2 * Generic binary BCH encoding/decoding library
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License version 2 as published by
6 * the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 51
15 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
17 * Copyright © 2011 Parrot S.A.
19 * Author: Ivan Djelic <ivan.djelic@parrot.com>
23 * This library provides runtime configurable encoding/decoding of binary
24 * Bose-Chaudhuri-Hocquenghem (BCH) codes.
26 * Call init_bch to get a pointer to a newly allocated bch_control structure for
27 * the given m (Galois field order), t (error correction capability) and
28 * (optional) primitive polynomial parameters.
30 * Call encode_bch to compute and store ecc parity bytes to a given buffer.
31 * Call decode_bch to detect and locate errors in received data.
33 * On systems supporting hw BCH features, intermediate results may be provided
34 * to decode_bch in order to skip certain steps. See decode_bch() documentation
37 * Option CONFIG_BCH_CONST_PARAMS can be used to force fixed values of
38 * parameters m and t; thus allowing extra compiler optimizations and providing
39 * better (up to 2x) encoding performance. Using this option makes sense when
40 * (m,t) are fixed and known in advance, e.g. when using BCH error correction
41 * on a particular NAND flash device.
43 * Algorithmic details:
45 * Encoding is performed by processing 32 input bits in parallel, using 4
46 * remainder lookup tables.
48 * The final stage of decoding involves the following internal steps:
49 * a. Syndrome computation
50 * b. Error locator polynomial computation using Berlekamp-Massey algorithm
51 * c. Error locator root finding (by far the most expensive step)
53 * In this implementation, step c is not performed using the usual Chien search.
54 * Instead, an alternative approach described in [1] is used. It consists in
55 * factoring the error locator polynomial using the Berlekamp Trace algorithm
56 * (BTA) down to a certain degree (4), after which ad hoc low-degree polynomial
57 * solving techniques [2] are used. The resulting algorithm, called BTZ, yields
58 * much better performance than Chien search for usual (m,t) values (typically
59 * m >= 13, t < 32, see [1]).
61 * [1] B. Biswas, V. Herbert. Efficient root finding of polynomials over fields
62 * of characteristic 2, in: Western European Workshop on Research in Cryptology
63 * - WEWoRC 2009, Graz, Austria, LNCS, Springer, July 2009, to appear.
64 * [2] [Zin96] V.A. Zinoviev. On the solution of equations of degree 10 over
65 * finite fields GF(2^q). In Rapport de recherche INRIA no 2829, 1996.
68 #include <linux/kernel.h>
69 #include <linux/errno.h>
70 #include <linux/init.h>
71 #include <linux/module.h>
72 #include <linux/slab.h>
73 #include <linux/bitops.h>
74 #include <asm/byteorder.h>
75 #include <linux/bch.h>
77 #if defined(CONFIG_BCH_CONST_PARAMS)
78 #define GF_M(_p) (CONFIG_BCH_CONST_M)
79 #define GF_T(_p) (CONFIG_BCH_CONST_T)
80 #define GF_N(_p) ((1 << (CONFIG_BCH_CONST_M))-1)
82 #define GF_M(_p) ((_p)->m)
83 #define GF_T(_p) ((_p)->t)
84 #define GF_N(_p) ((_p)->n)
87 #define BCH_ECC_WORDS(_p) DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 32)
88 #define BCH_ECC_BYTES(_p) DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 8)
91 #define dbg(_fmt, args...) do {} while (0)
95 * represent a polynomial over GF(2^m)
98 unsigned int deg
; /* polynomial degree */
99 unsigned int c
[0]; /* polynomial terms */
102 /* given its degree, compute a polynomial size in bytes */
103 #define GF_POLY_SZ(_d) (sizeof(struct gf_poly)+((_d)+1)*sizeof(unsigned int))
105 /* polynomial of degree 1 */
106 struct gf_poly_deg1
{
112 * same as encode_bch(), but process input data one byte at a time
114 static void encode_bch_unaligned(struct bch_control
*bch
,
115 const unsigned char *data
, unsigned int len
,
120 const int l
= BCH_ECC_WORDS(bch
)-1;
123 p
= bch
->mod8_tab
+ (l
+1)*(((ecc
[0] >> 24)^(*data
++)) & 0xff);
125 for (i
= 0; i
< l
; i
++)
126 ecc
[i
] = ((ecc
[i
] << 8)|(ecc
[i
+1] >> 24))^(*p
++);
128 ecc
[l
] = (ecc
[l
] << 8)^(*p
);
133 * convert ecc bytes to aligned, zero-padded 32-bit ecc words
135 static void load_ecc8(struct bch_control
*bch
, uint32_t *dst
,
138 uint8_t pad
[4] = {0, 0, 0, 0};
139 unsigned int i
, nwords
= BCH_ECC_WORDS(bch
)-1;
141 for (i
= 0; i
< nwords
; i
++, src
+= 4)
142 dst
[i
] = (src
[0] << 24)|(src
[1] << 16)|(src
[2] << 8)|src
[3];
144 memcpy(pad
, src
, BCH_ECC_BYTES(bch
)-4*nwords
);
145 dst
[nwords
] = (pad
[0] << 24)|(pad
[1] << 16)|(pad
[2] << 8)|pad
[3];
149 * convert 32-bit ecc words to ecc bytes
151 static void store_ecc8(struct bch_control
*bch
, uint8_t *dst
,
155 unsigned int i
, nwords
= BCH_ECC_WORDS(bch
)-1;
157 for (i
= 0; i
< nwords
; i
++) {
158 *dst
++ = (src
[i
] >> 24);
159 *dst
++ = (src
[i
] >> 16) & 0xff;
160 *dst
++ = (src
[i
] >> 8) & 0xff;
161 *dst
++ = (src
[i
] >> 0) & 0xff;
163 pad
[0] = (src
[nwords
] >> 24);
164 pad
[1] = (src
[nwords
] >> 16) & 0xff;
165 pad
[2] = (src
[nwords
] >> 8) & 0xff;
166 pad
[3] = (src
[nwords
] >> 0) & 0xff;
167 memcpy(dst
, pad
, BCH_ECC_BYTES(bch
)-4*nwords
);
171 * encode_bch - calculate BCH ecc parity of data
172 * @bch: BCH control structure
173 * @data: data to encode
174 * @len: data length in bytes
175 * @ecc: ecc parity data, must be initialized by caller
177 * The @ecc parity array is used both as input and output parameter, in order to
178 * allow incremental computations. It should be of the size indicated by member
179 * @ecc_bytes of @bch, and should be initialized to 0 before the first call.
181 * The exact number of computed ecc parity bits is given by member @ecc_bits of
182 * @bch; it may be less than m*t for large values of t.
184 void encode_bch(struct bch_control
*bch
, const uint8_t *data
,
185 unsigned int len
, uint8_t *ecc
)
187 const unsigned int l
= BCH_ECC_WORDS(bch
)-1;
188 unsigned int i
, mlen
;
191 const uint32_t * const tab0
= bch
->mod8_tab
;
192 const uint32_t * const tab1
= tab0
+ 256*(l
+1);
193 const uint32_t * const tab2
= tab1
+ 256*(l
+1);
194 const uint32_t * const tab3
= tab2
+ 256*(l
+1);
195 const uint32_t *pdata
, *p0
, *p1
, *p2
, *p3
;
198 /* load ecc parity bytes into internal 32-bit buffer */
199 load_ecc8(bch
, bch
->ecc_buf
, ecc
);
201 memset(bch
->ecc_buf
, 0, sizeof(r
));
204 /* process first unaligned data bytes */
205 m
= ((unsigned long)data
) & 3;
207 mlen
= (len
< (4-m
)) ? len
: 4-m
;
208 encode_bch_unaligned(bch
, data
, mlen
, bch
->ecc_buf
);
213 /* process 32-bit aligned data words */
214 pdata
= (uint32_t *)data
;
218 memcpy(r
, bch
->ecc_buf
, sizeof(r
));
221 * split each 32-bit word into 4 polynomials of weight 8 as follows:
223 * 31 ...24 23 ...16 15 ... 8 7 ... 0
224 * xxxxxxxx yyyyyyyy zzzzzzzz tttttttt
225 * tttttttt mod g = r0 (precomputed)
226 * zzzzzzzz 00000000 mod g = r1 (precomputed)
227 * yyyyyyyy 00000000 00000000 mod g = r2 (precomputed)
228 * xxxxxxxx 00000000 00000000 00000000 mod g = r3 (precomputed)
229 * xxxxxxxx yyyyyyyy zzzzzzzz tttttttt mod g = r0^r1^r2^r3
232 /* input data is read in big-endian format */
233 w
= r
[0]^cpu_to_be32(*pdata
++);
234 p0
= tab0
+ (l
+1)*((w
>> 0) & 0xff);
235 p1
= tab1
+ (l
+1)*((w
>> 8) & 0xff);
236 p2
= tab2
+ (l
+1)*((w
>> 16) & 0xff);
237 p3
= tab3
+ (l
+1)*((w
>> 24) & 0xff);
239 for (i
= 0; i
< l
; i
++)
240 r
[i
] = r
[i
+1]^p0
[i
]^p1
[i
]^p2
[i
]^p3
[i
];
242 r
[l
] = p0
[l
]^p1
[l
]^p2
[l
]^p3
[l
];
244 memcpy(bch
->ecc_buf
, r
, sizeof(r
));
246 /* process last unaligned bytes */
248 encode_bch_unaligned(bch
, data
, len
, bch
->ecc_buf
);
250 /* store ecc parity bytes into original parity buffer */
252 store_ecc8(bch
, ecc
, bch
->ecc_buf
);
254 EXPORT_SYMBOL_GPL(encode_bch
);
256 static inline int modulo(struct bch_control
*bch
, unsigned int v
)
258 const unsigned int n
= GF_N(bch
);
261 v
= (v
& n
) + (v
>> GF_M(bch
));
267 * shorter and faster modulo function, only works when v < 2N.
269 static inline int mod_s(struct bch_control
*bch
, unsigned int v
)
271 const unsigned int n
= GF_N(bch
);
272 return (v
< n
) ? v
: v
-n
;
275 static inline int deg(unsigned int poly
)
277 /* polynomial degree is the most-significant bit index */
281 static inline int parity(unsigned int x
)
284 * public domain code snippet, lifted from
285 * http://www-graphics.stanford.edu/~seander/bithacks.html
289 x
= (x
& 0x11111111U
) * 0x11111111U
;
290 return (x
>> 28) & 1;
293 /* Galois field basic operations: multiply, divide, inverse, etc. */
295 static inline unsigned int gf_mul(struct bch_control
*bch
, unsigned int a
,
298 return (a
&& b
) ? bch
->a_pow_tab
[mod_s(bch
, bch
->a_log_tab
[a
]+
299 bch
->a_log_tab
[b
])] : 0;
302 static inline unsigned int gf_sqr(struct bch_control
*bch
, unsigned int a
)
304 return a
? bch
->a_pow_tab
[mod_s(bch
, 2*bch
->a_log_tab
[a
])] : 0;
307 static inline unsigned int gf_div(struct bch_control
*bch
, unsigned int a
,
310 return a
? bch
->a_pow_tab
[mod_s(bch
, bch
->a_log_tab
[a
]+
311 GF_N(bch
)-bch
->a_log_tab
[b
])] : 0;
314 static inline unsigned int gf_inv(struct bch_control
*bch
, unsigned int a
)
316 return bch
->a_pow_tab
[GF_N(bch
)-bch
->a_log_tab
[a
]];
319 static inline unsigned int a_pow(struct bch_control
*bch
, int i
)
321 return bch
->a_pow_tab
[modulo(bch
, i
)];
324 static inline int a_log(struct bch_control
*bch
, unsigned int x
)
326 return bch
->a_log_tab
[x
];
329 static inline int a_ilog(struct bch_control
*bch
, unsigned int x
)
331 return mod_s(bch
, GF_N(bch
)-bch
->a_log_tab
[x
]);
335 * compute 2t syndromes of ecc polynomial, i.e. ecc(a^j) for j=1..2t
337 static void compute_syndromes(struct bch_control
*bch
, uint32_t *ecc
,
343 const int t
= GF_T(bch
);
347 /* make sure extra bits in last ecc word are cleared */
348 m
= ((unsigned int)s
) & 31;
350 ecc
[s
/32] &= ~((1u << (32-m
))-1);
351 memset(syn
, 0, 2*t
*sizeof(*syn
));
353 /* compute v(a^j) for j=1 .. 2t-1 */
359 for (j
= 0; j
< 2*t
; j
+= 2)
360 syn
[j
] ^= a_pow(bch
, (j
+1)*(i
+s
));
366 /* v(a^(2j)) = v(a^j)^2 */
367 for (j
= 0; j
< t
; j
++)
368 syn
[2*j
+1] = gf_sqr(bch
, syn
[j
]);
371 static void gf_poly_copy(struct gf_poly
*dst
, struct gf_poly
*src
)
373 memcpy(dst
, src
, GF_POLY_SZ(src
->deg
));
376 static int compute_error_locator_polynomial(struct bch_control
*bch
,
377 const unsigned int *syn
)
379 const unsigned int t
= GF_T(bch
);
380 const unsigned int n
= GF_N(bch
);
381 unsigned int i
, j
, tmp
, l
, pd
= 1, d
= syn
[0];
382 struct gf_poly
*elp
= bch
->elp
;
383 struct gf_poly
*pelp
= bch
->poly_2t
[0];
384 struct gf_poly
*elp_copy
= bch
->poly_2t
[1];
387 memset(pelp
, 0, GF_POLY_SZ(2*t
));
388 memset(elp
, 0, GF_POLY_SZ(2*t
));
395 /* use simplified binary Berlekamp-Massey algorithm */
396 for (i
= 0; (i
< t
) && (elp
->deg
<= t
); i
++) {
399 gf_poly_copy(elp_copy
, elp
);
400 /* e[i+1](X) = e[i](X)+di*dp^-1*X^2(i-p)*e[p](X) */
401 tmp
= a_log(bch
, d
)+n
-a_log(bch
, pd
);
402 for (j
= 0; j
<= pelp
->deg
; j
++) {
404 l
= a_log(bch
, pelp
->c
[j
]);
405 elp
->c
[j
+k
] ^= a_pow(bch
, tmp
+l
);
408 /* compute l[i+1] = max(l[i]->c[l[p]+2*(i-p]) */
410 if (tmp
> elp
->deg
) {
412 gf_poly_copy(pelp
, elp_copy
);
417 /* di+1 = S(2i+3)+elp[i+1].1*S(2i+2)+...+elp[i+1].lS(2i+3-l) */
420 for (j
= 1; j
<= elp
->deg
; j
++)
421 d
^= gf_mul(bch
, elp
->c
[j
], syn
[2*i
+2-j
]);
424 dbg("elp=%s\n", gf_poly_str(elp
));
425 return (elp
->deg
> t
) ? -1 : (int)elp
->deg
;
429 * solve a m x m linear system in GF(2) with an expected number of solutions,
430 * and return the number of found solutions
432 static int solve_linear_system(struct bch_control
*bch
, unsigned int *rows
,
433 unsigned int *sol
, int nsol
)
435 const int m
= GF_M(bch
);
436 unsigned int tmp
, mask
;
437 int rem
, c
, r
, p
, k
, param
[m
];
442 /* Gaussian elimination */
443 for (c
= 0; c
< m
; c
++) {
446 /* find suitable row for elimination */
447 for (r
= p
; r
< m
; r
++) {
448 if (rows
[r
] & mask
) {
459 /* perform elimination on remaining rows */
461 for (r
= rem
; r
< m
; r
++) {
466 /* elimination not needed, store defective row index */
471 /* rewrite system, inserting fake parameter rows */
474 for (r
= m
-1; r
>= 0; r
--) {
475 if ((r
> m
-1-k
) && rows
[r
])
476 /* system has no solution */
479 rows
[r
] = (p
&& (r
== param
[p
-1])) ?
480 p
--, 1u << (m
-r
) : rows
[r
-p
];
484 if (nsol
!= (1 << k
))
485 /* unexpected number of solutions */
488 for (p
= 0; p
< nsol
; p
++) {
489 /* set parameters for p-th solution */
490 for (c
= 0; c
< k
; c
++)
491 rows
[param
[c
]] = (rows
[param
[c
]] & ~1)|((p
>> c
) & 1);
493 /* compute unique solution */
495 for (r
= m
-1; r
>= 0; r
--) {
496 mask
= rows
[r
] & (tmp
|1);
497 tmp
|= parity(mask
) << (m
-r
);
505 * this function builds and solves a linear system for finding roots of a degree
506 * 4 affine monic polynomial X^4+aX^2+bX+c over GF(2^m).
508 static int find_affine4_roots(struct bch_control
*bch
, unsigned int a
,
509 unsigned int b
, unsigned int c
,
513 const int m
= GF_M(bch
);
514 unsigned int mask
= 0xff, t
, rows
[16] = {0,};
520 /* buid linear system to solve X^4+aX^2+bX+c = 0 */
521 for (i
= 0; i
< m
; i
++) {
522 rows
[i
+1] = bch
->a_pow_tab
[4*i
]^
523 (a
? bch
->a_pow_tab
[mod_s(bch
, k
)] : 0)^
524 (b
? bch
->a_pow_tab
[mod_s(bch
, j
)] : 0);
529 * transpose 16x16 matrix before passing it to linear solver
530 * warning: this code assumes m < 16
532 for (j
= 8; j
!= 0; j
>>= 1, mask
^= (mask
<< j
)) {
533 for (k
= 0; k
< 16; k
= (k
+j
+1) & ~j
) {
534 t
= ((rows
[k
] >> j
)^rows
[k
+j
]) & mask
;
539 return solve_linear_system(bch
, rows
, roots
, 4);
543 * compute root r of a degree 1 polynomial over GF(2^m) (returned as log(1/r))
545 static int find_poly_deg1_roots(struct bch_control
*bch
, struct gf_poly
*poly
,
551 /* poly[X] = bX+c with c!=0, root=c/b */
552 roots
[n
++] = mod_s(bch
, GF_N(bch
)-bch
->a_log_tab
[poly
->c
[0]]+
553 bch
->a_log_tab
[poly
->c
[1]]);
558 * compute roots of a degree 2 polynomial over GF(2^m)
560 static int find_poly_deg2_roots(struct bch_control
*bch
, struct gf_poly
*poly
,
563 int n
= 0, i
, l0
, l1
, l2
;
564 unsigned int u
, v
, r
;
566 if (poly
->c
[0] && poly
->c
[1]) {
568 l0
= bch
->a_log_tab
[poly
->c
[0]];
569 l1
= bch
->a_log_tab
[poly
->c
[1]];
570 l2
= bch
->a_log_tab
[poly
->c
[2]];
572 /* using z=a/bX, transform aX^2+bX+c into z^2+z+u (u=ac/b^2) */
573 u
= a_pow(bch
, l0
+l2
+2*(GF_N(bch
)-l1
));
575 * let u = sum(li.a^i) i=0..m-1; then compute r = sum(li.xi):
576 * r^2+r = sum(li.(xi^2+xi)) = sum(li.(a^i+Tr(a^i).a^k)) =
577 * u + sum(li.Tr(a^i).a^k) = u+a^k.Tr(sum(li.a^i)) = u+a^k.Tr(u)
578 * i.e. r and r+1 are roots iff Tr(u)=0
588 if ((gf_sqr(bch
, r
)^r
) == u
) {
589 /* reverse z=a/bX transformation and compute log(1/r) */
590 roots
[n
++] = modulo(bch
, 2*GF_N(bch
)-l1
-
591 bch
->a_log_tab
[r
]+l2
);
592 roots
[n
++] = modulo(bch
, 2*GF_N(bch
)-l1
-
593 bch
->a_log_tab
[r
^1]+l2
);
600 * compute roots of a degree 3 polynomial over GF(2^m)
602 static int find_poly_deg3_roots(struct bch_control
*bch
, struct gf_poly
*poly
,
606 unsigned int a
, b
, c
, a2
, b2
, c2
, e3
, tmp
[4];
609 /* transform polynomial into monic X^3 + a2X^2 + b2X + c2 */
611 c2
= gf_div(bch
, poly
->c
[0], e3
);
612 b2
= gf_div(bch
, poly
->c
[1], e3
);
613 a2
= gf_div(bch
, poly
->c
[2], e3
);
615 /* (X+a2)(X^3+a2X^2+b2X+c2) = X^4+aX^2+bX+c (affine) */
616 c
= gf_mul(bch
, a2
, c2
); /* c = a2c2 */
617 b
= gf_mul(bch
, a2
, b2
)^c2
; /* b = a2b2 + c2 */
618 a
= gf_sqr(bch
, a2
)^b2
; /* a = a2^2 + b2 */
620 /* find the 4 roots of this affine polynomial */
621 if (find_affine4_roots(bch
, a
, b
, c
, tmp
) == 4) {
622 /* remove a2 from final list of roots */
623 for (i
= 0; i
< 4; i
++) {
625 roots
[n
++] = a_ilog(bch
, tmp
[i
]);
633 * compute roots of a degree 4 polynomial over GF(2^m)
635 static int find_poly_deg4_roots(struct bch_control
*bch
, struct gf_poly
*poly
,
639 unsigned int a
, b
, c
, d
, e
= 0, f
, a2
, b2
, c2
, e4
;
644 /* transform polynomial into monic X^4 + aX^3 + bX^2 + cX + d */
646 d
= gf_div(bch
, poly
->c
[0], e4
);
647 c
= gf_div(bch
, poly
->c
[1], e4
);
648 b
= gf_div(bch
, poly
->c
[2], e4
);
649 a
= gf_div(bch
, poly
->c
[3], e4
);
651 /* use Y=1/X transformation to get an affine polynomial */
653 /* first, eliminate cX by using z=X+e with ae^2+c=0 */
655 /* compute e such that e^2 = c/a */
656 f
= gf_div(bch
, c
, a
);
658 l
+= (l
& 1) ? GF_N(bch
) : 0;
661 * use transformation z=X+e:
662 * z^4+e^4 + a(z^3+ez^2+e^2z+e^3) + b(z^2+e^2) +cz+ce+d
663 * z^4 + az^3 + (ae+b)z^2 + (ae^2+c)z+e^4+be^2+ae^3+ce+d
664 * z^4 + az^3 + (ae+b)z^2 + e^4+be^2+d
665 * z^4 + az^3 + b'z^2 + d'
667 d
= a_pow(bch
, 2*l
)^gf_mul(bch
, b
, f
)^d
;
668 b
= gf_mul(bch
, a
, e
)^b
;
670 /* now, use Y=1/X to get Y^4 + b/dY^2 + a/dY + 1/d */
672 /* assume all roots have multiplicity 1 */
676 b2
= gf_div(bch
, a
, d
);
677 a2
= gf_div(bch
, b
, d
);
679 /* polynomial is already affine */
684 /* find the 4 roots of this affine polynomial */
685 if (find_affine4_roots(bch
, a2
, b2
, c2
, roots
) == 4) {
686 for (i
= 0; i
< 4; i
++) {
687 /* post-process roots (reverse transformations) */
688 f
= a
? gf_inv(bch
, roots
[i
]) : roots
[i
];
689 roots
[i
] = a_ilog(bch
, f
^e
);
697 * build monic, log-based representation of a polynomial
699 static void gf_poly_logrep(struct bch_control
*bch
,
700 const struct gf_poly
*a
, int *rep
)
702 int i
, d
= a
->deg
, l
= GF_N(bch
)-a_log(bch
, a
->c
[a
->deg
]);
704 /* represent 0 values with -1; warning, rep[d] is not set to 1 */
705 for (i
= 0; i
< d
; i
++)
706 rep
[i
] = a
->c
[i
] ? mod_s(bch
, a_log(bch
, a
->c
[i
])+l
) : -1;
710 * compute polynomial Euclidean division remainder in GF(2^m)[X]
712 static void gf_poly_mod(struct bch_control
*bch
, struct gf_poly
*a
,
713 const struct gf_poly
*b
, int *rep
)
716 unsigned int i
, j
, *c
= a
->c
;
717 const unsigned int d
= b
->deg
;
722 /* reuse or compute log representation of denominator */
725 gf_poly_logrep(bch
, b
, rep
);
728 for (j
= a
->deg
; j
>= d
; j
--) {
730 la
= a_log(bch
, c
[j
]);
732 for (i
= 0; i
< d
; i
++, p
++) {
735 c
[p
] ^= bch
->a_pow_tab
[mod_s(bch
,
741 while (!c
[a
->deg
] && a
->deg
)
746 * compute polynomial Euclidean division quotient in GF(2^m)[X]
748 static void gf_poly_div(struct bch_control
*bch
, struct gf_poly
*a
,
749 const struct gf_poly
*b
, struct gf_poly
*q
)
751 if (a
->deg
>= b
->deg
) {
752 q
->deg
= a
->deg
-b
->deg
;
753 /* compute a mod b (modifies a) */
754 gf_poly_mod(bch
, a
, b
, NULL
);
755 /* quotient is stored in upper part of polynomial a */
756 memcpy(q
->c
, &a
->c
[b
->deg
], (1+q
->deg
)*sizeof(unsigned int));
764 * compute polynomial GCD (Greatest Common Divisor) in GF(2^m)[X]
766 static struct gf_poly
*gf_poly_gcd(struct bch_control
*bch
, struct gf_poly
*a
,
771 dbg("gcd(%s,%s)=", gf_poly_str(a
), gf_poly_str(b
));
773 if (a
->deg
< b
->deg
) {
780 gf_poly_mod(bch
, a
, b
, NULL
);
786 dbg("%s\n", gf_poly_str(a
));
792 * Given a polynomial f and an integer k, compute Tr(a^kX) mod f
793 * This is used in Berlekamp Trace algorithm for splitting polynomials
795 static void compute_trace_bk_mod(struct bch_control
*bch
, int k
,
796 const struct gf_poly
*f
, struct gf_poly
*z
,
799 const int m
= GF_M(bch
);
802 /* z contains z^2j mod f */
805 z
->c
[1] = bch
->a_pow_tab
[k
];
808 memset(out
, 0, GF_POLY_SZ(f
->deg
));
810 /* compute f log representation only once */
811 gf_poly_logrep(bch
, f
, bch
->cache
);
813 for (i
= 0; i
< m
; i
++) {
814 /* add a^(k*2^i)(z^(2^i) mod f) and compute (z^(2^i) mod f)^2 */
815 for (j
= z
->deg
; j
>= 0; j
--) {
816 out
->c
[j
] ^= z
->c
[j
];
817 z
->c
[2*j
] = gf_sqr(bch
, z
->c
[j
]);
820 if (z
->deg
> out
->deg
)
825 /* z^(2(i+1)) mod f = (z^(2^i) mod f)^2 mod f */
826 gf_poly_mod(bch
, z
, f
, bch
->cache
);
829 while (!out
->c
[out
->deg
] && out
->deg
)
832 dbg("Tr(a^%d.X) mod f = %s\n", k
, gf_poly_str(out
));
836 * factor a polynomial using Berlekamp Trace algorithm (BTA)
838 static void factor_polynomial(struct bch_control
*bch
, int k
, struct gf_poly
*f
,
839 struct gf_poly
**g
, struct gf_poly
**h
)
841 struct gf_poly
*f2
= bch
->poly_2t
[0];
842 struct gf_poly
*q
= bch
->poly_2t
[1];
843 struct gf_poly
*tk
= bch
->poly_2t
[2];
844 struct gf_poly
*z
= bch
->poly_2t
[3];
847 dbg("factoring %s...\n", gf_poly_str(f
));
852 /* tk = Tr(a^k.X) mod f */
853 compute_trace_bk_mod(bch
, k
, f
, z
, tk
);
856 /* compute g = gcd(f, tk) (destructive operation) */
858 gcd
= gf_poly_gcd(bch
, f2
, tk
);
859 if (gcd
->deg
< f
->deg
) {
860 /* compute h=f/gcd(f,tk); this will modify f and q */
861 gf_poly_div(bch
, f
, gcd
, q
);
862 /* store g and h in-place (clobbering f) */
863 *h
= &((struct gf_poly_deg1
*)f
)[gcd
->deg
].poly
;
864 gf_poly_copy(*g
, gcd
);
871 * find roots of a polynomial, using BTZ algorithm; see the beginning of this
874 static int find_poly_roots(struct bch_control
*bch
, unsigned int k
,
875 struct gf_poly
*poly
, unsigned int *roots
)
878 struct gf_poly
*f1
, *f2
;
881 /* handle low degree polynomials with ad hoc techniques */
883 cnt
= find_poly_deg1_roots(bch
, poly
, roots
);
886 cnt
= find_poly_deg2_roots(bch
, poly
, roots
);
889 cnt
= find_poly_deg3_roots(bch
, poly
, roots
);
892 cnt
= find_poly_deg4_roots(bch
, poly
, roots
);
895 /* factor polynomial using Berlekamp Trace Algorithm (BTA) */
897 if (poly
->deg
&& (k
<= GF_M(bch
))) {
898 factor_polynomial(bch
, k
, poly
, &f1
, &f2
);
900 cnt
+= find_poly_roots(bch
, k
+1, f1
, roots
);
902 cnt
+= find_poly_roots(bch
, k
+1, f2
, roots
+cnt
);
909 #if defined(USE_CHIEN_SEARCH)
911 * exhaustive root search (Chien) implementation - not used, included only for
912 * reference/comparison tests
914 static int chien_search(struct bch_control
*bch
, unsigned int len
,
915 struct gf_poly
*p
, unsigned int *roots
)
918 unsigned int i
, j
, syn
, syn0
, count
= 0;
919 const unsigned int k
= 8*len
+bch
->ecc_bits
;
921 /* use a log-based representation of polynomial */
922 gf_poly_logrep(bch
, p
, bch
->cache
);
923 bch
->cache
[p
->deg
] = 0;
924 syn0
= gf_div(bch
, p
->c
[0], p
->c
[p
->deg
]);
926 for (i
= GF_N(bch
)-k
+1; i
<= GF_N(bch
); i
++) {
927 /* compute elp(a^i) */
928 for (j
= 1, syn
= syn0
; j
<= p
->deg
; j
++) {
931 syn
^= a_pow(bch
, m
+j
*i
);
934 roots
[count
++] = GF_N(bch
)-i
;
939 return (count
== p
->deg
) ? count
: 0;
941 #define find_poly_roots(_p, _k, _elp, _loc) chien_search(_p, len, _elp, _loc)
942 #endif /* USE_CHIEN_SEARCH */
945 * decode_bch - decode received codeword and find bit error locations
946 * @bch: BCH control structure
947 * @data: received data, ignored if @calc_ecc is provided
948 * @len: data length in bytes, must always be provided
949 * @recv_ecc: received ecc, if NULL then assume it was XORed in @calc_ecc
950 * @calc_ecc: calculated ecc, if NULL then calc_ecc is computed from @data
951 * @syn: hw computed syndrome data (if NULL, syndrome is calculated)
952 * @errloc: output array of error locations
955 * The number of errors found, or -EBADMSG if decoding failed, or -EINVAL if
956 * invalid parameters were provided
958 * Depending on the available hw BCH support and the need to compute @calc_ecc
959 * separately (using encode_bch()), this function should be called with one of
960 * the following parameter configurations -
962 * by providing @data and @recv_ecc only:
963 * decode_bch(@bch, @data, @len, @recv_ecc, NULL, NULL, @errloc)
965 * by providing @recv_ecc and @calc_ecc:
966 * decode_bch(@bch, NULL, @len, @recv_ecc, @calc_ecc, NULL, @errloc)
968 * by providing ecc = recv_ecc XOR calc_ecc:
969 * decode_bch(@bch, NULL, @len, NULL, ecc, NULL, @errloc)
971 * by providing syndrome results @syn:
972 * decode_bch(@bch, NULL, @len, NULL, NULL, @syn, @errloc)
974 * Once decode_bch() has successfully returned with a positive value, error
975 * locations returned in array @errloc should be interpreted as follows -
977 * if (errloc[n] >= 8*len), then n-th error is located in ecc (no need for
980 * if (errloc[n] < 8*len), then n-th error is located in data and can be
981 * corrected with statement data[errloc[n]/8] ^= 1 << (errloc[n] % 8);
983 * Note that this function does not perform any data correction by itself, it
984 * merely indicates error locations.
986 int decode_bch(struct bch_control
*bch
, const uint8_t *data
, unsigned int len
,
987 const uint8_t *recv_ecc
, const uint8_t *calc_ecc
,
988 const unsigned int *syn
, unsigned int *errloc
)
990 const unsigned int ecc_words
= BCH_ECC_WORDS(bch
);
995 /* sanity check: make sure data length can be handled */
996 if (8*len
> (bch
->n
-bch
->ecc_bits
))
999 /* if caller does not provide syndromes, compute them */
1002 /* compute received data ecc into an internal buffer */
1003 if (!data
|| !recv_ecc
)
1005 encode_bch(bch
, data
, len
, NULL
);
1007 /* load provided calculated ecc */
1008 load_ecc8(bch
, bch
->ecc_buf
, calc_ecc
);
1010 /* load received ecc or assume it was XORed in calc_ecc */
1012 load_ecc8(bch
, bch
->ecc_buf2
, recv_ecc
);
1013 /* XOR received and calculated ecc */
1014 for (i
= 0, sum
= 0; i
< (int)ecc_words
; i
++) {
1015 bch
->ecc_buf
[i
] ^= bch
->ecc_buf2
[i
];
1016 sum
|= bch
->ecc_buf
[i
];
1019 /* no error found */
1022 compute_syndromes(bch
, bch
->ecc_buf
, bch
->syn
);
1026 err
= compute_error_locator_polynomial(bch
, syn
);
1028 nroots
= find_poly_roots(bch
, 1, bch
->elp
, errloc
);
1033 /* post-process raw error locations for easier correction */
1034 nbits
= (len
*8)+bch
->ecc_bits
;
1035 for (i
= 0; i
< err
; i
++) {
1036 if (errloc
[i
] >= nbits
) {
1040 errloc
[i
] = nbits
-1-errloc
[i
];
1041 errloc
[i
] = (errloc
[i
] & ~7)|(7-(errloc
[i
] & 7));
1044 return (err
>= 0) ? err
: -EBADMSG
;
1046 EXPORT_SYMBOL_GPL(decode_bch
);
1049 * generate Galois field lookup tables
1051 static int build_gf_tables(struct bch_control
*bch
, unsigned int poly
)
1053 unsigned int i
, x
= 1;
1054 const unsigned int k
= 1 << deg(poly
);
1056 /* primitive polynomial must be of degree m */
1057 if (k
!= (1u << GF_M(bch
)))
1060 for (i
= 0; i
< GF_N(bch
); i
++) {
1061 bch
->a_pow_tab
[i
] = x
;
1062 bch
->a_log_tab
[x
] = i
;
1064 /* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
1070 bch
->a_pow_tab
[GF_N(bch
)] = 1;
1071 bch
->a_log_tab
[0] = 0;
1077 * compute generator polynomial remainder tables for fast encoding
1079 static void build_mod8_tables(struct bch_control
*bch
, const uint32_t *g
)
1082 uint32_t data
, hi
, lo
, *tab
;
1083 const int l
= BCH_ECC_WORDS(bch
);
1084 const int plen
= DIV_ROUND_UP(bch
->ecc_bits
+1, 32);
1085 const int ecclen
= DIV_ROUND_UP(bch
->ecc_bits
, 32);
1087 memset(bch
->mod8_tab
, 0, 4*256*l
*sizeof(*bch
->mod8_tab
));
1089 for (i
= 0; i
< 256; i
++) {
1090 /* p(X)=i is a small polynomial of weight <= 8 */
1091 for (b
= 0; b
< 4; b
++) {
1092 /* we want to compute (p(X).X^(8*b+deg(g))) mod g(X) */
1093 tab
= bch
->mod8_tab
+ (b
*256+i
)*l
;
1097 /* subtract X^d.g(X) from p(X).X^(8*b+deg(g)) */
1098 data
^= g
[0] >> (31-d
);
1099 for (j
= 0; j
< ecclen
; j
++) {
1100 hi
= (d
< 31) ? g
[j
] << (d
+1) : 0;
1102 g
[j
+1] >> (31-d
) : 0;
1111 * build a base for factoring degree 2 polynomials
1113 static int build_deg2_base(struct bch_control
*bch
)
1115 const int m
= GF_M(bch
);
1117 unsigned int sum
, x
, y
, remaining
, ak
= 0, xi
[m
];
1119 /* find k s.t. Tr(a^k) = 1 and 0 <= k < m */
1120 for (i
= 0; i
< m
; i
++) {
1121 for (j
= 0, sum
= 0; j
< m
; j
++)
1122 sum
^= a_pow(bch
, i
*(1 << j
));
1125 ak
= bch
->a_pow_tab
[i
];
1129 /* find xi, i=0..m-1 such that xi^2+xi = a^i+Tr(a^i).a^k */
1131 memset(xi
, 0, sizeof(xi
));
1133 for (x
= 0; (x
<= GF_N(bch
)) && remaining
; x
++) {
1134 y
= gf_sqr(bch
, x
)^x
;
1135 for (i
= 0; i
< 2; i
++) {
1137 if (y
&& (r
< m
) && !xi
[r
]) {
1141 dbg("x%d = %x\n", r
, x
);
1147 /* should not happen but check anyway */
1148 return remaining
? -1 : 0;
1151 static void *bch_alloc(size_t size
, int *err
)
1155 ptr
= kmalloc(size
, GFP_KERNEL
);
1162 * compute generator polynomial for given (m,t) parameters.
1164 static uint32_t *compute_generator_polynomial(struct bch_control
*bch
)
1166 const unsigned int m
= GF_M(bch
);
1167 const unsigned int t
= GF_T(bch
);
1169 unsigned int i
, j
, nbits
, r
, word
, *roots
;
1173 g
= bch_alloc(GF_POLY_SZ(m
*t
), &err
);
1174 roots
= bch_alloc((bch
->n
+1)*sizeof(*roots
), &err
);
1175 genpoly
= bch_alloc(DIV_ROUND_UP(m
*t
+1, 32)*sizeof(*genpoly
), &err
);
1183 /* enumerate all roots of g(X) */
1184 memset(roots
, 0, (bch
->n
+1)*sizeof(*roots
));
1185 for (i
= 0; i
< t
; i
++) {
1186 for (j
= 0, r
= 2*i
+1; j
< m
; j
++) {
1188 r
= mod_s(bch
, 2*r
);
1191 /* build generator polynomial g(X) */
1194 for (i
= 0; i
< GF_N(bch
); i
++) {
1196 /* multiply g(X) by (X+root) */
1197 r
= bch
->a_pow_tab
[i
];
1199 for (j
= g
->deg
; j
> 0; j
--)
1200 g
->c
[j
] = gf_mul(bch
, g
->c
[j
], r
)^g
->c
[j
-1];
1202 g
->c
[0] = gf_mul(bch
, g
->c
[0], r
);
1206 /* store left-justified binary representation of g(X) */
1211 nbits
= (n
> 32) ? 32 : n
;
1212 for (j
= 0, word
= 0; j
< nbits
; j
++) {
1214 word
|= 1u << (31-j
);
1216 genpoly
[i
++] = word
;
1219 bch
->ecc_bits
= g
->deg
;
1229 * init_bch - initialize a BCH encoder/decoder
1230 * @m: Galois field order, should be in the range 5-15
1231 * @t: maximum error correction capability, in bits
1232 * @prim_poly: user-provided primitive polynomial (or 0 to use default)
1235 * a newly allocated BCH control structure if successful, NULL otherwise
1237 * This initialization can take some time, as lookup tables are built for fast
1238 * encoding/decoding; make sure not to call this function from a time critical
1239 * path. Usually, init_bch() should be called on module/driver init and
1240 * free_bch() should be called to release memory on exit.
1242 * You may provide your own primitive polynomial of degree @m in argument
1243 * @prim_poly, or let init_bch() use its default polynomial.
1245 * Once init_bch() has successfully returned a pointer to a newly allocated
1246 * BCH control structure, ecc length in bytes is given by member @ecc_bytes of
1249 struct bch_control
*init_bch(int m
, int t
, unsigned int prim_poly
)
1252 unsigned int i
, words
;
1254 struct bch_control
*bch
= NULL
;
1256 const int min_m
= 5;
1257 const int max_m
= 15;
1259 /* default primitive polynomials */
1260 static const unsigned int prim_poly_tab
[] = {
1261 0x25, 0x43, 0x83, 0x11d, 0x211, 0x409, 0x805, 0x1053, 0x201b,
1265 #if defined(CONFIG_BCH_CONST_PARAMS)
1266 if ((m
!= (CONFIG_BCH_CONST_M
)) || (t
!= (CONFIG_BCH_CONST_T
))) {
1267 printk(KERN_ERR
"bch encoder/decoder was configured to support "
1268 "parameters m=%d, t=%d only!\n",
1269 CONFIG_BCH_CONST_M
, CONFIG_BCH_CONST_T
);
1273 if ((m
< min_m
) || (m
> max_m
))
1275 * values of m greater than 15 are not currently supported;
1276 * supporting m > 15 would require changing table base type
1277 * (uint16_t) and a small patch in matrix transposition
1282 if ((t
< 1) || (m
*t
>= ((1 << m
)-1)))
1283 /* invalid t value */
1286 /* select a primitive polynomial for generating GF(2^m) */
1288 prim_poly
= prim_poly_tab
[m
-min_m
];
1290 bch
= kzalloc(sizeof(*bch
), GFP_KERNEL
);
1296 bch
->n
= (1 << m
)-1;
1297 words
= DIV_ROUND_UP(m
*t
, 32);
1298 bch
->ecc_bytes
= DIV_ROUND_UP(m
*t
, 8);
1299 bch
->a_pow_tab
= bch_alloc((1+bch
->n
)*sizeof(*bch
->a_pow_tab
), &err
);
1300 bch
->a_log_tab
= bch_alloc((1+bch
->n
)*sizeof(*bch
->a_log_tab
), &err
);
1301 bch
->mod8_tab
= bch_alloc(words
*1024*sizeof(*bch
->mod8_tab
), &err
);
1302 bch
->ecc_buf
= bch_alloc(words
*sizeof(*bch
->ecc_buf
), &err
);
1303 bch
->ecc_buf2
= bch_alloc(words
*sizeof(*bch
->ecc_buf2
), &err
);
1304 bch
->xi_tab
= bch_alloc(m
*sizeof(*bch
->xi_tab
), &err
);
1305 bch
->syn
= bch_alloc(2*t
*sizeof(*bch
->syn
), &err
);
1306 bch
->cache
= bch_alloc(2*t
*sizeof(*bch
->cache
), &err
);
1307 bch
->elp
= bch_alloc((t
+1)*sizeof(struct gf_poly_deg1
), &err
);
1309 for (i
= 0; i
< ARRAY_SIZE(bch
->poly_2t
); i
++)
1310 bch
->poly_2t
[i
] = bch_alloc(GF_POLY_SZ(2*t
), &err
);
1315 err
= build_gf_tables(bch
, prim_poly
);
1319 /* use generator polynomial for computing encoding tables */
1320 genpoly
= compute_generator_polynomial(bch
);
1321 if (genpoly
== NULL
)
1324 build_mod8_tables(bch
, genpoly
);
1327 err
= build_deg2_base(bch
);
1337 EXPORT_SYMBOL_GPL(init_bch
);
1340 * free_bch - free the BCH control structure
1341 * @bch: BCH control structure to release
1343 void free_bch(struct bch_control
*bch
)
1348 kfree(bch
->a_pow_tab
);
1349 kfree(bch
->a_log_tab
);
1350 kfree(bch
->mod8_tab
);
1351 kfree(bch
->ecc_buf
);
1352 kfree(bch
->ecc_buf2
);
1358 for (i
= 0; i
< ARRAY_SIZE(bch
->poly_2t
); i
++)
1359 kfree(bch
->poly_2t
[i
]);
1364 EXPORT_SYMBOL_GPL(free_bch
);
1366 MODULE_LICENSE("GPL");
1367 MODULE_AUTHOR("Ivan Djelic <ivan.djelic@parrot.com>");
1368 MODULE_DESCRIPTION("Binary BCH encoder/decoder");