) {
390 read_lock(&tasklist_lock
);
392 * Search in the children
394 list_for_each_entry(c
, &p
->children
, sibling
) {
396 goto assign_new_owner
;
400 * Search in the siblings
402 list_for_each_entry(c
, &p
->real_parent
->children
, sibling
) {
404 goto assign_new_owner
;
408 * Search through everything else. We should not get
411 do_each_thread(g
, c
) {
413 goto assign_new_owner
;
414 } while_each_thread(g
, c
);
416 read_unlock(&tasklist_lock
);
418 * We found no owner yet mm_users > 1: this implies that we are
419 * most likely racing with swapoff (try_to_unuse()) or /proc or
420 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
429 * The task_lock protects c->mm from changing.
430 * We always want mm->owner->mm == mm
434 * Delay read_unlock() till we have the task_lock()
435 * to ensure that c does not slip away underneath us
437 read_unlock(&tasklist_lock
);
447 #endif /* CONFIG_MM_OWNER */
450 * Turn us into a lazy TLB process if we
453 static void exit_mm(struct task_struct
* tsk
)
455 struct mm_struct
*mm
= tsk
->mm
;
456 struct core_state
*core_state
;
463 * Serialize with any possible pending coredump.
464 * We must hold mmap_sem around checking core_state
465 * and clearing tsk->mm. The core-inducing thread
466 * will increment ->nr_threads for each thread in the
467 * group with ->mm != NULL.
469 down_read(&mm
->mmap_sem
);
470 core_state
= mm
->core_state
;
472 struct core_thread self
;
473 up_read(&mm
->mmap_sem
);
476 self
.next
= xchg(&core_state
->dumper
.next
, &self
);
478 * Implies mb(), the result of xchg() must be visible
479 * to core_state->dumper.
481 if (atomic_dec_and_test(&core_state
->nr_threads
))
482 complete(&core_state
->startup
);
485 set_task_state(tsk
, TASK_UNINTERRUPTIBLE
);
486 if (!self
.task
) /* see coredump_finish() */
488 freezable_schedule();
490 __set_task_state(tsk
, TASK_RUNNING
);
491 down_read(&mm
->mmap_sem
);
493 atomic_inc(&mm
->mm_count
);
494 BUG_ON(mm
!= tsk
->active_mm
);
495 /* more a memory barrier than a real lock */
498 up_read(&mm
->mmap_sem
);
499 enter_lazy_tlb(mm
, current
);
501 mm_update_next_owner(mm
);
506 * When we die, we re-parent all our children, and try to:
507 * 1. give them to another thread in our thread group, if such a member exists
508 * 2. give it to the first ancestor process which prctl'd itself as a
509 * child_subreaper for its children (like a service manager)
510 * 3. give it to the init process (PID 1) in our pid namespace
512 static struct task_struct
*find_new_reaper(struct task_struct
*father
)
513 __releases(&tasklist_lock
)
514 __acquires(&tasklist_lock
)
516 struct pid_namespace
*pid_ns
= task_active_pid_ns(father
);
517 struct task_struct
*thread
;
520 while_each_thread(father
, thread
) {
521 if (thread
->flags
& PF_EXITING
)
523 if (unlikely(pid_ns
->child_reaper
== father
))
524 pid_ns
->child_reaper
= thread
;
528 if (unlikely(pid_ns
->child_reaper
== father
)) {
529 write_unlock_irq(&tasklist_lock
);
530 if (unlikely(pid_ns
== &init_pid_ns
)) {
531 panic("Attempted to kill init! exitcode=0x%08x\n",
532 father
->signal
->group_exit_code
?:
536 zap_pid_ns_processes(pid_ns
);
537 write_lock_irq(&tasklist_lock
);
538 } else if (father
->signal
->has_child_subreaper
) {
539 struct task_struct
*reaper
;
542 * Find the first ancestor marked as child_subreaper.
543 * Note that the code below checks same_thread_group(reaper,
544 * pid_ns->child_reaper). This is what we need to DTRT in a
545 * PID namespace. However we still need the check above, see
546 * http://marc.info/?l=linux-kernel&m=131385460420380
548 for (reaper
= father
->real_parent
;
549 reaper
!= &init_task
;
550 reaper
= reaper
->real_parent
) {
551 if (same_thread_group(reaper
, pid_ns
->child_reaper
))
553 if (!reaper
->signal
->is_child_subreaper
)
557 if (!(thread
->flags
& PF_EXITING
))
559 } while_each_thread(reaper
, thread
);
563 return pid_ns
->child_reaper
;
567 * Any that need to be release_task'd are put on the @dead list.
569 static void reparent_leader(struct task_struct
*father
, struct task_struct
*p
,
570 struct list_head
*dead
)
572 list_move_tail(&p
->sibling
, &p
->real_parent
->children
);
574 if (p
->exit_state
== EXIT_DEAD
)
577 * If this is a threaded reparent there is no need to
578 * notify anyone anything has happened.
580 if (same_thread_group(p
->real_parent
, father
))
583 /* We don't want people slaying init. */
584 p
->exit_signal
= SIGCHLD
;
586 /* If it has exited notify the new parent about this child's death. */
588 p
->exit_state
== EXIT_ZOMBIE
&& thread_group_empty(p
)) {
589 if (do_notify_parent(p
, p
->exit_signal
)) {
590 p
->exit_state
= EXIT_DEAD
;
591 list_move_tail(&p
->sibling
, dead
);
595 kill_orphaned_pgrp(p
, father
);
598 static void forget_original_parent(struct task_struct
*father
)
600 struct task_struct
*p
, *n
, *reaper
;
601 LIST_HEAD(dead_children
);
603 write_lock_irq(&tasklist_lock
);
605 * Note that exit_ptrace() and find_new_reaper() might
606 * drop tasklist_lock and reacquire it.
609 reaper
= find_new_reaper(father
);
611 list_for_each_entry_safe(p
, n
, &father
->children
, sibling
) {
612 struct task_struct
*t
= p
;
614 t
->real_parent
= reaper
;
615 if (t
->parent
== father
) {
617 t
->parent
= t
->real_parent
;
619 if (t
->pdeath_signal
)
620 group_send_sig_info(t
->pdeath_signal
,
622 } while_each_thread(p
, t
);
623 reparent_leader(father
, p
, &dead_children
);
625 write_unlock_irq(&tasklist_lock
);
627 BUG_ON(!list_empty(&father
->children
));
629 list_for_each_entry_safe(p
, n
, &dead_children
, sibling
) {
630 list_del_init(&p
->sibling
);
636 * Send signals to all our closest relatives so that they know
637 * to properly mourn us..
639 static void exit_notify(struct task_struct
*tsk
, int group_dead
)
644 * This does two things:
646 * A. Make init inherit all the child processes
647 * B. Check to see if any process groups have become orphaned
648 * as a result of our exiting, and if they have any stopped
649 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
651 forget_original_parent(tsk
);
652 exit_task_namespaces(tsk
);
654 write_lock_irq(&tasklist_lock
);
656 kill_orphaned_pgrp(tsk
->group_leader
, NULL
);
658 if (unlikely(tsk
->ptrace
)) {
659 int sig
= thread_group_leader(tsk
) &&
660 thread_group_empty(tsk
) &&
661 !ptrace_reparented(tsk
) ?
662 tsk
->exit_signal
: SIGCHLD
;
663 autoreap
= do_notify_parent(tsk
, sig
);
664 } else if (thread_group_leader(tsk
)) {
665 autoreap
= thread_group_empty(tsk
) &&
666 do_notify_parent(tsk
, tsk
->exit_signal
);
671 tsk
->exit_state
= autoreap
? EXIT_DEAD
: EXIT_ZOMBIE
;
673 /* mt-exec, de_thread() is waiting for group leader */
674 if (unlikely(tsk
->signal
->notify_count
< 0))
675 wake_up_process(tsk
->signal
->group_exit_task
);
676 write_unlock_irq(&tasklist_lock
);
678 /* If the process is dead, release it - nobody will wait for it */
683 #ifdef CONFIG_DEBUG_STACK_USAGE
684 static void check_stack_usage(void)
686 static DEFINE_SPINLOCK(low_water_lock
);
687 static int lowest_to_date
= THREAD_SIZE
;
690 free
= stack_not_used(current
);
692 if (free
>= lowest_to_date
)
695 spin_lock(&low_water_lock
);
696 if (free
< lowest_to_date
) {
697 printk(KERN_WARNING
"%s (%d) used greatest stack depth: "
699 current
->comm
, task_pid_nr(current
), free
);
700 lowest_to_date
= free
;
702 spin_unlock(&low_water_lock
);
705 static inline void check_stack_usage(void) {}
708 void do_exit(long code
)
710 struct task_struct
*tsk
= current
;
713 profile_task_exit(tsk
);
715 WARN_ON(blk_needs_flush_plug(tsk
));
717 if (unlikely(in_interrupt()))
718 panic("Aiee, killing interrupt handler!");
719 if (unlikely(!tsk
->pid
))
720 panic("Attempted to kill the idle task!");
723 * If do_exit is called because this processes oopsed, it's possible
724 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
725 * continuing. Amongst other possible reasons, this is to prevent
726 * mm_release()->clear_child_tid() from writing to a user-controlled
731 ptrace_event(PTRACE_EVENT_EXIT
, code
);
733 validate_creds_for_do_exit(tsk
);
736 * We're taking recursive faults here in do_exit. Safest is to just
737 * leave this task alone and wait for reboot.
739 if (unlikely(tsk
->flags
& PF_EXITING
)) {
741 "Fixing recursive fault but reboot is needed!\n");
743 * We can do this unlocked here. The futex code uses
744 * this flag just to verify whether the pi state
745 * cleanup has been done or not. In the worst case it
746 * loops once more. We pretend that the cleanup was
747 * done as there is no way to return. Either the
748 * OWNER_DIED bit is set by now or we push the blocked
749 * task into the wait for ever nirwana as well.
751 tsk
->flags
|= PF_EXITPIDONE
;
752 set_current_state(TASK_UNINTERRUPTIBLE
);
756 exit_signals(tsk
); /* sets PF_EXITING */
758 * tsk->flags are checked in the futex code to protect against
759 * an exiting task cleaning up the robust pi futexes.
762 raw_spin_unlock_wait(&tsk
->pi_lock
);
764 if (unlikely(in_atomic()))
765 printk(KERN_INFO
"note: %s[%d] exited with preempt_count %d\n",
766 current
->comm
, task_pid_nr(current
),
769 acct_update_integrals(tsk
);
770 /* sync mm's RSS info before statistics gathering */
772 sync_mm_rss(tsk
->mm
);
773 group_dead
= atomic_dec_and_test(&tsk
->signal
->live
);
775 hrtimer_cancel(&tsk
->signal
->real_timer
);
776 exit_itimers(tsk
->signal
);
778 setmax_mm_hiwater_rss(&tsk
->signal
->maxrss
, tsk
->mm
);
780 acct_collect(code
, group_dead
);
785 tsk
->exit_code
= code
;
786 taskstats_exit(tsk
, group_dead
);
792 trace_sched_process_exit(tsk
);
803 * Flush inherited counters to the parent - before the parent
804 * gets woken up by child-exit notifications.
806 * because of cgroup mode, must be called before cgroup_exit()
808 perf_event_exit_task(tsk
);
813 disassociate_ctty(1);
815 module_put(task_thread_info(tsk
)->exec_domain
->module
);
817 proc_exit_connector(tsk
);
820 * FIXME: do that only when needed, using sched_exit tracepoint
822 ptrace_put_breakpoints(tsk
);
824 exit_notify(tsk
, group_dead
);
827 mpol_put(tsk
->mempolicy
);
828 tsk
->mempolicy
= NULL
;
832 if (unlikely(current
->pi_state_cache
))
833 kfree(current
->pi_state_cache
);
836 * Make sure we are holding no locks:
838 debug_check_no_locks_held(tsk
);
840 * We can do this unlocked here. The futex code uses this flag
841 * just to verify whether the pi state cleanup has been done
842 * or not. In the worst case it loops once more.
844 tsk
->flags
|= PF_EXITPIDONE
;
847 exit_io_context(tsk
);
849 if (tsk
->splice_pipe
)
850 free_pipe_info(tsk
->splice_pipe
);
852 if (tsk
->task_frag
.page
)
853 put_page(tsk
->task_frag
.page
);
855 validate_creds_for_do_exit(tsk
);
859 __this_cpu_add(dirty_throttle_leaks
, tsk
->nr_dirtied
);
863 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
864 * when the following two conditions become true.
865 * - There is race condition of mmap_sem (It is acquired by
867 * - SMI occurs before setting TASK_RUNINNG.
868 * (or hypervisor of virtual machine switches to other guest)
869 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
871 * To avoid it, we have to wait for releasing tsk->pi_lock which
872 * is held by try_to_wake_up()
875 raw_spin_unlock_wait(&tsk
->pi_lock
);
877 /* causes final put_task_struct in finish_task_switch(). */
878 tsk
->state
= TASK_DEAD
;
879 tsk
->flags
|= PF_NOFREEZE
; /* tell freezer to ignore us */
882 /* Avoid "noreturn function does return". */
884 cpu_relax(); /* For when BUG is null */
887 EXPORT_SYMBOL_GPL(do_exit
);
889 void complete_and_exit(struct completion
*comp
, long code
)
897 EXPORT_SYMBOL(complete_and_exit
);
899 SYSCALL_DEFINE1(exit
, int, error_code
)
901 do_exit((error_code
&0xff)<<8);
905 * Take down every thread in the group. This is called by fatal signals
906 * as well as by sys_exit_group (below).
909 do_group_exit(int exit_code
)
911 struct signal_struct
*sig
= current
->signal
;
913 BUG_ON(exit_code
& 0x80); /* core dumps don't get here */
915 if (signal_group_exit(sig
))
916 exit_code
= sig
->group_exit_code
;
917 else if (!thread_group_empty(current
)) {
918 struct sighand_struct
*const sighand
= current
->sighand
;
919 spin_lock_irq(&sighand
->siglock
);
920 if (signal_group_exit(sig
))
921 /* Another thread got here before we took the lock. */
922 exit_code
= sig
->group_exit_code
;
924 sig
->group_exit_code
= exit_code
;
925 sig
->flags
= SIGNAL_GROUP_EXIT
;
926 zap_other_threads(current
);
928 spin_unlock_irq(&sighand
->siglock
);
936 * this kills every thread in the thread group. Note that any externally
937 * wait4()-ing process will get the correct exit code - even if this
938 * thread is not the thread group leader.
940 SYSCALL_DEFINE1(exit_group
, int, error_code
)
942 do_group_exit((error_code
& 0xff) << 8);
948 enum pid_type wo_type
;
952 struct siginfo __user
*wo_info
;
954 struct rusage __user
*wo_rusage
;
956 wait_queue_t child_wait
;
961 struct pid
*task_pid_type(struct task_struct
*task
, enum pid_type type
)
963 if (type
!= PIDTYPE_PID
)
964 task
= task
->group_leader
;
965 return task
->pids
[type
].pid
;
968 static int eligible_pid(struct wait_opts
*wo
, struct task_struct
*p
)
970 return wo
->wo_type
== PIDTYPE_MAX
||
971 task_pid_type(p
, wo
->wo_type
) == wo
->wo_pid
;
974 static int eligible_child(struct wait_opts
*wo
, struct task_struct
*p
)
976 if (!eligible_pid(wo
, p
))
978 /* Wait for all children (clone and not) if __WALL is set;
979 * otherwise, wait for clone children *only* if __WCLONE is
980 * set; otherwise, wait for non-clone children *only*. (Note:
981 * A "clone" child here is one that reports to its parent
982 * using a signal other than SIGCHLD.) */
983 if (((p
->exit_signal
!= SIGCHLD
) ^ !!(wo
->wo_flags
& __WCLONE
))
984 && !(wo
->wo_flags
& __WALL
))
990 static int wait_noreap_copyout(struct wait_opts
*wo
, struct task_struct
*p
,
991 pid_t pid
, uid_t uid
, int why
, int status
)
993 struct siginfo __user
*infop
;
994 int retval
= wo
->wo_rusage
995 ? getrusage(p
, RUSAGE_BOTH
, wo
->wo_rusage
) : 0;
1001 retval
= put_user(SIGCHLD
, &infop
->si_signo
);
1003 retval
= put_user(0, &infop
->si_errno
);
1005 retval
= put_user((short)why
, &infop
->si_code
);
1007 retval
= put_user(pid
, &infop
->si_pid
);
1009 retval
= put_user(uid
, &infop
->si_uid
);
1011 retval
= put_user(status
, &infop
->si_status
);
1019 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1020 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1021 * the lock and this task is uninteresting. If we return nonzero, we have
1022 * released the lock and the system call should return.
1024 static int wait_task_zombie(struct wait_opts
*wo
, struct task_struct
*p
)
1026 unsigned long state
;
1027 int retval
, status
, traced
;
1028 pid_t pid
= task_pid_vnr(p
);
1029 uid_t uid
= from_kuid_munged(current_user_ns(), task_uid(p
));
1030 struct siginfo __user
*infop
;
1032 if (!likely(wo
->wo_flags
& WEXITED
))
1035 if (unlikely(wo
->wo_flags
& WNOWAIT
)) {
1036 int exit_code
= p
->exit_code
;
1040 read_unlock(&tasklist_lock
);
1041 if ((exit_code
& 0x7f) == 0) {
1043 status
= exit_code
>> 8;
1045 why
= (exit_code
& 0x80) ? CLD_DUMPED
: CLD_KILLED
;
1046 status
= exit_code
& 0x7f;
1048 return wait_noreap_copyout(wo
, p
, pid
, uid
, why
, status
);
1052 * Try to move the task's state to DEAD
1053 * only one thread is allowed to do this:
1055 state
= xchg(&p
->exit_state
, EXIT_DEAD
);
1056 if (state
!= EXIT_ZOMBIE
) {
1057 BUG_ON(state
!= EXIT_DEAD
);
1061 traced
= ptrace_reparented(p
);
1063 * It can be ptraced but not reparented, check
1064 * thread_group_leader() to filter out sub-threads.
1066 if (likely(!traced
) && thread_group_leader(p
)) {
1067 struct signal_struct
*psig
;
1068 struct signal_struct
*sig
;
1069 unsigned long maxrss
;
1070 cputime_t tgutime
, tgstime
;
1073 * The resource counters for the group leader are in its
1074 * own task_struct. Those for dead threads in the group
1075 * are in its signal_struct, as are those for the child
1076 * processes it has previously reaped. All these
1077 * accumulate in the parent's signal_struct c* fields.
1079 * We don't bother to take a lock here to protect these
1080 * p->signal fields, because they are only touched by
1081 * __exit_signal, which runs with tasklist_lock
1082 * write-locked anyway, and so is excluded here. We do
1083 * need to protect the access to parent->signal fields,
1084 * as other threads in the parent group can be right
1085 * here reaping other children at the same time.
1087 * We use thread_group_cputime_adjusted() to get times for the thread
1088 * group, which consolidates times for all threads in the
1089 * group including the group leader.
1091 thread_group_cputime_adjusted(p
, &tgutime
, &tgstime
);
1092 spin_lock_irq(&p
->real_parent
->sighand
->siglock
);
1093 psig
= p
->real_parent
->signal
;
1095 psig
->cutime
+= tgutime
+ sig
->cutime
;
1096 psig
->cstime
+= tgstime
+ sig
->cstime
;
1097 psig
->cgtime
+= task_gtime(p
) + sig
->gtime
+ sig
->cgtime
;
1099 p
->min_flt
+ sig
->min_flt
+ sig
->cmin_flt
;
1101 p
->maj_flt
+ sig
->maj_flt
+ sig
->cmaj_flt
;
1103 p
->nvcsw
+ sig
->nvcsw
+ sig
->cnvcsw
;
1105 p
->nivcsw
+ sig
->nivcsw
+ sig
->cnivcsw
;
1107 task_io_get_inblock(p
) +
1108 sig
->inblock
+ sig
->cinblock
;
1110 task_io_get_oublock(p
) +
1111 sig
->oublock
+ sig
->coublock
;
1112 maxrss
= max(sig
->maxrss
, sig
->cmaxrss
);
1113 if (psig
->cmaxrss
< maxrss
)
1114 psig
->cmaxrss
= maxrss
;
1115 task_io_accounting_add(&psig
->ioac
, &p
->ioac
);
1116 task_io_accounting_add(&psig
->ioac
, &sig
->ioac
);
1117 spin_unlock_irq(&p
->real_parent
->sighand
->siglock
);
1121 * Now we are sure this task is interesting, and no other
1122 * thread can reap it because we set its state to EXIT_DEAD.
1124 read_unlock(&tasklist_lock
);
1126 retval
= wo
->wo_rusage
1127 ? getrusage(p
, RUSAGE_BOTH
, wo
->wo_rusage
) : 0;
1128 status
= (p
->signal
->flags
& SIGNAL_GROUP_EXIT
)
1129 ? p
->signal
->group_exit_code
: p
->exit_code
;
1130 if (!retval
&& wo
->wo_stat
)
1131 retval
= put_user(status
, wo
->wo_stat
);
1133 infop
= wo
->wo_info
;
1134 if (!retval
&& infop
)
1135 retval
= put_user(SIGCHLD
, &infop
->si_signo
);
1136 if (!retval
&& infop
)
1137 retval
= put_user(0, &infop
->si_errno
);
1138 if (!retval
&& infop
) {
1141 if ((status
& 0x7f) == 0) {
1145 why
= (status
& 0x80) ? CLD_DUMPED
: CLD_KILLED
;
1148 retval
= put_user((short)why
, &infop
->si_code
);
1150 retval
= put_user(status
, &infop
->si_status
);
1152 if (!retval
&& infop
)
1153 retval
= put_user(pid
, &infop
->si_pid
);
1154 if (!retval
&& infop
)
1155 retval
= put_user(uid
, &infop
->si_uid
);
1160 write_lock_irq(&tasklist_lock
);
1161 /* We dropped tasklist, ptracer could die and untrace */
1164 * If this is not a sub-thread, notify the parent.
1165 * If parent wants a zombie, don't release it now.
1167 if (thread_group_leader(p
) &&
1168 !do_notify_parent(p
, p
->exit_signal
)) {
1169 p
->exit_state
= EXIT_ZOMBIE
;
1172 write_unlock_irq(&tasklist_lock
);
1180 static int *task_stopped_code(struct task_struct
*p
, bool ptrace
)
1183 if (task_is_stopped_or_traced(p
) &&
1184 !(p
->jobctl
& JOBCTL_LISTENING
))
1185 return &p
->exit_code
;
1187 if (p
->signal
->flags
& SIGNAL_STOP_STOPPED
)
1188 return &p
->signal
->group_exit_code
;
1194 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1196 * @ptrace: is the wait for ptrace
1197 * @p: task to wait for
1199 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1202 * read_lock(&tasklist_lock), which is released if return value is
1203 * non-zero. Also, grabs and releases @p->sighand->siglock.
1206 * 0 if wait condition didn't exist and search for other wait conditions
1207 * should continue. Non-zero return, -errno on failure and @p's pid on
1208 * success, implies that tasklist_lock is released and wait condition
1209 * search should terminate.
1211 static int wait_task_stopped(struct wait_opts
*wo
,
1212 int ptrace
, struct task_struct
*p
)
1214 struct siginfo __user
*infop
;
1215 int retval
, exit_code
, *p_code
, why
;
1216 uid_t uid
= 0; /* unneeded, required by compiler */
1220 * Traditionally we see ptrace'd stopped tasks regardless of options.
1222 if (!ptrace
&& !(wo
->wo_flags
& WUNTRACED
))
1225 if (!task_stopped_code(p
, ptrace
))
1229 spin_lock_irq(&p
->sighand
->siglock
);
1231 p_code
= task_stopped_code(p
, ptrace
);
1232 if (unlikely(!p_code
))
1235 exit_code
= *p_code
;
1239 if (!unlikely(wo
->wo_flags
& WNOWAIT
))
1242 uid
= from_kuid_munged(current_user_ns(), task_uid(p
));
1244 spin_unlock_irq(&p
->sighand
->siglock
);
1249 * Now we are pretty sure this task is interesting.
1250 * Make sure it doesn't get reaped out from under us while we
1251 * give up the lock and then examine it below. We don't want to
1252 * keep holding onto the tasklist_lock while we call getrusage and
1253 * possibly take page faults for user memory.
1256 pid
= task_pid_vnr(p
);
1257 why
= ptrace
? CLD_TRAPPED
: CLD_STOPPED
;
1258 read_unlock(&tasklist_lock
);
1260 if (unlikely(wo
->wo_flags
& WNOWAIT
))
1261 return wait_noreap_copyout(wo
, p
, pid
, uid
, why
, exit_code
);
1263 retval
= wo
->wo_rusage
1264 ? getrusage(p
, RUSAGE_BOTH
, wo
->wo_rusage
) : 0;
1265 if (!retval
&& wo
->wo_stat
)
1266 retval
= put_user((exit_code
<< 8) | 0x7f, wo
->wo_stat
);
1268 infop
= wo
->wo_info
;
1269 if (!retval
&& infop
)
1270 retval
= put_user(SIGCHLD
, &infop
->si_signo
);
1271 if (!retval
&& infop
)
1272 retval
= put_user(0, &infop
->si_errno
);
1273 if (!retval
&& infop
)
1274 retval
= put_user((short)why
, &infop
->si_code
);
1275 if (!retval
&& infop
)
1276 retval
= put_user(exit_code
, &infop
->si_status
);
1277 if (!retval
&& infop
)
1278 retval
= put_user(pid
, &infop
->si_pid
);
1279 if (!retval
&& infop
)
1280 retval
= put_user(uid
, &infop
->si_uid
);
1290 * Handle do_wait work for one task in a live, non-stopped state.
1291 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1292 * the lock and this task is uninteresting. If we return nonzero, we have
1293 * released the lock and the system call should return.
1295 static int wait_task_continued(struct wait_opts
*wo
, struct task_struct
*p
)
1301 if (!unlikely(wo
->wo_flags
& WCONTINUED
))
1304 if (!(p
->signal
->flags
& SIGNAL_STOP_CONTINUED
))
1307 spin_lock_irq(&p
->sighand
->siglock
);
1308 /* Re-check with the lock held. */
1309 if (!(p
->signal
->flags
& SIGNAL_STOP_CONTINUED
)) {
1310 spin_unlock_irq(&p
->sighand
->siglock
);
1313 if (!unlikely(wo
->wo_flags
& WNOWAIT
))
1314 p
->signal
->flags
&= ~SIGNAL_STOP_CONTINUED
;
1315 uid
= from_kuid_munged(current_user_ns(), task_uid(p
));
1316 spin_unlock_irq(&p
->sighand
->siglock
);
1318 pid
= task_pid_vnr(p
);
1320 read_unlock(&tasklist_lock
);
1323 retval
= wo
->wo_rusage
1324 ? getrusage(p
, RUSAGE_BOTH
, wo
->wo_rusage
) : 0;
1326 if (!retval
&& wo
->wo_stat
)
1327 retval
= put_user(0xffff, wo
->wo_stat
);
1331 retval
= wait_noreap_copyout(wo
, p
, pid
, uid
,
1332 CLD_CONTINUED
, SIGCONT
);
1333 BUG_ON(retval
== 0);
1340 * Consider @p for a wait by @parent.
1342 * -ECHILD should be in ->notask_error before the first call.
1343 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1344 * Returns zero if the search for a child should continue;
1345 * then ->notask_error is 0 if @p is an eligible child,
1346 * or another error from security_task_wait(), or still -ECHILD.
1348 static int wait_consider_task(struct wait_opts
*wo
, int ptrace
,
1349 struct task_struct
*p
)
1351 int ret
= eligible_child(wo
, p
);
1355 ret
= security_task_wait(p
);
1356 if (unlikely(ret
< 0)) {
1358 * If we have not yet seen any eligible child,
1359 * then let this error code replace -ECHILD.
1360 * A permission error will give the user a clue
1361 * to look for security policy problems, rather
1362 * than for mysterious wait bugs.
1364 if (wo
->notask_error
)
1365 wo
->notask_error
= ret
;
1369 /* dead body doesn't have much to contribute */
1370 if (unlikely(p
->exit_state
== EXIT_DEAD
)) {
1372 * But do not ignore this task until the tracer does
1373 * wait_task_zombie()->do_notify_parent().
1375 if (likely(!ptrace
) && unlikely(ptrace_reparented(p
)))
1376 wo
->notask_error
= 0;
1381 if (p
->exit_state
== EXIT_ZOMBIE
) {
1383 * A zombie ptracee is only visible to its ptracer.
1384 * Notification and reaping will be cascaded to the real
1385 * parent when the ptracer detaches.
1387 if (likely(!ptrace
) && unlikely(p
->ptrace
)) {
1388 /* it will become visible, clear notask_error */
1389 wo
->notask_error
= 0;
1393 /* we don't reap group leaders with subthreads */
1394 if (!delay_group_leader(p
))
1395 return wait_task_zombie(wo
, p
);
1398 * Allow access to stopped/continued state via zombie by
1399 * falling through. Clearing of notask_error is complex.
1403 * If WEXITED is set, notask_error should naturally be
1404 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1405 * so, if there are live subthreads, there are events to
1406 * wait for. If all subthreads are dead, it's still safe
1407 * to clear - this function will be called again in finite
1408 * amount time once all the subthreads are released and
1409 * will then return without clearing.
1413 * Stopped state is per-task and thus can't change once the
1414 * target task dies. Only continued and exited can happen.
1415 * Clear notask_error if WCONTINUED | WEXITED.
1417 if (likely(!ptrace
) || (wo
->wo_flags
& (WCONTINUED
| WEXITED
)))
1418 wo
->notask_error
= 0;
1421 * If @p is ptraced by a task in its real parent's group,
1422 * hide group stop/continued state when looking at @p as
1423 * the real parent; otherwise, a single stop can be
1424 * reported twice as group and ptrace stops.
1426 * If a ptracer wants to distinguish the two events for its
1427 * own children, it should create a separate process which
1428 * takes the role of real parent.
1430 if (likely(!ptrace
) && p
->ptrace
&& !ptrace_reparented(p
))
1434 * @p is alive and it's gonna stop, continue or exit, so
1435 * there always is something to wait for.
1437 wo
->notask_error
= 0;
1441 * Wait for stopped. Depending on @ptrace, different stopped state
1442 * is used and the two don't interact with each other.
1444 ret
= wait_task_stopped(wo
, ptrace
, p
);
1449 * Wait for continued. There's only one continued state and the
1450 * ptracer can consume it which can confuse the real parent. Don't
1451 * use WCONTINUED from ptracer. You don't need or want it.
1453 return wait_task_continued(wo
, p
);
1457 * Do the work of do_wait() for one thread in the group, @tsk.
1459 * -ECHILD should be in ->notask_error before the first call.
1460 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1461 * Returns zero if the search for a child should continue; then
1462 * ->notask_error is 0 if there were any eligible children,
1463 * or another error from security_task_wait(), or still -ECHILD.
1465 static int do_wait_thread(struct wait_opts
*wo
, struct task_struct
*tsk
)
1467 struct task_struct
*p
;
1469 list_for_each_entry(p
, &tsk
->children
, sibling
) {
1470 int ret
= wait_consider_task(wo
, 0, p
);
1478 static int ptrace_do_wait(struct wait_opts
*wo
, struct task_struct
*tsk
)
1480 struct task_struct
*p
;
1482 list_for_each_entry(p
, &tsk
->ptraced
, ptrace_entry
) {
1483 int ret
= wait_consider_task(wo
, 1, p
);
1491 static int child_wait_callback(wait_queue_t
*wait
, unsigned mode
,
1492 int sync
, void *key
)
1494 struct wait_opts
*wo
= container_of(wait
, struct wait_opts
,
1496 struct task_struct
*p
= key
;
1498 if (!eligible_pid(wo
, p
))
1501 if ((wo
->wo_flags
& __WNOTHREAD
) && wait
->private != p
->parent
)
1504 return default_wake_function(wait
, mode
, sync
, key
);
1507 void __wake_up_parent(struct task_struct
*p
, struct task_struct
*parent
)
1509 __wake_up_sync_key(&parent
->signal
->wait_chldexit
,
1510 TASK_INTERRUPTIBLE
, 1, p
);
1513 static long do_wait(struct wait_opts
*wo
)
1515 struct task_struct
*tsk
;
1518 trace_sched_process_wait(wo
->wo_pid
);
1520 init_waitqueue_func_entry(&wo
->child_wait
, child_wait_callback
);
1521 wo
->child_wait
.private = current
;
1522 add_wait_queue(¤t
->signal
->wait_chldexit
, &wo
->child_wait
);
1525 * If there is nothing that can match our critiera just get out.
1526 * We will clear ->notask_error to zero if we see any child that
1527 * might later match our criteria, even if we are not able to reap
1530 wo
->notask_error
= -ECHILD
;
1531 if ((wo
->wo_type
< PIDTYPE_MAX
) &&
1532 (!wo
->wo_pid
|| hlist_empty(&wo
->wo_pid
->tasks
[wo
->wo_type
])))
1535 set_current_state(TASK_INTERRUPTIBLE
);
1536 read_lock(&tasklist_lock
);
1539 retval
= do_wait_thread(wo
, tsk
);
1543 retval
= ptrace_do_wait(wo
, tsk
);
1547 if (wo
->wo_flags
& __WNOTHREAD
)
1549 } while_each_thread(current
, tsk
);
1550 read_unlock(&tasklist_lock
);
1553 retval
= wo
->notask_error
;
1554 if (!retval
&& !(wo
->wo_flags
& WNOHANG
)) {
1555 retval
= -ERESTARTSYS
;
1556 if (!signal_pending(current
)) {
1562 __set_current_state(TASK_RUNNING
);
1563 remove_wait_queue(¤t
->signal
->wait_chldexit
, &wo
->child_wait
);
1567 SYSCALL_DEFINE5(waitid
, int, which
, pid_t
, upid
, struct siginfo __user
*,
1568 infop
, int, options
, struct rusage __user
*, ru
)
1570 struct wait_opts wo
;
1571 struct pid
*pid
= NULL
;
1575 if (options
& ~(WNOHANG
|WNOWAIT
|WEXITED
|WSTOPPED
|WCONTINUED
))
1577 if (!(options
& (WEXITED
|WSTOPPED
|WCONTINUED
)))
1590 type
= PIDTYPE_PGID
;
1598 if (type
< PIDTYPE_MAX
)
1599 pid
= find_get_pid(upid
);
1603 wo
.wo_flags
= options
;
1613 * For a WNOHANG return, clear out all the fields
1614 * we would set so the user can easily tell the
1618 ret
= put_user(0, &infop
->si_signo
);
1620 ret
= put_user(0, &infop
->si_errno
);
1622 ret
= put_user(0, &infop
->si_code
);
1624 ret
= put_user(0, &infop
->si_pid
);
1626 ret
= put_user(0, &infop
->si_uid
);
1628 ret
= put_user(0, &infop
->si_status
);
1635 SYSCALL_DEFINE4(wait4
, pid_t
, upid
, int __user
*, stat_addr
,
1636 int, options
, struct rusage __user
*, ru
)
1638 struct wait_opts wo
;
1639 struct pid
*pid
= NULL
;
1643 if (options
& ~(WNOHANG
|WUNTRACED
|WCONTINUED
|
1644 __WNOTHREAD
|__WCLONE
|__WALL
))
1649 else if (upid
< 0) {
1650 type
= PIDTYPE_PGID
;
1651 pid
= find_get_pid(-upid
);
1652 } else if (upid
== 0) {
1653 type
= PIDTYPE_PGID
;
1654 pid
= get_task_pid(current
, PIDTYPE_PGID
);
1655 } else /* upid > 0 */ {
1657 pid
= find_get_pid(upid
);
1662 wo
.wo_flags
= options
| WEXITED
;
1664 wo
.wo_stat
= stat_addr
;
1672 #ifdef __ARCH_WANT_SYS_WAITPID
1675 * sys_waitpid() remains for compatibility. waitpid() should be
1676 * implemented by calling sys_wait4() from libc.a.
1678 SYSCALL_DEFINE3(waitpid
, pid_t
, pid
, int __user
*, stat_addr
, int, options
)
1680 return sys_wait4(pid
, stat_addr
, options
, NULL
);