ext4: add max_dir_size_kb mount option
[linux-2.6.git] / fs / ext4 / super.c
blob5a97e590692d162eebdc1f2c51086131b52b22fc
1 /*
2 * linux/fs/ext4/super.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/jbd2.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/proc_fs.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/cleancache.h>
42 #include <asm/uaccess.h>
44 #include <linux/kthread.h>
45 #include <linux/freezer.h>
47 #include "ext4.h"
48 #include "ext4_extents.h"
49 #include "ext4_jbd2.h"
50 #include "xattr.h"
51 #include "acl.h"
52 #include "mballoc.h"
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/ext4.h>
57 static struct proc_dir_entry *ext4_proc_root;
58 static struct kset *ext4_kset;
59 static struct ext4_lazy_init *ext4_li_info;
60 static struct mutex ext4_li_mtx;
61 static struct ext4_features *ext4_feat;
63 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
64 unsigned long journal_devnum);
65 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
66 static int ext4_commit_super(struct super_block *sb, int sync);
67 static void ext4_mark_recovery_complete(struct super_block *sb,
68 struct ext4_super_block *es);
69 static void ext4_clear_journal_err(struct super_block *sb,
70 struct ext4_super_block *es);
71 static int ext4_sync_fs(struct super_block *sb, int wait);
72 static const char *ext4_decode_error(struct super_block *sb, int errno,
73 char nbuf[16]);
74 static int ext4_remount(struct super_block *sb, int *flags, char *data);
75 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
76 static int ext4_unfreeze(struct super_block *sb);
77 static int ext4_freeze(struct super_block *sb);
78 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
79 const char *dev_name, void *data);
80 static inline int ext2_feature_set_ok(struct super_block *sb);
81 static inline int ext3_feature_set_ok(struct super_block *sb);
82 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
83 static void ext4_destroy_lazyinit_thread(void);
84 static void ext4_unregister_li_request(struct super_block *sb);
85 static void ext4_clear_request_list(void);
87 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
88 static struct file_system_type ext2_fs_type = {
89 .owner = THIS_MODULE,
90 .name = "ext2",
91 .mount = ext4_mount,
92 .kill_sb = kill_block_super,
93 .fs_flags = FS_REQUIRES_DEV,
95 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
96 #else
97 #define IS_EXT2_SB(sb) (0)
98 #endif
101 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
102 static struct file_system_type ext3_fs_type = {
103 .owner = THIS_MODULE,
104 .name = "ext3",
105 .mount = ext4_mount,
106 .kill_sb = kill_block_super,
107 .fs_flags = FS_REQUIRES_DEV,
109 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
110 #else
111 #define IS_EXT3_SB(sb) (0)
112 #endif
114 static int ext4_verify_csum_type(struct super_block *sb,
115 struct ext4_super_block *es)
117 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
118 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
119 return 1;
121 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
124 static __le32 ext4_superblock_csum(struct super_block *sb,
125 struct ext4_super_block *es)
127 struct ext4_sb_info *sbi = EXT4_SB(sb);
128 int offset = offsetof(struct ext4_super_block, s_checksum);
129 __u32 csum;
131 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
133 return cpu_to_le32(csum);
136 int ext4_superblock_csum_verify(struct super_block *sb,
137 struct ext4_super_block *es)
139 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
140 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
141 return 1;
143 return es->s_checksum == ext4_superblock_csum(sb, es);
146 void ext4_superblock_csum_set(struct super_block *sb,
147 struct ext4_super_block *es)
149 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
150 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
151 return;
153 es->s_checksum = ext4_superblock_csum(sb, es);
156 void *ext4_kvmalloc(size_t size, gfp_t flags)
158 void *ret;
160 ret = kmalloc(size, flags);
161 if (!ret)
162 ret = __vmalloc(size, flags, PAGE_KERNEL);
163 return ret;
166 void *ext4_kvzalloc(size_t size, gfp_t flags)
168 void *ret;
170 ret = kzalloc(size, flags);
171 if (!ret)
172 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
173 return ret;
176 void ext4_kvfree(void *ptr)
178 if (is_vmalloc_addr(ptr))
179 vfree(ptr);
180 else
181 kfree(ptr);
185 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
186 struct ext4_group_desc *bg)
188 return le32_to_cpu(bg->bg_block_bitmap_lo) |
189 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
190 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
193 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
194 struct ext4_group_desc *bg)
196 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
197 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
198 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
201 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
202 struct ext4_group_desc *bg)
204 return le32_to_cpu(bg->bg_inode_table_lo) |
205 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
206 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
209 __u32 ext4_free_group_clusters(struct super_block *sb,
210 struct ext4_group_desc *bg)
212 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
213 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
214 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
217 __u32 ext4_free_inodes_count(struct super_block *sb,
218 struct ext4_group_desc *bg)
220 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
221 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
222 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
225 __u32 ext4_used_dirs_count(struct super_block *sb,
226 struct ext4_group_desc *bg)
228 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
229 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
230 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
233 __u32 ext4_itable_unused_count(struct super_block *sb,
234 struct ext4_group_desc *bg)
236 return le16_to_cpu(bg->bg_itable_unused_lo) |
237 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
238 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
241 void ext4_block_bitmap_set(struct super_block *sb,
242 struct ext4_group_desc *bg, ext4_fsblk_t blk)
244 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
245 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
246 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
249 void ext4_inode_bitmap_set(struct super_block *sb,
250 struct ext4_group_desc *bg, ext4_fsblk_t blk)
252 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
253 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
254 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
257 void ext4_inode_table_set(struct super_block *sb,
258 struct ext4_group_desc *bg, ext4_fsblk_t blk)
260 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
261 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
262 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
265 void ext4_free_group_clusters_set(struct super_block *sb,
266 struct ext4_group_desc *bg, __u32 count)
268 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
269 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
270 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
273 void ext4_free_inodes_set(struct super_block *sb,
274 struct ext4_group_desc *bg, __u32 count)
276 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
277 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
278 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
281 void ext4_used_dirs_set(struct super_block *sb,
282 struct ext4_group_desc *bg, __u32 count)
284 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
285 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
286 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
289 void ext4_itable_unused_set(struct super_block *sb,
290 struct ext4_group_desc *bg, __u32 count)
292 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
293 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
294 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
298 /* Just increment the non-pointer handle value */
299 static handle_t *ext4_get_nojournal(void)
301 handle_t *handle = current->journal_info;
302 unsigned long ref_cnt = (unsigned long)handle;
304 BUG_ON(ref_cnt >= EXT4_NOJOURNAL_MAX_REF_COUNT);
306 ref_cnt++;
307 handle = (handle_t *)ref_cnt;
309 current->journal_info = handle;
310 return handle;
314 /* Decrement the non-pointer handle value */
315 static void ext4_put_nojournal(handle_t *handle)
317 unsigned long ref_cnt = (unsigned long)handle;
319 BUG_ON(ref_cnt == 0);
321 ref_cnt--;
322 handle = (handle_t *)ref_cnt;
324 current->journal_info = handle;
328 * Wrappers for jbd2_journal_start/end.
330 * The only special thing we need to do here is to make sure that all
331 * journal_end calls result in the superblock being marked dirty, so
332 * that sync() will call the filesystem's write_super callback if
333 * appropriate.
335 handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks)
337 journal_t *journal;
339 trace_ext4_journal_start(sb, nblocks, _RET_IP_);
340 if (sb->s_flags & MS_RDONLY)
341 return ERR_PTR(-EROFS);
343 WARN_ON(sb->s_writers.frozen == SB_FREEZE_COMPLETE);
344 journal = EXT4_SB(sb)->s_journal;
345 if (!journal)
346 return ext4_get_nojournal();
348 * Special case here: if the journal has aborted behind our
349 * backs (eg. EIO in the commit thread), then we still need to
350 * take the FS itself readonly cleanly.
352 if (is_journal_aborted(journal)) {
353 ext4_abort(sb, "Detected aborted journal");
354 return ERR_PTR(-EROFS);
356 return jbd2_journal_start(journal, nblocks);
360 * The only special thing we need to do here is to make sure that all
361 * jbd2_journal_stop calls result in the superblock being marked dirty, so
362 * that sync() will call the filesystem's write_super callback if
363 * appropriate.
365 int __ext4_journal_stop(const char *where, unsigned int line, handle_t *handle)
367 struct super_block *sb;
368 int err;
369 int rc;
371 if (!ext4_handle_valid(handle)) {
372 ext4_put_nojournal(handle);
373 return 0;
375 sb = handle->h_transaction->t_journal->j_private;
376 err = handle->h_err;
377 rc = jbd2_journal_stop(handle);
379 if (!err)
380 err = rc;
381 if (err)
382 __ext4_std_error(sb, where, line, err);
383 return err;
386 void ext4_journal_abort_handle(const char *caller, unsigned int line,
387 const char *err_fn, struct buffer_head *bh,
388 handle_t *handle, int err)
390 char nbuf[16];
391 const char *errstr = ext4_decode_error(NULL, err, nbuf);
393 BUG_ON(!ext4_handle_valid(handle));
395 if (bh)
396 BUFFER_TRACE(bh, "abort");
398 if (!handle->h_err)
399 handle->h_err = err;
401 if (is_handle_aborted(handle))
402 return;
404 printk(KERN_ERR "EXT4-fs: %s:%d: aborting transaction: %s in %s\n",
405 caller, line, errstr, err_fn);
407 jbd2_journal_abort_handle(handle);
410 static void __save_error_info(struct super_block *sb, const char *func,
411 unsigned int line)
413 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
415 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
416 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
417 es->s_last_error_time = cpu_to_le32(get_seconds());
418 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
419 es->s_last_error_line = cpu_to_le32(line);
420 if (!es->s_first_error_time) {
421 es->s_first_error_time = es->s_last_error_time;
422 strncpy(es->s_first_error_func, func,
423 sizeof(es->s_first_error_func));
424 es->s_first_error_line = cpu_to_le32(line);
425 es->s_first_error_ino = es->s_last_error_ino;
426 es->s_first_error_block = es->s_last_error_block;
429 * Start the daily error reporting function if it hasn't been
430 * started already
432 if (!es->s_error_count)
433 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
434 es->s_error_count = cpu_to_le32(le32_to_cpu(es->s_error_count) + 1);
437 static void save_error_info(struct super_block *sb, const char *func,
438 unsigned int line)
440 __save_error_info(sb, func, line);
441 ext4_commit_super(sb, 1);
445 * The del_gendisk() function uninitializes the disk-specific data
446 * structures, including the bdi structure, without telling anyone
447 * else. Once this happens, any attempt to call mark_buffer_dirty()
448 * (for example, by ext4_commit_super), will cause a kernel OOPS.
449 * This is a kludge to prevent these oops until we can put in a proper
450 * hook in del_gendisk() to inform the VFS and file system layers.
452 static int block_device_ejected(struct super_block *sb)
454 struct inode *bd_inode = sb->s_bdev->bd_inode;
455 struct backing_dev_info *bdi = bd_inode->i_mapping->backing_dev_info;
457 return bdi->dev == NULL;
460 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
462 struct super_block *sb = journal->j_private;
463 struct ext4_sb_info *sbi = EXT4_SB(sb);
464 int error = is_journal_aborted(journal);
465 struct ext4_journal_cb_entry *jce, *tmp;
467 spin_lock(&sbi->s_md_lock);
468 list_for_each_entry_safe(jce, tmp, &txn->t_private_list, jce_list) {
469 list_del_init(&jce->jce_list);
470 spin_unlock(&sbi->s_md_lock);
471 jce->jce_func(sb, jce, error);
472 spin_lock(&sbi->s_md_lock);
474 spin_unlock(&sbi->s_md_lock);
477 /* Deal with the reporting of failure conditions on a filesystem such as
478 * inconsistencies detected or read IO failures.
480 * On ext2, we can store the error state of the filesystem in the
481 * superblock. That is not possible on ext4, because we may have other
482 * write ordering constraints on the superblock which prevent us from
483 * writing it out straight away; and given that the journal is about to
484 * be aborted, we can't rely on the current, or future, transactions to
485 * write out the superblock safely.
487 * We'll just use the jbd2_journal_abort() error code to record an error in
488 * the journal instead. On recovery, the journal will complain about
489 * that error until we've noted it down and cleared it.
492 static void ext4_handle_error(struct super_block *sb)
494 if (sb->s_flags & MS_RDONLY)
495 return;
497 if (!test_opt(sb, ERRORS_CONT)) {
498 journal_t *journal = EXT4_SB(sb)->s_journal;
500 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
501 if (journal)
502 jbd2_journal_abort(journal, -EIO);
504 if (test_opt(sb, ERRORS_RO)) {
505 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
506 sb->s_flags |= MS_RDONLY;
508 if (test_opt(sb, ERRORS_PANIC))
509 panic("EXT4-fs (device %s): panic forced after error\n",
510 sb->s_id);
513 void __ext4_error(struct super_block *sb, const char *function,
514 unsigned int line, const char *fmt, ...)
516 struct va_format vaf;
517 va_list args;
519 va_start(args, fmt);
520 vaf.fmt = fmt;
521 vaf.va = &args;
522 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
523 sb->s_id, function, line, current->comm, &vaf);
524 va_end(args);
525 save_error_info(sb, function, line);
527 ext4_handle_error(sb);
530 void ext4_error_inode(struct inode *inode, const char *function,
531 unsigned int line, ext4_fsblk_t block,
532 const char *fmt, ...)
534 va_list args;
535 struct va_format vaf;
536 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
538 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
539 es->s_last_error_block = cpu_to_le64(block);
540 save_error_info(inode->i_sb, function, line);
541 va_start(args, fmt);
542 vaf.fmt = fmt;
543 vaf.va = &args;
544 if (block)
545 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
546 "inode #%lu: block %llu: comm %s: %pV\n",
547 inode->i_sb->s_id, function, line, inode->i_ino,
548 block, current->comm, &vaf);
549 else
550 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
551 "inode #%lu: comm %s: %pV\n",
552 inode->i_sb->s_id, function, line, inode->i_ino,
553 current->comm, &vaf);
554 va_end(args);
556 ext4_handle_error(inode->i_sb);
559 void ext4_error_file(struct file *file, const char *function,
560 unsigned int line, ext4_fsblk_t block,
561 const char *fmt, ...)
563 va_list args;
564 struct va_format vaf;
565 struct ext4_super_block *es;
566 struct inode *inode = file->f_dentry->d_inode;
567 char pathname[80], *path;
569 es = EXT4_SB(inode->i_sb)->s_es;
570 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
571 save_error_info(inode->i_sb, function, line);
572 path = d_path(&(file->f_path), pathname, sizeof(pathname));
573 if (IS_ERR(path))
574 path = "(unknown)";
575 va_start(args, fmt);
576 vaf.fmt = fmt;
577 vaf.va = &args;
578 if (block)
579 printk(KERN_CRIT
580 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
581 "block %llu: comm %s: path %s: %pV\n",
582 inode->i_sb->s_id, function, line, inode->i_ino,
583 block, current->comm, path, &vaf);
584 else
585 printk(KERN_CRIT
586 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
587 "comm %s: path %s: %pV\n",
588 inode->i_sb->s_id, function, line, inode->i_ino,
589 current->comm, path, &vaf);
590 va_end(args);
592 ext4_handle_error(inode->i_sb);
595 static const char *ext4_decode_error(struct super_block *sb, int errno,
596 char nbuf[16])
598 char *errstr = NULL;
600 switch (errno) {
601 case -EIO:
602 errstr = "IO failure";
603 break;
604 case -ENOMEM:
605 errstr = "Out of memory";
606 break;
607 case -EROFS:
608 if (!sb || (EXT4_SB(sb)->s_journal &&
609 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
610 errstr = "Journal has aborted";
611 else
612 errstr = "Readonly filesystem";
613 break;
614 default:
615 /* If the caller passed in an extra buffer for unknown
616 * errors, textualise them now. Else we just return
617 * NULL. */
618 if (nbuf) {
619 /* Check for truncated error codes... */
620 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
621 errstr = nbuf;
623 break;
626 return errstr;
629 /* __ext4_std_error decodes expected errors from journaling functions
630 * automatically and invokes the appropriate error response. */
632 void __ext4_std_error(struct super_block *sb, const char *function,
633 unsigned int line, int errno)
635 char nbuf[16];
636 const char *errstr;
638 /* Special case: if the error is EROFS, and we're not already
639 * inside a transaction, then there's really no point in logging
640 * an error. */
641 if (errno == -EROFS && journal_current_handle() == NULL &&
642 (sb->s_flags & MS_RDONLY))
643 return;
645 errstr = ext4_decode_error(sb, errno, nbuf);
646 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
647 sb->s_id, function, line, errstr);
648 save_error_info(sb, function, line);
650 ext4_handle_error(sb);
654 * ext4_abort is a much stronger failure handler than ext4_error. The
655 * abort function may be used to deal with unrecoverable failures such
656 * as journal IO errors or ENOMEM at a critical moment in log management.
658 * We unconditionally force the filesystem into an ABORT|READONLY state,
659 * unless the error response on the fs has been set to panic in which
660 * case we take the easy way out and panic immediately.
663 void __ext4_abort(struct super_block *sb, const char *function,
664 unsigned int line, const char *fmt, ...)
666 va_list args;
668 save_error_info(sb, function, line);
669 va_start(args, fmt);
670 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
671 function, line);
672 vprintk(fmt, args);
673 printk("\n");
674 va_end(args);
676 if ((sb->s_flags & MS_RDONLY) == 0) {
677 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
678 sb->s_flags |= MS_RDONLY;
679 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
680 if (EXT4_SB(sb)->s_journal)
681 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
682 save_error_info(sb, function, line);
684 if (test_opt(sb, ERRORS_PANIC))
685 panic("EXT4-fs panic from previous error\n");
688 void ext4_msg(struct super_block *sb, const char *prefix, const char *fmt, ...)
690 struct va_format vaf;
691 va_list args;
693 va_start(args, fmt);
694 vaf.fmt = fmt;
695 vaf.va = &args;
696 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
697 va_end(args);
700 void __ext4_warning(struct super_block *sb, const char *function,
701 unsigned int line, const char *fmt, ...)
703 struct va_format vaf;
704 va_list args;
706 va_start(args, fmt);
707 vaf.fmt = fmt;
708 vaf.va = &args;
709 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
710 sb->s_id, function, line, &vaf);
711 va_end(args);
714 void __ext4_grp_locked_error(const char *function, unsigned int line,
715 struct super_block *sb, ext4_group_t grp,
716 unsigned long ino, ext4_fsblk_t block,
717 const char *fmt, ...)
718 __releases(bitlock)
719 __acquires(bitlock)
721 struct va_format vaf;
722 va_list args;
723 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
725 es->s_last_error_ino = cpu_to_le32(ino);
726 es->s_last_error_block = cpu_to_le64(block);
727 __save_error_info(sb, function, line);
729 va_start(args, fmt);
731 vaf.fmt = fmt;
732 vaf.va = &args;
733 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
734 sb->s_id, function, line, grp);
735 if (ino)
736 printk(KERN_CONT "inode %lu: ", ino);
737 if (block)
738 printk(KERN_CONT "block %llu:", (unsigned long long) block);
739 printk(KERN_CONT "%pV\n", &vaf);
740 va_end(args);
742 if (test_opt(sb, ERRORS_CONT)) {
743 ext4_commit_super(sb, 0);
744 return;
747 ext4_unlock_group(sb, grp);
748 ext4_handle_error(sb);
750 * We only get here in the ERRORS_RO case; relocking the group
751 * may be dangerous, but nothing bad will happen since the
752 * filesystem will have already been marked read/only and the
753 * journal has been aborted. We return 1 as a hint to callers
754 * who might what to use the return value from
755 * ext4_grp_locked_error() to distinguish between the
756 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
757 * aggressively from the ext4 function in question, with a
758 * more appropriate error code.
760 ext4_lock_group(sb, grp);
761 return;
764 void ext4_update_dynamic_rev(struct super_block *sb)
766 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
768 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
769 return;
771 ext4_warning(sb,
772 "updating to rev %d because of new feature flag, "
773 "running e2fsck is recommended",
774 EXT4_DYNAMIC_REV);
776 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
777 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
778 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
779 /* leave es->s_feature_*compat flags alone */
780 /* es->s_uuid will be set by e2fsck if empty */
783 * The rest of the superblock fields should be zero, and if not it
784 * means they are likely already in use, so leave them alone. We
785 * can leave it up to e2fsck to clean up any inconsistencies there.
790 * Open the external journal device
792 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
794 struct block_device *bdev;
795 char b[BDEVNAME_SIZE];
797 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
798 if (IS_ERR(bdev))
799 goto fail;
800 return bdev;
802 fail:
803 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
804 __bdevname(dev, b), PTR_ERR(bdev));
805 return NULL;
809 * Release the journal device
811 static int ext4_blkdev_put(struct block_device *bdev)
813 return blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
816 static int ext4_blkdev_remove(struct ext4_sb_info *sbi)
818 struct block_device *bdev;
819 int ret = -ENODEV;
821 bdev = sbi->journal_bdev;
822 if (bdev) {
823 ret = ext4_blkdev_put(bdev);
824 sbi->journal_bdev = NULL;
826 return ret;
829 static inline struct inode *orphan_list_entry(struct list_head *l)
831 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
834 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
836 struct list_head *l;
838 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
839 le32_to_cpu(sbi->s_es->s_last_orphan));
841 printk(KERN_ERR "sb_info orphan list:\n");
842 list_for_each(l, &sbi->s_orphan) {
843 struct inode *inode = orphan_list_entry(l);
844 printk(KERN_ERR " "
845 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
846 inode->i_sb->s_id, inode->i_ino, inode,
847 inode->i_mode, inode->i_nlink,
848 NEXT_ORPHAN(inode));
852 static void ext4_put_super(struct super_block *sb)
854 struct ext4_sb_info *sbi = EXT4_SB(sb);
855 struct ext4_super_block *es = sbi->s_es;
856 int i, err;
858 ext4_unregister_li_request(sb);
859 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
861 flush_workqueue(sbi->dio_unwritten_wq);
862 destroy_workqueue(sbi->dio_unwritten_wq);
864 lock_super(sb);
865 if (sbi->s_journal) {
866 err = jbd2_journal_destroy(sbi->s_journal);
867 sbi->s_journal = NULL;
868 if (err < 0)
869 ext4_abort(sb, "Couldn't clean up the journal");
872 del_timer(&sbi->s_err_report);
873 ext4_release_system_zone(sb);
874 ext4_mb_release(sb);
875 ext4_ext_release(sb);
876 ext4_xattr_put_super(sb);
878 if (!(sb->s_flags & MS_RDONLY)) {
879 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
880 es->s_state = cpu_to_le16(sbi->s_mount_state);
882 if (!(sb->s_flags & MS_RDONLY))
883 ext4_commit_super(sb, 1);
885 if (sbi->s_proc) {
886 remove_proc_entry("options", sbi->s_proc);
887 remove_proc_entry(sb->s_id, ext4_proc_root);
889 kobject_del(&sbi->s_kobj);
891 for (i = 0; i < sbi->s_gdb_count; i++)
892 brelse(sbi->s_group_desc[i]);
893 ext4_kvfree(sbi->s_group_desc);
894 ext4_kvfree(sbi->s_flex_groups);
895 percpu_counter_destroy(&sbi->s_freeclusters_counter);
896 percpu_counter_destroy(&sbi->s_freeinodes_counter);
897 percpu_counter_destroy(&sbi->s_dirs_counter);
898 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
899 brelse(sbi->s_sbh);
900 #ifdef CONFIG_QUOTA
901 for (i = 0; i < MAXQUOTAS; i++)
902 kfree(sbi->s_qf_names[i]);
903 #endif
905 /* Debugging code just in case the in-memory inode orphan list
906 * isn't empty. The on-disk one can be non-empty if we've
907 * detected an error and taken the fs readonly, but the
908 * in-memory list had better be clean by this point. */
909 if (!list_empty(&sbi->s_orphan))
910 dump_orphan_list(sb, sbi);
911 J_ASSERT(list_empty(&sbi->s_orphan));
913 invalidate_bdev(sb->s_bdev);
914 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
916 * Invalidate the journal device's buffers. We don't want them
917 * floating about in memory - the physical journal device may
918 * hotswapped, and it breaks the `ro-after' testing code.
920 sync_blockdev(sbi->journal_bdev);
921 invalidate_bdev(sbi->journal_bdev);
922 ext4_blkdev_remove(sbi);
924 if (sbi->s_mmp_tsk)
925 kthread_stop(sbi->s_mmp_tsk);
926 sb->s_fs_info = NULL;
928 * Now that we are completely done shutting down the
929 * superblock, we need to actually destroy the kobject.
931 unlock_super(sb);
932 kobject_put(&sbi->s_kobj);
933 wait_for_completion(&sbi->s_kobj_unregister);
934 if (sbi->s_chksum_driver)
935 crypto_free_shash(sbi->s_chksum_driver);
936 kfree(sbi->s_blockgroup_lock);
937 kfree(sbi);
940 static struct kmem_cache *ext4_inode_cachep;
943 * Called inside transaction, so use GFP_NOFS
945 static struct inode *ext4_alloc_inode(struct super_block *sb)
947 struct ext4_inode_info *ei;
949 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
950 if (!ei)
951 return NULL;
953 ei->vfs_inode.i_version = 1;
954 ei->vfs_inode.i_data.writeback_index = 0;
955 memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache));
956 INIT_LIST_HEAD(&ei->i_prealloc_list);
957 spin_lock_init(&ei->i_prealloc_lock);
958 ei->i_reserved_data_blocks = 0;
959 ei->i_reserved_meta_blocks = 0;
960 ei->i_allocated_meta_blocks = 0;
961 ei->i_da_metadata_calc_len = 0;
962 ei->i_da_metadata_calc_last_lblock = 0;
963 spin_lock_init(&(ei->i_block_reservation_lock));
964 #ifdef CONFIG_QUOTA
965 ei->i_reserved_quota = 0;
966 #endif
967 ei->jinode = NULL;
968 INIT_LIST_HEAD(&ei->i_completed_io_list);
969 spin_lock_init(&ei->i_completed_io_lock);
970 ei->cur_aio_dio = NULL;
971 ei->i_sync_tid = 0;
972 ei->i_datasync_tid = 0;
973 atomic_set(&ei->i_ioend_count, 0);
974 atomic_set(&ei->i_aiodio_unwritten, 0);
976 return &ei->vfs_inode;
979 static int ext4_drop_inode(struct inode *inode)
981 int drop = generic_drop_inode(inode);
983 trace_ext4_drop_inode(inode, drop);
984 return drop;
987 static void ext4_i_callback(struct rcu_head *head)
989 struct inode *inode = container_of(head, struct inode, i_rcu);
990 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
993 static void ext4_destroy_inode(struct inode *inode)
995 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
996 ext4_msg(inode->i_sb, KERN_ERR,
997 "Inode %lu (%p): orphan list check failed!",
998 inode->i_ino, EXT4_I(inode));
999 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1000 EXT4_I(inode), sizeof(struct ext4_inode_info),
1001 true);
1002 dump_stack();
1004 call_rcu(&inode->i_rcu, ext4_i_callback);
1007 static void init_once(void *foo)
1009 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1011 INIT_LIST_HEAD(&ei->i_orphan);
1012 #ifdef CONFIG_EXT4_FS_XATTR
1013 init_rwsem(&ei->xattr_sem);
1014 #endif
1015 init_rwsem(&ei->i_data_sem);
1016 inode_init_once(&ei->vfs_inode);
1019 static int init_inodecache(void)
1021 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
1022 sizeof(struct ext4_inode_info),
1023 0, (SLAB_RECLAIM_ACCOUNT|
1024 SLAB_MEM_SPREAD),
1025 init_once);
1026 if (ext4_inode_cachep == NULL)
1027 return -ENOMEM;
1028 return 0;
1031 static void destroy_inodecache(void)
1033 kmem_cache_destroy(ext4_inode_cachep);
1036 void ext4_clear_inode(struct inode *inode)
1038 invalidate_inode_buffers(inode);
1039 clear_inode(inode);
1040 dquot_drop(inode);
1041 ext4_discard_preallocations(inode);
1042 if (EXT4_I(inode)->jinode) {
1043 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1044 EXT4_I(inode)->jinode);
1045 jbd2_free_inode(EXT4_I(inode)->jinode);
1046 EXT4_I(inode)->jinode = NULL;
1050 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1051 u64 ino, u32 generation)
1053 struct inode *inode;
1055 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1056 return ERR_PTR(-ESTALE);
1057 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1058 return ERR_PTR(-ESTALE);
1060 /* iget isn't really right if the inode is currently unallocated!!
1062 * ext4_read_inode will return a bad_inode if the inode had been
1063 * deleted, so we should be safe.
1065 * Currently we don't know the generation for parent directory, so
1066 * a generation of 0 means "accept any"
1068 inode = ext4_iget(sb, ino);
1069 if (IS_ERR(inode))
1070 return ERR_CAST(inode);
1071 if (generation && inode->i_generation != generation) {
1072 iput(inode);
1073 return ERR_PTR(-ESTALE);
1076 return inode;
1079 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1080 int fh_len, int fh_type)
1082 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1083 ext4_nfs_get_inode);
1086 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1087 int fh_len, int fh_type)
1089 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1090 ext4_nfs_get_inode);
1094 * Try to release metadata pages (indirect blocks, directories) which are
1095 * mapped via the block device. Since these pages could have journal heads
1096 * which would prevent try_to_free_buffers() from freeing them, we must use
1097 * jbd2 layer's try_to_free_buffers() function to release them.
1099 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1100 gfp_t wait)
1102 journal_t *journal = EXT4_SB(sb)->s_journal;
1104 WARN_ON(PageChecked(page));
1105 if (!page_has_buffers(page))
1106 return 0;
1107 if (journal)
1108 return jbd2_journal_try_to_free_buffers(journal, page,
1109 wait & ~__GFP_WAIT);
1110 return try_to_free_buffers(page);
1113 #ifdef CONFIG_QUOTA
1114 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1115 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1117 static int ext4_write_dquot(struct dquot *dquot);
1118 static int ext4_acquire_dquot(struct dquot *dquot);
1119 static int ext4_release_dquot(struct dquot *dquot);
1120 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1121 static int ext4_write_info(struct super_block *sb, int type);
1122 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1123 struct path *path);
1124 static int ext4_quota_on_sysfile(struct super_block *sb, int type,
1125 int format_id);
1126 static int ext4_quota_off(struct super_block *sb, int type);
1127 static int ext4_quota_off_sysfile(struct super_block *sb, int type);
1128 static int ext4_quota_on_mount(struct super_block *sb, int type);
1129 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1130 size_t len, loff_t off);
1131 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1132 const char *data, size_t len, loff_t off);
1133 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1134 unsigned int flags);
1135 static int ext4_enable_quotas(struct super_block *sb);
1137 static const struct dquot_operations ext4_quota_operations = {
1138 .get_reserved_space = ext4_get_reserved_space,
1139 .write_dquot = ext4_write_dquot,
1140 .acquire_dquot = ext4_acquire_dquot,
1141 .release_dquot = ext4_release_dquot,
1142 .mark_dirty = ext4_mark_dquot_dirty,
1143 .write_info = ext4_write_info,
1144 .alloc_dquot = dquot_alloc,
1145 .destroy_dquot = dquot_destroy,
1148 static const struct quotactl_ops ext4_qctl_operations = {
1149 .quota_on = ext4_quota_on,
1150 .quota_off = ext4_quota_off,
1151 .quota_sync = dquot_quota_sync,
1152 .get_info = dquot_get_dqinfo,
1153 .set_info = dquot_set_dqinfo,
1154 .get_dqblk = dquot_get_dqblk,
1155 .set_dqblk = dquot_set_dqblk
1158 static const struct quotactl_ops ext4_qctl_sysfile_operations = {
1159 .quota_on_meta = ext4_quota_on_sysfile,
1160 .quota_off = ext4_quota_off_sysfile,
1161 .quota_sync = dquot_quota_sync,
1162 .get_info = dquot_get_dqinfo,
1163 .set_info = dquot_set_dqinfo,
1164 .get_dqblk = dquot_get_dqblk,
1165 .set_dqblk = dquot_set_dqblk
1167 #endif
1169 static const struct super_operations ext4_sops = {
1170 .alloc_inode = ext4_alloc_inode,
1171 .destroy_inode = ext4_destroy_inode,
1172 .write_inode = ext4_write_inode,
1173 .dirty_inode = ext4_dirty_inode,
1174 .drop_inode = ext4_drop_inode,
1175 .evict_inode = ext4_evict_inode,
1176 .put_super = ext4_put_super,
1177 .sync_fs = ext4_sync_fs,
1178 .freeze_fs = ext4_freeze,
1179 .unfreeze_fs = ext4_unfreeze,
1180 .statfs = ext4_statfs,
1181 .remount_fs = ext4_remount,
1182 .show_options = ext4_show_options,
1183 #ifdef CONFIG_QUOTA
1184 .quota_read = ext4_quota_read,
1185 .quota_write = ext4_quota_write,
1186 #endif
1187 .bdev_try_to_free_page = bdev_try_to_free_page,
1190 static const struct super_operations ext4_nojournal_sops = {
1191 .alloc_inode = ext4_alloc_inode,
1192 .destroy_inode = ext4_destroy_inode,
1193 .write_inode = ext4_write_inode,
1194 .dirty_inode = ext4_dirty_inode,
1195 .drop_inode = ext4_drop_inode,
1196 .evict_inode = ext4_evict_inode,
1197 .put_super = ext4_put_super,
1198 .statfs = ext4_statfs,
1199 .remount_fs = ext4_remount,
1200 .show_options = ext4_show_options,
1201 #ifdef CONFIG_QUOTA
1202 .quota_read = ext4_quota_read,
1203 .quota_write = ext4_quota_write,
1204 #endif
1205 .bdev_try_to_free_page = bdev_try_to_free_page,
1208 static const struct export_operations ext4_export_ops = {
1209 .fh_to_dentry = ext4_fh_to_dentry,
1210 .fh_to_parent = ext4_fh_to_parent,
1211 .get_parent = ext4_get_parent,
1214 enum {
1215 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1216 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1217 Opt_nouid32, Opt_debug, Opt_removed,
1218 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1219 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1220 Opt_commit, Opt_min_batch_time, Opt_max_batch_time,
1221 Opt_journal_dev, Opt_journal_checksum, Opt_journal_async_commit,
1222 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1223 Opt_data_err_abort, Opt_data_err_ignore,
1224 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1225 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1226 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1227 Opt_usrquota, Opt_grpquota, Opt_i_version,
1228 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1229 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1230 Opt_inode_readahead_blks, Opt_journal_ioprio,
1231 Opt_dioread_nolock, Opt_dioread_lock,
1232 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1233 Opt_max_dir_size_kb,
1236 static const match_table_t tokens = {
1237 {Opt_bsd_df, "bsddf"},
1238 {Opt_minix_df, "minixdf"},
1239 {Opt_grpid, "grpid"},
1240 {Opt_grpid, "bsdgroups"},
1241 {Opt_nogrpid, "nogrpid"},
1242 {Opt_nogrpid, "sysvgroups"},
1243 {Opt_resgid, "resgid=%u"},
1244 {Opt_resuid, "resuid=%u"},
1245 {Opt_sb, "sb=%u"},
1246 {Opt_err_cont, "errors=continue"},
1247 {Opt_err_panic, "errors=panic"},
1248 {Opt_err_ro, "errors=remount-ro"},
1249 {Opt_nouid32, "nouid32"},
1250 {Opt_debug, "debug"},
1251 {Opt_removed, "oldalloc"},
1252 {Opt_removed, "orlov"},
1253 {Opt_user_xattr, "user_xattr"},
1254 {Opt_nouser_xattr, "nouser_xattr"},
1255 {Opt_acl, "acl"},
1256 {Opt_noacl, "noacl"},
1257 {Opt_noload, "norecovery"},
1258 {Opt_noload, "noload"},
1259 {Opt_removed, "nobh"},
1260 {Opt_removed, "bh"},
1261 {Opt_commit, "commit=%u"},
1262 {Opt_min_batch_time, "min_batch_time=%u"},
1263 {Opt_max_batch_time, "max_batch_time=%u"},
1264 {Opt_journal_dev, "journal_dev=%u"},
1265 {Opt_journal_checksum, "journal_checksum"},
1266 {Opt_journal_async_commit, "journal_async_commit"},
1267 {Opt_abort, "abort"},
1268 {Opt_data_journal, "data=journal"},
1269 {Opt_data_ordered, "data=ordered"},
1270 {Opt_data_writeback, "data=writeback"},
1271 {Opt_data_err_abort, "data_err=abort"},
1272 {Opt_data_err_ignore, "data_err=ignore"},
1273 {Opt_offusrjquota, "usrjquota="},
1274 {Opt_usrjquota, "usrjquota=%s"},
1275 {Opt_offgrpjquota, "grpjquota="},
1276 {Opt_grpjquota, "grpjquota=%s"},
1277 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1278 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1279 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1280 {Opt_grpquota, "grpquota"},
1281 {Opt_noquota, "noquota"},
1282 {Opt_quota, "quota"},
1283 {Opt_usrquota, "usrquota"},
1284 {Opt_barrier, "barrier=%u"},
1285 {Opt_barrier, "barrier"},
1286 {Opt_nobarrier, "nobarrier"},
1287 {Opt_i_version, "i_version"},
1288 {Opt_stripe, "stripe=%u"},
1289 {Opt_delalloc, "delalloc"},
1290 {Opt_nodelalloc, "nodelalloc"},
1291 {Opt_mblk_io_submit, "mblk_io_submit"},
1292 {Opt_nomblk_io_submit, "nomblk_io_submit"},
1293 {Opt_block_validity, "block_validity"},
1294 {Opt_noblock_validity, "noblock_validity"},
1295 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1296 {Opt_journal_ioprio, "journal_ioprio=%u"},
1297 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1298 {Opt_auto_da_alloc, "auto_da_alloc"},
1299 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1300 {Opt_dioread_nolock, "dioread_nolock"},
1301 {Opt_dioread_lock, "dioread_lock"},
1302 {Opt_discard, "discard"},
1303 {Opt_nodiscard, "nodiscard"},
1304 {Opt_init_itable, "init_itable=%u"},
1305 {Opt_init_itable, "init_itable"},
1306 {Opt_noinit_itable, "noinit_itable"},
1307 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1308 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1309 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1310 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1311 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1312 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1313 {Opt_err, NULL},
1316 static ext4_fsblk_t get_sb_block(void **data)
1318 ext4_fsblk_t sb_block;
1319 char *options = (char *) *data;
1321 if (!options || strncmp(options, "sb=", 3) != 0)
1322 return 1; /* Default location */
1324 options += 3;
1325 /* TODO: use simple_strtoll with >32bit ext4 */
1326 sb_block = simple_strtoul(options, &options, 0);
1327 if (*options && *options != ',') {
1328 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1329 (char *) *data);
1330 return 1;
1332 if (*options == ',')
1333 options++;
1334 *data = (void *) options;
1336 return sb_block;
1339 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1340 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1341 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1343 #ifdef CONFIG_QUOTA
1344 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1346 struct ext4_sb_info *sbi = EXT4_SB(sb);
1347 char *qname;
1349 if (sb_any_quota_loaded(sb) &&
1350 !sbi->s_qf_names[qtype]) {
1351 ext4_msg(sb, KERN_ERR,
1352 "Cannot change journaled "
1353 "quota options when quota turned on");
1354 return -1;
1356 qname = match_strdup(args);
1357 if (!qname) {
1358 ext4_msg(sb, KERN_ERR,
1359 "Not enough memory for storing quotafile name");
1360 return -1;
1362 if (sbi->s_qf_names[qtype] &&
1363 strcmp(sbi->s_qf_names[qtype], qname)) {
1364 ext4_msg(sb, KERN_ERR,
1365 "%s quota file already specified", QTYPE2NAME(qtype));
1366 kfree(qname);
1367 return -1;
1369 sbi->s_qf_names[qtype] = qname;
1370 if (strchr(sbi->s_qf_names[qtype], '/')) {
1371 ext4_msg(sb, KERN_ERR,
1372 "quotafile must be on filesystem root");
1373 kfree(sbi->s_qf_names[qtype]);
1374 sbi->s_qf_names[qtype] = NULL;
1375 return -1;
1377 set_opt(sb, QUOTA);
1378 return 1;
1381 static int clear_qf_name(struct super_block *sb, int qtype)
1384 struct ext4_sb_info *sbi = EXT4_SB(sb);
1386 if (sb_any_quota_loaded(sb) &&
1387 sbi->s_qf_names[qtype]) {
1388 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1389 " when quota turned on");
1390 return -1;
1393 * The space will be released later when all options are confirmed
1394 * to be correct
1396 sbi->s_qf_names[qtype] = NULL;
1397 return 1;
1399 #endif
1401 #define MOPT_SET 0x0001
1402 #define MOPT_CLEAR 0x0002
1403 #define MOPT_NOSUPPORT 0x0004
1404 #define MOPT_EXPLICIT 0x0008
1405 #define MOPT_CLEAR_ERR 0x0010
1406 #define MOPT_GTE0 0x0020
1407 #ifdef CONFIG_QUOTA
1408 #define MOPT_Q 0
1409 #define MOPT_QFMT 0x0040
1410 #else
1411 #define MOPT_Q MOPT_NOSUPPORT
1412 #define MOPT_QFMT MOPT_NOSUPPORT
1413 #endif
1414 #define MOPT_DATAJ 0x0080
1416 static const struct mount_opts {
1417 int token;
1418 int mount_opt;
1419 int flags;
1420 } ext4_mount_opts[] = {
1421 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1422 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1423 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1424 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1425 {Opt_mblk_io_submit, EXT4_MOUNT_MBLK_IO_SUBMIT, MOPT_SET},
1426 {Opt_nomblk_io_submit, EXT4_MOUNT_MBLK_IO_SUBMIT, MOPT_CLEAR},
1427 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1428 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1429 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, MOPT_SET},
1430 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, MOPT_CLEAR},
1431 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1432 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1433 {Opt_delalloc, EXT4_MOUNT_DELALLOC, MOPT_SET | MOPT_EXPLICIT},
1434 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, MOPT_CLEAR | MOPT_EXPLICIT},
1435 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, MOPT_SET},
1436 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1437 EXT4_MOUNT_JOURNAL_CHECKSUM), MOPT_SET},
1438 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_SET},
1439 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1440 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1441 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1442 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_SET},
1443 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_CLEAR},
1444 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1445 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1446 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1447 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1448 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1449 {Opt_commit, 0, MOPT_GTE0},
1450 {Opt_max_batch_time, 0, MOPT_GTE0},
1451 {Opt_min_batch_time, 0, MOPT_GTE0},
1452 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1453 {Opt_init_itable, 0, MOPT_GTE0},
1454 {Opt_stripe, 0, MOPT_GTE0},
1455 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_DATAJ},
1456 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_DATAJ},
1457 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, MOPT_DATAJ},
1458 #ifdef CONFIG_EXT4_FS_XATTR
1459 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1460 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1461 #else
1462 {Opt_user_xattr, 0, MOPT_NOSUPPORT},
1463 {Opt_nouser_xattr, 0, MOPT_NOSUPPORT},
1464 #endif
1465 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1466 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1467 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1468 #else
1469 {Opt_acl, 0, MOPT_NOSUPPORT},
1470 {Opt_noacl, 0, MOPT_NOSUPPORT},
1471 #endif
1472 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1473 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1474 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1475 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1476 MOPT_SET | MOPT_Q},
1477 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1478 MOPT_SET | MOPT_Q},
1479 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1480 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q},
1481 {Opt_usrjquota, 0, MOPT_Q},
1482 {Opt_grpjquota, 0, MOPT_Q},
1483 {Opt_offusrjquota, 0, MOPT_Q},
1484 {Opt_offgrpjquota, 0, MOPT_Q},
1485 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1486 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1487 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1488 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1489 {Opt_err, 0, 0}
1492 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1493 substring_t *args, unsigned long *journal_devnum,
1494 unsigned int *journal_ioprio, int is_remount)
1496 struct ext4_sb_info *sbi = EXT4_SB(sb);
1497 const struct mount_opts *m;
1498 kuid_t uid;
1499 kgid_t gid;
1500 int arg = 0;
1502 #ifdef CONFIG_QUOTA
1503 if (token == Opt_usrjquota)
1504 return set_qf_name(sb, USRQUOTA, &args[0]);
1505 else if (token == Opt_grpjquota)
1506 return set_qf_name(sb, GRPQUOTA, &args[0]);
1507 else if (token == Opt_offusrjquota)
1508 return clear_qf_name(sb, USRQUOTA);
1509 else if (token == Opt_offgrpjquota)
1510 return clear_qf_name(sb, GRPQUOTA);
1511 #endif
1512 if (args->from && match_int(args, &arg))
1513 return -1;
1514 switch (token) {
1515 case Opt_noacl:
1516 case Opt_nouser_xattr:
1517 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1518 break;
1519 case Opt_sb:
1520 return 1; /* handled by get_sb_block() */
1521 case Opt_removed:
1522 ext4_msg(sb, KERN_WARNING,
1523 "Ignoring removed %s option", opt);
1524 return 1;
1525 case Opt_resuid:
1526 uid = make_kuid(current_user_ns(), arg);
1527 if (!uid_valid(uid)) {
1528 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1529 return -1;
1531 sbi->s_resuid = uid;
1532 return 1;
1533 case Opt_resgid:
1534 gid = make_kgid(current_user_ns(), arg);
1535 if (!gid_valid(gid)) {
1536 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1537 return -1;
1539 sbi->s_resgid = gid;
1540 return 1;
1541 case Opt_abort:
1542 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1543 return 1;
1544 case Opt_i_version:
1545 sb->s_flags |= MS_I_VERSION;
1546 return 1;
1547 case Opt_journal_dev:
1548 if (is_remount) {
1549 ext4_msg(sb, KERN_ERR,
1550 "Cannot specify journal on remount");
1551 return -1;
1553 *journal_devnum = arg;
1554 return 1;
1555 case Opt_journal_ioprio:
1556 if (arg < 0 || arg > 7)
1557 return -1;
1558 *journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1559 return 1;
1562 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1563 if (token != m->token)
1564 continue;
1565 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1566 return -1;
1567 if (m->flags & MOPT_EXPLICIT)
1568 set_opt2(sb, EXPLICIT_DELALLOC);
1569 if (m->flags & MOPT_CLEAR_ERR)
1570 clear_opt(sb, ERRORS_MASK);
1571 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1572 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1573 "options when quota turned on");
1574 return -1;
1577 if (m->flags & MOPT_NOSUPPORT) {
1578 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1579 } else if (token == Opt_commit) {
1580 if (arg == 0)
1581 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1582 sbi->s_commit_interval = HZ * arg;
1583 } else if (token == Opt_max_batch_time) {
1584 if (arg == 0)
1585 arg = EXT4_DEF_MAX_BATCH_TIME;
1586 sbi->s_max_batch_time = arg;
1587 } else if (token == Opt_min_batch_time) {
1588 sbi->s_min_batch_time = arg;
1589 } else if (token == Opt_inode_readahead_blks) {
1590 if (arg > (1 << 30))
1591 return -1;
1592 if (arg && !is_power_of_2(arg)) {
1593 ext4_msg(sb, KERN_ERR,
1594 "EXT4-fs: inode_readahead_blks"
1595 " must be a power of 2");
1596 return -1;
1598 sbi->s_inode_readahead_blks = arg;
1599 } else if (token == Opt_init_itable) {
1600 set_opt(sb, INIT_INODE_TABLE);
1601 if (!args->from)
1602 arg = EXT4_DEF_LI_WAIT_MULT;
1603 sbi->s_li_wait_mult = arg;
1604 } else if (token == Opt_max_dir_size_kb) {
1605 sbi->s_max_dir_size_kb = arg;
1606 } else if (token == Opt_stripe) {
1607 sbi->s_stripe = arg;
1608 } else if (m->flags & MOPT_DATAJ) {
1609 if (is_remount) {
1610 if (!sbi->s_journal)
1611 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1612 else if (test_opt(sb, DATA_FLAGS) !=
1613 m->mount_opt) {
1614 ext4_msg(sb, KERN_ERR,
1615 "Cannot change data mode on remount");
1616 return -1;
1618 } else {
1619 clear_opt(sb, DATA_FLAGS);
1620 sbi->s_mount_opt |= m->mount_opt;
1622 #ifdef CONFIG_QUOTA
1623 } else if (m->flags & MOPT_QFMT) {
1624 if (sb_any_quota_loaded(sb) &&
1625 sbi->s_jquota_fmt != m->mount_opt) {
1626 ext4_msg(sb, KERN_ERR, "Cannot "
1627 "change journaled quota options "
1628 "when quota turned on");
1629 return -1;
1631 sbi->s_jquota_fmt = m->mount_opt;
1632 #endif
1633 } else {
1634 if (!args->from)
1635 arg = 1;
1636 if (m->flags & MOPT_CLEAR)
1637 arg = !arg;
1638 else if (unlikely(!(m->flags & MOPT_SET))) {
1639 ext4_msg(sb, KERN_WARNING,
1640 "buggy handling of option %s", opt);
1641 WARN_ON(1);
1642 return -1;
1644 if (arg != 0)
1645 sbi->s_mount_opt |= m->mount_opt;
1646 else
1647 sbi->s_mount_opt &= ~m->mount_opt;
1649 return 1;
1651 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1652 "or missing value", opt);
1653 return -1;
1656 static int parse_options(char *options, struct super_block *sb,
1657 unsigned long *journal_devnum,
1658 unsigned int *journal_ioprio,
1659 int is_remount)
1661 #ifdef CONFIG_QUOTA
1662 struct ext4_sb_info *sbi = EXT4_SB(sb);
1663 #endif
1664 char *p;
1665 substring_t args[MAX_OPT_ARGS];
1666 int token;
1668 if (!options)
1669 return 1;
1671 while ((p = strsep(&options, ",")) != NULL) {
1672 if (!*p)
1673 continue;
1675 * Initialize args struct so we know whether arg was
1676 * found; some options take optional arguments.
1678 args[0].to = args[0].from = 0;
1679 token = match_token(p, tokens, args);
1680 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1681 journal_ioprio, is_remount) < 0)
1682 return 0;
1684 #ifdef CONFIG_QUOTA
1685 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1686 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1687 clear_opt(sb, USRQUOTA);
1689 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1690 clear_opt(sb, GRPQUOTA);
1692 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1693 ext4_msg(sb, KERN_ERR, "old and new quota "
1694 "format mixing");
1695 return 0;
1698 if (!sbi->s_jquota_fmt) {
1699 ext4_msg(sb, KERN_ERR, "journaled quota format "
1700 "not specified");
1701 return 0;
1703 } else {
1704 if (sbi->s_jquota_fmt) {
1705 ext4_msg(sb, KERN_ERR, "journaled quota format "
1706 "specified with no journaling "
1707 "enabled");
1708 return 0;
1711 #endif
1712 return 1;
1715 static inline void ext4_show_quota_options(struct seq_file *seq,
1716 struct super_block *sb)
1718 #if defined(CONFIG_QUOTA)
1719 struct ext4_sb_info *sbi = EXT4_SB(sb);
1721 if (sbi->s_jquota_fmt) {
1722 char *fmtname = "";
1724 switch (sbi->s_jquota_fmt) {
1725 case QFMT_VFS_OLD:
1726 fmtname = "vfsold";
1727 break;
1728 case QFMT_VFS_V0:
1729 fmtname = "vfsv0";
1730 break;
1731 case QFMT_VFS_V1:
1732 fmtname = "vfsv1";
1733 break;
1735 seq_printf(seq, ",jqfmt=%s", fmtname);
1738 if (sbi->s_qf_names[USRQUOTA])
1739 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
1741 if (sbi->s_qf_names[GRPQUOTA])
1742 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
1744 if (test_opt(sb, USRQUOTA))
1745 seq_puts(seq, ",usrquota");
1747 if (test_opt(sb, GRPQUOTA))
1748 seq_puts(seq, ",grpquota");
1749 #endif
1752 static const char *token2str(int token)
1754 static const struct match_token *t;
1756 for (t = tokens; t->token != Opt_err; t++)
1757 if (t->token == token && !strchr(t->pattern, '='))
1758 break;
1759 return t->pattern;
1763 * Show an option if
1764 * - it's set to a non-default value OR
1765 * - if the per-sb default is different from the global default
1767 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1768 int nodefs)
1770 struct ext4_sb_info *sbi = EXT4_SB(sb);
1771 struct ext4_super_block *es = sbi->s_es;
1772 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1773 const struct mount_opts *m;
1774 char sep = nodefs ? '\n' : ',';
1776 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1777 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1779 if (sbi->s_sb_block != 1)
1780 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1782 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1783 int want_set = m->flags & MOPT_SET;
1784 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1785 (m->flags & MOPT_CLEAR_ERR))
1786 continue;
1787 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1788 continue; /* skip if same as the default */
1789 if ((want_set &&
1790 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1791 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1792 continue; /* select Opt_noFoo vs Opt_Foo */
1793 SEQ_OPTS_PRINT("%s", token2str(m->token));
1796 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1797 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1798 SEQ_OPTS_PRINT("resuid=%u",
1799 from_kuid_munged(&init_user_ns, sbi->s_resuid));
1800 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1801 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1802 SEQ_OPTS_PRINT("resgid=%u",
1803 from_kgid_munged(&init_user_ns, sbi->s_resgid));
1804 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1805 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1806 SEQ_OPTS_PUTS("errors=remount-ro");
1807 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1808 SEQ_OPTS_PUTS("errors=continue");
1809 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1810 SEQ_OPTS_PUTS("errors=panic");
1811 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1812 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1813 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1814 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1815 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1816 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1817 if (sb->s_flags & MS_I_VERSION)
1818 SEQ_OPTS_PUTS("i_version");
1819 if (nodefs || sbi->s_stripe)
1820 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1821 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
1822 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1823 SEQ_OPTS_PUTS("data=journal");
1824 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1825 SEQ_OPTS_PUTS("data=ordered");
1826 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1827 SEQ_OPTS_PUTS("data=writeback");
1829 if (nodefs ||
1830 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1831 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
1832 sbi->s_inode_readahead_blks);
1834 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
1835 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
1836 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
1837 if (nodefs || sbi->s_max_dir_size_kb)
1838 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
1840 ext4_show_quota_options(seq, sb);
1841 return 0;
1844 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
1846 return _ext4_show_options(seq, root->d_sb, 0);
1849 static int options_seq_show(struct seq_file *seq, void *offset)
1851 struct super_block *sb = seq->private;
1852 int rc;
1854 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
1855 rc = _ext4_show_options(seq, sb, 1);
1856 seq_puts(seq, "\n");
1857 return rc;
1860 static int options_open_fs(struct inode *inode, struct file *file)
1862 return single_open(file, options_seq_show, PDE(inode)->data);
1865 static const struct file_operations ext4_seq_options_fops = {
1866 .owner = THIS_MODULE,
1867 .open = options_open_fs,
1868 .read = seq_read,
1869 .llseek = seq_lseek,
1870 .release = single_release,
1873 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1874 int read_only)
1876 struct ext4_sb_info *sbi = EXT4_SB(sb);
1877 int res = 0;
1879 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1880 ext4_msg(sb, KERN_ERR, "revision level too high, "
1881 "forcing read-only mode");
1882 res = MS_RDONLY;
1884 if (read_only)
1885 goto done;
1886 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1887 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1888 "running e2fsck is recommended");
1889 else if ((sbi->s_mount_state & EXT4_ERROR_FS))
1890 ext4_msg(sb, KERN_WARNING,
1891 "warning: mounting fs with errors, "
1892 "running e2fsck is recommended");
1893 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1894 le16_to_cpu(es->s_mnt_count) >=
1895 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1896 ext4_msg(sb, KERN_WARNING,
1897 "warning: maximal mount count reached, "
1898 "running e2fsck is recommended");
1899 else if (le32_to_cpu(es->s_checkinterval) &&
1900 (le32_to_cpu(es->s_lastcheck) +
1901 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1902 ext4_msg(sb, KERN_WARNING,
1903 "warning: checktime reached, "
1904 "running e2fsck is recommended");
1905 if (!sbi->s_journal)
1906 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1907 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1908 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1909 le16_add_cpu(&es->s_mnt_count, 1);
1910 es->s_mtime = cpu_to_le32(get_seconds());
1911 ext4_update_dynamic_rev(sb);
1912 if (sbi->s_journal)
1913 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1915 ext4_commit_super(sb, 1);
1916 done:
1917 if (test_opt(sb, DEBUG))
1918 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1919 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1920 sb->s_blocksize,
1921 sbi->s_groups_count,
1922 EXT4_BLOCKS_PER_GROUP(sb),
1923 EXT4_INODES_PER_GROUP(sb),
1924 sbi->s_mount_opt, sbi->s_mount_opt2);
1926 cleancache_init_fs(sb);
1927 return res;
1930 static int ext4_fill_flex_info(struct super_block *sb)
1932 struct ext4_sb_info *sbi = EXT4_SB(sb);
1933 struct ext4_group_desc *gdp = NULL;
1934 ext4_group_t flex_group_count;
1935 ext4_group_t flex_group;
1936 unsigned int groups_per_flex = 0;
1937 size_t size;
1938 int i;
1940 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1941 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
1942 sbi->s_log_groups_per_flex = 0;
1943 return 1;
1945 groups_per_flex = 1 << sbi->s_log_groups_per_flex;
1947 /* We allocate both existing and potentially added groups */
1948 flex_group_count = ((sbi->s_groups_count + groups_per_flex - 1) +
1949 ((le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) + 1) <<
1950 EXT4_DESC_PER_BLOCK_BITS(sb))) / groups_per_flex;
1951 size = flex_group_count * sizeof(struct flex_groups);
1952 sbi->s_flex_groups = ext4_kvzalloc(size, GFP_KERNEL);
1953 if (sbi->s_flex_groups == NULL) {
1954 ext4_msg(sb, KERN_ERR, "not enough memory for %u flex groups",
1955 flex_group_count);
1956 goto failed;
1959 for (i = 0; i < sbi->s_groups_count; i++) {
1960 gdp = ext4_get_group_desc(sb, i, NULL);
1962 flex_group = ext4_flex_group(sbi, i);
1963 atomic_add(ext4_free_inodes_count(sb, gdp),
1964 &sbi->s_flex_groups[flex_group].free_inodes);
1965 atomic_add(ext4_free_group_clusters(sb, gdp),
1966 &sbi->s_flex_groups[flex_group].free_clusters);
1967 atomic_add(ext4_used_dirs_count(sb, gdp),
1968 &sbi->s_flex_groups[flex_group].used_dirs);
1971 return 1;
1972 failed:
1973 return 0;
1976 static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
1977 struct ext4_group_desc *gdp)
1979 int offset;
1980 __u16 crc = 0;
1981 __le32 le_group = cpu_to_le32(block_group);
1983 if ((sbi->s_es->s_feature_ro_compat &
1984 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))) {
1985 /* Use new metadata_csum algorithm */
1986 __u16 old_csum;
1987 __u32 csum32;
1989 old_csum = gdp->bg_checksum;
1990 gdp->bg_checksum = 0;
1991 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
1992 sizeof(le_group));
1993 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp,
1994 sbi->s_desc_size);
1995 gdp->bg_checksum = old_csum;
1997 crc = csum32 & 0xFFFF;
1998 goto out;
2001 /* old crc16 code */
2002 offset = offsetof(struct ext4_group_desc, bg_checksum);
2004 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2005 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2006 crc = crc16(crc, (__u8 *)gdp, offset);
2007 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2008 /* for checksum of struct ext4_group_desc do the rest...*/
2009 if ((sbi->s_es->s_feature_incompat &
2010 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
2011 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2012 crc = crc16(crc, (__u8 *)gdp + offset,
2013 le16_to_cpu(sbi->s_es->s_desc_size) -
2014 offset);
2016 out:
2017 return cpu_to_le16(crc);
2020 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2021 struct ext4_group_desc *gdp)
2023 if (ext4_has_group_desc_csum(sb) &&
2024 (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb),
2025 block_group, gdp)))
2026 return 0;
2028 return 1;
2031 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2032 struct ext4_group_desc *gdp)
2034 if (!ext4_has_group_desc_csum(sb))
2035 return;
2036 gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp);
2039 /* Called at mount-time, super-block is locked */
2040 static int ext4_check_descriptors(struct super_block *sb,
2041 ext4_group_t *first_not_zeroed)
2043 struct ext4_sb_info *sbi = EXT4_SB(sb);
2044 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2045 ext4_fsblk_t last_block;
2046 ext4_fsblk_t block_bitmap;
2047 ext4_fsblk_t inode_bitmap;
2048 ext4_fsblk_t inode_table;
2049 int flexbg_flag = 0;
2050 ext4_group_t i, grp = sbi->s_groups_count;
2052 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2053 flexbg_flag = 1;
2055 ext4_debug("Checking group descriptors");
2057 for (i = 0; i < sbi->s_groups_count; i++) {
2058 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2060 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2061 last_block = ext4_blocks_count(sbi->s_es) - 1;
2062 else
2063 last_block = first_block +
2064 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2066 if ((grp == sbi->s_groups_count) &&
2067 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2068 grp = i;
2070 block_bitmap = ext4_block_bitmap(sb, gdp);
2071 if (block_bitmap < first_block || block_bitmap > last_block) {
2072 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2073 "Block bitmap for group %u not in group "
2074 "(block %llu)!", i, block_bitmap);
2075 return 0;
2077 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2078 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2079 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2080 "Inode bitmap for group %u not in group "
2081 "(block %llu)!", i, inode_bitmap);
2082 return 0;
2084 inode_table = ext4_inode_table(sb, gdp);
2085 if (inode_table < first_block ||
2086 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2087 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2088 "Inode table for group %u not in group "
2089 "(block %llu)!", i, inode_table);
2090 return 0;
2092 ext4_lock_group(sb, i);
2093 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2094 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2095 "Checksum for group %u failed (%u!=%u)",
2096 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2097 gdp)), le16_to_cpu(gdp->bg_checksum));
2098 if (!(sb->s_flags & MS_RDONLY)) {
2099 ext4_unlock_group(sb, i);
2100 return 0;
2103 ext4_unlock_group(sb, i);
2104 if (!flexbg_flag)
2105 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2107 if (NULL != first_not_zeroed)
2108 *first_not_zeroed = grp;
2110 ext4_free_blocks_count_set(sbi->s_es,
2111 EXT4_C2B(sbi, ext4_count_free_clusters(sb)));
2112 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb));
2113 return 1;
2116 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2117 * the superblock) which were deleted from all directories, but held open by
2118 * a process at the time of a crash. We walk the list and try to delete these
2119 * inodes at recovery time (only with a read-write filesystem).
2121 * In order to keep the orphan inode chain consistent during traversal (in
2122 * case of crash during recovery), we link each inode into the superblock
2123 * orphan list_head and handle it the same way as an inode deletion during
2124 * normal operation (which journals the operations for us).
2126 * We only do an iget() and an iput() on each inode, which is very safe if we
2127 * accidentally point at an in-use or already deleted inode. The worst that
2128 * can happen in this case is that we get a "bit already cleared" message from
2129 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2130 * e2fsck was run on this filesystem, and it must have already done the orphan
2131 * inode cleanup for us, so we can safely abort without any further action.
2133 static void ext4_orphan_cleanup(struct super_block *sb,
2134 struct ext4_super_block *es)
2136 unsigned int s_flags = sb->s_flags;
2137 int nr_orphans = 0, nr_truncates = 0;
2138 #ifdef CONFIG_QUOTA
2139 int i;
2140 #endif
2141 if (!es->s_last_orphan) {
2142 jbd_debug(4, "no orphan inodes to clean up\n");
2143 return;
2146 if (bdev_read_only(sb->s_bdev)) {
2147 ext4_msg(sb, KERN_ERR, "write access "
2148 "unavailable, skipping orphan cleanup");
2149 return;
2152 /* Check if feature set would not allow a r/w mount */
2153 if (!ext4_feature_set_ok(sb, 0)) {
2154 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2155 "unknown ROCOMPAT features");
2156 return;
2159 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2160 if (es->s_last_orphan)
2161 jbd_debug(1, "Errors on filesystem, "
2162 "clearing orphan list.\n");
2163 es->s_last_orphan = 0;
2164 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2165 return;
2168 if (s_flags & MS_RDONLY) {
2169 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2170 sb->s_flags &= ~MS_RDONLY;
2172 #ifdef CONFIG_QUOTA
2173 /* Needed for iput() to work correctly and not trash data */
2174 sb->s_flags |= MS_ACTIVE;
2175 /* Turn on quotas so that they are updated correctly */
2176 for (i = 0; i < MAXQUOTAS; i++) {
2177 if (EXT4_SB(sb)->s_qf_names[i]) {
2178 int ret = ext4_quota_on_mount(sb, i);
2179 if (ret < 0)
2180 ext4_msg(sb, KERN_ERR,
2181 "Cannot turn on journaled "
2182 "quota: error %d", ret);
2185 #endif
2187 while (es->s_last_orphan) {
2188 struct inode *inode;
2190 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2191 if (IS_ERR(inode)) {
2192 es->s_last_orphan = 0;
2193 break;
2196 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2197 dquot_initialize(inode);
2198 if (inode->i_nlink) {
2199 ext4_msg(sb, KERN_DEBUG,
2200 "%s: truncating inode %lu to %lld bytes",
2201 __func__, inode->i_ino, inode->i_size);
2202 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2203 inode->i_ino, inode->i_size);
2204 ext4_truncate(inode);
2205 nr_truncates++;
2206 } else {
2207 ext4_msg(sb, KERN_DEBUG,
2208 "%s: deleting unreferenced inode %lu",
2209 __func__, inode->i_ino);
2210 jbd_debug(2, "deleting unreferenced inode %lu\n",
2211 inode->i_ino);
2212 nr_orphans++;
2214 iput(inode); /* The delete magic happens here! */
2217 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2219 if (nr_orphans)
2220 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2221 PLURAL(nr_orphans));
2222 if (nr_truncates)
2223 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2224 PLURAL(nr_truncates));
2225 #ifdef CONFIG_QUOTA
2226 /* Turn quotas off */
2227 for (i = 0; i < MAXQUOTAS; i++) {
2228 if (sb_dqopt(sb)->files[i])
2229 dquot_quota_off(sb, i);
2231 #endif
2232 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2236 * Maximal extent format file size.
2237 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2238 * extent format containers, within a sector_t, and within i_blocks
2239 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2240 * so that won't be a limiting factor.
2242 * However there is other limiting factor. We do store extents in the form
2243 * of starting block and length, hence the resulting length of the extent
2244 * covering maximum file size must fit into on-disk format containers as
2245 * well. Given that length is always by 1 unit bigger than max unit (because
2246 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2248 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2250 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2252 loff_t res;
2253 loff_t upper_limit = MAX_LFS_FILESIZE;
2255 /* small i_blocks in vfs inode? */
2256 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2258 * CONFIG_LBDAF is not enabled implies the inode
2259 * i_block represent total blocks in 512 bytes
2260 * 32 == size of vfs inode i_blocks * 8
2262 upper_limit = (1LL << 32) - 1;
2264 /* total blocks in file system block size */
2265 upper_limit >>= (blkbits - 9);
2266 upper_limit <<= blkbits;
2270 * 32-bit extent-start container, ee_block. We lower the maxbytes
2271 * by one fs block, so ee_len can cover the extent of maximum file
2272 * size
2274 res = (1LL << 32) - 1;
2275 res <<= blkbits;
2277 /* Sanity check against vm- & vfs- imposed limits */
2278 if (res > upper_limit)
2279 res = upper_limit;
2281 return res;
2285 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2286 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2287 * We need to be 1 filesystem block less than the 2^48 sector limit.
2289 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2291 loff_t res = EXT4_NDIR_BLOCKS;
2292 int meta_blocks;
2293 loff_t upper_limit;
2294 /* This is calculated to be the largest file size for a dense, block
2295 * mapped file such that the file's total number of 512-byte sectors,
2296 * including data and all indirect blocks, does not exceed (2^48 - 1).
2298 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2299 * number of 512-byte sectors of the file.
2302 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2304 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2305 * the inode i_block field represents total file blocks in
2306 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2308 upper_limit = (1LL << 32) - 1;
2310 /* total blocks in file system block size */
2311 upper_limit >>= (bits - 9);
2313 } else {
2315 * We use 48 bit ext4_inode i_blocks
2316 * With EXT4_HUGE_FILE_FL set the i_blocks
2317 * represent total number of blocks in
2318 * file system block size
2320 upper_limit = (1LL << 48) - 1;
2324 /* indirect blocks */
2325 meta_blocks = 1;
2326 /* double indirect blocks */
2327 meta_blocks += 1 + (1LL << (bits-2));
2328 /* tripple indirect blocks */
2329 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2331 upper_limit -= meta_blocks;
2332 upper_limit <<= bits;
2334 res += 1LL << (bits-2);
2335 res += 1LL << (2*(bits-2));
2336 res += 1LL << (3*(bits-2));
2337 res <<= bits;
2338 if (res > upper_limit)
2339 res = upper_limit;
2341 if (res > MAX_LFS_FILESIZE)
2342 res = MAX_LFS_FILESIZE;
2344 return res;
2347 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2348 ext4_fsblk_t logical_sb_block, int nr)
2350 struct ext4_sb_info *sbi = EXT4_SB(sb);
2351 ext4_group_t bg, first_meta_bg;
2352 int has_super = 0;
2354 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2356 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2357 nr < first_meta_bg)
2358 return logical_sb_block + nr + 1;
2359 bg = sbi->s_desc_per_block * nr;
2360 if (ext4_bg_has_super(sb, bg))
2361 has_super = 1;
2363 return (has_super + ext4_group_first_block_no(sb, bg));
2367 * ext4_get_stripe_size: Get the stripe size.
2368 * @sbi: In memory super block info
2370 * If we have specified it via mount option, then
2371 * use the mount option value. If the value specified at mount time is
2372 * greater than the blocks per group use the super block value.
2373 * If the super block value is greater than blocks per group return 0.
2374 * Allocator needs it be less than blocks per group.
2377 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2379 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2380 unsigned long stripe_width =
2381 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2382 int ret;
2384 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2385 ret = sbi->s_stripe;
2386 else if (stripe_width <= sbi->s_blocks_per_group)
2387 ret = stripe_width;
2388 else if (stride <= sbi->s_blocks_per_group)
2389 ret = stride;
2390 else
2391 ret = 0;
2394 * If the stripe width is 1, this makes no sense and
2395 * we set it to 0 to turn off stripe handling code.
2397 if (ret <= 1)
2398 ret = 0;
2400 return ret;
2403 /* sysfs supprt */
2405 struct ext4_attr {
2406 struct attribute attr;
2407 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2408 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2409 const char *, size_t);
2410 int offset;
2413 static int parse_strtoul(const char *buf,
2414 unsigned long max, unsigned long *value)
2416 char *endp;
2418 *value = simple_strtoul(skip_spaces(buf), &endp, 0);
2419 endp = skip_spaces(endp);
2420 if (*endp || *value > max)
2421 return -EINVAL;
2423 return 0;
2426 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2427 struct ext4_sb_info *sbi,
2428 char *buf)
2430 return snprintf(buf, PAGE_SIZE, "%llu\n",
2431 (s64) EXT4_C2B(sbi,
2432 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
2435 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2436 struct ext4_sb_info *sbi, char *buf)
2438 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2440 if (!sb->s_bdev->bd_part)
2441 return snprintf(buf, PAGE_SIZE, "0\n");
2442 return snprintf(buf, PAGE_SIZE, "%lu\n",
2443 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2444 sbi->s_sectors_written_start) >> 1);
2447 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2448 struct ext4_sb_info *sbi, char *buf)
2450 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2452 if (!sb->s_bdev->bd_part)
2453 return snprintf(buf, PAGE_SIZE, "0\n");
2454 return snprintf(buf, PAGE_SIZE, "%llu\n",
2455 (unsigned long long)(sbi->s_kbytes_written +
2456 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2457 EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2460 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2461 struct ext4_sb_info *sbi,
2462 const char *buf, size_t count)
2464 unsigned long t;
2466 if (parse_strtoul(buf, 0x40000000, &t))
2467 return -EINVAL;
2469 if (t && !is_power_of_2(t))
2470 return -EINVAL;
2472 sbi->s_inode_readahead_blks = t;
2473 return count;
2476 static ssize_t sbi_ui_show(struct ext4_attr *a,
2477 struct ext4_sb_info *sbi, char *buf)
2479 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2481 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2484 static ssize_t sbi_ui_store(struct ext4_attr *a,
2485 struct ext4_sb_info *sbi,
2486 const char *buf, size_t count)
2488 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2489 unsigned long t;
2491 if (parse_strtoul(buf, 0xffffffff, &t))
2492 return -EINVAL;
2493 *ui = t;
2494 return count;
2497 static ssize_t trigger_test_error(struct ext4_attr *a,
2498 struct ext4_sb_info *sbi,
2499 const char *buf, size_t count)
2501 int len = count;
2503 if (!capable(CAP_SYS_ADMIN))
2504 return -EPERM;
2506 if (len && buf[len-1] == '\n')
2507 len--;
2509 if (len)
2510 ext4_error(sbi->s_sb, "%.*s", len, buf);
2511 return count;
2514 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2515 static struct ext4_attr ext4_attr_##_name = { \
2516 .attr = {.name = __stringify(_name), .mode = _mode }, \
2517 .show = _show, \
2518 .store = _store, \
2519 .offset = offsetof(struct ext4_sb_info, _elname), \
2521 #define EXT4_ATTR(name, mode, show, store) \
2522 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2524 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2525 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2526 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2527 #define EXT4_RW_ATTR_SBI_UI(name, elname) \
2528 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2529 #define ATTR_LIST(name) &ext4_attr_##name.attr
2531 EXT4_RO_ATTR(delayed_allocation_blocks);
2532 EXT4_RO_ATTR(session_write_kbytes);
2533 EXT4_RO_ATTR(lifetime_write_kbytes);
2534 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2535 inode_readahead_blks_store, s_inode_readahead_blks);
2536 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2537 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2538 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2539 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2540 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2541 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2542 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2543 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump);
2544 EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error);
2546 static struct attribute *ext4_attrs[] = {
2547 ATTR_LIST(delayed_allocation_blocks),
2548 ATTR_LIST(session_write_kbytes),
2549 ATTR_LIST(lifetime_write_kbytes),
2550 ATTR_LIST(inode_readahead_blks),
2551 ATTR_LIST(inode_goal),
2552 ATTR_LIST(mb_stats),
2553 ATTR_LIST(mb_max_to_scan),
2554 ATTR_LIST(mb_min_to_scan),
2555 ATTR_LIST(mb_order2_req),
2556 ATTR_LIST(mb_stream_req),
2557 ATTR_LIST(mb_group_prealloc),
2558 ATTR_LIST(max_writeback_mb_bump),
2559 ATTR_LIST(trigger_fs_error),
2560 NULL,
2563 /* Features this copy of ext4 supports */
2564 EXT4_INFO_ATTR(lazy_itable_init);
2565 EXT4_INFO_ATTR(batched_discard);
2567 static struct attribute *ext4_feat_attrs[] = {
2568 ATTR_LIST(lazy_itable_init),
2569 ATTR_LIST(batched_discard),
2570 NULL,
2573 static ssize_t ext4_attr_show(struct kobject *kobj,
2574 struct attribute *attr, char *buf)
2576 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2577 s_kobj);
2578 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2580 return a->show ? a->show(a, sbi, buf) : 0;
2583 static ssize_t ext4_attr_store(struct kobject *kobj,
2584 struct attribute *attr,
2585 const char *buf, size_t len)
2587 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2588 s_kobj);
2589 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2591 return a->store ? a->store(a, sbi, buf, len) : 0;
2594 static void ext4_sb_release(struct kobject *kobj)
2596 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2597 s_kobj);
2598 complete(&sbi->s_kobj_unregister);
2601 static const struct sysfs_ops ext4_attr_ops = {
2602 .show = ext4_attr_show,
2603 .store = ext4_attr_store,
2606 static struct kobj_type ext4_ktype = {
2607 .default_attrs = ext4_attrs,
2608 .sysfs_ops = &ext4_attr_ops,
2609 .release = ext4_sb_release,
2612 static void ext4_feat_release(struct kobject *kobj)
2614 complete(&ext4_feat->f_kobj_unregister);
2617 static struct kobj_type ext4_feat_ktype = {
2618 .default_attrs = ext4_feat_attrs,
2619 .sysfs_ops = &ext4_attr_ops,
2620 .release = ext4_feat_release,
2624 * Check whether this filesystem can be mounted based on
2625 * the features present and the RDONLY/RDWR mount requested.
2626 * Returns 1 if this filesystem can be mounted as requested,
2627 * 0 if it cannot be.
2629 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2631 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2632 ext4_msg(sb, KERN_ERR,
2633 "Couldn't mount because of "
2634 "unsupported optional features (%x)",
2635 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2636 ~EXT4_FEATURE_INCOMPAT_SUPP));
2637 return 0;
2640 if (readonly)
2641 return 1;
2643 /* Check that feature set is OK for a read-write mount */
2644 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2645 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2646 "unsupported optional features (%x)",
2647 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2648 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2649 return 0;
2652 * Large file size enabled file system can only be mounted
2653 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2655 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2656 if (sizeof(blkcnt_t) < sizeof(u64)) {
2657 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2658 "cannot be mounted RDWR without "
2659 "CONFIG_LBDAF");
2660 return 0;
2663 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) &&
2664 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2665 ext4_msg(sb, KERN_ERR,
2666 "Can't support bigalloc feature without "
2667 "extents feature\n");
2668 return 0;
2671 #ifndef CONFIG_QUOTA
2672 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
2673 !readonly) {
2674 ext4_msg(sb, KERN_ERR,
2675 "Filesystem with quota feature cannot be mounted RDWR "
2676 "without CONFIG_QUOTA");
2677 return 0;
2679 #endif /* CONFIG_QUOTA */
2680 return 1;
2684 * This function is called once a day if we have errors logged
2685 * on the file system
2687 static void print_daily_error_info(unsigned long arg)
2689 struct super_block *sb = (struct super_block *) arg;
2690 struct ext4_sb_info *sbi;
2691 struct ext4_super_block *es;
2693 sbi = EXT4_SB(sb);
2694 es = sbi->s_es;
2696 if (es->s_error_count)
2697 ext4_msg(sb, KERN_NOTICE, "error count: %u",
2698 le32_to_cpu(es->s_error_count));
2699 if (es->s_first_error_time) {
2700 printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d",
2701 sb->s_id, le32_to_cpu(es->s_first_error_time),
2702 (int) sizeof(es->s_first_error_func),
2703 es->s_first_error_func,
2704 le32_to_cpu(es->s_first_error_line));
2705 if (es->s_first_error_ino)
2706 printk(": inode %u",
2707 le32_to_cpu(es->s_first_error_ino));
2708 if (es->s_first_error_block)
2709 printk(": block %llu", (unsigned long long)
2710 le64_to_cpu(es->s_first_error_block));
2711 printk("\n");
2713 if (es->s_last_error_time) {
2714 printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d",
2715 sb->s_id, le32_to_cpu(es->s_last_error_time),
2716 (int) sizeof(es->s_last_error_func),
2717 es->s_last_error_func,
2718 le32_to_cpu(es->s_last_error_line));
2719 if (es->s_last_error_ino)
2720 printk(": inode %u",
2721 le32_to_cpu(es->s_last_error_ino));
2722 if (es->s_last_error_block)
2723 printk(": block %llu", (unsigned long long)
2724 le64_to_cpu(es->s_last_error_block));
2725 printk("\n");
2727 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2730 /* Find next suitable group and run ext4_init_inode_table */
2731 static int ext4_run_li_request(struct ext4_li_request *elr)
2733 struct ext4_group_desc *gdp = NULL;
2734 ext4_group_t group, ngroups;
2735 struct super_block *sb;
2736 unsigned long timeout = 0;
2737 int ret = 0;
2739 sb = elr->lr_super;
2740 ngroups = EXT4_SB(sb)->s_groups_count;
2742 sb_start_write(sb);
2743 for (group = elr->lr_next_group; group < ngroups; group++) {
2744 gdp = ext4_get_group_desc(sb, group, NULL);
2745 if (!gdp) {
2746 ret = 1;
2747 break;
2750 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2751 break;
2754 if (group == ngroups)
2755 ret = 1;
2757 if (!ret) {
2758 timeout = jiffies;
2759 ret = ext4_init_inode_table(sb, group,
2760 elr->lr_timeout ? 0 : 1);
2761 if (elr->lr_timeout == 0) {
2762 timeout = (jiffies - timeout) *
2763 elr->lr_sbi->s_li_wait_mult;
2764 elr->lr_timeout = timeout;
2766 elr->lr_next_sched = jiffies + elr->lr_timeout;
2767 elr->lr_next_group = group + 1;
2769 sb_end_write(sb);
2771 return ret;
2775 * Remove lr_request from the list_request and free the
2776 * request structure. Should be called with li_list_mtx held
2778 static void ext4_remove_li_request(struct ext4_li_request *elr)
2780 struct ext4_sb_info *sbi;
2782 if (!elr)
2783 return;
2785 sbi = elr->lr_sbi;
2787 list_del(&elr->lr_request);
2788 sbi->s_li_request = NULL;
2789 kfree(elr);
2792 static void ext4_unregister_li_request(struct super_block *sb)
2794 mutex_lock(&ext4_li_mtx);
2795 if (!ext4_li_info) {
2796 mutex_unlock(&ext4_li_mtx);
2797 return;
2800 mutex_lock(&ext4_li_info->li_list_mtx);
2801 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2802 mutex_unlock(&ext4_li_info->li_list_mtx);
2803 mutex_unlock(&ext4_li_mtx);
2806 static struct task_struct *ext4_lazyinit_task;
2809 * This is the function where ext4lazyinit thread lives. It walks
2810 * through the request list searching for next scheduled filesystem.
2811 * When such a fs is found, run the lazy initialization request
2812 * (ext4_rn_li_request) and keep track of the time spend in this
2813 * function. Based on that time we compute next schedule time of
2814 * the request. When walking through the list is complete, compute
2815 * next waking time and put itself into sleep.
2817 static int ext4_lazyinit_thread(void *arg)
2819 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2820 struct list_head *pos, *n;
2821 struct ext4_li_request *elr;
2822 unsigned long next_wakeup, cur;
2824 BUG_ON(NULL == eli);
2826 cont_thread:
2827 while (true) {
2828 next_wakeup = MAX_JIFFY_OFFSET;
2830 mutex_lock(&eli->li_list_mtx);
2831 if (list_empty(&eli->li_request_list)) {
2832 mutex_unlock(&eli->li_list_mtx);
2833 goto exit_thread;
2836 list_for_each_safe(pos, n, &eli->li_request_list) {
2837 elr = list_entry(pos, struct ext4_li_request,
2838 lr_request);
2840 if (time_after_eq(jiffies, elr->lr_next_sched)) {
2841 if (ext4_run_li_request(elr) != 0) {
2842 /* error, remove the lazy_init job */
2843 ext4_remove_li_request(elr);
2844 continue;
2848 if (time_before(elr->lr_next_sched, next_wakeup))
2849 next_wakeup = elr->lr_next_sched;
2851 mutex_unlock(&eli->li_list_mtx);
2853 try_to_freeze();
2855 cur = jiffies;
2856 if ((time_after_eq(cur, next_wakeup)) ||
2857 (MAX_JIFFY_OFFSET == next_wakeup)) {
2858 cond_resched();
2859 continue;
2862 schedule_timeout_interruptible(next_wakeup - cur);
2864 if (kthread_should_stop()) {
2865 ext4_clear_request_list();
2866 goto exit_thread;
2870 exit_thread:
2872 * It looks like the request list is empty, but we need
2873 * to check it under the li_list_mtx lock, to prevent any
2874 * additions into it, and of course we should lock ext4_li_mtx
2875 * to atomically free the list and ext4_li_info, because at
2876 * this point another ext4 filesystem could be registering
2877 * new one.
2879 mutex_lock(&ext4_li_mtx);
2880 mutex_lock(&eli->li_list_mtx);
2881 if (!list_empty(&eli->li_request_list)) {
2882 mutex_unlock(&eli->li_list_mtx);
2883 mutex_unlock(&ext4_li_mtx);
2884 goto cont_thread;
2886 mutex_unlock(&eli->li_list_mtx);
2887 kfree(ext4_li_info);
2888 ext4_li_info = NULL;
2889 mutex_unlock(&ext4_li_mtx);
2891 return 0;
2894 static void ext4_clear_request_list(void)
2896 struct list_head *pos, *n;
2897 struct ext4_li_request *elr;
2899 mutex_lock(&ext4_li_info->li_list_mtx);
2900 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2901 elr = list_entry(pos, struct ext4_li_request,
2902 lr_request);
2903 ext4_remove_li_request(elr);
2905 mutex_unlock(&ext4_li_info->li_list_mtx);
2908 static int ext4_run_lazyinit_thread(void)
2910 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2911 ext4_li_info, "ext4lazyinit");
2912 if (IS_ERR(ext4_lazyinit_task)) {
2913 int err = PTR_ERR(ext4_lazyinit_task);
2914 ext4_clear_request_list();
2915 kfree(ext4_li_info);
2916 ext4_li_info = NULL;
2917 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
2918 "initialization thread\n",
2919 err);
2920 return err;
2922 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2923 return 0;
2927 * Check whether it make sense to run itable init. thread or not.
2928 * If there is at least one uninitialized inode table, return
2929 * corresponding group number, else the loop goes through all
2930 * groups and return total number of groups.
2932 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2934 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2935 struct ext4_group_desc *gdp = NULL;
2937 for (group = 0; group < ngroups; group++) {
2938 gdp = ext4_get_group_desc(sb, group, NULL);
2939 if (!gdp)
2940 continue;
2942 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2943 break;
2946 return group;
2949 static int ext4_li_info_new(void)
2951 struct ext4_lazy_init *eli = NULL;
2953 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
2954 if (!eli)
2955 return -ENOMEM;
2957 INIT_LIST_HEAD(&eli->li_request_list);
2958 mutex_init(&eli->li_list_mtx);
2960 eli->li_state |= EXT4_LAZYINIT_QUIT;
2962 ext4_li_info = eli;
2964 return 0;
2967 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
2968 ext4_group_t start)
2970 struct ext4_sb_info *sbi = EXT4_SB(sb);
2971 struct ext4_li_request *elr;
2972 unsigned long rnd;
2974 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
2975 if (!elr)
2976 return NULL;
2978 elr->lr_super = sb;
2979 elr->lr_sbi = sbi;
2980 elr->lr_next_group = start;
2983 * Randomize first schedule time of the request to
2984 * spread the inode table initialization requests
2985 * better.
2987 get_random_bytes(&rnd, sizeof(rnd));
2988 elr->lr_next_sched = jiffies + (unsigned long)rnd %
2989 (EXT4_DEF_LI_MAX_START_DELAY * HZ);
2991 return elr;
2994 static int ext4_register_li_request(struct super_block *sb,
2995 ext4_group_t first_not_zeroed)
2997 struct ext4_sb_info *sbi = EXT4_SB(sb);
2998 struct ext4_li_request *elr;
2999 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3000 int ret = 0;
3002 if (sbi->s_li_request != NULL) {
3004 * Reset timeout so it can be computed again, because
3005 * s_li_wait_mult might have changed.
3007 sbi->s_li_request->lr_timeout = 0;
3008 return 0;
3011 if (first_not_zeroed == ngroups ||
3012 (sb->s_flags & MS_RDONLY) ||
3013 !test_opt(sb, INIT_INODE_TABLE))
3014 return 0;
3016 elr = ext4_li_request_new(sb, first_not_zeroed);
3017 if (!elr)
3018 return -ENOMEM;
3020 mutex_lock(&ext4_li_mtx);
3022 if (NULL == ext4_li_info) {
3023 ret = ext4_li_info_new();
3024 if (ret)
3025 goto out;
3028 mutex_lock(&ext4_li_info->li_list_mtx);
3029 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3030 mutex_unlock(&ext4_li_info->li_list_mtx);
3032 sbi->s_li_request = elr;
3034 * set elr to NULL here since it has been inserted to
3035 * the request_list and the removal and free of it is
3036 * handled by ext4_clear_request_list from now on.
3038 elr = NULL;
3040 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3041 ret = ext4_run_lazyinit_thread();
3042 if (ret)
3043 goto out;
3045 out:
3046 mutex_unlock(&ext4_li_mtx);
3047 if (ret)
3048 kfree(elr);
3049 return ret;
3053 * We do not need to lock anything since this is called on
3054 * module unload.
3056 static void ext4_destroy_lazyinit_thread(void)
3059 * If thread exited earlier
3060 * there's nothing to be done.
3062 if (!ext4_li_info || !ext4_lazyinit_task)
3063 return;
3065 kthread_stop(ext4_lazyinit_task);
3068 static int set_journal_csum_feature_set(struct super_block *sb)
3070 int ret = 1;
3071 int compat, incompat;
3072 struct ext4_sb_info *sbi = EXT4_SB(sb);
3074 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3075 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3076 /* journal checksum v2 */
3077 compat = 0;
3078 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V2;
3079 } else {
3080 /* journal checksum v1 */
3081 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3082 incompat = 0;
3085 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3086 ret = jbd2_journal_set_features(sbi->s_journal,
3087 compat, 0,
3088 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3089 incompat);
3090 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3091 ret = jbd2_journal_set_features(sbi->s_journal,
3092 compat, 0,
3093 incompat);
3094 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3095 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3096 } else {
3097 jbd2_journal_clear_features(sbi->s_journal,
3098 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3099 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3100 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3103 return ret;
3107 * Note: calculating the overhead so we can be compatible with
3108 * historical BSD practice is quite difficult in the face of
3109 * clusters/bigalloc. This is because multiple metadata blocks from
3110 * different block group can end up in the same allocation cluster.
3111 * Calculating the exact overhead in the face of clustered allocation
3112 * requires either O(all block bitmaps) in memory or O(number of block
3113 * groups**2) in time. We will still calculate the superblock for
3114 * older file systems --- and if we come across with a bigalloc file
3115 * system with zero in s_overhead_clusters the estimate will be close to
3116 * correct especially for very large cluster sizes --- but for newer
3117 * file systems, it's better to calculate this figure once at mkfs
3118 * time, and store it in the superblock. If the superblock value is
3119 * present (even for non-bigalloc file systems), we will use it.
3121 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3122 char *buf)
3124 struct ext4_sb_info *sbi = EXT4_SB(sb);
3125 struct ext4_group_desc *gdp;
3126 ext4_fsblk_t first_block, last_block, b;
3127 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3128 int s, j, count = 0;
3130 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC))
3131 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3132 sbi->s_itb_per_group + 2);
3134 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3135 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3136 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3137 for (i = 0; i < ngroups; i++) {
3138 gdp = ext4_get_group_desc(sb, i, NULL);
3139 b = ext4_block_bitmap(sb, gdp);
3140 if (b >= first_block && b <= last_block) {
3141 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3142 count++;
3144 b = ext4_inode_bitmap(sb, gdp);
3145 if (b >= first_block && b <= last_block) {
3146 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3147 count++;
3149 b = ext4_inode_table(sb, gdp);
3150 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3151 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3152 int c = EXT4_B2C(sbi, b - first_block);
3153 ext4_set_bit(c, buf);
3154 count++;
3156 if (i != grp)
3157 continue;
3158 s = 0;
3159 if (ext4_bg_has_super(sb, grp)) {
3160 ext4_set_bit(s++, buf);
3161 count++;
3163 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) {
3164 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3165 count++;
3168 if (!count)
3169 return 0;
3170 return EXT4_CLUSTERS_PER_GROUP(sb) -
3171 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3175 * Compute the overhead and stash it in sbi->s_overhead
3177 int ext4_calculate_overhead(struct super_block *sb)
3179 struct ext4_sb_info *sbi = EXT4_SB(sb);
3180 struct ext4_super_block *es = sbi->s_es;
3181 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3182 ext4_fsblk_t overhead = 0;
3183 char *buf = (char *) get_zeroed_page(GFP_KERNEL);
3185 memset(buf, 0, PAGE_SIZE);
3186 if (!buf)
3187 return -ENOMEM;
3190 * Compute the overhead (FS structures). This is constant
3191 * for a given filesystem unless the number of block groups
3192 * changes so we cache the previous value until it does.
3196 * All of the blocks before first_data_block are overhead
3198 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3201 * Add the overhead found in each block group
3203 for (i = 0; i < ngroups; i++) {
3204 int blks;
3206 blks = count_overhead(sb, i, buf);
3207 overhead += blks;
3208 if (blks)
3209 memset(buf, 0, PAGE_SIZE);
3210 cond_resched();
3212 sbi->s_overhead = overhead;
3213 smp_wmb();
3214 free_page((unsigned long) buf);
3215 return 0;
3218 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3220 char *orig_data = kstrdup(data, GFP_KERNEL);
3221 struct buffer_head *bh;
3222 struct ext4_super_block *es = NULL;
3223 struct ext4_sb_info *sbi;
3224 ext4_fsblk_t block;
3225 ext4_fsblk_t sb_block = get_sb_block(&data);
3226 ext4_fsblk_t logical_sb_block;
3227 unsigned long offset = 0;
3228 unsigned long journal_devnum = 0;
3229 unsigned long def_mount_opts;
3230 struct inode *root;
3231 char *cp;
3232 const char *descr;
3233 int ret = -ENOMEM;
3234 int blocksize, clustersize;
3235 unsigned int db_count;
3236 unsigned int i;
3237 int needs_recovery, has_huge_files, has_bigalloc;
3238 __u64 blocks_count;
3239 int err;
3240 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3241 ext4_group_t first_not_zeroed;
3243 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3244 if (!sbi)
3245 goto out_free_orig;
3247 sbi->s_blockgroup_lock =
3248 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3249 if (!sbi->s_blockgroup_lock) {
3250 kfree(sbi);
3251 goto out_free_orig;
3253 sb->s_fs_info = sbi;
3254 sbi->s_sb = sb;
3255 sbi->s_mount_opt = 0;
3256 sbi->s_resuid = make_kuid(&init_user_ns, EXT4_DEF_RESUID);
3257 sbi->s_resgid = make_kgid(&init_user_ns, EXT4_DEF_RESGID);
3258 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3259 sbi->s_sb_block = sb_block;
3260 if (sb->s_bdev->bd_part)
3261 sbi->s_sectors_written_start =
3262 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3264 /* Cleanup superblock name */
3265 for (cp = sb->s_id; (cp = strchr(cp, '/'));)
3266 *cp = '!';
3268 ret = -EINVAL;
3269 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3270 if (!blocksize) {
3271 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3272 goto out_fail;
3276 * The ext4 superblock will not be buffer aligned for other than 1kB
3277 * block sizes. We need to calculate the offset from buffer start.
3279 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3280 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3281 offset = do_div(logical_sb_block, blocksize);
3282 } else {
3283 logical_sb_block = sb_block;
3286 if (!(bh = sb_bread(sb, logical_sb_block))) {
3287 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3288 goto out_fail;
3291 * Note: s_es must be initialized as soon as possible because
3292 * some ext4 macro-instructions depend on its value
3294 es = (struct ext4_super_block *) (bh->b_data + offset);
3295 sbi->s_es = es;
3296 sb->s_magic = le16_to_cpu(es->s_magic);
3297 if (sb->s_magic != EXT4_SUPER_MAGIC)
3298 goto cantfind_ext4;
3299 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3301 /* Warn if metadata_csum and gdt_csum are both set. */
3302 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3303 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
3304 EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3305 ext4_warning(sb, KERN_INFO "metadata_csum and uninit_bg are "
3306 "redundant flags; please run fsck.");
3308 /* Check for a known checksum algorithm */
3309 if (!ext4_verify_csum_type(sb, es)) {
3310 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3311 "unknown checksum algorithm.");
3312 silent = 1;
3313 goto cantfind_ext4;
3316 /* Load the checksum driver */
3317 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3318 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3319 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3320 if (IS_ERR(sbi->s_chksum_driver)) {
3321 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3322 ret = PTR_ERR(sbi->s_chksum_driver);
3323 sbi->s_chksum_driver = NULL;
3324 goto failed_mount;
3328 /* Check superblock checksum */
3329 if (!ext4_superblock_csum_verify(sb, es)) {
3330 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3331 "invalid superblock checksum. Run e2fsck?");
3332 silent = 1;
3333 goto cantfind_ext4;
3336 /* Precompute checksum seed for all metadata */
3337 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3338 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
3339 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3340 sizeof(es->s_uuid));
3342 /* Set defaults before we parse the mount options */
3343 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3344 set_opt(sb, INIT_INODE_TABLE);
3345 if (def_mount_opts & EXT4_DEFM_DEBUG)
3346 set_opt(sb, DEBUG);
3347 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3348 set_opt(sb, GRPID);
3349 if (def_mount_opts & EXT4_DEFM_UID16)
3350 set_opt(sb, NO_UID32);
3351 /* xattr user namespace & acls are now defaulted on */
3352 #ifdef CONFIG_EXT4_FS_XATTR
3353 set_opt(sb, XATTR_USER);
3354 #endif
3355 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3356 set_opt(sb, POSIX_ACL);
3357 #endif
3358 set_opt(sb, MBLK_IO_SUBMIT);
3359 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3360 set_opt(sb, JOURNAL_DATA);
3361 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3362 set_opt(sb, ORDERED_DATA);
3363 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3364 set_opt(sb, WRITEBACK_DATA);
3366 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3367 set_opt(sb, ERRORS_PANIC);
3368 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3369 set_opt(sb, ERRORS_CONT);
3370 else
3371 set_opt(sb, ERRORS_RO);
3372 if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY)
3373 set_opt(sb, BLOCK_VALIDITY);
3374 if (def_mount_opts & EXT4_DEFM_DISCARD)
3375 set_opt(sb, DISCARD);
3377 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3378 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3379 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3380 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3381 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3383 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3384 set_opt(sb, BARRIER);
3387 * enable delayed allocation by default
3388 * Use -o nodelalloc to turn it off
3390 if (!IS_EXT3_SB(sb) &&
3391 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3392 set_opt(sb, DELALLOC);
3395 * set default s_li_wait_mult for lazyinit, for the case there is
3396 * no mount option specified.
3398 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3400 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3401 &journal_devnum, &journal_ioprio, 0)) {
3402 ext4_msg(sb, KERN_WARNING,
3403 "failed to parse options in superblock: %s",
3404 sbi->s_es->s_mount_opts);
3406 sbi->s_def_mount_opt = sbi->s_mount_opt;
3407 if (!parse_options((char *) data, sb, &journal_devnum,
3408 &journal_ioprio, 0))
3409 goto failed_mount;
3411 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3412 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3413 "with data=journal disables delayed "
3414 "allocation and O_DIRECT support!\n");
3415 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3416 ext4_msg(sb, KERN_ERR, "can't mount with "
3417 "both data=journal and delalloc");
3418 goto failed_mount;
3420 if (test_opt(sb, DIOREAD_NOLOCK)) {
3421 ext4_msg(sb, KERN_ERR, "can't mount with "
3422 "both data=journal and delalloc");
3423 goto failed_mount;
3425 if (test_opt(sb, DELALLOC))
3426 clear_opt(sb, DELALLOC);
3429 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3430 if (test_opt(sb, DIOREAD_NOLOCK)) {
3431 if (blocksize < PAGE_SIZE) {
3432 ext4_msg(sb, KERN_ERR, "can't mount with "
3433 "dioread_nolock if block size != PAGE_SIZE");
3434 goto failed_mount;
3438 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3439 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3441 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3442 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3443 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3444 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3445 ext4_msg(sb, KERN_WARNING,
3446 "feature flags set on rev 0 fs, "
3447 "running e2fsck is recommended");
3449 if (IS_EXT2_SB(sb)) {
3450 if (ext2_feature_set_ok(sb))
3451 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3452 "using the ext4 subsystem");
3453 else {
3454 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3455 "to feature incompatibilities");
3456 goto failed_mount;
3460 if (IS_EXT3_SB(sb)) {
3461 if (ext3_feature_set_ok(sb))
3462 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3463 "using the ext4 subsystem");
3464 else {
3465 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3466 "to feature incompatibilities");
3467 goto failed_mount;
3472 * Check feature flags regardless of the revision level, since we
3473 * previously didn't change the revision level when setting the flags,
3474 * so there is a chance incompat flags are set on a rev 0 filesystem.
3476 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3477 goto failed_mount;
3479 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3480 blocksize > EXT4_MAX_BLOCK_SIZE) {
3481 ext4_msg(sb, KERN_ERR,
3482 "Unsupported filesystem blocksize %d", blocksize);
3483 goto failed_mount;
3486 if (sb->s_blocksize != blocksize) {
3487 /* Validate the filesystem blocksize */
3488 if (!sb_set_blocksize(sb, blocksize)) {
3489 ext4_msg(sb, KERN_ERR, "bad block size %d",
3490 blocksize);
3491 goto failed_mount;
3494 brelse(bh);
3495 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3496 offset = do_div(logical_sb_block, blocksize);
3497 bh = sb_bread(sb, logical_sb_block);
3498 if (!bh) {
3499 ext4_msg(sb, KERN_ERR,
3500 "Can't read superblock on 2nd try");
3501 goto failed_mount;
3503 es = (struct ext4_super_block *)(bh->b_data + offset);
3504 sbi->s_es = es;
3505 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3506 ext4_msg(sb, KERN_ERR,
3507 "Magic mismatch, very weird!");
3508 goto failed_mount;
3512 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3513 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3514 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3515 has_huge_files);
3516 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3518 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3519 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3520 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3521 } else {
3522 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3523 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3524 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3525 (!is_power_of_2(sbi->s_inode_size)) ||
3526 (sbi->s_inode_size > blocksize)) {
3527 ext4_msg(sb, KERN_ERR,
3528 "unsupported inode size: %d",
3529 sbi->s_inode_size);
3530 goto failed_mount;
3532 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3533 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3536 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3537 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3538 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3539 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3540 !is_power_of_2(sbi->s_desc_size)) {
3541 ext4_msg(sb, KERN_ERR,
3542 "unsupported descriptor size %lu",
3543 sbi->s_desc_size);
3544 goto failed_mount;
3546 } else
3547 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3549 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3550 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3551 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3552 goto cantfind_ext4;
3554 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3555 if (sbi->s_inodes_per_block == 0)
3556 goto cantfind_ext4;
3557 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3558 sbi->s_inodes_per_block;
3559 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3560 sbi->s_sbh = bh;
3561 sbi->s_mount_state = le16_to_cpu(es->s_state);
3562 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3563 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3565 for (i = 0; i < 4; i++)
3566 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3567 sbi->s_def_hash_version = es->s_def_hash_version;
3568 i = le32_to_cpu(es->s_flags);
3569 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3570 sbi->s_hash_unsigned = 3;
3571 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3572 #ifdef __CHAR_UNSIGNED__
3573 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3574 sbi->s_hash_unsigned = 3;
3575 #else
3576 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3577 #endif
3580 /* Handle clustersize */
3581 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3582 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3583 EXT4_FEATURE_RO_COMPAT_BIGALLOC);
3584 if (has_bigalloc) {
3585 if (clustersize < blocksize) {
3586 ext4_msg(sb, KERN_ERR,
3587 "cluster size (%d) smaller than "
3588 "block size (%d)", clustersize, blocksize);
3589 goto failed_mount;
3591 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3592 le32_to_cpu(es->s_log_block_size);
3593 sbi->s_clusters_per_group =
3594 le32_to_cpu(es->s_clusters_per_group);
3595 if (sbi->s_clusters_per_group > blocksize * 8) {
3596 ext4_msg(sb, KERN_ERR,
3597 "#clusters per group too big: %lu",
3598 sbi->s_clusters_per_group);
3599 goto failed_mount;
3601 if (sbi->s_blocks_per_group !=
3602 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3603 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3604 "clusters per group (%lu) inconsistent",
3605 sbi->s_blocks_per_group,
3606 sbi->s_clusters_per_group);
3607 goto failed_mount;
3609 } else {
3610 if (clustersize != blocksize) {
3611 ext4_warning(sb, "fragment/cluster size (%d) != "
3612 "block size (%d)", clustersize,
3613 blocksize);
3614 clustersize = blocksize;
3616 if (sbi->s_blocks_per_group > blocksize * 8) {
3617 ext4_msg(sb, KERN_ERR,
3618 "#blocks per group too big: %lu",
3619 sbi->s_blocks_per_group);
3620 goto failed_mount;
3622 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3623 sbi->s_cluster_bits = 0;
3625 sbi->s_cluster_ratio = clustersize / blocksize;
3627 if (sbi->s_inodes_per_group > blocksize * 8) {
3628 ext4_msg(sb, KERN_ERR,
3629 "#inodes per group too big: %lu",
3630 sbi->s_inodes_per_group);
3631 goto failed_mount;
3635 * Test whether we have more sectors than will fit in sector_t,
3636 * and whether the max offset is addressable by the page cache.
3638 err = generic_check_addressable(sb->s_blocksize_bits,
3639 ext4_blocks_count(es));
3640 if (err) {
3641 ext4_msg(sb, KERN_ERR, "filesystem"
3642 " too large to mount safely on this system");
3643 if (sizeof(sector_t) < 8)
3644 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3645 ret = err;
3646 goto failed_mount;
3649 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3650 goto cantfind_ext4;
3652 /* check blocks count against device size */
3653 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3654 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3655 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3656 "exceeds size of device (%llu blocks)",
3657 ext4_blocks_count(es), blocks_count);
3658 goto failed_mount;
3662 * It makes no sense for the first data block to be beyond the end
3663 * of the filesystem.
3665 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3666 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3667 "block %u is beyond end of filesystem (%llu)",
3668 le32_to_cpu(es->s_first_data_block),
3669 ext4_blocks_count(es));
3670 goto failed_mount;
3672 blocks_count = (ext4_blocks_count(es) -
3673 le32_to_cpu(es->s_first_data_block) +
3674 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3675 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3676 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3677 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3678 "(block count %llu, first data block %u, "
3679 "blocks per group %lu)", sbi->s_groups_count,
3680 ext4_blocks_count(es),
3681 le32_to_cpu(es->s_first_data_block),
3682 EXT4_BLOCKS_PER_GROUP(sb));
3683 goto failed_mount;
3685 sbi->s_groups_count = blocks_count;
3686 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3687 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3688 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3689 EXT4_DESC_PER_BLOCK(sb);
3690 sbi->s_group_desc = ext4_kvmalloc(db_count *
3691 sizeof(struct buffer_head *),
3692 GFP_KERNEL);
3693 if (sbi->s_group_desc == NULL) {
3694 ext4_msg(sb, KERN_ERR, "not enough memory");
3695 ret = -ENOMEM;
3696 goto failed_mount;
3699 if (ext4_proc_root)
3700 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3702 if (sbi->s_proc)
3703 proc_create_data("options", S_IRUGO, sbi->s_proc,
3704 &ext4_seq_options_fops, sb);
3706 bgl_lock_init(sbi->s_blockgroup_lock);
3708 for (i = 0; i < db_count; i++) {
3709 block = descriptor_loc(sb, logical_sb_block, i);
3710 sbi->s_group_desc[i] = sb_bread(sb, block);
3711 if (!sbi->s_group_desc[i]) {
3712 ext4_msg(sb, KERN_ERR,
3713 "can't read group descriptor %d", i);
3714 db_count = i;
3715 goto failed_mount2;
3718 if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3719 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3720 goto failed_mount2;
3722 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
3723 if (!ext4_fill_flex_info(sb)) {
3724 ext4_msg(sb, KERN_ERR,
3725 "unable to initialize "
3726 "flex_bg meta info!");
3727 goto failed_mount2;
3730 sbi->s_gdb_count = db_count;
3731 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3732 spin_lock_init(&sbi->s_next_gen_lock);
3734 init_timer(&sbi->s_err_report);
3735 sbi->s_err_report.function = print_daily_error_info;
3736 sbi->s_err_report.data = (unsigned long) sb;
3738 err = percpu_counter_init(&sbi->s_freeclusters_counter,
3739 ext4_count_free_clusters(sb));
3740 if (!err) {
3741 err = percpu_counter_init(&sbi->s_freeinodes_counter,
3742 ext4_count_free_inodes(sb));
3744 if (!err) {
3745 err = percpu_counter_init(&sbi->s_dirs_counter,
3746 ext4_count_dirs(sb));
3748 if (!err) {
3749 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0);
3751 if (err) {
3752 ext4_msg(sb, KERN_ERR, "insufficient memory");
3753 ret = err;
3754 goto failed_mount3;
3757 sbi->s_stripe = ext4_get_stripe_size(sbi);
3758 sbi->s_max_writeback_mb_bump = 128;
3761 * set up enough so that it can read an inode
3763 if (!test_opt(sb, NOLOAD) &&
3764 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
3765 sb->s_op = &ext4_sops;
3766 else
3767 sb->s_op = &ext4_nojournal_sops;
3768 sb->s_export_op = &ext4_export_ops;
3769 sb->s_xattr = ext4_xattr_handlers;
3770 #ifdef CONFIG_QUOTA
3771 sb->s_qcop = &ext4_qctl_operations;
3772 sb->dq_op = &ext4_quota_operations;
3774 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) {
3775 /* Use qctl operations for hidden quota files. */
3776 sb->s_qcop = &ext4_qctl_sysfile_operations;
3778 #endif
3779 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3781 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3782 mutex_init(&sbi->s_orphan_lock);
3783 sbi->s_resize_flags = 0;
3785 sb->s_root = NULL;
3787 needs_recovery = (es->s_last_orphan != 0 ||
3788 EXT4_HAS_INCOMPAT_FEATURE(sb,
3789 EXT4_FEATURE_INCOMPAT_RECOVER));
3791 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) &&
3792 !(sb->s_flags & MS_RDONLY))
3793 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3794 goto failed_mount3;
3797 * The first inode we look at is the journal inode. Don't try
3798 * root first: it may be modified in the journal!
3800 if (!test_opt(sb, NOLOAD) &&
3801 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
3802 if (ext4_load_journal(sb, es, journal_devnum))
3803 goto failed_mount3;
3804 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3805 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3806 ext4_msg(sb, KERN_ERR, "required journal recovery "
3807 "suppressed and not mounted read-only");
3808 goto failed_mount_wq;
3809 } else {
3810 clear_opt(sb, DATA_FLAGS);
3811 sbi->s_journal = NULL;
3812 needs_recovery = 0;
3813 goto no_journal;
3816 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) &&
3817 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3818 JBD2_FEATURE_INCOMPAT_64BIT)) {
3819 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3820 goto failed_mount_wq;
3823 if (!set_journal_csum_feature_set(sb)) {
3824 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
3825 "feature set");
3826 goto failed_mount_wq;
3829 /* We have now updated the journal if required, so we can
3830 * validate the data journaling mode. */
3831 switch (test_opt(sb, DATA_FLAGS)) {
3832 case 0:
3833 /* No mode set, assume a default based on the journal
3834 * capabilities: ORDERED_DATA if the journal can
3835 * cope, else JOURNAL_DATA
3837 if (jbd2_journal_check_available_features
3838 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3839 set_opt(sb, ORDERED_DATA);
3840 else
3841 set_opt(sb, JOURNAL_DATA);
3842 break;
3844 case EXT4_MOUNT_ORDERED_DATA:
3845 case EXT4_MOUNT_WRITEBACK_DATA:
3846 if (!jbd2_journal_check_available_features
3847 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
3848 ext4_msg(sb, KERN_ERR, "Journal does not support "
3849 "requested data journaling mode");
3850 goto failed_mount_wq;
3852 default:
3853 break;
3855 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3857 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
3860 * The journal may have updated the bg summary counts, so we
3861 * need to update the global counters.
3863 percpu_counter_set(&sbi->s_freeclusters_counter,
3864 ext4_count_free_clusters(sb));
3865 percpu_counter_set(&sbi->s_freeinodes_counter,
3866 ext4_count_free_inodes(sb));
3867 percpu_counter_set(&sbi->s_dirs_counter,
3868 ext4_count_dirs(sb));
3869 percpu_counter_set(&sbi->s_dirtyclusters_counter, 0);
3871 no_journal:
3873 * Get the # of file system overhead blocks from the
3874 * superblock if present.
3876 if (es->s_overhead_clusters)
3877 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
3878 else {
3879 ret = ext4_calculate_overhead(sb);
3880 if (ret)
3881 goto failed_mount_wq;
3885 * The maximum number of concurrent works can be high and
3886 * concurrency isn't really necessary. Limit it to 1.
3888 EXT4_SB(sb)->dio_unwritten_wq =
3889 alloc_workqueue("ext4-dio-unwritten", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3890 if (!EXT4_SB(sb)->dio_unwritten_wq) {
3891 printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n");
3892 goto failed_mount_wq;
3896 * The jbd2_journal_load will have done any necessary log recovery,
3897 * so we can safely mount the rest of the filesystem now.
3900 root = ext4_iget(sb, EXT4_ROOT_INO);
3901 if (IS_ERR(root)) {
3902 ext4_msg(sb, KERN_ERR, "get root inode failed");
3903 ret = PTR_ERR(root);
3904 root = NULL;
3905 goto failed_mount4;
3907 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
3908 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
3909 iput(root);
3910 goto failed_mount4;
3912 sb->s_root = d_make_root(root);
3913 if (!sb->s_root) {
3914 ext4_msg(sb, KERN_ERR, "get root dentry failed");
3915 ret = -ENOMEM;
3916 goto failed_mount4;
3919 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
3920 sb->s_flags |= MS_RDONLY;
3922 /* determine the minimum size of new large inodes, if present */
3923 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3924 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3925 EXT4_GOOD_OLD_INODE_SIZE;
3926 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3927 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
3928 if (sbi->s_want_extra_isize <
3929 le16_to_cpu(es->s_want_extra_isize))
3930 sbi->s_want_extra_isize =
3931 le16_to_cpu(es->s_want_extra_isize);
3932 if (sbi->s_want_extra_isize <
3933 le16_to_cpu(es->s_min_extra_isize))
3934 sbi->s_want_extra_isize =
3935 le16_to_cpu(es->s_min_extra_isize);
3938 /* Check if enough inode space is available */
3939 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
3940 sbi->s_inode_size) {
3941 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3942 EXT4_GOOD_OLD_INODE_SIZE;
3943 ext4_msg(sb, KERN_INFO, "required extra inode space not"
3944 "available");
3947 err = ext4_setup_system_zone(sb);
3948 if (err) {
3949 ext4_msg(sb, KERN_ERR, "failed to initialize system "
3950 "zone (%d)", err);
3951 goto failed_mount4a;
3954 ext4_ext_init(sb);
3955 err = ext4_mb_init(sb);
3956 if (err) {
3957 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
3958 err);
3959 goto failed_mount5;
3962 err = ext4_register_li_request(sb, first_not_zeroed);
3963 if (err)
3964 goto failed_mount6;
3966 sbi->s_kobj.kset = ext4_kset;
3967 init_completion(&sbi->s_kobj_unregister);
3968 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
3969 "%s", sb->s_id);
3970 if (err)
3971 goto failed_mount7;
3973 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
3974 ext4_orphan_cleanup(sb, es);
3975 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
3976 if (needs_recovery) {
3977 ext4_msg(sb, KERN_INFO, "recovery complete");
3978 ext4_mark_recovery_complete(sb, es);
3980 if (EXT4_SB(sb)->s_journal) {
3981 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3982 descr = " journalled data mode";
3983 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3984 descr = " ordered data mode";
3985 else
3986 descr = " writeback data mode";
3987 } else
3988 descr = "out journal";
3990 #ifdef CONFIG_QUOTA
3991 /* Enable quota usage during mount. */
3992 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
3993 !(sb->s_flags & MS_RDONLY)) {
3994 ret = ext4_enable_quotas(sb);
3995 if (ret)
3996 goto failed_mount7;
3998 #endif /* CONFIG_QUOTA */
4000 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4001 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
4002 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4004 if (es->s_error_count)
4005 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4007 kfree(orig_data);
4008 return 0;
4010 cantfind_ext4:
4011 if (!silent)
4012 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4013 goto failed_mount;
4015 failed_mount7:
4016 ext4_unregister_li_request(sb);
4017 failed_mount6:
4018 ext4_mb_release(sb);
4019 failed_mount5:
4020 ext4_ext_release(sb);
4021 ext4_release_system_zone(sb);
4022 failed_mount4a:
4023 dput(sb->s_root);
4024 sb->s_root = NULL;
4025 failed_mount4:
4026 ext4_msg(sb, KERN_ERR, "mount failed");
4027 destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq);
4028 failed_mount_wq:
4029 if (sbi->s_journal) {
4030 jbd2_journal_destroy(sbi->s_journal);
4031 sbi->s_journal = NULL;
4033 failed_mount3:
4034 del_timer(&sbi->s_err_report);
4035 if (sbi->s_flex_groups)
4036 ext4_kvfree(sbi->s_flex_groups);
4037 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4038 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4039 percpu_counter_destroy(&sbi->s_dirs_counter);
4040 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4041 if (sbi->s_mmp_tsk)
4042 kthread_stop(sbi->s_mmp_tsk);
4043 failed_mount2:
4044 for (i = 0; i < db_count; i++)
4045 brelse(sbi->s_group_desc[i]);
4046 ext4_kvfree(sbi->s_group_desc);
4047 failed_mount:
4048 if (sbi->s_chksum_driver)
4049 crypto_free_shash(sbi->s_chksum_driver);
4050 if (sbi->s_proc) {
4051 remove_proc_entry("options", sbi->s_proc);
4052 remove_proc_entry(sb->s_id, ext4_proc_root);
4054 #ifdef CONFIG_QUOTA
4055 for (i = 0; i < MAXQUOTAS; i++)
4056 kfree(sbi->s_qf_names[i]);
4057 #endif
4058 ext4_blkdev_remove(sbi);
4059 brelse(bh);
4060 out_fail:
4061 sb->s_fs_info = NULL;
4062 kfree(sbi->s_blockgroup_lock);
4063 kfree(sbi);
4064 out_free_orig:
4065 kfree(orig_data);
4066 return ret;
4070 * Setup any per-fs journal parameters now. We'll do this both on
4071 * initial mount, once the journal has been initialised but before we've
4072 * done any recovery; and again on any subsequent remount.
4074 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4076 struct ext4_sb_info *sbi = EXT4_SB(sb);
4078 journal->j_commit_interval = sbi->s_commit_interval;
4079 journal->j_min_batch_time = sbi->s_min_batch_time;
4080 journal->j_max_batch_time = sbi->s_max_batch_time;
4082 write_lock(&journal->j_state_lock);
4083 if (test_opt(sb, BARRIER))
4084 journal->j_flags |= JBD2_BARRIER;
4085 else
4086 journal->j_flags &= ~JBD2_BARRIER;
4087 if (test_opt(sb, DATA_ERR_ABORT))
4088 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4089 else
4090 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4091 write_unlock(&journal->j_state_lock);
4094 static journal_t *ext4_get_journal(struct super_block *sb,
4095 unsigned int journal_inum)
4097 struct inode *journal_inode;
4098 journal_t *journal;
4100 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4102 /* First, test for the existence of a valid inode on disk. Bad
4103 * things happen if we iget() an unused inode, as the subsequent
4104 * iput() will try to delete it. */
4106 journal_inode = ext4_iget(sb, journal_inum);
4107 if (IS_ERR(journal_inode)) {
4108 ext4_msg(sb, KERN_ERR, "no journal found");
4109 return NULL;
4111 if (!journal_inode->i_nlink) {
4112 make_bad_inode(journal_inode);
4113 iput(journal_inode);
4114 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4115 return NULL;
4118 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4119 journal_inode, journal_inode->i_size);
4120 if (!S_ISREG(journal_inode->i_mode)) {
4121 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4122 iput(journal_inode);
4123 return NULL;
4126 journal = jbd2_journal_init_inode(journal_inode);
4127 if (!journal) {
4128 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4129 iput(journal_inode);
4130 return NULL;
4132 journal->j_private = sb;
4133 ext4_init_journal_params(sb, journal);
4134 return journal;
4137 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4138 dev_t j_dev)
4140 struct buffer_head *bh;
4141 journal_t *journal;
4142 ext4_fsblk_t start;
4143 ext4_fsblk_t len;
4144 int hblock, blocksize;
4145 ext4_fsblk_t sb_block;
4146 unsigned long offset;
4147 struct ext4_super_block *es;
4148 struct block_device *bdev;
4150 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4152 bdev = ext4_blkdev_get(j_dev, sb);
4153 if (bdev == NULL)
4154 return NULL;
4156 blocksize = sb->s_blocksize;
4157 hblock = bdev_logical_block_size(bdev);
4158 if (blocksize < hblock) {
4159 ext4_msg(sb, KERN_ERR,
4160 "blocksize too small for journal device");
4161 goto out_bdev;
4164 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4165 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4166 set_blocksize(bdev, blocksize);
4167 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4168 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4169 "external journal");
4170 goto out_bdev;
4173 es = (struct ext4_super_block *) (bh->b_data + offset);
4174 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4175 !(le32_to_cpu(es->s_feature_incompat) &
4176 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4177 ext4_msg(sb, KERN_ERR, "external journal has "
4178 "bad superblock");
4179 brelse(bh);
4180 goto out_bdev;
4183 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4184 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4185 brelse(bh);
4186 goto out_bdev;
4189 len = ext4_blocks_count(es);
4190 start = sb_block + 1;
4191 brelse(bh); /* we're done with the superblock */
4193 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4194 start, len, blocksize);
4195 if (!journal) {
4196 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4197 goto out_bdev;
4199 journal->j_private = sb;
4200 ll_rw_block(READ, 1, &journal->j_sb_buffer);
4201 wait_on_buffer(journal->j_sb_buffer);
4202 if (!buffer_uptodate(journal->j_sb_buffer)) {
4203 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4204 goto out_journal;
4206 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4207 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4208 "user (unsupported) - %d",
4209 be32_to_cpu(journal->j_superblock->s_nr_users));
4210 goto out_journal;
4212 EXT4_SB(sb)->journal_bdev = bdev;
4213 ext4_init_journal_params(sb, journal);
4214 return journal;
4216 out_journal:
4217 jbd2_journal_destroy(journal);
4218 out_bdev:
4219 ext4_blkdev_put(bdev);
4220 return NULL;
4223 static int ext4_load_journal(struct super_block *sb,
4224 struct ext4_super_block *es,
4225 unsigned long journal_devnum)
4227 journal_t *journal;
4228 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4229 dev_t journal_dev;
4230 int err = 0;
4231 int really_read_only;
4233 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4235 if (journal_devnum &&
4236 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4237 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4238 "numbers have changed");
4239 journal_dev = new_decode_dev(journal_devnum);
4240 } else
4241 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4243 really_read_only = bdev_read_only(sb->s_bdev);
4246 * Are we loading a blank journal or performing recovery after a
4247 * crash? For recovery, we need to check in advance whether we
4248 * can get read-write access to the device.
4250 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
4251 if (sb->s_flags & MS_RDONLY) {
4252 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4253 "required on readonly filesystem");
4254 if (really_read_only) {
4255 ext4_msg(sb, KERN_ERR, "write access "
4256 "unavailable, cannot proceed");
4257 return -EROFS;
4259 ext4_msg(sb, KERN_INFO, "write access will "
4260 "be enabled during recovery");
4264 if (journal_inum && journal_dev) {
4265 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4266 "and inode journals!");
4267 return -EINVAL;
4270 if (journal_inum) {
4271 if (!(journal = ext4_get_journal(sb, journal_inum)))
4272 return -EINVAL;
4273 } else {
4274 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4275 return -EINVAL;
4278 if (!(journal->j_flags & JBD2_BARRIER))
4279 ext4_msg(sb, KERN_INFO, "barriers disabled");
4281 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
4282 err = jbd2_journal_wipe(journal, !really_read_only);
4283 if (!err) {
4284 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4285 if (save)
4286 memcpy(save, ((char *) es) +
4287 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4288 err = jbd2_journal_load(journal);
4289 if (save)
4290 memcpy(((char *) es) + EXT4_S_ERR_START,
4291 save, EXT4_S_ERR_LEN);
4292 kfree(save);
4295 if (err) {
4296 ext4_msg(sb, KERN_ERR, "error loading journal");
4297 jbd2_journal_destroy(journal);
4298 return err;
4301 EXT4_SB(sb)->s_journal = journal;
4302 ext4_clear_journal_err(sb, es);
4304 if (!really_read_only && journal_devnum &&
4305 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4306 es->s_journal_dev = cpu_to_le32(journal_devnum);
4308 /* Make sure we flush the recovery flag to disk. */
4309 ext4_commit_super(sb, 1);
4312 return 0;
4315 static int ext4_commit_super(struct super_block *sb, int sync)
4317 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4318 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4319 int error = 0;
4321 if (!sbh || block_device_ejected(sb))
4322 return error;
4323 if (buffer_write_io_error(sbh)) {
4325 * Oh, dear. A previous attempt to write the
4326 * superblock failed. This could happen because the
4327 * USB device was yanked out. Or it could happen to
4328 * be a transient write error and maybe the block will
4329 * be remapped. Nothing we can do but to retry the
4330 * write and hope for the best.
4332 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4333 "superblock detected");
4334 clear_buffer_write_io_error(sbh);
4335 set_buffer_uptodate(sbh);
4338 * If the file system is mounted read-only, don't update the
4339 * superblock write time. This avoids updating the superblock
4340 * write time when we are mounting the root file system
4341 * read/only but we need to replay the journal; at that point,
4342 * for people who are east of GMT and who make their clock
4343 * tick in localtime for Windows bug-for-bug compatibility,
4344 * the clock is set in the future, and this will cause e2fsck
4345 * to complain and force a full file system check.
4347 if (!(sb->s_flags & MS_RDONLY))
4348 es->s_wtime = cpu_to_le32(get_seconds());
4349 if (sb->s_bdev->bd_part)
4350 es->s_kbytes_written =
4351 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4352 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4353 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4354 else
4355 es->s_kbytes_written =
4356 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4357 ext4_free_blocks_count_set(es,
4358 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4359 &EXT4_SB(sb)->s_freeclusters_counter)));
4360 es->s_free_inodes_count =
4361 cpu_to_le32(percpu_counter_sum_positive(
4362 &EXT4_SB(sb)->s_freeinodes_counter));
4363 BUFFER_TRACE(sbh, "marking dirty");
4364 ext4_superblock_csum_set(sb, es);
4365 mark_buffer_dirty(sbh);
4366 if (sync) {
4367 error = sync_dirty_buffer(sbh);
4368 if (error)
4369 return error;
4371 error = buffer_write_io_error(sbh);
4372 if (error) {
4373 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4374 "superblock");
4375 clear_buffer_write_io_error(sbh);
4376 set_buffer_uptodate(sbh);
4379 return error;
4383 * Have we just finished recovery? If so, and if we are mounting (or
4384 * remounting) the filesystem readonly, then we will end up with a
4385 * consistent fs on disk. Record that fact.
4387 static void ext4_mark_recovery_complete(struct super_block *sb,
4388 struct ext4_super_block *es)
4390 journal_t *journal = EXT4_SB(sb)->s_journal;
4392 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4393 BUG_ON(journal != NULL);
4394 return;
4396 jbd2_journal_lock_updates(journal);
4397 if (jbd2_journal_flush(journal) < 0)
4398 goto out;
4400 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4401 sb->s_flags & MS_RDONLY) {
4402 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4403 ext4_commit_super(sb, 1);
4406 out:
4407 jbd2_journal_unlock_updates(journal);
4411 * If we are mounting (or read-write remounting) a filesystem whose journal
4412 * has recorded an error from a previous lifetime, move that error to the
4413 * main filesystem now.
4415 static void ext4_clear_journal_err(struct super_block *sb,
4416 struct ext4_super_block *es)
4418 journal_t *journal;
4419 int j_errno;
4420 const char *errstr;
4422 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4424 journal = EXT4_SB(sb)->s_journal;
4427 * Now check for any error status which may have been recorded in the
4428 * journal by a prior ext4_error() or ext4_abort()
4431 j_errno = jbd2_journal_errno(journal);
4432 if (j_errno) {
4433 char nbuf[16];
4435 errstr = ext4_decode_error(sb, j_errno, nbuf);
4436 ext4_warning(sb, "Filesystem error recorded "
4437 "from previous mount: %s", errstr);
4438 ext4_warning(sb, "Marking fs in need of filesystem check.");
4440 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4441 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4442 ext4_commit_super(sb, 1);
4444 jbd2_journal_clear_err(journal);
4445 jbd2_journal_update_sb_errno(journal);
4450 * Force the running and committing transactions to commit,
4451 * and wait on the commit.
4453 int ext4_force_commit(struct super_block *sb)
4455 journal_t *journal;
4456 int ret = 0;
4458 if (sb->s_flags & MS_RDONLY)
4459 return 0;
4461 journal = EXT4_SB(sb)->s_journal;
4462 if (journal)
4463 ret = ext4_journal_force_commit(journal);
4465 return ret;
4468 static int ext4_sync_fs(struct super_block *sb, int wait)
4470 int ret = 0;
4471 tid_t target;
4472 struct ext4_sb_info *sbi = EXT4_SB(sb);
4474 trace_ext4_sync_fs(sb, wait);
4475 flush_workqueue(sbi->dio_unwritten_wq);
4477 * Writeback quota in non-journalled quota case - journalled quota has
4478 * no dirty dquots
4480 dquot_writeback_dquots(sb, -1);
4481 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4482 if (wait)
4483 jbd2_log_wait_commit(sbi->s_journal, target);
4485 return ret;
4489 * LVM calls this function before a (read-only) snapshot is created. This
4490 * gives us a chance to flush the journal completely and mark the fs clean.
4492 * Note that only this function cannot bring a filesystem to be in a clean
4493 * state independently. It relies on upper layer to stop all data & metadata
4494 * modifications.
4496 static int ext4_freeze(struct super_block *sb)
4498 int error = 0;
4499 journal_t *journal;
4501 if (sb->s_flags & MS_RDONLY)
4502 return 0;
4504 journal = EXT4_SB(sb)->s_journal;
4506 /* Now we set up the journal barrier. */
4507 jbd2_journal_lock_updates(journal);
4510 * Don't clear the needs_recovery flag if we failed to flush
4511 * the journal.
4513 error = jbd2_journal_flush(journal);
4514 if (error < 0)
4515 goto out;
4517 /* Journal blocked and flushed, clear needs_recovery flag. */
4518 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4519 error = ext4_commit_super(sb, 1);
4520 out:
4521 /* we rely on upper layer to stop further updates */
4522 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4523 return error;
4527 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4528 * flag here, even though the filesystem is not technically dirty yet.
4530 static int ext4_unfreeze(struct super_block *sb)
4532 if (sb->s_flags & MS_RDONLY)
4533 return 0;
4535 lock_super(sb);
4536 /* Reset the needs_recovery flag before the fs is unlocked. */
4537 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4538 ext4_commit_super(sb, 1);
4539 unlock_super(sb);
4540 return 0;
4544 * Structure to save mount options for ext4_remount's benefit
4546 struct ext4_mount_options {
4547 unsigned long s_mount_opt;
4548 unsigned long s_mount_opt2;
4549 kuid_t s_resuid;
4550 kgid_t s_resgid;
4551 unsigned long s_commit_interval;
4552 u32 s_min_batch_time, s_max_batch_time;
4553 #ifdef CONFIG_QUOTA
4554 int s_jquota_fmt;
4555 char *s_qf_names[MAXQUOTAS];
4556 #endif
4559 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4561 struct ext4_super_block *es;
4562 struct ext4_sb_info *sbi = EXT4_SB(sb);
4563 unsigned long old_sb_flags;
4564 struct ext4_mount_options old_opts;
4565 int enable_quota = 0;
4566 ext4_group_t g;
4567 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4568 int err = 0;
4569 #ifdef CONFIG_QUOTA
4570 int i;
4571 #endif
4572 char *orig_data = kstrdup(data, GFP_KERNEL);
4574 /* Store the original options */
4575 lock_super(sb);
4576 old_sb_flags = sb->s_flags;
4577 old_opts.s_mount_opt = sbi->s_mount_opt;
4578 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4579 old_opts.s_resuid = sbi->s_resuid;
4580 old_opts.s_resgid = sbi->s_resgid;
4581 old_opts.s_commit_interval = sbi->s_commit_interval;
4582 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4583 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4584 #ifdef CONFIG_QUOTA
4585 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4586 for (i = 0; i < MAXQUOTAS; i++)
4587 old_opts.s_qf_names[i] = sbi->s_qf_names[i];
4588 #endif
4589 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4590 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4593 * Allow the "check" option to be passed as a remount option.
4595 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4596 err = -EINVAL;
4597 goto restore_opts;
4600 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4601 ext4_abort(sb, "Abort forced by user");
4603 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4604 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4606 es = sbi->s_es;
4608 if (sbi->s_journal) {
4609 ext4_init_journal_params(sb, sbi->s_journal);
4610 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4613 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4614 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4615 err = -EROFS;
4616 goto restore_opts;
4619 if (*flags & MS_RDONLY) {
4620 err = dquot_suspend(sb, -1);
4621 if (err < 0)
4622 goto restore_opts;
4625 * First of all, the unconditional stuff we have to do
4626 * to disable replay of the journal when we next remount
4628 sb->s_flags |= MS_RDONLY;
4631 * OK, test if we are remounting a valid rw partition
4632 * readonly, and if so set the rdonly flag and then
4633 * mark the partition as valid again.
4635 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4636 (sbi->s_mount_state & EXT4_VALID_FS))
4637 es->s_state = cpu_to_le16(sbi->s_mount_state);
4639 if (sbi->s_journal)
4640 ext4_mark_recovery_complete(sb, es);
4641 } else {
4642 /* Make sure we can mount this feature set readwrite */
4643 if (!ext4_feature_set_ok(sb, 0)) {
4644 err = -EROFS;
4645 goto restore_opts;
4648 * Make sure the group descriptor checksums
4649 * are sane. If they aren't, refuse to remount r/w.
4651 for (g = 0; g < sbi->s_groups_count; g++) {
4652 struct ext4_group_desc *gdp =
4653 ext4_get_group_desc(sb, g, NULL);
4655 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
4656 ext4_msg(sb, KERN_ERR,
4657 "ext4_remount: Checksum for group %u failed (%u!=%u)",
4658 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
4659 le16_to_cpu(gdp->bg_checksum));
4660 err = -EINVAL;
4661 goto restore_opts;
4666 * If we have an unprocessed orphan list hanging
4667 * around from a previously readonly bdev mount,
4668 * require a full umount/remount for now.
4670 if (es->s_last_orphan) {
4671 ext4_msg(sb, KERN_WARNING, "Couldn't "
4672 "remount RDWR because of unprocessed "
4673 "orphan inode list. Please "
4674 "umount/remount instead");
4675 err = -EINVAL;
4676 goto restore_opts;
4680 * Mounting a RDONLY partition read-write, so reread
4681 * and store the current valid flag. (It may have
4682 * been changed by e2fsck since we originally mounted
4683 * the partition.)
4685 if (sbi->s_journal)
4686 ext4_clear_journal_err(sb, es);
4687 sbi->s_mount_state = le16_to_cpu(es->s_state);
4688 if (!ext4_setup_super(sb, es, 0))
4689 sb->s_flags &= ~MS_RDONLY;
4690 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
4691 EXT4_FEATURE_INCOMPAT_MMP))
4692 if (ext4_multi_mount_protect(sb,
4693 le64_to_cpu(es->s_mmp_block))) {
4694 err = -EROFS;
4695 goto restore_opts;
4697 enable_quota = 1;
4702 * Reinitialize lazy itable initialization thread based on
4703 * current settings
4705 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4706 ext4_unregister_li_request(sb);
4707 else {
4708 ext4_group_t first_not_zeroed;
4709 first_not_zeroed = ext4_has_uninit_itable(sb);
4710 ext4_register_li_request(sb, first_not_zeroed);
4713 ext4_setup_system_zone(sb);
4714 if (sbi->s_journal == NULL)
4715 ext4_commit_super(sb, 1);
4717 unlock_super(sb);
4718 #ifdef CONFIG_QUOTA
4719 /* Release old quota file names */
4720 for (i = 0; i < MAXQUOTAS; i++)
4721 if (old_opts.s_qf_names[i] &&
4722 old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4723 kfree(old_opts.s_qf_names[i]);
4724 if (enable_quota) {
4725 if (sb_any_quota_suspended(sb))
4726 dquot_resume(sb, -1);
4727 else if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4728 EXT4_FEATURE_RO_COMPAT_QUOTA)) {
4729 err = ext4_enable_quotas(sb);
4730 if (err) {
4731 lock_super(sb);
4732 goto restore_opts;
4736 #endif
4738 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4739 kfree(orig_data);
4740 return 0;
4742 restore_opts:
4743 sb->s_flags = old_sb_flags;
4744 sbi->s_mount_opt = old_opts.s_mount_opt;
4745 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
4746 sbi->s_resuid = old_opts.s_resuid;
4747 sbi->s_resgid = old_opts.s_resgid;
4748 sbi->s_commit_interval = old_opts.s_commit_interval;
4749 sbi->s_min_batch_time = old_opts.s_min_batch_time;
4750 sbi->s_max_batch_time = old_opts.s_max_batch_time;
4751 #ifdef CONFIG_QUOTA
4752 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
4753 for (i = 0; i < MAXQUOTAS; i++) {
4754 if (sbi->s_qf_names[i] &&
4755 old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4756 kfree(sbi->s_qf_names[i]);
4757 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
4759 #endif
4760 unlock_super(sb);
4761 kfree(orig_data);
4762 return err;
4765 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
4767 struct super_block *sb = dentry->d_sb;
4768 struct ext4_sb_info *sbi = EXT4_SB(sb);
4769 struct ext4_super_block *es = sbi->s_es;
4770 ext4_fsblk_t overhead = 0;
4771 u64 fsid;
4772 s64 bfree;
4774 if (!test_opt(sb, MINIX_DF))
4775 overhead = sbi->s_overhead;
4777 buf->f_type = EXT4_SUPER_MAGIC;
4778 buf->f_bsize = sb->s_blocksize;
4779 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, sbi->s_overhead);
4780 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
4781 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
4782 /* prevent underflow in case that few free space is available */
4783 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
4784 buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es);
4785 if (buf->f_bfree < ext4_r_blocks_count(es))
4786 buf->f_bavail = 0;
4787 buf->f_files = le32_to_cpu(es->s_inodes_count);
4788 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
4789 buf->f_namelen = EXT4_NAME_LEN;
4790 fsid = le64_to_cpup((void *)es->s_uuid) ^
4791 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
4792 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
4793 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
4795 return 0;
4798 /* Helper function for writing quotas on sync - we need to start transaction
4799 * before quota file is locked for write. Otherwise the are possible deadlocks:
4800 * Process 1 Process 2
4801 * ext4_create() quota_sync()
4802 * jbd2_journal_start() write_dquot()
4803 * dquot_initialize() down(dqio_mutex)
4804 * down(dqio_mutex) jbd2_journal_start()
4808 #ifdef CONFIG_QUOTA
4810 static inline struct inode *dquot_to_inode(struct dquot *dquot)
4812 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type];
4815 static int ext4_write_dquot(struct dquot *dquot)
4817 int ret, err;
4818 handle_t *handle;
4819 struct inode *inode;
4821 inode = dquot_to_inode(dquot);
4822 handle = ext4_journal_start(inode,
4823 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
4824 if (IS_ERR(handle))
4825 return PTR_ERR(handle);
4826 ret = dquot_commit(dquot);
4827 err = ext4_journal_stop(handle);
4828 if (!ret)
4829 ret = err;
4830 return ret;
4833 static int ext4_acquire_dquot(struct dquot *dquot)
4835 int ret, err;
4836 handle_t *handle;
4838 handle = ext4_journal_start(dquot_to_inode(dquot),
4839 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
4840 if (IS_ERR(handle))
4841 return PTR_ERR(handle);
4842 ret = dquot_acquire(dquot);
4843 err = ext4_journal_stop(handle);
4844 if (!ret)
4845 ret = err;
4846 return ret;
4849 static int ext4_release_dquot(struct dquot *dquot)
4851 int ret, err;
4852 handle_t *handle;
4854 handle = ext4_journal_start(dquot_to_inode(dquot),
4855 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
4856 if (IS_ERR(handle)) {
4857 /* Release dquot anyway to avoid endless cycle in dqput() */
4858 dquot_release(dquot);
4859 return PTR_ERR(handle);
4861 ret = dquot_release(dquot);
4862 err = ext4_journal_stop(handle);
4863 if (!ret)
4864 ret = err;
4865 return ret;
4868 static int ext4_mark_dquot_dirty(struct dquot *dquot)
4870 /* Are we journaling quotas? */
4871 if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] ||
4872 EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) {
4873 dquot_mark_dquot_dirty(dquot);
4874 return ext4_write_dquot(dquot);
4875 } else {
4876 return dquot_mark_dquot_dirty(dquot);
4880 static int ext4_write_info(struct super_block *sb, int type)
4882 int ret, err;
4883 handle_t *handle;
4885 /* Data block + inode block */
4886 handle = ext4_journal_start(sb->s_root->d_inode, 2);
4887 if (IS_ERR(handle))
4888 return PTR_ERR(handle);
4889 ret = dquot_commit_info(sb, type);
4890 err = ext4_journal_stop(handle);
4891 if (!ret)
4892 ret = err;
4893 return ret;
4897 * Turn on quotas during mount time - we need to find
4898 * the quota file and such...
4900 static int ext4_quota_on_mount(struct super_block *sb, int type)
4902 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
4903 EXT4_SB(sb)->s_jquota_fmt, type);
4907 * Standard function to be called on quota_on
4909 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
4910 struct path *path)
4912 int err;
4914 if (!test_opt(sb, QUOTA))
4915 return -EINVAL;
4917 /* Quotafile not on the same filesystem? */
4918 if (path->dentry->d_sb != sb)
4919 return -EXDEV;
4920 /* Journaling quota? */
4921 if (EXT4_SB(sb)->s_qf_names[type]) {
4922 /* Quotafile not in fs root? */
4923 if (path->dentry->d_parent != sb->s_root)
4924 ext4_msg(sb, KERN_WARNING,
4925 "Quota file not on filesystem root. "
4926 "Journaled quota will not work");
4930 * When we journal data on quota file, we have to flush journal to see
4931 * all updates to the file when we bypass pagecache...
4933 if (EXT4_SB(sb)->s_journal &&
4934 ext4_should_journal_data(path->dentry->d_inode)) {
4936 * We don't need to lock updates but journal_flush() could
4937 * otherwise be livelocked...
4939 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
4940 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
4941 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4942 if (err)
4943 return err;
4946 return dquot_quota_on(sb, type, format_id, path);
4949 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
4950 unsigned int flags)
4952 int err;
4953 struct inode *qf_inode;
4954 unsigned long qf_inums[MAXQUOTAS] = {
4955 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
4956 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
4959 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA));
4961 if (!qf_inums[type])
4962 return -EPERM;
4964 qf_inode = ext4_iget(sb, qf_inums[type]);
4965 if (IS_ERR(qf_inode)) {
4966 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
4967 return PTR_ERR(qf_inode);
4970 err = dquot_enable(qf_inode, type, format_id, flags);
4971 iput(qf_inode);
4973 return err;
4976 /* Enable usage tracking for all quota types. */
4977 static int ext4_enable_quotas(struct super_block *sb)
4979 int type, err = 0;
4980 unsigned long qf_inums[MAXQUOTAS] = {
4981 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
4982 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
4985 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
4986 for (type = 0; type < MAXQUOTAS; type++) {
4987 if (qf_inums[type]) {
4988 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
4989 DQUOT_USAGE_ENABLED);
4990 if (err) {
4991 ext4_warning(sb,
4992 "Failed to enable quota (type=%d) "
4993 "tracking. Please run e2fsck to fix.",
4994 type);
4995 return err;
4999 return 0;
5003 * quota_on function that is used when QUOTA feature is set.
5005 static int ext4_quota_on_sysfile(struct super_block *sb, int type,
5006 int format_id)
5008 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
5009 return -EINVAL;
5012 * USAGE was enabled at mount time. Only need to enable LIMITS now.
5014 return ext4_quota_enable(sb, type, format_id, DQUOT_LIMITS_ENABLED);
5017 static int ext4_quota_off(struct super_block *sb, int type)
5019 struct inode *inode = sb_dqopt(sb)->files[type];
5020 handle_t *handle;
5022 /* Force all delayed allocation blocks to be allocated.
5023 * Caller already holds s_umount sem */
5024 if (test_opt(sb, DELALLOC))
5025 sync_filesystem(sb);
5027 if (!inode)
5028 goto out;
5030 /* Update modification times of quota files when userspace can
5031 * start looking at them */
5032 handle = ext4_journal_start(inode, 1);
5033 if (IS_ERR(handle))
5034 goto out;
5035 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
5036 ext4_mark_inode_dirty(handle, inode);
5037 ext4_journal_stop(handle);
5039 out:
5040 return dquot_quota_off(sb, type);
5044 * quota_off function that is used when QUOTA feature is set.
5046 static int ext4_quota_off_sysfile(struct super_block *sb, int type)
5048 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
5049 return -EINVAL;
5051 /* Disable only the limits. */
5052 return dquot_disable(sb, type, DQUOT_LIMITS_ENABLED);
5055 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5056 * acquiring the locks... As quota files are never truncated and quota code
5057 * itself serializes the operations (and no one else should touch the files)
5058 * we don't have to be afraid of races */
5059 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5060 size_t len, loff_t off)
5062 struct inode *inode = sb_dqopt(sb)->files[type];
5063 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5064 int err = 0;
5065 int offset = off & (sb->s_blocksize - 1);
5066 int tocopy;
5067 size_t toread;
5068 struct buffer_head *bh;
5069 loff_t i_size = i_size_read(inode);
5071 if (off > i_size)
5072 return 0;
5073 if (off+len > i_size)
5074 len = i_size-off;
5075 toread = len;
5076 while (toread > 0) {
5077 tocopy = sb->s_blocksize - offset < toread ?
5078 sb->s_blocksize - offset : toread;
5079 bh = ext4_bread(NULL, inode, blk, 0, &err);
5080 if (err)
5081 return err;
5082 if (!bh) /* A hole? */
5083 memset(data, 0, tocopy);
5084 else
5085 memcpy(data, bh->b_data+offset, tocopy);
5086 brelse(bh);
5087 offset = 0;
5088 toread -= tocopy;
5089 data += tocopy;
5090 blk++;
5092 return len;
5095 /* Write to quotafile (we know the transaction is already started and has
5096 * enough credits) */
5097 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5098 const char *data, size_t len, loff_t off)
5100 struct inode *inode = sb_dqopt(sb)->files[type];
5101 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5102 int err = 0;
5103 int offset = off & (sb->s_blocksize - 1);
5104 struct buffer_head *bh;
5105 handle_t *handle = journal_current_handle();
5107 if (EXT4_SB(sb)->s_journal && !handle) {
5108 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5109 " cancelled because transaction is not started",
5110 (unsigned long long)off, (unsigned long long)len);
5111 return -EIO;
5114 * Since we account only one data block in transaction credits,
5115 * then it is impossible to cross a block boundary.
5117 if (sb->s_blocksize - offset < len) {
5118 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5119 " cancelled because not block aligned",
5120 (unsigned long long)off, (unsigned long long)len);
5121 return -EIO;
5124 bh = ext4_bread(handle, inode, blk, 1, &err);
5125 if (!bh)
5126 goto out;
5127 err = ext4_journal_get_write_access(handle, bh);
5128 if (err) {
5129 brelse(bh);
5130 goto out;
5132 lock_buffer(bh);
5133 memcpy(bh->b_data+offset, data, len);
5134 flush_dcache_page(bh->b_page);
5135 unlock_buffer(bh);
5136 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5137 brelse(bh);
5138 out:
5139 if (err)
5140 return err;
5141 if (inode->i_size < off + len) {
5142 i_size_write(inode, off + len);
5143 EXT4_I(inode)->i_disksize = inode->i_size;
5144 ext4_mark_inode_dirty(handle, inode);
5146 return len;
5149 #endif
5151 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5152 const char *dev_name, void *data)
5154 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5157 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5158 static inline void register_as_ext2(void)
5160 int err = register_filesystem(&ext2_fs_type);
5161 if (err)
5162 printk(KERN_WARNING
5163 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5166 static inline void unregister_as_ext2(void)
5168 unregister_filesystem(&ext2_fs_type);
5171 static inline int ext2_feature_set_ok(struct super_block *sb)
5173 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP))
5174 return 0;
5175 if (sb->s_flags & MS_RDONLY)
5176 return 1;
5177 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP))
5178 return 0;
5179 return 1;
5181 MODULE_ALIAS("ext2");
5182 #else
5183 static inline void register_as_ext2(void) { }
5184 static inline void unregister_as_ext2(void) { }
5185 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5186 #endif
5188 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5189 static inline void register_as_ext3(void)
5191 int err = register_filesystem(&ext3_fs_type);
5192 if (err)
5193 printk(KERN_WARNING
5194 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5197 static inline void unregister_as_ext3(void)
5199 unregister_filesystem(&ext3_fs_type);
5202 static inline int ext3_feature_set_ok(struct super_block *sb)
5204 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP))
5205 return 0;
5206 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
5207 return 0;
5208 if (sb->s_flags & MS_RDONLY)
5209 return 1;
5210 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP))
5211 return 0;
5212 return 1;
5214 MODULE_ALIAS("ext3");
5215 #else
5216 static inline void register_as_ext3(void) { }
5217 static inline void unregister_as_ext3(void) { }
5218 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; }
5219 #endif
5221 static struct file_system_type ext4_fs_type = {
5222 .owner = THIS_MODULE,
5223 .name = "ext4",
5224 .mount = ext4_mount,
5225 .kill_sb = kill_block_super,
5226 .fs_flags = FS_REQUIRES_DEV,
5229 static int __init ext4_init_feat_adverts(void)
5231 struct ext4_features *ef;
5232 int ret = -ENOMEM;
5234 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
5235 if (!ef)
5236 goto out;
5238 ef->f_kobj.kset = ext4_kset;
5239 init_completion(&ef->f_kobj_unregister);
5240 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
5241 "features");
5242 if (ret) {
5243 kfree(ef);
5244 goto out;
5247 ext4_feat = ef;
5248 ret = 0;
5249 out:
5250 return ret;
5253 static void ext4_exit_feat_adverts(void)
5255 kobject_put(&ext4_feat->f_kobj);
5256 wait_for_completion(&ext4_feat->f_kobj_unregister);
5257 kfree(ext4_feat);
5260 /* Shared across all ext4 file systems */
5261 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5262 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
5264 static int __init ext4_init_fs(void)
5266 int i, err;
5268 ext4_li_info = NULL;
5269 mutex_init(&ext4_li_mtx);
5271 ext4_check_flag_values();
5273 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
5274 mutex_init(&ext4__aio_mutex[i]);
5275 init_waitqueue_head(&ext4__ioend_wq[i]);
5278 err = ext4_init_pageio();
5279 if (err)
5280 return err;
5281 err = ext4_init_system_zone();
5282 if (err)
5283 goto out6;
5284 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
5285 if (!ext4_kset)
5286 goto out5;
5287 ext4_proc_root = proc_mkdir("fs/ext4", NULL);
5289 err = ext4_init_feat_adverts();
5290 if (err)
5291 goto out4;
5293 err = ext4_init_mballoc();
5294 if (err)
5295 goto out3;
5297 err = ext4_init_xattr();
5298 if (err)
5299 goto out2;
5300 err = init_inodecache();
5301 if (err)
5302 goto out1;
5303 register_as_ext3();
5304 register_as_ext2();
5305 err = register_filesystem(&ext4_fs_type);
5306 if (err)
5307 goto out;
5309 return 0;
5310 out:
5311 unregister_as_ext2();
5312 unregister_as_ext3();
5313 destroy_inodecache();
5314 out1:
5315 ext4_exit_xattr();
5316 out2:
5317 ext4_exit_mballoc();
5318 out3:
5319 ext4_exit_feat_adverts();
5320 out4:
5321 if (ext4_proc_root)
5322 remove_proc_entry("fs/ext4", NULL);
5323 kset_unregister(ext4_kset);
5324 out5:
5325 ext4_exit_system_zone();
5326 out6:
5327 ext4_exit_pageio();
5328 return err;
5331 static void __exit ext4_exit_fs(void)
5333 ext4_destroy_lazyinit_thread();
5334 unregister_as_ext2();
5335 unregister_as_ext3();
5336 unregister_filesystem(&ext4_fs_type);
5337 destroy_inodecache();
5338 ext4_exit_xattr();
5339 ext4_exit_mballoc();
5340 ext4_exit_feat_adverts();
5341 remove_proc_entry("fs/ext4", NULL);
5342 kset_unregister(ext4_kset);
5343 ext4_exit_system_zone();
5344 ext4_exit_pageio();
5347 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5348 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5349 MODULE_LICENSE("GPL");
5350 module_init(ext4_init_fs)
5351 module_exit(ext4_exit_fs)