2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
23 #include <trace/events/block.h>
25 #define DM_MSG_PREFIX "core"
29 * ratelimit state to be used in DMXXX_LIMIT().
31 DEFINE_RATELIMIT_STATE(dm_ratelimit_state
,
32 DEFAULT_RATELIMIT_INTERVAL
,
33 DEFAULT_RATELIMIT_BURST
);
34 EXPORT_SYMBOL(dm_ratelimit_state
);
38 * Cookies are numeric values sent with CHANGE and REMOVE
39 * uevents while resuming, removing or renaming the device.
41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42 #define DM_COOKIE_LENGTH 24
44 static const char *_name
= DM_NAME
;
46 static unsigned int major
= 0;
47 static unsigned int _major
= 0;
49 static DEFINE_IDR(_minor_idr
);
51 static DEFINE_SPINLOCK(_minor_lock
);
54 * One of these is allocated per bio.
57 struct mapped_device
*md
;
61 unsigned long start_time
;
62 spinlock_t endio_lock
;
66 * For request-based dm.
67 * One of these is allocated per request.
69 struct dm_rq_target_io
{
70 struct mapped_device
*md
;
72 struct request
*orig
, clone
;
78 * For request-based dm - the bio clones we allocate are embedded in these
81 * We allocate these with bio_alloc_bioset, using the front_pad parameter when
82 * the bioset is created - this means the bio has to come at the end of the
85 struct dm_rq_clone_bio_info
{
87 struct dm_rq_target_io
*tio
;
91 union map_info
*dm_get_mapinfo(struct bio
*bio
)
93 if (bio
&& bio
->bi_private
)
94 return &((struct dm_target_io
*)bio
->bi_private
)->info
;
98 union map_info
*dm_get_rq_mapinfo(struct request
*rq
)
100 if (rq
&& rq
->end_io_data
)
101 return &((struct dm_rq_target_io
*)rq
->end_io_data
)->info
;
104 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo
);
106 #define MINOR_ALLOCED ((void *)-1)
109 * Bits for the md->flags field.
111 #define DMF_BLOCK_IO_FOR_SUSPEND 0
112 #define DMF_SUSPENDED 1
114 #define DMF_FREEING 3
115 #define DMF_DELETING 4
116 #define DMF_NOFLUSH_SUSPENDING 5
117 #define DMF_MERGE_IS_OPTIONAL 6
120 * Work processed by per-device workqueue.
122 struct mapped_device
{
123 struct rw_semaphore io_lock
;
124 struct mutex suspend_lock
;
131 struct request_queue
*queue
;
133 /* Protect queue and type against concurrent access. */
134 struct mutex type_lock
;
136 struct target_type
*immutable_target_type
;
138 struct gendisk
*disk
;
144 * A list of ios that arrived while we were suspended.
147 wait_queue_head_t wait
;
148 struct work_struct work
;
149 struct bio_list deferred
;
150 spinlock_t deferred_lock
;
153 * Processing queue (flush)
155 struct workqueue_struct
*wq
;
158 * The current mapping.
160 struct dm_table
*map
;
163 * io objects are allocated from here.
173 wait_queue_head_t eventq
;
175 struct list_head uevent_list
;
176 spinlock_t uevent_lock
; /* Protect access to uevent_list */
179 * freeze/thaw support require holding onto a super block
181 struct super_block
*frozen_sb
;
182 struct block_device
*bdev
;
184 /* forced geometry settings */
185 struct hd_geometry geometry
;
190 /* zero-length flush that will be cloned and submitted to targets */
191 struct bio flush_bio
;
195 * For mempools pre-allocation at the table loading time.
197 struct dm_md_mempools
{
203 static struct kmem_cache
*_io_cache
;
204 static struct kmem_cache
*_rq_tio_cache
;
206 static int __init
local_init(void)
210 /* allocate a slab for the dm_ios */
211 _io_cache
= KMEM_CACHE(dm_io
, 0);
215 _rq_tio_cache
= KMEM_CACHE(dm_rq_target_io
, 0);
217 goto out_free_io_cache
;
219 r
= dm_uevent_init();
221 goto out_free_rq_tio_cache
;
224 r
= register_blkdev(_major
, _name
);
226 goto out_uevent_exit
;
235 out_free_rq_tio_cache
:
236 kmem_cache_destroy(_rq_tio_cache
);
238 kmem_cache_destroy(_io_cache
);
243 static void local_exit(void)
245 kmem_cache_destroy(_rq_tio_cache
);
246 kmem_cache_destroy(_io_cache
);
247 unregister_blkdev(_major
, _name
);
252 DMINFO("cleaned up");
255 static int (*_inits
[])(void) __initdata
= {
265 static void (*_exits
[])(void) = {
275 static int __init
dm_init(void)
277 const int count
= ARRAY_SIZE(_inits
);
281 for (i
= 0; i
< count
; i
++) {
296 static void __exit
dm_exit(void)
298 int i
= ARRAY_SIZE(_exits
);
304 * Should be empty by this point.
306 idr_destroy(&_minor_idr
);
310 * Block device functions
312 int dm_deleting_md(struct mapped_device
*md
)
314 return test_bit(DMF_DELETING
, &md
->flags
);
317 static int dm_blk_open(struct block_device
*bdev
, fmode_t mode
)
319 struct mapped_device
*md
;
321 spin_lock(&_minor_lock
);
323 md
= bdev
->bd_disk
->private_data
;
327 if (test_bit(DMF_FREEING
, &md
->flags
) ||
328 dm_deleting_md(md
)) {
334 atomic_inc(&md
->open_count
);
337 spin_unlock(&_minor_lock
);
339 return md
? 0 : -ENXIO
;
342 static void dm_blk_close(struct gendisk
*disk
, fmode_t mode
)
344 struct mapped_device
*md
= disk
->private_data
;
346 spin_lock(&_minor_lock
);
348 atomic_dec(&md
->open_count
);
351 spin_unlock(&_minor_lock
);
354 int dm_open_count(struct mapped_device
*md
)
356 return atomic_read(&md
->open_count
);
360 * Guarantees nothing is using the device before it's deleted.
362 int dm_lock_for_deletion(struct mapped_device
*md
)
366 spin_lock(&_minor_lock
);
368 if (dm_open_count(md
))
371 set_bit(DMF_DELETING
, &md
->flags
);
373 spin_unlock(&_minor_lock
);
378 static int dm_blk_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
)
380 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
382 return dm_get_geometry(md
, geo
);
385 static int dm_blk_ioctl(struct block_device
*bdev
, fmode_t mode
,
386 unsigned int cmd
, unsigned long arg
)
388 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
389 struct dm_table
*map
= dm_get_live_table(md
);
390 struct dm_target
*tgt
;
393 if (!map
|| !dm_table_get_size(map
))
396 /* We only support devices that have a single target */
397 if (dm_table_get_num_targets(map
) != 1)
400 tgt
= dm_table_get_target(map
, 0);
402 if (dm_suspended_md(md
)) {
407 if (tgt
->type
->ioctl
)
408 r
= tgt
->type
->ioctl(tgt
, cmd
, arg
);
416 static struct dm_io
*alloc_io(struct mapped_device
*md
)
418 return mempool_alloc(md
->io_pool
, GFP_NOIO
);
421 static void free_io(struct mapped_device
*md
, struct dm_io
*io
)
423 mempool_free(io
, md
->io_pool
);
426 static void free_tio(struct mapped_device
*md
, struct dm_target_io
*tio
)
428 bio_put(&tio
->clone
);
431 static struct dm_rq_target_io
*alloc_rq_tio(struct mapped_device
*md
,
434 return mempool_alloc(md
->io_pool
, gfp_mask
);
437 static void free_rq_tio(struct dm_rq_target_io
*tio
)
439 mempool_free(tio
, tio
->md
->io_pool
);
442 static int md_in_flight(struct mapped_device
*md
)
444 return atomic_read(&md
->pending
[READ
]) +
445 atomic_read(&md
->pending
[WRITE
]);
448 static void start_io_acct(struct dm_io
*io
)
450 struct mapped_device
*md
= io
->md
;
452 int rw
= bio_data_dir(io
->bio
);
454 io
->start_time
= jiffies
;
456 cpu
= part_stat_lock();
457 part_round_stats(cpu
, &dm_disk(md
)->part0
);
459 atomic_set(&dm_disk(md
)->part0
.in_flight
[rw
],
460 atomic_inc_return(&md
->pending
[rw
]));
463 static void end_io_acct(struct dm_io
*io
)
465 struct mapped_device
*md
= io
->md
;
466 struct bio
*bio
= io
->bio
;
467 unsigned long duration
= jiffies
- io
->start_time
;
469 int rw
= bio_data_dir(bio
);
471 cpu
= part_stat_lock();
472 part_round_stats(cpu
, &dm_disk(md
)->part0
);
473 part_stat_add(cpu
, &dm_disk(md
)->part0
, ticks
[rw
], duration
);
477 * After this is decremented the bio must not be touched if it is
480 pending
= atomic_dec_return(&md
->pending
[rw
]);
481 atomic_set(&dm_disk(md
)->part0
.in_flight
[rw
], pending
);
482 pending
+= atomic_read(&md
->pending
[rw
^0x1]);
484 /* nudge anyone waiting on suspend queue */
490 * Add the bio to the list of deferred io.
492 static void queue_io(struct mapped_device
*md
, struct bio
*bio
)
496 spin_lock_irqsave(&md
->deferred_lock
, flags
);
497 bio_list_add(&md
->deferred
, bio
);
498 spin_unlock_irqrestore(&md
->deferred_lock
, flags
);
499 queue_work(md
->wq
, &md
->work
);
503 * Everyone (including functions in this file), should use this
504 * function to access the md->map field, and make sure they call
505 * dm_table_put() when finished.
507 struct dm_table
*dm_get_live_table(struct mapped_device
*md
)
512 read_lock_irqsave(&md
->map_lock
, flags
);
516 read_unlock_irqrestore(&md
->map_lock
, flags
);
522 * Get the geometry associated with a dm device
524 int dm_get_geometry(struct mapped_device
*md
, struct hd_geometry
*geo
)
532 * Set the geometry of a device.
534 int dm_set_geometry(struct mapped_device
*md
, struct hd_geometry
*geo
)
536 sector_t sz
= (sector_t
)geo
->cylinders
* geo
->heads
* geo
->sectors
;
538 if (geo
->start
> sz
) {
539 DMWARN("Start sector is beyond the geometry limits.");
548 /*-----------------------------------------------------------------
550 * A more elegant soln is in the works that uses the queue
551 * merge fn, unfortunately there are a couple of changes to
552 * the block layer that I want to make for this. So in the
553 * interests of getting something for people to use I give
554 * you this clearly demarcated crap.
555 *---------------------------------------------------------------*/
557 static int __noflush_suspending(struct mapped_device
*md
)
559 return test_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
563 * Decrements the number of outstanding ios that a bio has been
564 * cloned into, completing the original io if necc.
566 static void dec_pending(struct dm_io
*io
, int error
)
571 struct mapped_device
*md
= io
->md
;
573 /* Push-back supersedes any I/O errors */
574 if (unlikely(error
)) {
575 spin_lock_irqsave(&io
->endio_lock
, flags
);
576 if (!(io
->error
> 0 && __noflush_suspending(md
)))
578 spin_unlock_irqrestore(&io
->endio_lock
, flags
);
581 if (atomic_dec_and_test(&io
->io_count
)) {
582 if (io
->error
== DM_ENDIO_REQUEUE
) {
584 * Target requested pushing back the I/O.
586 spin_lock_irqsave(&md
->deferred_lock
, flags
);
587 if (__noflush_suspending(md
))
588 bio_list_add_head(&md
->deferred
, io
->bio
);
590 /* noflush suspend was interrupted. */
592 spin_unlock_irqrestore(&md
->deferred_lock
, flags
);
595 io_error
= io
->error
;
600 if (io_error
== DM_ENDIO_REQUEUE
)
603 if ((bio
->bi_rw
& REQ_FLUSH
) && bio
->bi_size
) {
605 * Preflush done for flush with data, reissue
608 bio
->bi_rw
&= ~REQ_FLUSH
;
611 /* done with normal IO or empty flush */
612 trace_block_bio_complete(md
->queue
, bio
, io_error
);
613 bio_endio(bio
, io_error
);
618 static void clone_endio(struct bio
*bio
, int error
)
621 struct dm_target_io
*tio
= bio
->bi_private
;
622 struct dm_io
*io
= tio
->io
;
623 struct mapped_device
*md
= tio
->io
->md
;
624 dm_endio_fn endio
= tio
->ti
->type
->end_io
;
626 if (!bio_flagged(bio
, BIO_UPTODATE
) && !error
)
630 r
= endio(tio
->ti
, bio
, error
);
631 if (r
< 0 || r
== DM_ENDIO_REQUEUE
)
633 * error and requeue request are handled
637 else if (r
== DM_ENDIO_INCOMPLETE
)
638 /* The target will handle the io */
641 DMWARN("unimplemented target endio return value: %d", r
);
647 dec_pending(io
, error
);
651 * Partial completion handling for request-based dm
653 static void end_clone_bio(struct bio
*clone
, int error
)
655 struct dm_rq_clone_bio_info
*info
= clone
->bi_private
;
656 struct dm_rq_target_io
*tio
= info
->tio
;
657 struct bio
*bio
= info
->orig
;
658 unsigned int nr_bytes
= info
->orig
->bi_size
;
664 * An error has already been detected on the request.
665 * Once error occurred, just let clone->end_io() handle
671 * Don't notice the error to the upper layer yet.
672 * The error handling decision is made by the target driver,
673 * when the request is completed.
680 * I/O for the bio successfully completed.
681 * Notice the data completion to the upper layer.
685 * bios are processed from the head of the list.
686 * So the completing bio should always be rq->bio.
687 * If it's not, something wrong is happening.
689 if (tio
->orig
->bio
!= bio
)
690 DMERR("bio completion is going in the middle of the request");
693 * Update the original request.
694 * Do not use blk_end_request() here, because it may complete
695 * the original request before the clone, and break the ordering.
697 blk_update_request(tio
->orig
, 0, nr_bytes
);
701 * Don't touch any member of the md after calling this function because
702 * the md may be freed in dm_put() at the end of this function.
703 * Or do dm_get() before calling this function and dm_put() later.
705 static void rq_completed(struct mapped_device
*md
, int rw
, int run_queue
)
707 atomic_dec(&md
->pending
[rw
]);
709 /* nudge anyone waiting on suspend queue */
710 if (!md_in_flight(md
))
714 * Run this off this callpath, as drivers could invoke end_io while
715 * inside their request_fn (and holding the queue lock). Calling
716 * back into ->request_fn() could deadlock attempting to grab the
720 blk_run_queue_async(md
->queue
);
723 * dm_put() must be at the end of this function. See the comment above
728 static void free_rq_clone(struct request
*clone
)
730 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
732 blk_rq_unprep_clone(clone
);
737 * Complete the clone and the original request.
738 * Must be called without queue lock.
740 static void dm_end_request(struct request
*clone
, int error
)
742 int rw
= rq_data_dir(clone
);
743 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
744 struct mapped_device
*md
= tio
->md
;
745 struct request
*rq
= tio
->orig
;
747 if (rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) {
748 rq
->errors
= clone
->errors
;
749 rq
->resid_len
= clone
->resid_len
;
753 * We are using the sense buffer of the original
755 * So setting the length of the sense data is enough.
757 rq
->sense_len
= clone
->sense_len
;
760 free_rq_clone(clone
);
761 blk_end_request_all(rq
, error
);
762 rq_completed(md
, rw
, true);
765 static void dm_unprep_request(struct request
*rq
)
767 struct request
*clone
= rq
->special
;
770 rq
->cmd_flags
&= ~REQ_DONTPREP
;
772 free_rq_clone(clone
);
776 * Requeue the original request of a clone.
778 void dm_requeue_unmapped_request(struct request
*clone
)
780 int rw
= rq_data_dir(clone
);
781 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
782 struct mapped_device
*md
= tio
->md
;
783 struct request
*rq
= tio
->orig
;
784 struct request_queue
*q
= rq
->q
;
787 dm_unprep_request(rq
);
789 spin_lock_irqsave(q
->queue_lock
, flags
);
790 blk_requeue_request(q
, rq
);
791 spin_unlock_irqrestore(q
->queue_lock
, flags
);
793 rq_completed(md
, rw
, 0);
795 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request
);
797 static void __stop_queue(struct request_queue
*q
)
802 static void stop_queue(struct request_queue
*q
)
806 spin_lock_irqsave(q
->queue_lock
, flags
);
808 spin_unlock_irqrestore(q
->queue_lock
, flags
);
811 static void __start_queue(struct request_queue
*q
)
813 if (blk_queue_stopped(q
))
817 static void start_queue(struct request_queue
*q
)
821 spin_lock_irqsave(q
->queue_lock
, flags
);
823 spin_unlock_irqrestore(q
->queue_lock
, flags
);
826 static void dm_done(struct request
*clone
, int error
, bool mapped
)
829 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
830 dm_request_endio_fn rq_end_io
= NULL
;
833 rq_end_io
= tio
->ti
->type
->rq_end_io
;
835 if (mapped
&& rq_end_io
)
836 r
= rq_end_io(tio
->ti
, clone
, error
, &tio
->info
);
840 /* The target wants to complete the I/O */
841 dm_end_request(clone
, r
);
842 else if (r
== DM_ENDIO_INCOMPLETE
)
843 /* The target will handle the I/O */
845 else if (r
== DM_ENDIO_REQUEUE
)
846 /* The target wants to requeue the I/O */
847 dm_requeue_unmapped_request(clone
);
849 DMWARN("unimplemented target endio return value: %d", r
);
855 * Request completion handler for request-based dm
857 static void dm_softirq_done(struct request
*rq
)
860 struct request
*clone
= rq
->completion_data
;
861 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
863 if (rq
->cmd_flags
& REQ_FAILED
)
866 dm_done(clone
, tio
->error
, mapped
);
870 * Complete the clone and the original request with the error status
871 * through softirq context.
873 static void dm_complete_request(struct request
*clone
, int error
)
875 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
876 struct request
*rq
= tio
->orig
;
879 rq
->completion_data
= clone
;
880 blk_complete_request(rq
);
884 * Complete the not-mapped clone and the original request with the error status
885 * through softirq context.
886 * Target's rq_end_io() function isn't called.
887 * This may be used when the target's map_rq() function fails.
889 void dm_kill_unmapped_request(struct request
*clone
, int error
)
891 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
892 struct request
*rq
= tio
->orig
;
894 rq
->cmd_flags
|= REQ_FAILED
;
895 dm_complete_request(clone
, error
);
897 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request
);
900 * Called with the queue lock held
902 static void end_clone_request(struct request
*clone
, int error
)
905 * For just cleaning up the information of the queue in which
906 * the clone was dispatched.
907 * The clone is *NOT* freed actually here because it is alloced from
908 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
910 __blk_put_request(clone
->q
, clone
);
913 * Actual request completion is done in a softirq context which doesn't
914 * hold the queue lock. Otherwise, deadlock could occur because:
915 * - another request may be submitted by the upper level driver
916 * of the stacking during the completion
917 * - the submission which requires queue lock may be done
920 dm_complete_request(clone
, error
);
924 * Return maximum size of I/O possible at the supplied sector up to the current
927 static sector_t
max_io_len_target_boundary(sector_t sector
, struct dm_target
*ti
)
929 sector_t target_offset
= dm_target_offset(ti
, sector
);
931 return ti
->len
- target_offset
;
934 static sector_t
max_io_len(sector_t sector
, struct dm_target
*ti
)
936 sector_t len
= max_io_len_target_boundary(sector
, ti
);
937 sector_t offset
, max_len
;
940 * Does the target need to split even further?
942 if (ti
->max_io_len
) {
943 offset
= dm_target_offset(ti
, sector
);
944 if (unlikely(ti
->max_io_len
& (ti
->max_io_len
- 1)))
945 max_len
= sector_div(offset
, ti
->max_io_len
);
947 max_len
= offset
& (ti
->max_io_len
- 1);
948 max_len
= ti
->max_io_len
- max_len
;
957 int dm_set_target_max_io_len(struct dm_target
*ti
, sector_t len
)
959 if (len
> UINT_MAX
) {
960 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
961 (unsigned long long)len
, UINT_MAX
);
962 ti
->error
= "Maximum size of target IO is too large";
966 ti
->max_io_len
= (uint32_t) len
;
970 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len
);
972 static void __map_bio(struct dm_target_io
*tio
)
976 struct mapped_device
*md
;
977 struct bio
*clone
= &tio
->clone
;
978 struct dm_target
*ti
= tio
->ti
;
980 clone
->bi_end_io
= clone_endio
;
981 clone
->bi_private
= tio
;
984 * Map the clone. If r == 0 we don't need to do
985 * anything, the target has assumed ownership of
988 atomic_inc(&tio
->io
->io_count
);
989 sector
= clone
->bi_sector
;
990 r
= ti
->type
->map(ti
, clone
);
991 if (r
== DM_MAPIO_REMAPPED
) {
992 /* the bio has been remapped so dispatch it */
994 trace_block_bio_remap(bdev_get_queue(clone
->bi_bdev
), clone
,
995 tio
->io
->bio
->bi_bdev
->bd_dev
, sector
);
997 generic_make_request(clone
);
998 } else if (r
< 0 || r
== DM_MAPIO_REQUEUE
) {
999 /* error the io and bail out, or requeue it if needed */
1001 dec_pending(tio
->io
, r
);
1004 DMWARN("unimplemented target map return value: %d", r
);
1010 struct mapped_device
*md
;
1011 struct dm_table
*map
;
1015 sector_t sector_count
;
1019 static void bio_setup_sector(struct bio
*bio
, sector_t sector
, sector_t len
)
1021 bio
->bi_sector
= sector
;
1022 bio
->bi_size
= to_bytes(len
);
1025 static void bio_setup_bv(struct bio
*bio
, unsigned short idx
, unsigned short bv_count
)
1028 bio
->bi_vcnt
= idx
+ bv_count
;
1029 bio
->bi_flags
&= ~(1 << BIO_SEG_VALID
);
1032 static void clone_bio_integrity(struct bio
*bio
, struct bio
*clone
,
1033 unsigned short idx
, unsigned len
, unsigned offset
,
1036 if (!bio_integrity(bio
))
1039 bio_integrity_clone(clone
, bio
, GFP_NOIO
);
1042 bio_integrity_trim(clone
, bio_sector_offset(bio
, idx
, offset
), len
);
1046 * Creates a little bio that just does part of a bvec.
1048 static void clone_split_bio(struct dm_target_io
*tio
, struct bio
*bio
,
1049 sector_t sector
, unsigned short idx
,
1050 unsigned offset
, unsigned len
)
1052 struct bio
*clone
= &tio
->clone
;
1053 struct bio_vec
*bv
= bio
->bi_io_vec
+ idx
;
1055 *clone
->bi_io_vec
= *bv
;
1057 bio_setup_sector(clone
, sector
, len
);
1059 clone
->bi_bdev
= bio
->bi_bdev
;
1060 clone
->bi_rw
= bio
->bi_rw
;
1062 clone
->bi_io_vec
->bv_offset
= offset
;
1063 clone
->bi_io_vec
->bv_len
= clone
->bi_size
;
1064 clone
->bi_flags
|= 1 << BIO_CLONED
;
1066 clone_bio_integrity(bio
, clone
, idx
, len
, offset
, 1);
1070 * Creates a bio that consists of range of complete bvecs.
1072 static void clone_bio(struct dm_target_io
*tio
, struct bio
*bio
,
1073 sector_t sector
, unsigned short idx
,
1074 unsigned short bv_count
, unsigned len
)
1076 struct bio
*clone
= &tio
->clone
;
1079 __bio_clone(clone
, bio
);
1080 bio_setup_sector(clone
, sector
, len
);
1081 bio_setup_bv(clone
, idx
, bv_count
);
1083 if (idx
!= bio
->bi_idx
|| clone
->bi_size
< bio
->bi_size
)
1085 clone_bio_integrity(bio
, clone
, idx
, len
, 0, trim
);
1088 static struct dm_target_io
*alloc_tio(struct clone_info
*ci
,
1089 struct dm_target
*ti
, int nr_iovecs
,
1090 unsigned target_bio_nr
)
1092 struct dm_target_io
*tio
;
1095 clone
= bio_alloc_bioset(GFP_NOIO
, nr_iovecs
, ci
->md
->bs
);
1096 tio
= container_of(clone
, struct dm_target_io
, clone
);
1100 memset(&tio
->info
, 0, sizeof(tio
->info
));
1101 tio
->target_bio_nr
= target_bio_nr
;
1106 static void __clone_and_map_simple_bio(struct clone_info
*ci
,
1107 struct dm_target
*ti
,
1108 unsigned target_bio_nr
, sector_t len
)
1110 struct dm_target_io
*tio
= alloc_tio(ci
, ti
, ci
->bio
->bi_max_vecs
, target_bio_nr
);
1111 struct bio
*clone
= &tio
->clone
;
1114 * Discard requests require the bio's inline iovecs be initialized.
1115 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1116 * and discard, so no need for concern about wasted bvec allocations.
1118 __bio_clone(clone
, ci
->bio
);
1120 bio_setup_sector(clone
, ci
->sector
, len
);
1125 static void __send_duplicate_bios(struct clone_info
*ci
, struct dm_target
*ti
,
1126 unsigned num_bios
, sector_t len
)
1128 unsigned target_bio_nr
;
1130 for (target_bio_nr
= 0; target_bio_nr
< num_bios
; target_bio_nr
++)
1131 __clone_and_map_simple_bio(ci
, ti
, target_bio_nr
, len
);
1134 static int __send_empty_flush(struct clone_info
*ci
)
1136 unsigned target_nr
= 0;
1137 struct dm_target
*ti
;
1139 BUG_ON(bio_has_data(ci
->bio
));
1140 while ((ti
= dm_table_get_target(ci
->map
, target_nr
++)))
1141 __send_duplicate_bios(ci
, ti
, ti
->num_flush_bios
, 0);
1146 static void __clone_and_map_data_bio(struct clone_info
*ci
, struct dm_target
*ti
,
1147 sector_t sector
, int nr_iovecs
,
1148 unsigned short idx
, unsigned short bv_count
,
1149 unsigned offset
, unsigned len
,
1150 unsigned split_bvec
)
1152 struct bio
*bio
= ci
->bio
;
1153 struct dm_target_io
*tio
;
1154 unsigned target_bio_nr
;
1155 unsigned num_target_bios
= 1;
1158 * Does the target want to receive duplicate copies of the bio?
1160 if (bio_data_dir(bio
) == WRITE
&& ti
->num_write_bios
)
1161 num_target_bios
= ti
->num_write_bios(ti
, bio
);
1163 for (target_bio_nr
= 0; target_bio_nr
< num_target_bios
; target_bio_nr
++) {
1164 tio
= alloc_tio(ci
, ti
, nr_iovecs
, target_bio_nr
);
1166 clone_split_bio(tio
, bio
, sector
, idx
, offset
, len
);
1168 clone_bio(tio
, bio
, sector
, idx
, bv_count
, len
);
1173 typedef unsigned (*get_num_bios_fn
)(struct dm_target
*ti
);
1175 static unsigned get_num_discard_bios(struct dm_target
*ti
)
1177 return ti
->num_discard_bios
;
1180 static unsigned get_num_write_same_bios(struct dm_target
*ti
)
1182 return ti
->num_write_same_bios
;
1185 typedef bool (*is_split_required_fn
)(struct dm_target
*ti
);
1187 static bool is_split_required_for_discard(struct dm_target
*ti
)
1189 return ti
->split_discard_bios
;
1192 static int __send_changing_extent_only(struct clone_info
*ci
,
1193 get_num_bios_fn get_num_bios
,
1194 is_split_required_fn is_split_required
)
1196 struct dm_target
*ti
;
1201 ti
= dm_table_find_target(ci
->map
, ci
->sector
);
1202 if (!dm_target_is_valid(ti
))
1206 * Even though the device advertised support for this type of
1207 * request, that does not mean every target supports it, and
1208 * reconfiguration might also have changed that since the
1209 * check was performed.
1211 num_bios
= get_num_bios
? get_num_bios(ti
) : 0;
1215 if (is_split_required
&& !is_split_required(ti
))
1216 len
= min(ci
->sector_count
, max_io_len_target_boundary(ci
->sector
, ti
));
1218 len
= min(ci
->sector_count
, max_io_len(ci
->sector
, ti
));
1220 __send_duplicate_bios(ci
, ti
, num_bios
, len
);
1223 } while (ci
->sector_count
-= len
);
1228 static int __send_discard(struct clone_info
*ci
)
1230 return __send_changing_extent_only(ci
, get_num_discard_bios
,
1231 is_split_required_for_discard
);
1234 static int __send_write_same(struct clone_info
*ci
)
1236 return __send_changing_extent_only(ci
, get_num_write_same_bios
, NULL
);
1240 * Find maximum number of sectors / bvecs we can process with a single bio.
1242 static sector_t
__len_within_target(struct clone_info
*ci
, sector_t max
, int *idx
)
1244 struct bio
*bio
= ci
->bio
;
1245 sector_t bv_len
, total_len
= 0;
1247 for (*idx
= ci
->idx
; max
&& (*idx
< bio
->bi_vcnt
); (*idx
)++) {
1248 bv_len
= to_sector(bio
->bi_io_vec
[*idx
].bv_len
);
1254 total_len
+= bv_len
;
1260 static int __split_bvec_across_targets(struct clone_info
*ci
,
1261 struct dm_target
*ti
, sector_t max
)
1263 struct bio
*bio
= ci
->bio
;
1264 struct bio_vec
*bv
= bio
->bi_io_vec
+ ci
->idx
;
1265 sector_t remaining
= to_sector(bv
->bv_len
);
1266 unsigned offset
= 0;
1271 ti
= dm_table_find_target(ci
->map
, ci
->sector
);
1272 if (!dm_target_is_valid(ti
))
1275 max
= max_io_len(ci
->sector
, ti
);
1278 len
= min(remaining
, max
);
1280 __clone_and_map_data_bio(ci
, ti
, ci
->sector
, 1, ci
->idx
, 0,
1281 bv
->bv_offset
+ offset
, len
, 1);
1284 ci
->sector_count
-= len
;
1285 offset
+= to_bytes(len
);
1286 } while (remaining
-= len
);
1294 * Select the correct strategy for processing a non-flush bio.
1296 static int __split_and_process_non_flush(struct clone_info
*ci
)
1298 struct bio
*bio
= ci
->bio
;
1299 struct dm_target
*ti
;
1303 if (unlikely(bio
->bi_rw
& REQ_DISCARD
))
1304 return __send_discard(ci
);
1305 else if (unlikely(bio
->bi_rw
& REQ_WRITE_SAME
))
1306 return __send_write_same(ci
);
1308 ti
= dm_table_find_target(ci
->map
, ci
->sector
);
1309 if (!dm_target_is_valid(ti
))
1312 max
= max_io_len(ci
->sector
, ti
);
1315 * Optimise for the simple case where we can do all of
1316 * the remaining io with a single clone.
1318 if (ci
->sector_count
<= max
) {
1319 __clone_and_map_data_bio(ci
, ti
, ci
->sector
, bio
->bi_max_vecs
,
1320 ci
->idx
, bio
->bi_vcnt
- ci
->idx
, 0,
1321 ci
->sector_count
, 0);
1322 ci
->sector_count
= 0;
1327 * There are some bvecs that don't span targets.
1328 * Do as many of these as possible.
1330 if (to_sector(bio
->bi_io_vec
[ci
->idx
].bv_len
) <= max
) {
1331 len
= __len_within_target(ci
, max
, &idx
);
1333 __clone_and_map_data_bio(ci
, ti
, ci
->sector
, bio
->bi_max_vecs
,
1334 ci
->idx
, idx
- ci
->idx
, 0, len
, 0);
1337 ci
->sector_count
-= len
;
1344 * Handle a bvec that must be split between two or more targets.
1346 return __split_bvec_across_targets(ci
, ti
, max
);
1350 * Entry point to split a bio into clones and submit them to the targets.
1352 static void __split_and_process_bio(struct mapped_device
*md
, struct bio
*bio
)
1354 struct clone_info ci
;
1357 ci
.map
= dm_get_live_table(md
);
1358 if (unlikely(!ci
.map
)) {
1364 ci
.io
= alloc_io(md
);
1366 atomic_set(&ci
.io
->io_count
, 1);
1369 spin_lock_init(&ci
.io
->endio_lock
);
1370 ci
.sector
= bio
->bi_sector
;
1371 ci
.idx
= bio
->bi_idx
;
1373 start_io_acct(ci
.io
);
1375 if (bio
->bi_rw
& REQ_FLUSH
) {
1376 ci
.bio
= &ci
.md
->flush_bio
;
1377 ci
.sector_count
= 0;
1378 error
= __send_empty_flush(&ci
);
1379 /* dec_pending submits any data associated with flush */
1382 ci
.sector_count
= bio_sectors(bio
);
1383 while (ci
.sector_count
&& !error
)
1384 error
= __split_and_process_non_flush(&ci
);
1387 /* drop the extra reference count */
1388 dec_pending(ci
.io
, error
);
1389 dm_table_put(ci
.map
);
1391 /*-----------------------------------------------------------------
1393 *---------------------------------------------------------------*/
1395 static int dm_merge_bvec(struct request_queue
*q
,
1396 struct bvec_merge_data
*bvm
,
1397 struct bio_vec
*biovec
)
1399 struct mapped_device
*md
= q
->queuedata
;
1400 struct dm_table
*map
= dm_get_live_table(md
);
1401 struct dm_target
*ti
;
1402 sector_t max_sectors
;
1408 ti
= dm_table_find_target(map
, bvm
->bi_sector
);
1409 if (!dm_target_is_valid(ti
))
1413 * Find maximum amount of I/O that won't need splitting
1415 max_sectors
= min(max_io_len(bvm
->bi_sector
, ti
),
1416 (sector_t
) BIO_MAX_SECTORS
);
1417 max_size
= (max_sectors
<< SECTOR_SHIFT
) - bvm
->bi_size
;
1422 * merge_bvec_fn() returns number of bytes
1423 * it can accept at this offset
1424 * max is precomputed maximal io size
1426 if (max_size
&& ti
->type
->merge
)
1427 max_size
= ti
->type
->merge(ti
, bvm
, biovec
, max_size
);
1429 * If the target doesn't support merge method and some of the devices
1430 * provided their merge_bvec method (we know this by looking at
1431 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1432 * entries. So always set max_size to 0, and the code below allows
1435 else if (queue_max_hw_sectors(q
) <= PAGE_SIZE
>> 9)
1444 * Always allow an entire first page
1446 if (max_size
<= biovec
->bv_len
&& !(bvm
->bi_size
>> SECTOR_SHIFT
))
1447 max_size
= biovec
->bv_len
;
1453 * The request function that just remaps the bio built up by
1456 static void _dm_request(struct request_queue
*q
, struct bio
*bio
)
1458 int rw
= bio_data_dir(bio
);
1459 struct mapped_device
*md
= q
->queuedata
;
1462 down_read(&md
->io_lock
);
1464 cpu
= part_stat_lock();
1465 part_stat_inc(cpu
, &dm_disk(md
)->part0
, ios
[rw
]);
1466 part_stat_add(cpu
, &dm_disk(md
)->part0
, sectors
[rw
], bio_sectors(bio
));
1469 /* if we're suspended, we have to queue this io for later */
1470 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
))) {
1471 up_read(&md
->io_lock
);
1473 if (bio_rw(bio
) != READA
)
1480 __split_and_process_bio(md
, bio
);
1481 up_read(&md
->io_lock
);
1485 static int dm_request_based(struct mapped_device
*md
)
1487 return blk_queue_stackable(md
->queue
);
1490 static void dm_request(struct request_queue
*q
, struct bio
*bio
)
1492 struct mapped_device
*md
= q
->queuedata
;
1494 if (dm_request_based(md
))
1495 blk_queue_bio(q
, bio
);
1497 _dm_request(q
, bio
);
1500 void dm_dispatch_request(struct request
*rq
)
1504 if (blk_queue_io_stat(rq
->q
))
1505 rq
->cmd_flags
|= REQ_IO_STAT
;
1507 rq
->start_time
= jiffies
;
1508 r
= blk_insert_cloned_request(rq
->q
, rq
);
1510 dm_complete_request(rq
, r
);
1512 EXPORT_SYMBOL_GPL(dm_dispatch_request
);
1514 static int dm_rq_bio_constructor(struct bio
*bio
, struct bio
*bio_orig
,
1517 struct dm_rq_target_io
*tio
= data
;
1518 struct dm_rq_clone_bio_info
*info
=
1519 container_of(bio
, struct dm_rq_clone_bio_info
, clone
);
1521 info
->orig
= bio_orig
;
1523 bio
->bi_end_io
= end_clone_bio
;
1524 bio
->bi_private
= info
;
1529 static int setup_clone(struct request
*clone
, struct request
*rq
,
1530 struct dm_rq_target_io
*tio
)
1534 r
= blk_rq_prep_clone(clone
, rq
, tio
->md
->bs
, GFP_ATOMIC
,
1535 dm_rq_bio_constructor
, tio
);
1539 clone
->cmd
= rq
->cmd
;
1540 clone
->cmd_len
= rq
->cmd_len
;
1541 clone
->sense
= rq
->sense
;
1542 clone
->buffer
= rq
->buffer
;
1543 clone
->end_io
= end_clone_request
;
1544 clone
->end_io_data
= tio
;
1549 static struct request
*clone_rq(struct request
*rq
, struct mapped_device
*md
,
1552 struct request
*clone
;
1553 struct dm_rq_target_io
*tio
;
1555 tio
= alloc_rq_tio(md
, gfp_mask
);
1563 memset(&tio
->info
, 0, sizeof(tio
->info
));
1565 clone
= &tio
->clone
;
1566 if (setup_clone(clone
, rq
, tio
)) {
1576 * Called with the queue lock held.
1578 static int dm_prep_fn(struct request_queue
*q
, struct request
*rq
)
1580 struct mapped_device
*md
= q
->queuedata
;
1581 struct request
*clone
;
1583 if (unlikely(rq
->special
)) {
1584 DMWARN("Already has something in rq->special.");
1585 return BLKPREP_KILL
;
1588 clone
= clone_rq(rq
, md
, GFP_ATOMIC
);
1590 return BLKPREP_DEFER
;
1592 rq
->special
= clone
;
1593 rq
->cmd_flags
|= REQ_DONTPREP
;
1600 * 0 : the request has been processed (not requeued)
1601 * !0 : the request has been requeued
1603 static int map_request(struct dm_target
*ti
, struct request
*clone
,
1604 struct mapped_device
*md
)
1606 int r
, requeued
= 0;
1607 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
1610 r
= ti
->type
->map_rq(ti
, clone
, &tio
->info
);
1612 case DM_MAPIO_SUBMITTED
:
1613 /* The target has taken the I/O to submit by itself later */
1615 case DM_MAPIO_REMAPPED
:
1616 /* The target has remapped the I/O so dispatch it */
1617 trace_block_rq_remap(clone
->q
, clone
, disk_devt(dm_disk(md
)),
1618 blk_rq_pos(tio
->orig
));
1619 dm_dispatch_request(clone
);
1621 case DM_MAPIO_REQUEUE
:
1622 /* The target wants to requeue the I/O */
1623 dm_requeue_unmapped_request(clone
);
1628 DMWARN("unimplemented target map return value: %d", r
);
1632 /* The target wants to complete the I/O */
1633 dm_kill_unmapped_request(clone
, r
);
1640 static struct request
*dm_start_request(struct mapped_device
*md
, struct request
*orig
)
1642 struct request
*clone
;
1644 blk_start_request(orig
);
1645 clone
= orig
->special
;
1646 atomic_inc(&md
->pending
[rq_data_dir(clone
)]);
1649 * Hold the md reference here for the in-flight I/O.
1650 * We can't rely on the reference count by device opener,
1651 * because the device may be closed during the request completion
1652 * when all bios are completed.
1653 * See the comment in rq_completed() too.
1661 * q->request_fn for request-based dm.
1662 * Called with the queue lock held.
1664 static void dm_request_fn(struct request_queue
*q
)
1666 struct mapped_device
*md
= q
->queuedata
;
1667 struct dm_table
*map
= dm_get_live_table(md
);
1668 struct dm_target
*ti
;
1669 struct request
*rq
, *clone
;
1673 * For suspend, check blk_queue_stopped() and increment
1674 * ->pending within a single queue_lock not to increment the
1675 * number of in-flight I/Os after the queue is stopped in
1678 while (!blk_queue_stopped(q
)) {
1679 rq
= blk_peek_request(q
);
1683 /* always use block 0 to find the target for flushes for now */
1685 if (!(rq
->cmd_flags
& REQ_FLUSH
))
1686 pos
= blk_rq_pos(rq
);
1688 ti
= dm_table_find_target(map
, pos
);
1689 if (!dm_target_is_valid(ti
)) {
1691 * Must perform setup, that dm_done() requires,
1692 * before calling dm_kill_unmapped_request
1694 DMERR_LIMIT("request attempted access beyond the end of device");
1695 clone
= dm_start_request(md
, rq
);
1696 dm_kill_unmapped_request(clone
, -EIO
);
1700 if (ti
->type
->busy
&& ti
->type
->busy(ti
))
1703 clone
= dm_start_request(md
, rq
);
1705 spin_unlock(q
->queue_lock
);
1706 if (map_request(ti
, clone
, md
))
1709 BUG_ON(!irqs_disabled());
1710 spin_lock(q
->queue_lock
);
1716 BUG_ON(!irqs_disabled());
1717 spin_lock(q
->queue_lock
);
1720 blk_delay_queue(q
, HZ
/ 10);
1725 int dm_underlying_device_busy(struct request_queue
*q
)
1727 return blk_lld_busy(q
);
1729 EXPORT_SYMBOL_GPL(dm_underlying_device_busy
);
1731 static int dm_lld_busy(struct request_queue
*q
)
1734 struct mapped_device
*md
= q
->queuedata
;
1735 struct dm_table
*map
= dm_get_live_table(md
);
1737 if (!map
|| test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
))
1740 r
= dm_table_any_busy_target(map
);
1747 static int dm_any_congested(void *congested_data
, int bdi_bits
)
1750 struct mapped_device
*md
= congested_data
;
1751 struct dm_table
*map
;
1753 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
)) {
1754 map
= dm_get_live_table(md
);
1757 * Request-based dm cares about only own queue for
1758 * the query about congestion status of request_queue
1760 if (dm_request_based(md
))
1761 r
= md
->queue
->backing_dev_info
.state
&
1764 r
= dm_table_any_congested(map
, bdi_bits
);
1773 /*-----------------------------------------------------------------
1774 * An IDR is used to keep track of allocated minor numbers.
1775 *---------------------------------------------------------------*/
1776 static void free_minor(int minor
)
1778 spin_lock(&_minor_lock
);
1779 idr_remove(&_minor_idr
, minor
);
1780 spin_unlock(&_minor_lock
);
1784 * See if the device with a specific minor # is free.
1786 static int specific_minor(int minor
)
1790 if (minor
>= (1 << MINORBITS
))
1793 idr_preload(GFP_KERNEL
);
1794 spin_lock(&_minor_lock
);
1796 r
= idr_alloc(&_minor_idr
, MINOR_ALLOCED
, minor
, minor
+ 1, GFP_NOWAIT
);
1798 spin_unlock(&_minor_lock
);
1801 return r
== -ENOSPC
? -EBUSY
: r
;
1805 static int next_free_minor(int *minor
)
1809 idr_preload(GFP_KERNEL
);
1810 spin_lock(&_minor_lock
);
1812 r
= idr_alloc(&_minor_idr
, MINOR_ALLOCED
, 0, 1 << MINORBITS
, GFP_NOWAIT
);
1814 spin_unlock(&_minor_lock
);
1822 static const struct block_device_operations dm_blk_dops
;
1824 static void dm_wq_work(struct work_struct
*work
);
1826 static void dm_init_md_queue(struct mapped_device
*md
)
1829 * Request-based dm devices cannot be stacked on top of bio-based dm
1830 * devices. The type of this dm device has not been decided yet.
1831 * The type is decided at the first table loading time.
1832 * To prevent problematic device stacking, clear the queue flag
1833 * for request stacking support until then.
1835 * This queue is new, so no concurrency on the queue_flags.
1837 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE
, md
->queue
);
1839 md
->queue
->queuedata
= md
;
1840 md
->queue
->backing_dev_info
.congested_fn
= dm_any_congested
;
1841 md
->queue
->backing_dev_info
.congested_data
= md
;
1842 blk_queue_make_request(md
->queue
, dm_request
);
1843 blk_queue_bounce_limit(md
->queue
, BLK_BOUNCE_ANY
);
1844 blk_queue_merge_bvec(md
->queue
, dm_merge_bvec
);
1848 * Allocate and initialise a blank device with a given minor.
1850 static struct mapped_device
*alloc_dev(int minor
)
1853 struct mapped_device
*md
= kzalloc(sizeof(*md
), GFP_KERNEL
);
1857 DMWARN("unable to allocate device, out of memory.");
1861 if (!try_module_get(THIS_MODULE
))
1862 goto bad_module_get
;
1864 /* get a minor number for the dev */
1865 if (minor
== DM_ANY_MINOR
)
1866 r
= next_free_minor(&minor
);
1868 r
= specific_minor(minor
);
1872 md
->type
= DM_TYPE_NONE
;
1873 init_rwsem(&md
->io_lock
);
1874 mutex_init(&md
->suspend_lock
);
1875 mutex_init(&md
->type_lock
);
1876 spin_lock_init(&md
->deferred_lock
);
1877 rwlock_init(&md
->map_lock
);
1878 atomic_set(&md
->holders
, 1);
1879 atomic_set(&md
->open_count
, 0);
1880 atomic_set(&md
->event_nr
, 0);
1881 atomic_set(&md
->uevent_seq
, 0);
1882 INIT_LIST_HEAD(&md
->uevent_list
);
1883 spin_lock_init(&md
->uevent_lock
);
1885 md
->queue
= blk_alloc_queue(GFP_KERNEL
);
1889 dm_init_md_queue(md
);
1891 md
->disk
= alloc_disk(1);
1895 atomic_set(&md
->pending
[0], 0);
1896 atomic_set(&md
->pending
[1], 0);
1897 init_waitqueue_head(&md
->wait
);
1898 INIT_WORK(&md
->work
, dm_wq_work
);
1899 init_waitqueue_head(&md
->eventq
);
1901 md
->disk
->major
= _major
;
1902 md
->disk
->first_minor
= minor
;
1903 md
->disk
->fops
= &dm_blk_dops
;
1904 md
->disk
->queue
= md
->queue
;
1905 md
->disk
->private_data
= md
;
1906 sprintf(md
->disk
->disk_name
, "dm-%d", minor
);
1908 format_dev_t(md
->name
, MKDEV(_major
, minor
));
1910 md
->wq
= alloc_workqueue("kdmflush",
1911 WQ_NON_REENTRANT
| WQ_MEM_RECLAIM
, 0);
1915 md
->bdev
= bdget_disk(md
->disk
, 0);
1919 bio_init(&md
->flush_bio
);
1920 md
->flush_bio
.bi_bdev
= md
->bdev
;
1921 md
->flush_bio
.bi_rw
= WRITE_FLUSH
;
1923 /* Populate the mapping, nobody knows we exist yet */
1924 spin_lock(&_minor_lock
);
1925 old_md
= idr_replace(&_minor_idr
, md
, minor
);
1926 spin_unlock(&_minor_lock
);
1928 BUG_ON(old_md
!= MINOR_ALLOCED
);
1933 destroy_workqueue(md
->wq
);
1935 del_gendisk(md
->disk
);
1938 blk_cleanup_queue(md
->queue
);
1942 module_put(THIS_MODULE
);
1948 static void unlock_fs(struct mapped_device
*md
);
1950 static void free_dev(struct mapped_device
*md
)
1952 int minor
= MINOR(disk_devt(md
->disk
));
1956 destroy_workqueue(md
->wq
);
1958 mempool_destroy(md
->io_pool
);
1960 bioset_free(md
->bs
);
1961 blk_integrity_unregister(md
->disk
);
1962 del_gendisk(md
->disk
);
1965 spin_lock(&_minor_lock
);
1966 md
->disk
->private_data
= NULL
;
1967 spin_unlock(&_minor_lock
);
1970 blk_cleanup_queue(md
->queue
);
1971 module_put(THIS_MODULE
);
1975 static void __bind_mempools(struct mapped_device
*md
, struct dm_table
*t
)
1977 struct dm_md_mempools
*p
= dm_table_get_md_mempools(t
);
1979 if (md
->io_pool
&& md
->bs
) {
1980 /* The md already has necessary mempools. */
1981 if (dm_table_get_type(t
) == DM_TYPE_BIO_BASED
) {
1983 * Reload bioset because front_pad may have changed
1984 * because a different table was loaded.
1986 bioset_free(md
->bs
);
1989 } else if (dm_table_get_type(t
) == DM_TYPE_REQUEST_BASED
) {
1991 * There's no need to reload with request-based dm
1992 * because the size of front_pad doesn't change.
1993 * Note for future: If you are to reload bioset,
1994 * prep-ed requests in the queue may refer
1995 * to bio from the old bioset, so you must walk
1996 * through the queue to unprep.
2002 BUG_ON(!p
|| md
->io_pool
|| md
->bs
);
2004 md
->io_pool
= p
->io_pool
;
2010 /* mempool bind completed, now no need any mempools in the table */
2011 dm_table_free_md_mempools(t
);
2015 * Bind a table to the device.
2017 static void event_callback(void *context
)
2019 unsigned long flags
;
2021 struct mapped_device
*md
= (struct mapped_device
*) context
;
2023 spin_lock_irqsave(&md
->uevent_lock
, flags
);
2024 list_splice_init(&md
->uevent_list
, &uevents
);
2025 spin_unlock_irqrestore(&md
->uevent_lock
, flags
);
2027 dm_send_uevents(&uevents
, &disk_to_dev(md
->disk
)->kobj
);
2029 atomic_inc(&md
->event_nr
);
2030 wake_up(&md
->eventq
);
2034 * Protected by md->suspend_lock obtained by dm_swap_table().
2036 static void __set_size(struct mapped_device
*md
, sector_t size
)
2038 set_capacity(md
->disk
, size
);
2040 i_size_write(md
->bdev
->bd_inode
, (loff_t
)size
<< SECTOR_SHIFT
);
2044 * Return 1 if the queue has a compulsory merge_bvec_fn function.
2046 * If this function returns 0, then the device is either a non-dm
2047 * device without a merge_bvec_fn, or it is a dm device that is
2048 * able to split any bios it receives that are too big.
2050 int dm_queue_merge_is_compulsory(struct request_queue
*q
)
2052 struct mapped_device
*dev_md
;
2054 if (!q
->merge_bvec_fn
)
2057 if (q
->make_request_fn
== dm_request
) {
2058 dev_md
= q
->queuedata
;
2059 if (test_bit(DMF_MERGE_IS_OPTIONAL
, &dev_md
->flags
))
2066 static int dm_device_merge_is_compulsory(struct dm_target
*ti
,
2067 struct dm_dev
*dev
, sector_t start
,
2068 sector_t len
, void *data
)
2070 struct block_device
*bdev
= dev
->bdev
;
2071 struct request_queue
*q
= bdev_get_queue(bdev
);
2073 return dm_queue_merge_is_compulsory(q
);
2077 * Return 1 if it is acceptable to ignore merge_bvec_fn based
2078 * on the properties of the underlying devices.
2080 static int dm_table_merge_is_optional(struct dm_table
*table
)
2083 struct dm_target
*ti
;
2085 while (i
< dm_table_get_num_targets(table
)) {
2086 ti
= dm_table_get_target(table
, i
++);
2088 if (ti
->type
->iterate_devices
&&
2089 ti
->type
->iterate_devices(ti
, dm_device_merge_is_compulsory
, NULL
))
2097 * Returns old map, which caller must destroy.
2099 static struct dm_table
*__bind(struct mapped_device
*md
, struct dm_table
*t
,
2100 struct queue_limits
*limits
)
2102 struct dm_table
*old_map
;
2103 struct request_queue
*q
= md
->queue
;
2105 unsigned long flags
;
2106 int merge_is_optional
;
2108 size
= dm_table_get_size(t
);
2111 * Wipe any geometry if the size of the table changed.
2113 if (size
!= get_capacity(md
->disk
))
2114 memset(&md
->geometry
, 0, sizeof(md
->geometry
));
2116 __set_size(md
, size
);
2118 dm_table_event_callback(t
, event_callback
, md
);
2121 * The queue hasn't been stopped yet, if the old table type wasn't
2122 * for request-based during suspension. So stop it to prevent
2123 * I/O mapping before resume.
2124 * This must be done before setting the queue restrictions,
2125 * because request-based dm may be run just after the setting.
2127 if (dm_table_request_based(t
) && !blk_queue_stopped(q
))
2130 __bind_mempools(md
, t
);
2132 merge_is_optional
= dm_table_merge_is_optional(t
);
2134 write_lock_irqsave(&md
->map_lock
, flags
);
2137 md
->immutable_target_type
= dm_table_get_immutable_target_type(t
);
2139 dm_table_set_restrictions(t
, q
, limits
);
2140 if (merge_is_optional
)
2141 set_bit(DMF_MERGE_IS_OPTIONAL
, &md
->flags
);
2143 clear_bit(DMF_MERGE_IS_OPTIONAL
, &md
->flags
);
2144 write_unlock_irqrestore(&md
->map_lock
, flags
);
2150 * Returns unbound table for the caller to free.
2152 static struct dm_table
*__unbind(struct mapped_device
*md
)
2154 struct dm_table
*map
= md
->map
;
2155 unsigned long flags
;
2160 dm_table_event_callback(map
, NULL
, NULL
);
2161 write_lock_irqsave(&md
->map_lock
, flags
);
2163 write_unlock_irqrestore(&md
->map_lock
, flags
);
2169 * Constructor for a new device.
2171 int dm_create(int minor
, struct mapped_device
**result
)
2173 struct mapped_device
*md
;
2175 md
= alloc_dev(minor
);
2186 * Functions to manage md->type.
2187 * All are required to hold md->type_lock.
2189 void dm_lock_md_type(struct mapped_device
*md
)
2191 mutex_lock(&md
->type_lock
);
2194 void dm_unlock_md_type(struct mapped_device
*md
)
2196 mutex_unlock(&md
->type_lock
);
2199 void dm_set_md_type(struct mapped_device
*md
, unsigned type
)
2204 unsigned dm_get_md_type(struct mapped_device
*md
)
2209 struct target_type
*dm_get_immutable_target_type(struct mapped_device
*md
)
2211 return md
->immutable_target_type
;
2215 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2217 static int dm_init_request_based_queue(struct mapped_device
*md
)
2219 struct request_queue
*q
= NULL
;
2221 if (md
->queue
->elevator
)
2224 /* Fully initialize the queue */
2225 q
= blk_init_allocated_queue(md
->queue
, dm_request_fn
, NULL
);
2230 dm_init_md_queue(md
);
2231 blk_queue_softirq_done(md
->queue
, dm_softirq_done
);
2232 blk_queue_prep_rq(md
->queue
, dm_prep_fn
);
2233 blk_queue_lld_busy(md
->queue
, dm_lld_busy
);
2235 elv_register_queue(md
->queue
);
2241 * Setup the DM device's queue based on md's type
2243 int dm_setup_md_queue(struct mapped_device
*md
)
2245 if ((dm_get_md_type(md
) == DM_TYPE_REQUEST_BASED
) &&
2246 !dm_init_request_based_queue(md
)) {
2247 DMWARN("Cannot initialize queue for request-based mapped device");
2254 static struct mapped_device
*dm_find_md(dev_t dev
)
2256 struct mapped_device
*md
;
2257 unsigned minor
= MINOR(dev
);
2259 if (MAJOR(dev
) != _major
|| minor
>= (1 << MINORBITS
))
2262 spin_lock(&_minor_lock
);
2264 md
= idr_find(&_minor_idr
, minor
);
2265 if (md
&& (md
== MINOR_ALLOCED
||
2266 (MINOR(disk_devt(dm_disk(md
))) != minor
) ||
2267 dm_deleting_md(md
) ||
2268 test_bit(DMF_FREEING
, &md
->flags
))) {
2274 spin_unlock(&_minor_lock
);
2279 struct mapped_device
*dm_get_md(dev_t dev
)
2281 struct mapped_device
*md
= dm_find_md(dev
);
2288 EXPORT_SYMBOL_GPL(dm_get_md
);
2290 void *dm_get_mdptr(struct mapped_device
*md
)
2292 return md
->interface_ptr
;
2295 void dm_set_mdptr(struct mapped_device
*md
, void *ptr
)
2297 md
->interface_ptr
= ptr
;
2300 void dm_get(struct mapped_device
*md
)
2302 atomic_inc(&md
->holders
);
2303 BUG_ON(test_bit(DMF_FREEING
, &md
->flags
));
2306 const char *dm_device_name(struct mapped_device
*md
)
2310 EXPORT_SYMBOL_GPL(dm_device_name
);
2312 static void __dm_destroy(struct mapped_device
*md
, bool wait
)
2314 struct dm_table
*map
;
2318 spin_lock(&_minor_lock
);
2319 map
= dm_get_live_table(md
);
2320 idr_replace(&_minor_idr
, MINOR_ALLOCED
, MINOR(disk_devt(dm_disk(md
))));
2321 set_bit(DMF_FREEING
, &md
->flags
);
2322 spin_unlock(&_minor_lock
);
2324 if (!dm_suspended_md(md
)) {
2325 dm_table_presuspend_targets(map
);
2326 dm_table_postsuspend_targets(map
);
2330 * Rare, but there may be I/O requests still going to complete,
2331 * for example. Wait for all references to disappear.
2332 * No one should increment the reference count of the mapped_device,
2333 * after the mapped_device state becomes DMF_FREEING.
2336 while (atomic_read(&md
->holders
))
2338 else if (atomic_read(&md
->holders
))
2339 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2340 dm_device_name(md
), atomic_read(&md
->holders
));
2344 dm_table_destroy(__unbind(md
));
2348 void dm_destroy(struct mapped_device
*md
)
2350 __dm_destroy(md
, true);
2353 void dm_destroy_immediate(struct mapped_device
*md
)
2355 __dm_destroy(md
, false);
2358 void dm_put(struct mapped_device
*md
)
2360 atomic_dec(&md
->holders
);
2362 EXPORT_SYMBOL_GPL(dm_put
);
2364 static int dm_wait_for_completion(struct mapped_device
*md
, int interruptible
)
2367 DECLARE_WAITQUEUE(wait
, current
);
2369 add_wait_queue(&md
->wait
, &wait
);
2372 set_current_state(interruptible
);
2374 if (!md_in_flight(md
))
2377 if (interruptible
== TASK_INTERRUPTIBLE
&&
2378 signal_pending(current
)) {
2385 set_current_state(TASK_RUNNING
);
2387 remove_wait_queue(&md
->wait
, &wait
);
2393 * Process the deferred bios
2395 static void dm_wq_work(struct work_struct
*work
)
2397 struct mapped_device
*md
= container_of(work
, struct mapped_device
,
2401 down_read(&md
->io_lock
);
2403 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
)) {
2404 spin_lock_irq(&md
->deferred_lock
);
2405 c
= bio_list_pop(&md
->deferred
);
2406 spin_unlock_irq(&md
->deferred_lock
);
2411 up_read(&md
->io_lock
);
2413 if (dm_request_based(md
))
2414 generic_make_request(c
);
2416 __split_and_process_bio(md
, c
);
2418 down_read(&md
->io_lock
);
2421 up_read(&md
->io_lock
);
2424 static void dm_queue_flush(struct mapped_device
*md
)
2426 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
2427 smp_mb__after_clear_bit();
2428 queue_work(md
->wq
, &md
->work
);
2432 * Swap in a new table, returning the old one for the caller to destroy.
2434 struct dm_table
*dm_swap_table(struct mapped_device
*md
, struct dm_table
*table
)
2436 struct dm_table
*live_map
= NULL
, *map
= ERR_PTR(-EINVAL
);
2437 struct queue_limits limits
;
2440 mutex_lock(&md
->suspend_lock
);
2442 /* device must be suspended */
2443 if (!dm_suspended_md(md
))
2447 * If the new table has no data devices, retain the existing limits.
2448 * This helps multipath with queue_if_no_path if all paths disappear,
2449 * then new I/O is queued based on these limits, and then some paths
2452 if (dm_table_has_no_data_devices(table
)) {
2453 live_map
= dm_get_live_table(md
);
2455 limits
= md
->queue
->limits
;
2456 dm_table_put(live_map
);
2460 r
= dm_calculate_queue_limits(table
, &limits
);
2467 map
= __bind(md
, table
, &limits
);
2470 mutex_unlock(&md
->suspend_lock
);
2475 * Functions to lock and unlock any filesystem running on the
2478 static int lock_fs(struct mapped_device
*md
)
2482 WARN_ON(md
->frozen_sb
);
2484 md
->frozen_sb
= freeze_bdev(md
->bdev
);
2485 if (IS_ERR(md
->frozen_sb
)) {
2486 r
= PTR_ERR(md
->frozen_sb
);
2487 md
->frozen_sb
= NULL
;
2491 set_bit(DMF_FROZEN
, &md
->flags
);
2496 static void unlock_fs(struct mapped_device
*md
)
2498 if (!test_bit(DMF_FROZEN
, &md
->flags
))
2501 thaw_bdev(md
->bdev
, md
->frozen_sb
);
2502 md
->frozen_sb
= NULL
;
2503 clear_bit(DMF_FROZEN
, &md
->flags
);
2507 * We need to be able to change a mapping table under a mounted
2508 * filesystem. For example we might want to move some data in
2509 * the background. Before the table can be swapped with
2510 * dm_bind_table, dm_suspend must be called to flush any in
2511 * flight bios and ensure that any further io gets deferred.
2514 * Suspend mechanism in request-based dm.
2516 * 1. Flush all I/Os by lock_fs() if needed.
2517 * 2. Stop dispatching any I/O by stopping the request_queue.
2518 * 3. Wait for all in-flight I/Os to be completed or requeued.
2520 * To abort suspend, start the request_queue.
2522 int dm_suspend(struct mapped_device
*md
, unsigned suspend_flags
)
2524 struct dm_table
*map
= NULL
;
2526 int do_lockfs
= suspend_flags
& DM_SUSPEND_LOCKFS_FLAG
? 1 : 0;
2527 int noflush
= suspend_flags
& DM_SUSPEND_NOFLUSH_FLAG
? 1 : 0;
2529 mutex_lock(&md
->suspend_lock
);
2531 if (dm_suspended_md(md
)) {
2536 map
= dm_get_live_table(md
);
2539 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2540 * This flag is cleared before dm_suspend returns.
2543 set_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
2545 /* This does not get reverted if there's an error later. */
2546 dm_table_presuspend_targets(map
);
2549 * Flush I/O to the device.
2550 * Any I/O submitted after lock_fs() may not be flushed.
2551 * noflush takes precedence over do_lockfs.
2552 * (lock_fs() flushes I/Os and waits for them to complete.)
2554 if (!noflush
&& do_lockfs
) {
2561 * Here we must make sure that no processes are submitting requests
2562 * to target drivers i.e. no one may be executing
2563 * __split_and_process_bio. This is called from dm_request and
2566 * To get all processes out of __split_and_process_bio in dm_request,
2567 * we take the write lock. To prevent any process from reentering
2568 * __split_and_process_bio from dm_request and quiesce the thread
2569 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2570 * flush_workqueue(md->wq).
2572 down_write(&md
->io_lock
);
2573 set_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
2574 up_write(&md
->io_lock
);
2577 * Stop md->queue before flushing md->wq in case request-based
2578 * dm defers requests to md->wq from md->queue.
2580 if (dm_request_based(md
))
2581 stop_queue(md
->queue
);
2583 flush_workqueue(md
->wq
);
2586 * At this point no more requests are entering target request routines.
2587 * We call dm_wait_for_completion to wait for all existing requests
2590 r
= dm_wait_for_completion(md
, TASK_INTERRUPTIBLE
);
2592 down_write(&md
->io_lock
);
2594 clear_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
2595 up_write(&md
->io_lock
);
2597 /* were we interrupted ? */
2601 if (dm_request_based(md
))
2602 start_queue(md
->queue
);
2605 goto out
; /* pushback list is already flushed, so skip flush */
2609 * If dm_wait_for_completion returned 0, the device is completely
2610 * quiescent now. There is no request-processing activity. All new
2611 * requests are being added to md->deferred list.
2614 set_bit(DMF_SUSPENDED
, &md
->flags
);
2616 dm_table_postsuspend_targets(map
);
2622 mutex_unlock(&md
->suspend_lock
);
2626 int dm_resume(struct mapped_device
*md
)
2629 struct dm_table
*map
= NULL
;
2631 mutex_lock(&md
->suspend_lock
);
2632 if (!dm_suspended_md(md
))
2635 map
= dm_get_live_table(md
);
2636 if (!map
|| !dm_table_get_size(map
))
2639 r
= dm_table_resume_targets(map
);
2646 * Flushing deferred I/Os must be done after targets are resumed
2647 * so that mapping of targets can work correctly.
2648 * Request-based dm is queueing the deferred I/Os in its request_queue.
2650 if (dm_request_based(md
))
2651 start_queue(md
->queue
);
2655 clear_bit(DMF_SUSPENDED
, &md
->flags
);
2660 mutex_unlock(&md
->suspend_lock
);
2665 /*-----------------------------------------------------------------
2666 * Event notification.
2667 *---------------------------------------------------------------*/
2668 int dm_kobject_uevent(struct mapped_device
*md
, enum kobject_action action
,
2671 char udev_cookie
[DM_COOKIE_LENGTH
];
2672 char *envp
[] = { udev_cookie
, NULL
};
2675 return kobject_uevent(&disk_to_dev(md
->disk
)->kobj
, action
);
2677 snprintf(udev_cookie
, DM_COOKIE_LENGTH
, "%s=%u",
2678 DM_COOKIE_ENV_VAR_NAME
, cookie
);
2679 return kobject_uevent_env(&disk_to_dev(md
->disk
)->kobj
,
2684 uint32_t dm_next_uevent_seq(struct mapped_device
*md
)
2686 return atomic_add_return(1, &md
->uevent_seq
);
2689 uint32_t dm_get_event_nr(struct mapped_device
*md
)
2691 return atomic_read(&md
->event_nr
);
2694 int dm_wait_event(struct mapped_device
*md
, int event_nr
)
2696 return wait_event_interruptible(md
->eventq
,
2697 (event_nr
!= atomic_read(&md
->event_nr
)));
2700 void dm_uevent_add(struct mapped_device
*md
, struct list_head
*elist
)
2702 unsigned long flags
;
2704 spin_lock_irqsave(&md
->uevent_lock
, flags
);
2705 list_add(elist
, &md
->uevent_list
);
2706 spin_unlock_irqrestore(&md
->uevent_lock
, flags
);
2710 * The gendisk is only valid as long as you have a reference
2713 struct gendisk
*dm_disk(struct mapped_device
*md
)
2718 struct kobject
*dm_kobject(struct mapped_device
*md
)
2724 * struct mapped_device should not be exported outside of dm.c
2725 * so use this check to verify that kobj is part of md structure
2727 struct mapped_device
*dm_get_from_kobject(struct kobject
*kobj
)
2729 struct mapped_device
*md
;
2731 md
= container_of(kobj
, struct mapped_device
, kobj
);
2732 if (&md
->kobj
!= kobj
)
2735 if (test_bit(DMF_FREEING
, &md
->flags
) ||
2743 int dm_suspended_md(struct mapped_device
*md
)
2745 return test_bit(DMF_SUSPENDED
, &md
->flags
);
2748 int dm_suspended(struct dm_target
*ti
)
2750 return dm_suspended_md(dm_table_get_md(ti
->table
));
2752 EXPORT_SYMBOL_GPL(dm_suspended
);
2754 int dm_noflush_suspending(struct dm_target
*ti
)
2756 return __noflush_suspending(dm_table_get_md(ti
->table
));
2758 EXPORT_SYMBOL_GPL(dm_noflush_suspending
);
2760 struct dm_md_mempools
*dm_alloc_md_mempools(unsigned type
, unsigned integrity
, unsigned per_bio_data_size
)
2762 struct dm_md_mempools
*pools
= kzalloc(sizeof(*pools
), GFP_KERNEL
);
2763 struct kmem_cache
*cachep
;
2764 unsigned int pool_size
;
2765 unsigned int front_pad
;
2770 if (type
== DM_TYPE_BIO_BASED
) {
2773 front_pad
= roundup(per_bio_data_size
, __alignof__(struct dm_target_io
)) + offsetof(struct dm_target_io
, clone
);
2774 } else if (type
== DM_TYPE_REQUEST_BASED
) {
2775 cachep
= _rq_tio_cache
;
2776 pool_size
= MIN_IOS
;
2777 front_pad
= offsetof(struct dm_rq_clone_bio_info
, clone
);
2778 /* per_bio_data_size is not used. See __bind_mempools(). */
2779 WARN_ON(per_bio_data_size
!= 0);
2783 pools
->io_pool
= mempool_create_slab_pool(MIN_IOS
, cachep
);
2784 if (!pools
->io_pool
)
2787 pools
->bs
= bioset_create(pool_size
, front_pad
);
2791 if (integrity
&& bioset_integrity_create(pools
->bs
, pool_size
))
2797 dm_free_md_mempools(pools
);
2802 void dm_free_md_mempools(struct dm_md_mempools
*pools
)
2808 mempool_destroy(pools
->io_pool
);
2811 bioset_free(pools
->bs
);
2816 static const struct block_device_operations dm_blk_dops
= {
2817 .open
= dm_blk_open
,
2818 .release
= dm_blk_close
,
2819 .ioctl
= dm_blk_ioctl
,
2820 .getgeo
= dm_blk_getgeo
,
2821 .owner
= THIS_MODULE
2824 EXPORT_SYMBOL(dm_get_mapinfo
);
2829 module_init(dm_init
);
2830 module_exit(dm_exit
);
2832 module_param(major
, uint
, 0);
2833 MODULE_PARM_DESC(major
, "The major number of the device mapper");
2834 MODULE_DESCRIPTION(DM_NAME
" driver");
2835 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2836 MODULE_LICENSE("GPL");