3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'slab_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/slab.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/rcupdate.h>
106 #include <linux/string.h>
107 #include <linux/uaccess.h>
108 #include <linux/nodemask.h>
109 #include <linux/kmemleak.h>
110 #include <linux/mempolicy.h>
111 #include <linux/mutex.h>
112 #include <linux/fault-inject.h>
113 #include <linux/rtmutex.h>
114 #include <linux/reciprocal_div.h>
115 #include <linux/debugobjects.h>
116 #include <linux/kmemcheck.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
120 #include <net/sock.h>
122 #include <asm/cacheflush.h>
123 #include <asm/tlbflush.h>
124 #include <asm/page.h>
126 #include <trace/events/kmem.h>
128 #include "internal.h"
133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
134 * 0 for faster, smaller code (especially in the critical paths).
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
142 #ifdef CONFIG_DEBUG_SLAB
145 #define FORCED_DEBUG 1
149 #define FORCED_DEBUG 0
152 /* Shouldn't this be in a header file somewhere? */
153 #define BYTES_PER_WORD sizeof(void *)
154 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
156 #ifndef ARCH_KMALLOC_FLAGS
157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
161 * true if a page was allocated from pfmemalloc reserves for network-based
164 static bool pfmemalloc_active __read_mostly
;
169 * Bufctl's are used for linking objs within a slab
172 * This implementation relies on "struct page" for locating the cache &
173 * slab an object belongs to.
174 * This allows the bufctl structure to be small (one int), but limits
175 * the number of objects a slab (not a cache) can contain when off-slab
176 * bufctls are used. The limit is the size of the largest general cache
177 * that does not use off-slab slabs.
178 * For 32bit archs with 4 kB pages, is this 56.
179 * This is not serious, as it is only for large objects, when it is unwise
180 * to have too many per slab.
181 * Note: This limit can be raised by introducing a general cache whose size
182 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
185 typedef unsigned int kmem_bufctl_t
;
186 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
187 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
188 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
189 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
194 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
195 * arrange for kmem_freepages to be called via RCU. This is useful if
196 * we need to approach a kernel structure obliquely, from its address
197 * obtained without the usual locking. We can lock the structure to
198 * stabilize it and check it's still at the given address, only if we
199 * can be sure that the memory has not been meanwhile reused for some
200 * other kind of object (which our subsystem's lock might corrupt).
202 * rcu_read_lock before reading the address, then rcu_read_unlock after
203 * taking the spinlock within the structure expected at that address.
206 struct rcu_head head
;
207 struct kmem_cache
*cachep
;
214 * Manages the objs in a slab. Placed either at the beginning of mem allocated
215 * for a slab, or allocated from an general cache.
216 * Slabs are chained into three list: fully used, partial, fully free slabs.
221 struct list_head list
;
222 unsigned long colouroff
;
223 void *s_mem
; /* including colour offset */
224 unsigned int inuse
; /* num of objs active in slab */
226 unsigned short nodeid
;
228 struct slab_rcu __slab_cover_slab_rcu
;
236 * - LIFO ordering, to hand out cache-warm objects from _alloc
237 * - reduce the number of linked list operations
238 * - reduce spinlock operations
240 * The limit is stored in the per-cpu structure to reduce the data cache
247 unsigned int batchcount
;
248 unsigned int touched
;
251 * Must have this definition in here for the proper
252 * alignment of array_cache. Also simplifies accessing
255 * Entries should not be directly dereferenced as
256 * entries belonging to slabs marked pfmemalloc will
257 * have the lower bits set SLAB_OBJ_PFMEMALLOC
261 #define SLAB_OBJ_PFMEMALLOC 1
262 static inline bool is_obj_pfmemalloc(void *objp
)
264 return (unsigned long)objp
& SLAB_OBJ_PFMEMALLOC
;
267 static inline void set_obj_pfmemalloc(void **objp
)
269 *objp
= (void *)((unsigned long)*objp
| SLAB_OBJ_PFMEMALLOC
);
273 static inline void clear_obj_pfmemalloc(void **objp
)
275 *objp
= (void *)((unsigned long)*objp
& ~SLAB_OBJ_PFMEMALLOC
);
279 * bootstrap: The caches do not work without cpuarrays anymore, but the
280 * cpuarrays are allocated from the generic caches...
282 #define BOOT_CPUCACHE_ENTRIES 1
283 struct arraycache_init
{
284 struct array_cache cache
;
285 void *entries
[BOOT_CPUCACHE_ENTRIES
];
289 * The slab lists for all objects.
292 struct list_head slabs_partial
; /* partial list first, better asm code */
293 struct list_head slabs_full
;
294 struct list_head slabs_free
;
295 unsigned long free_objects
;
296 unsigned int free_limit
;
297 unsigned int colour_next
; /* Per-node cache coloring */
298 spinlock_t list_lock
;
299 struct array_cache
*shared
; /* shared per node */
300 struct array_cache
**alien
; /* on other nodes */
301 unsigned long next_reap
; /* updated without locking */
302 int free_touched
; /* updated without locking */
306 * Need this for bootstrapping a per node allocator.
308 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
309 static struct kmem_list3 __initdata initkmem_list3
[NUM_INIT_LISTS
];
310 #define CACHE_CACHE 0
311 #define SIZE_AC MAX_NUMNODES
312 #define SIZE_L3 (2 * MAX_NUMNODES)
314 static int drain_freelist(struct kmem_cache
*cache
,
315 struct kmem_list3
*l3
, int tofree
);
316 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int len
,
318 static int enable_cpucache(struct kmem_cache
*cachep
, gfp_t gfp
);
319 static void cache_reap(struct work_struct
*unused
);
322 * This function must be completely optimized away if a constant is passed to
323 * it. Mostly the same as what is in linux/slab.h except it returns an index.
325 static __always_inline
int index_of(const size_t size
)
327 extern void __bad_size(void);
329 if (__builtin_constant_p(size
)) {
337 #include <linux/kmalloc_sizes.h>
345 static int slab_early_init
= 1;
347 #define INDEX_AC index_of(sizeof(struct arraycache_init))
348 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
350 static void kmem_list3_init(struct kmem_list3
*parent
)
352 INIT_LIST_HEAD(&parent
->slabs_full
);
353 INIT_LIST_HEAD(&parent
->slabs_partial
);
354 INIT_LIST_HEAD(&parent
->slabs_free
);
355 parent
->shared
= NULL
;
356 parent
->alien
= NULL
;
357 parent
->colour_next
= 0;
358 spin_lock_init(&parent
->list_lock
);
359 parent
->free_objects
= 0;
360 parent
->free_touched
= 0;
363 #define MAKE_LIST(cachep, listp, slab, nodeid) \
365 INIT_LIST_HEAD(listp); \
366 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
369 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
371 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
372 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
373 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
376 #define CFLGS_OFF_SLAB (0x80000000UL)
377 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
379 #define BATCHREFILL_LIMIT 16
381 * Optimization question: fewer reaps means less probability for unnessary
382 * cpucache drain/refill cycles.
384 * OTOH the cpuarrays can contain lots of objects,
385 * which could lock up otherwise freeable slabs.
387 #define REAPTIMEOUT_CPUC (2*HZ)
388 #define REAPTIMEOUT_LIST3 (4*HZ)
391 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
392 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
393 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
394 #define STATS_INC_GROWN(x) ((x)->grown++)
395 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
396 #define STATS_SET_HIGH(x) \
398 if ((x)->num_active > (x)->high_mark) \
399 (x)->high_mark = (x)->num_active; \
401 #define STATS_INC_ERR(x) ((x)->errors++)
402 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
403 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
404 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
405 #define STATS_SET_FREEABLE(x, i) \
407 if ((x)->max_freeable < i) \
408 (x)->max_freeable = i; \
410 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
411 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
412 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
413 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
415 #define STATS_INC_ACTIVE(x) do { } while (0)
416 #define STATS_DEC_ACTIVE(x) do { } while (0)
417 #define STATS_INC_ALLOCED(x) do { } while (0)
418 #define STATS_INC_GROWN(x) do { } while (0)
419 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
420 #define STATS_SET_HIGH(x) do { } while (0)
421 #define STATS_INC_ERR(x) do { } while (0)
422 #define STATS_INC_NODEALLOCS(x) do { } while (0)
423 #define STATS_INC_NODEFREES(x) do { } while (0)
424 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
425 #define STATS_SET_FREEABLE(x, i) do { } while (0)
426 #define STATS_INC_ALLOCHIT(x) do { } while (0)
427 #define STATS_INC_ALLOCMISS(x) do { } while (0)
428 #define STATS_INC_FREEHIT(x) do { } while (0)
429 #define STATS_INC_FREEMISS(x) do { } while (0)
435 * memory layout of objects:
437 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
438 * the end of an object is aligned with the end of the real
439 * allocation. Catches writes behind the end of the allocation.
440 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
442 * cachep->obj_offset: The real object.
443 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
444 * cachep->size - 1* BYTES_PER_WORD: last caller address
445 * [BYTES_PER_WORD long]
447 static int obj_offset(struct kmem_cache
*cachep
)
449 return cachep
->obj_offset
;
452 static unsigned long long *dbg_redzone1(struct kmem_cache
*cachep
, void *objp
)
454 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
455 return (unsigned long long*) (objp
+ obj_offset(cachep
) -
456 sizeof(unsigned long long));
459 static unsigned long long *dbg_redzone2(struct kmem_cache
*cachep
, void *objp
)
461 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
462 if (cachep
->flags
& SLAB_STORE_USER
)
463 return (unsigned long long *)(objp
+ cachep
->size
-
464 sizeof(unsigned long long) -
466 return (unsigned long long *) (objp
+ cachep
->size
-
467 sizeof(unsigned long long));
470 static void **dbg_userword(struct kmem_cache
*cachep
, void *objp
)
472 BUG_ON(!(cachep
->flags
& SLAB_STORE_USER
));
473 return (void **)(objp
+ cachep
->size
- BYTES_PER_WORD
);
478 #define obj_offset(x) 0
479 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
480 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
481 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
486 * Do not go above this order unless 0 objects fit into the slab or
487 * overridden on the command line.
489 #define SLAB_MAX_ORDER_HI 1
490 #define SLAB_MAX_ORDER_LO 0
491 static int slab_max_order
= SLAB_MAX_ORDER_LO
;
492 static bool slab_max_order_set __initdata
;
494 static inline struct kmem_cache
*virt_to_cache(const void *obj
)
496 struct page
*page
= virt_to_head_page(obj
);
497 return page
->slab_cache
;
500 static inline struct slab
*virt_to_slab(const void *obj
)
502 struct page
*page
= virt_to_head_page(obj
);
504 VM_BUG_ON(!PageSlab(page
));
505 return page
->slab_page
;
508 static inline void *index_to_obj(struct kmem_cache
*cache
, struct slab
*slab
,
511 return slab
->s_mem
+ cache
->size
* idx
;
515 * We want to avoid an expensive divide : (offset / cache->size)
516 * Using the fact that size is a constant for a particular cache,
517 * we can replace (offset / cache->size) by
518 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
520 static inline unsigned int obj_to_index(const struct kmem_cache
*cache
,
521 const struct slab
*slab
, void *obj
)
523 u32 offset
= (obj
- slab
->s_mem
);
524 return reciprocal_divide(offset
, cache
->reciprocal_buffer_size
);
528 * These are the default caches for kmalloc. Custom caches can have other sizes.
530 struct cache_sizes malloc_sizes
[] = {
531 #define CACHE(x) { .cs_size = (x) },
532 #include <linux/kmalloc_sizes.h>
536 EXPORT_SYMBOL(malloc_sizes
);
538 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
544 static struct cache_names __initdata cache_names
[] = {
545 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
546 #include <linux/kmalloc_sizes.h>
551 static struct arraycache_init initarray_generic
=
552 { {0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
554 /* internal cache of cache description objs */
555 static struct kmem_cache kmem_cache_boot
= {
557 .limit
= BOOT_CPUCACHE_ENTRIES
,
559 .size
= sizeof(struct kmem_cache
),
560 .name
= "kmem_cache",
563 #define BAD_ALIEN_MAGIC 0x01020304ul
565 #ifdef CONFIG_LOCKDEP
568 * Slab sometimes uses the kmalloc slabs to store the slab headers
569 * for other slabs "off slab".
570 * The locking for this is tricky in that it nests within the locks
571 * of all other slabs in a few places; to deal with this special
572 * locking we put on-slab caches into a separate lock-class.
574 * We set lock class for alien array caches which are up during init.
575 * The lock annotation will be lost if all cpus of a node goes down and
576 * then comes back up during hotplug
578 static struct lock_class_key on_slab_l3_key
;
579 static struct lock_class_key on_slab_alc_key
;
581 static struct lock_class_key debugobj_l3_key
;
582 static struct lock_class_key debugobj_alc_key
;
584 static void slab_set_lock_classes(struct kmem_cache
*cachep
,
585 struct lock_class_key
*l3_key
, struct lock_class_key
*alc_key
,
588 struct array_cache
**alc
;
589 struct kmem_list3
*l3
;
592 l3
= cachep
->nodelists
[q
];
596 lockdep_set_class(&l3
->list_lock
, l3_key
);
599 * FIXME: This check for BAD_ALIEN_MAGIC
600 * should go away when common slab code is taught to
601 * work even without alien caches.
602 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
603 * for alloc_alien_cache,
605 if (!alc
|| (unsigned long)alc
== BAD_ALIEN_MAGIC
)
609 lockdep_set_class(&alc
[r
]->lock
, alc_key
);
613 static void slab_set_debugobj_lock_classes_node(struct kmem_cache
*cachep
, int node
)
615 slab_set_lock_classes(cachep
, &debugobj_l3_key
, &debugobj_alc_key
, node
);
618 static void slab_set_debugobj_lock_classes(struct kmem_cache
*cachep
)
622 for_each_online_node(node
)
623 slab_set_debugobj_lock_classes_node(cachep
, node
);
626 static void init_node_lock_keys(int q
)
628 struct cache_sizes
*s
= malloc_sizes
;
633 for (s
= malloc_sizes
; s
->cs_size
!= ULONG_MAX
; s
++) {
634 struct kmem_list3
*l3
;
636 l3
= s
->cs_cachep
->nodelists
[q
];
637 if (!l3
|| OFF_SLAB(s
->cs_cachep
))
640 slab_set_lock_classes(s
->cs_cachep
, &on_slab_l3_key
,
641 &on_slab_alc_key
, q
);
645 static void on_slab_lock_classes_node(struct kmem_cache
*cachep
, int q
)
647 struct kmem_list3
*l3
;
648 l3
= cachep
->nodelists
[q
];
652 slab_set_lock_classes(cachep
, &on_slab_l3_key
,
653 &on_slab_alc_key
, q
);
656 static inline void on_slab_lock_classes(struct kmem_cache
*cachep
)
660 VM_BUG_ON(OFF_SLAB(cachep
));
662 on_slab_lock_classes_node(cachep
, node
);
665 static inline void init_lock_keys(void)
670 init_node_lock_keys(node
);
673 static void init_node_lock_keys(int q
)
677 static inline void init_lock_keys(void)
681 static inline void on_slab_lock_classes(struct kmem_cache
*cachep
)
685 static inline void on_slab_lock_classes_node(struct kmem_cache
*cachep
, int node
)
689 static void slab_set_debugobj_lock_classes_node(struct kmem_cache
*cachep
, int node
)
693 static void slab_set_debugobj_lock_classes(struct kmem_cache
*cachep
)
698 static DEFINE_PER_CPU(struct delayed_work
, slab_reap_work
);
700 static inline struct array_cache
*cpu_cache_get(struct kmem_cache
*cachep
)
702 return cachep
->array
[smp_processor_id()];
705 static inline struct kmem_cache
*__find_general_cachep(size_t size
,
708 struct cache_sizes
*csizep
= malloc_sizes
;
711 /* This happens if someone tries to call
712 * kmem_cache_create(), or __kmalloc(), before
713 * the generic caches are initialized.
715 BUG_ON(malloc_sizes
[INDEX_AC
].cs_cachep
== NULL
);
718 return ZERO_SIZE_PTR
;
720 while (size
> csizep
->cs_size
)
724 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
725 * has cs_{dma,}cachep==NULL. Thus no special case
726 * for large kmalloc calls required.
728 #ifdef CONFIG_ZONE_DMA
729 if (unlikely(gfpflags
& GFP_DMA
))
730 return csizep
->cs_dmacachep
;
732 return csizep
->cs_cachep
;
735 static struct kmem_cache
*kmem_find_general_cachep(size_t size
, gfp_t gfpflags
)
737 return __find_general_cachep(size
, gfpflags
);
740 static size_t slab_mgmt_size(size_t nr_objs
, size_t align
)
742 return ALIGN(sizeof(struct slab
)+nr_objs
*sizeof(kmem_bufctl_t
), align
);
746 * Calculate the number of objects and left-over bytes for a given buffer size.
748 static void cache_estimate(unsigned long gfporder
, size_t buffer_size
,
749 size_t align
, int flags
, size_t *left_over
,
754 size_t slab_size
= PAGE_SIZE
<< gfporder
;
757 * The slab management structure can be either off the slab or
758 * on it. For the latter case, the memory allocated for a
762 * - One kmem_bufctl_t for each object
763 * - Padding to respect alignment of @align
764 * - @buffer_size bytes for each object
766 * If the slab management structure is off the slab, then the
767 * alignment will already be calculated into the size. Because
768 * the slabs are all pages aligned, the objects will be at the
769 * correct alignment when allocated.
771 if (flags
& CFLGS_OFF_SLAB
) {
773 nr_objs
= slab_size
/ buffer_size
;
775 if (nr_objs
> SLAB_LIMIT
)
776 nr_objs
= SLAB_LIMIT
;
779 * Ignore padding for the initial guess. The padding
780 * is at most @align-1 bytes, and @buffer_size is at
781 * least @align. In the worst case, this result will
782 * be one greater than the number of objects that fit
783 * into the memory allocation when taking the padding
786 nr_objs
= (slab_size
- sizeof(struct slab
)) /
787 (buffer_size
+ sizeof(kmem_bufctl_t
));
790 * This calculated number will be either the right
791 * amount, or one greater than what we want.
793 if (slab_mgmt_size(nr_objs
, align
) + nr_objs
*buffer_size
797 if (nr_objs
> SLAB_LIMIT
)
798 nr_objs
= SLAB_LIMIT
;
800 mgmt_size
= slab_mgmt_size(nr_objs
, align
);
803 *left_over
= slab_size
- nr_objs
*buffer_size
- mgmt_size
;
807 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
809 static void __slab_error(const char *function
, struct kmem_cache
*cachep
,
812 printk(KERN_ERR
"slab error in %s(): cache `%s': %s\n",
813 function
, cachep
->name
, msg
);
815 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
820 * By default on NUMA we use alien caches to stage the freeing of
821 * objects allocated from other nodes. This causes massive memory
822 * inefficiencies when using fake NUMA setup to split memory into a
823 * large number of small nodes, so it can be disabled on the command
827 static int use_alien_caches __read_mostly
= 1;
828 static int __init
noaliencache_setup(char *s
)
830 use_alien_caches
= 0;
833 __setup("noaliencache", noaliencache_setup
);
835 static int __init
slab_max_order_setup(char *str
)
837 get_option(&str
, &slab_max_order
);
838 slab_max_order
= slab_max_order
< 0 ? 0 :
839 min(slab_max_order
, MAX_ORDER
- 1);
840 slab_max_order_set
= true;
844 __setup("slab_max_order=", slab_max_order_setup
);
848 * Special reaping functions for NUMA systems called from cache_reap().
849 * These take care of doing round robin flushing of alien caches (containing
850 * objects freed on different nodes from which they were allocated) and the
851 * flushing of remote pcps by calling drain_node_pages.
853 static DEFINE_PER_CPU(unsigned long, slab_reap_node
);
855 static void init_reap_node(int cpu
)
859 node
= next_node(cpu_to_mem(cpu
), node_online_map
);
860 if (node
== MAX_NUMNODES
)
861 node
= first_node(node_online_map
);
863 per_cpu(slab_reap_node
, cpu
) = node
;
866 static void next_reap_node(void)
868 int node
= __this_cpu_read(slab_reap_node
);
870 node
= next_node(node
, node_online_map
);
871 if (unlikely(node
>= MAX_NUMNODES
))
872 node
= first_node(node_online_map
);
873 __this_cpu_write(slab_reap_node
, node
);
877 #define init_reap_node(cpu) do { } while (0)
878 #define next_reap_node(void) do { } while (0)
882 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
883 * via the workqueue/eventd.
884 * Add the CPU number into the expiration time to minimize the possibility of
885 * the CPUs getting into lockstep and contending for the global cache chain
888 static void __cpuinit
start_cpu_timer(int cpu
)
890 struct delayed_work
*reap_work
= &per_cpu(slab_reap_work
, cpu
);
893 * When this gets called from do_initcalls via cpucache_init(),
894 * init_workqueues() has already run, so keventd will be setup
897 if (keventd_up() && reap_work
->work
.func
== NULL
) {
899 INIT_DEFERRABLE_WORK(reap_work
, cache_reap
);
900 schedule_delayed_work_on(cpu
, reap_work
,
901 __round_jiffies_relative(HZ
, cpu
));
905 static struct array_cache
*alloc_arraycache(int node
, int entries
,
906 int batchcount
, gfp_t gfp
)
908 int memsize
= sizeof(void *) * entries
+ sizeof(struct array_cache
);
909 struct array_cache
*nc
= NULL
;
911 nc
= kmalloc_node(memsize
, gfp
, node
);
913 * The array_cache structures contain pointers to free object.
914 * However, when such objects are allocated or transferred to another
915 * cache the pointers are not cleared and they could be counted as
916 * valid references during a kmemleak scan. Therefore, kmemleak must
917 * not scan such objects.
919 kmemleak_no_scan(nc
);
923 nc
->batchcount
= batchcount
;
925 spin_lock_init(&nc
->lock
);
930 static inline bool is_slab_pfmemalloc(struct slab
*slabp
)
932 struct page
*page
= virt_to_page(slabp
->s_mem
);
934 return PageSlabPfmemalloc(page
);
937 /* Clears pfmemalloc_active if no slabs have pfmalloc set */
938 static void recheck_pfmemalloc_active(struct kmem_cache
*cachep
,
939 struct array_cache
*ac
)
941 struct kmem_list3
*l3
= cachep
->nodelists
[numa_mem_id()];
945 if (!pfmemalloc_active
)
948 spin_lock_irqsave(&l3
->list_lock
, flags
);
949 list_for_each_entry(slabp
, &l3
->slabs_full
, list
)
950 if (is_slab_pfmemalloc(slabp
))
953 list_for_each_entry(slabp
, &l3
->slabs_partial
, list
)
954 if (is_slab_pfmemalloc(slabp
))
957 list_for_each_entry(slabp
, &l3
->slabs_free
, list
)
958 if (is_slab_pfmemalloc(slabp
))
961 pfmemalloc_active
= false;
963 spin_unlock_irqrestore(&l3
->list_lock
, flags
);
966 static void *__ac_get_obj(struct kmem_cache
*cachep
, struct array_cache
*ac
,
967 gfp_t flags
, bool force_refill
)
970 void *objp
= ac
->entry
[--ac
->avail
];
972 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
973 if (unlikely(is_obj_pfmemalloc(objp
))) {
974 struct kmem_list3
*l3
;
976 if (gfp_pfmemalloc_allowed(flags
)) {
977 clear_obj_pfmemalloc(&objp
);
981 /* The caller cannot use PFMEMALLOC objects, find another one */
982 for (i
= 0; i
< ac
->avail
; i
++) {
983 /* If a !PFMEMALLOC object is found, swap them */
984 if (!is_obj_pfmemalloc(ac
->entry
[i
])) {
986 ac
->entry
[i
] = ac
->entry
[ac
->avail
];
987 ac
->entry
[ac
->avail
] = objp
;
993 * If there are empty slabs on the slabs_free list and we are
994 * being forced to refill the cache, mark this one !pfmemalloc.
996 l3
= cachep
->nodelists
[numa_mem_id()];
997 if (!list_empty(&l3
->slabs_free
) && force_refill
) {
998 struct slab
*slabp
= virt_to_slab(objp
);
999 ClearPageSlabPfmemalloc(virt_to_head_page(slabp
->s_mem
));
1000 clear_obj_pfmemalloc(&objp
);
1001 recheck_pfmemalloc_active(cachep
, ac
);
1005 /* No !PFMEMALLOC objects available */
1013 static inline void *ac_get_obj(struct kmem_cache
*cachep
,
1014 struct array_cache
*ac
, gfp_t flags
, bool force_refill
)
1018 if (unlikely(sk_memalloc_socks()))
1019 objp
= __ac_get_obj(cachep
, ac
, flags
, force_refill
);
1021 objp
= ac
->entry
[--ac
->avail
];
1026 static void *__ac_put_obj(struct kmem_cache
*cachep
, struct array_cache
*ac
,
1029 if (unlikely(pfmemalloc_active
)) {
1030 /* Some pfmemalloc slabs exist, check if this is one */
1031 struct page
*page
= virt_to_head_page(objp
);
1032 if (PageSlabPfmemalloc(page
))
1033 set_obj_pfmemalloc(&objp
);
1039 static inline void ac_put_obj(struct kmem_cache
*cachep
, struct array_cache
*ac
,
1042 if (unlikely(sk_memalloc_socks()))
1043 objp
= __ac_put_obj(cachep
, ac
, objp
);
1045 ac
->entry
[ac
->avail
++] = objp
;
1049 * Transfer objects in one arraycache to another.
1050 * Locking must be handled by the caller.
1052 * Return the number of entries transferred.
1054 static int transfer_objects(struct array_cache
*to
,
1055 struct array_cache
*from
, unsigned int max
)
1057 /* Figure out how many entries to transfer */
1058 int nr
= min3(from
->avail
, max
, to
->limit
- to
->avail
);
1063 memcpy(to
->entry
+ to
->avail
, from
->entry
+ from
->avail
-nr
,
1064 sizeof(void *) *nr
);
1073 #define drain_alien_cache(cachep, alien) do { } while (0)
1074 #define reap_alien(cachep, l3) do { } while (0)
1076 static inline struct array_cache
**alloc_alien_cache(int node
, int limit
, gfp_t gfp
)
1078 return (struct array_cache
**)BAD_ALIEN_MAGIC
;
1081 static inline void free_alien_cache(struct array_cache
**ac_ptr
)
1085 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
1090 static inline void *alternate_node_alloc(struct kmem_cache
*cachep
,
1096 static inline void *____cache_alloc_node(struct kmem_cache
*cachep
,
1097 gfp_t flags
, int nodeid
)
1102 #else /* CONFIG_NUMA */
1104 static void *____cache_alloc_node(struct kmem_cache
*, gfp_t
, int);
1105 static void *alternate_node_alloc(struct kmem_cache
*, gfp_t
);
1107 static struct array_cache
**alloc_alien_cache(int node
, int limit
, gfp_t gfp
)
1109 struct array_cache
**ac_ptr
;
1110 int memsize
= sizeof(void *) * nr_node_ids
;
1115 ac_ptr
= kzalloc_node(memsize
, gfp
, node
);
1118 if (i
== node
|| !node_online(i
))
1120 ac_ptr
[i
] = alloc_arraycache(node
, limit
, 0xbaadf00d, gfp
);
1122 for (i
--; i
>= 0; i
--)
1132 static void free_alien_cache(struct array_cache
**ac_ptr
)
1143 static void __drain_alien_cache(struct kmem_cache
*cachep
,
1144 struct array_cache
*ac
, int node
)
1146 struct kmem_list3
*rl3
= cachep
->nodelists
[node
];
1149 spin_lock(&rl3
->list_lock
);
1151 * Stuff objects into the remote nodes shared array first.
1152 * That way we could avoid the overhead of putting the objects
1153 * into the free lists and getting them back later.
1156 transfer_objects(rl3
->shared
, ac
, ac
->limit
);
1158 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
1160 spin_unlock(&rl3
->list_lock
);
1165 * Called from cache_reap() to regularly drain alien caches round robin.
1167 static void reap_alien(struct kmem_cache
*cachep
, struct kmem_list3
*l3
)
1169 int node
= __this_cpu_read(slab_reap_node
);
1172 struct array_cache
*ac
= l3
->alien
[node
];
1174 if (ac
&& ac
->avail
&& spin_trylock_irq(&ac
->lock
)) {
1175 __drain_alien_cache(cachep
, ac
, node
);
1176 spin_unlock_irq(&ac
->lock
);
1181 static void drain_alien_cache(struct kmem_cache
*cachep
,
1182 struct array_cache
**alien
)
1185 struct array_cache
*ac
;
1186 unsigned long flags
;
1188 for_each_online_node(i
) {
1191 spin_lock_irqsave(&ac
->lock
, flags
);
1192 __drain_alien_cache(cachep
, ac
, i
);
1193 spin_unlock_irqrestore(&ac
->lock
, flags
);
1198 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
1200 struct slab
*slabp
= virt_to_slab(objp
);
1201 int nodeid
= slabp
->nodeid
;
1202 struct kmem_list3
*l3
;
1203 struct array_cache
*alien
= NULL
;
1206 node
= numa_mem_id();
1209 * Make sure we are not freeing a object from another node to the array
1210 * cache on this cpu.
1212 if (likely(slabp
->nodeid
== node
))
1215 l3
= cachep
->nodelists
[node
];
1216 STATS_INC_NODEFREES(cachep
);
1217 if (l3
->alien
&& l3
->alien
[nodeid
]) {
1218 alien
= l3
->alien
[nodeid
];
1219 spin_lock(&alien
->lock
);
1220 if (unlikely(alien
->avail
== alien
->limit
)) {
1221 STATS_INC_ACOVERFLOW(cachep
);
1222 __drain_alien_cache(cachep
, alien
, nodeid
);
1224 ac_put_obj(cachep
, alien
, objp
);
1225 spin_unlock(&alien
->lock
);
1227 spin_lock(&(cachep
->nodelists
[nodeid
])->list_lock
);
1228 free_block(cachep
, &objp
, 1, nodeid
);
1229 spin_unlock(&(cachep
->nodelists
[nodeid
])->list_lock
);
1236 * Allocates and initializes nodelists for a node on each slab cache, used for
1237 * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3
1238 * will be allocated off-node since memory is not yet online for the new node.
1239 * When hotplugging memory or a cpu, existing nodelists are not replaced if
1242 * Must hold slab_mutex.
1244 static int init_cache_nodelists_node(int node
)
1246 struct kmem_cache
*cachep
;
1247 struct kmem_list3
*l3
;
1248 const int memsize
= sizeof(struct kmem_list3
);
1250 list_for_each_entry(cachep
, &slab_caches
, list
) {
1252 * Set up the size64 kmemlist for cpu before we can
1253 * begin anything. Make sure some other cpu on this
1254 * node has not already allocated this
1256 if (!cachep
->nodelists
[node
]) {
1257 l3
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
1260 kmem_list3_init(l3
);
1261 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
1262 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1265 * The l3s don't come and go as CPUs come and
1266 * go. slab_mutex is sufficient
1269 cachep
->nodelists
[node
] = l3
;
1272 spin_lock_irq(&cachep
->nodelists
[node
]->list_lock
);
1273 cachep
->nodelists
[node
]->free_limit
=
1274 (1 + nr_cpus_node(node
)) *
1275 cachep
->batchcount
+ cachep
->num
;
1276 spin_unlock_irq(&cachep
->nodelists
[node
]->list_lock
);
1281 static void __cpuinit
cpuup_canceled(long cpu
)
1283 struct kmem_cache
*cachep
;
1284 struct kmem_list3
*l3
= NULL
;
1285 int node
= cpu_to_mem(cpu
);
1286 const struct cpumask
*mask
= cpumask_of_node(node
);
1288 list_for_each_entry(cachep
, &slab_caches
, list
) {
1289 struct array_cache
*nc
;
1290 struct array_cache
*shared
;
1291 struct array_cache
**alien
;
1293 /* cpu is dead; no one can alloc from it. */
1294 nc
= cachep
->array
[cpu
];
1295 cachep
->array
[cpu
] = NULL
;
1296 l3
= cachep
->nodelists
[node
];
1299 goto free_array_cache
;
1301 spin_lock_irq(&l3
->list_lock
);
1303 /* Free limit for this kmem_list3 */
1304 l3
->free_limit
-= cachep
->batchcount
;
1306 free_block(cachep
, nc
->entry
, nc
->avail
, node
);
1308 if (!cpumask_empty(mask
)) {
1309 spin_unlock_irq(&l3
->list_lock
);
1310 goto free_array_cache
;
1313 shared
= l3
->shared
;
1315 free_block(cachep
, shared
->entry
,
1316 shared
->avail
, node
);
1323 spin_unlock_irq(&l3
->list_lock
);
1327 drain_alien_cache(cachep
, alien
);
1328 free_alien_cache(alien
);
1334 * In the previous loop, all the objects were freed to
1335 * the respective cache's slabs, now we can go ahead and
1336 * shrink each nodelist to its limit.
1338 list_for_each_entry(cachep
, &slab_caches
, list
) {
1339 l3
= cachep
->nodelists
[node
];
1342 drain_freelist(cachep
, l3
, l3
->free_objects
);
1346 static int __cpuinit
cpuup_prepare(long cpu
)
1348 struct kmem_cache
*cachep
;
1349 struct kmem_list3
*l3
= NULL
;
1350 int node
= cpu_to_mem(cpu
);
1354 * We need to do this right in the beginning since
1355 * alloc_arraycache's are going to use this list.
1356 * kmalloc_node allows us to add the slab to the right
1357 * kmem_list3 and not this cpu's kmem_list3
1359 err
= init_cache_nodelists_node(node
);
1364 * Now we can go ahead with allocating the shared arrays and
1367 list_for_each_entry(cachep
, &slab_caches
, list
) {
1368 struct array_cache
*nc
;
1369 struct array_cache
*shared
= NULL
;
1370 struct array_cache
**alien
= NULL
;
1372 nc
= alloc_arraycache(node
, cachep
->limit
,
1373 cachep
->batchcount
, GFP_KERNEL
);
1376 if (cachep
->shared
) {
1377 shared
= alloc_arraycache(node
,
1378 cachep
->shared
* cachep
->batchcount
,
1379 0xbaadf00d, GFP_KERNEL
);
1385 if (use_alien_caches
) {
1386 alien
= alloc_alien_cache(node
, cachep
->limit
, GFP_KERNEL
);
1393 cachep
->array
[cpu
] = nc
;
1394 l3
= cachep
->nodelists
[node
];
1397 spin_lock_irq(&l3
->list_lock
);
1400 * We are serialised from CPU_DEAD or
1401 * CPU_UP_CANCELLED by the cpucontrol lock
1403 l3
->shared
= shared
;
1412 spin_unlock_irq(&l3
->list_lock
);
1414 free_alien_cache(alien
);
1415 if (cachep
->flags
& SLAB_DEBUG_OBJECTS
)
1416 slab_set_debugobj_lock_classes_node(cachep
, node
);
1417 else if (!OFF_SLAB(cachep
) &&
1418 !(cachep
->flags
& SLAB_DESTROY_BY_RCU
))
1419 on_slab_lock_classes_node(cachep
, node
);
1421 init_node_lock_keys(node
);
1425 cpuup_canceled(cpu
);
1429 static int __cpuinit
cpuup_callback(struct notifier_block
*nfb
,
1430 unsigned long action
, void *hcpu
)
1432 long cpu
= (long)hcpu
;
1436 case CPU_UP_PREPARE
:
1437 case CPU_UP_PREPARE_FROZEN
:
1438 mutex_lock(&slab_mutex
);
1439 err
= cpuup_prepare(cpu
);
1440 mutex_unlock(&slab_mutex
);
1443 case CPU_ONLINE_FROZEN
:
1444 start_cpu_timer(cpu
);
1446 #ifdef CONFIG_HOTPLUG_CPU
1447 case CPU_DOWN_PREPARE
:
1448 case CPU_DOWN_PREPARE_FROZEN
:
1450 * Shutdown cache reaper. Note that the slab_mutex is
1451 * held so that if cache_reap() is invoked it cannot do
1452 * anything expensive but will only modify reap_work
1453 * and reschedule the timer.
1455 cancel_delayed_work_sync(&per_cpu(slab_reap_work
, cpu
));
1456 /* Now the cache_reaper is guaranteed to be not running. */
1457 per_cpu(slab_reap_work
, cpu
).work
.func
= NULL
;
1459 case CPU_DOWN_FAILED
:
1460 case CPU_DOWN_FAILED_FROZEN
:
1461 start_cpu_timer(cpu
);
1464 case CPU_DEAD_FROZEN
:
1466 * Even if all the cpus of a node are down, we don't free the
1467 * kmem_list3 of any cache. This to avoid a race between
1468 * cpu_down, and a kmalloc allocation from another cpu for
1469 * memory from the node of the cpu going down. The list3
1470 * structure is usually allocated from kmem_cache_create() and
1471 * gets destroyed at kmem_cache_destroy().
1475 case CPU_UP_CANCELED
:
1476 case CPU_UP_CANCELED_FROZEN
:
1477 mutex_lock(&slab_mutex
);
1478 cpuup_canceled(cpu
);
1479 mutex_unlock(&slab_mutex
);
1482 return notifier_from_errno(err
);
1485 static struct notifier_block __cpuinitdata cpucache_notifier
= {
1486 &cpuup_callback
, NULL
, 0
1489 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1491 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1492 * Returns -EBUSY if all objects cannot be drained so that the node is not
1495 * Must hold slab_mutex.
1497 static int __meminit
drain_cache_nodelists_node(int node
)
1499 struct kmem_cache
*cachep
;
1502 list_for_each_entry(cachep
, &slab_caches
, list
) {
1503 struct kmem_list3
*l3
;
1505 l3
= cachep
->nodelists
[node
];
1509 drain_freelist(cachep
, l3
, l3
->free_objects
);
1511 if (!list_empty(&l3
->slabs_full
) ||
1512 !list_empty(&l3
->slabs_partial
)) {
1520 static int __meminit
slab_memory_callback(struct notifier_block
*self
,
1521 unsigned long action
, void *arg
)
1523 struct memory_notify
*mnb
= arg
;
1527 nid
= mnb
->status_change_nid
;
1532 case MEM_GOING_ONLINE
:
1533 mutex_lock(&slab_mutex
);
1534 ret
= init_cache_nodelists_node(nid
);
1535 mutex_unlock(&slab_mutex
);
1537 case MEM_GOING_OFFLINE
:
1538 mutex_lock(&slab_mutex
);
1539 ret
= drain_cache_nodelists_node(nid
);
1540 mutex_unlock(&slab_mutex
);
1544 case MEM_CANCEL_ONLINE
:
1545 case MEM_CANCEL_OFFLINE
:
1549 return notifier_from_errno(ret
);
1551 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1554 * swap the static kmem_list3 with kmalloced memory
1556 static void __init
init_list(struct kmem_cache
*cachep
, struct kmem_list3
*list
,
1559 struct kmem_list3
*ptr
;
1561 ptr
= kmalloc_node(sizeof(struct kmem_list3
), GFP_NOWAIT
, nodeid
);
1564 memcpy(ptr
, list
, sizeof(struct kmem_list3
));
1566 * Do not assume that spinlocks can be initialized via memcpy:
1568 spin_lock_init(&ptr
->list_lock
);
1570 MAKE_ALL_LISTS(cachep
, ptr
, nodeid
);
1571 cachep
->nodelists
[nodeid
] = ptr
;
1575 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1576 * size of kmem_list3.
1578 static void __init
set_up_list3s(struct kmem_cache
*cachep
, int index
)
1582 for_each_online_node(node
) {
1583 cachep
->nodelists
[node
] = &initkmem_list3
[index
+ node
];
1584 cachep
->nodelists
[node
]->next_reap
= jiffies
+
1586 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1591 * The memory after the last cpu cache pointer is used for the
1592 * the nodelists pointer.
1594 static void setup_nodelists_pointer(struct kmem_cache
*cachep
)
1596 cachep
->nodelists
= (struct kmem_list3
**)&cachep
->array
[nr_cpu_ids
];
1600 * Initialisation. Called after the page allocator have been initialised and
1601 * before smp_init().
1603 void __init
kmem_cache_init(void)
1605 struct cache_sizes
*sizes
;
1606 struct cache_names
*names
;
1609 kmem_cache
= &kmem_cache_boot
;
1610 setup_nodelists_pointer(kmem_cache
);
1612 if (num_possible_nodes() == 1)
1613 use_alien_caches
= 0;
1615 for (i
= 0; i
< NUM_INIT_LISTS
; i
++)
1616 kmem_list3_init(&initkmem_list3
[i
]);
1618 set_up_list3s(kmem_cache
, CACHE_CACHE
);
1621 * Fragmentation resistance on low memory - only use bigger
1622 * page orders on machines with more than 32MB of memory if
1623 * not overridden on the command line.
1625 if (!slab_max_order_set
&& totalram_pages
> (32 << 20) >> PAGE_SHIFT
)
1626 slab_max_order
= SLAB_MAX_ORDER_HI
;
1628 /* Bootstrap is tricky, because several objects are allocated
1629 * from caches that do not exist yet:
1630 * 1) initialize the kmem_cache cache: it contains the struct
1631 * kmem_cache structures of all caches, except kmem_cache itself:
1632 * kmem_cache is statically allocated.
1633 * Initially an __init data area is used for the head array and the
1634 * kmem_list3 structures, it's replaced with a kmalloc allocated
1635 * array at the end of the bootstrap.
1636 * 2) Create the first kmalloc cache.
1637 * The struct kmem_cache for the new cache is allocated normally.
1638 * An __init data area is used for the head array.
1639 * 3) Create the remaining kmalloc caches, with minimally sized
1641 * 4) Replace the __init data head arrays for kmem_cache and the first
1642 * kmalloc cache with kmalloc allocated arrays.
1643 * 5) Replace the __init data for kmem_list3 for kmem_cache and
1644 * the other cache's with kmalloc allocated memory.
1645 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1648 /* 1) create the kmem_cache */
1651 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1653 create_boot_cache(kmem_cache
, "kmem_cache",
1654 offsetof(struct kmem_cache
, array
[nr_cpu_ids
]) +
1655 nr_node_ids
* sizeof(struct kmem_list3
*),
1656 SLAB_HWCACHE_ALIGN
);
1657 list_add(&kmem_cache
->list
, &slab_caches
);
1659 /* 2+3) create the kmalloc caches */
1660 sizes
= malloc_sizes
;
1661 names
= cache_names
;
1664 * Initialize the caches that provide memory for the array cache and the
1665 * kmem_list3 structures first. Without this, further allocations will
1669 sizes
[INDEX_AC
].cs_cachep
= create_kmalloc_cache(names
[INDEX_AC
].name
,
1670 sizes
[INDEX_AC
].cs_size
, ARCH_KMALLOC_FLAGS
);
1672 if (INDEX_AC
!= INDEX_L3
)
1673 sizes
[INDEX_L3
].cs_cachep
=
1674 create_kmalloc_cache(names
[INDEX_L3
].name
,
1675 sizes
[INDEX_L3
].cs_size
, ARCH_KMALLOC_FLAGS
);
1677 slab_early_init
= 0;
1679 while (sizes
->cs_size
!= ULONG_MAX
) {
1681 * For performance, all the general caches are L1 aligned.
1682 * This should be particularly beneficial on SMP boxes, as it
1683 * eliminates "false sharing".
1684 * Note for systems short on memory removing the alignment will
1685 * allow tighter packing of the smaller caches.
1687 if (!sizes
->cs_cachep
)
1688 sizes
->cs_cachep
= create_kmalloc_cache(names
->name
,
1689 sizes
->cs_size
, ARCH_KMALLOC_FLAGS
);
1691 #ifdef CONFIG_ZONE_DMA
1692 sizes
->cs_dmacachep
= create_kmalloc_cache(
1693 names
->name_dma
, sizes
->cs_size
,
1694 SLAB_CACHE_DMA
|ARCH_KMALLOC_FLAGS
);
1699 /* 4) Replace the bootstrap head arrays */
1701 struct array_cache
*ptr
;
1703 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_NOWAIT
);
1705 memcpy(ptr
, cpu_cache_get(kmem_cache
),
1706 sizeof(struct arraycache_init
));
1708 * Do not assume that spinlocks can be initialized via memcpy:
1710 spin_lock_init(&ptr
->lock
);
1712 kmem_cache
->array
[smp_processor_id()] = ptr
;
1714 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_NOWAIT
);
1716 BUG_ON(cpu_cache_get(malloc_sizes
[INDEX_AC
].cs_cachep
)
1717 != &initarray_generic
.cache
);
1718 memcpy(ptr
, cpu_cache_get(malloc_sizes
[INDEX_AC
].cs_cachep
),
1719 sizeof(struct arraycache_init
));
1721 * Do not assume that spinlocks can be initialized via memcpy:
1723 spin_lock_init(&ptr
->lock
);
1725 malloc_sizes
[INDEX_AC
].cs_cachep
->array
[smp_processor_id()] =
1728 /* 5) Replace the bootstrap kmem_list3's */
1732 for_each_online_node(nid
) {
1733 init_list(kmem_cache
, &initkmem_list3
[CACHE_CACHE
+ nid
], nid
);
1735 init_list(malloc_sizes
[INDEX_AC
].cs_cachep
,
1736 &initkmem_list3
[SIZE_AC
+ nid
], nid
);
1738 if (INDEX_AC
!= INDEX_L3
) {
1739 init_list(malloc_sizes
[INDEX_L3
].cs_cachep
,
1740 &initkmem_list3
[SIZE_L3
+ nid
], nid
);
1748 void __init
kmem_cache_init_late(void)
1750 struct kmem_cache
*cachep
;
1754 /* 6) resize the head arrays to their final sizes */
1755 mutex_lock(&slab_mutex
);
1756 list_for_each_entry(cachep
, &slab_caches
, list
)
1757 if (enable_cpucache(cachep
, GFP_NOWAIT
))
1759 mutex_unlock(&slab_mutex
);
1761 /* Annotate slab for lockdep -- annotate the malloc caches */
1768 * Register a cpu startup notifier callback that initializes
1769 * cpu_cache_get for all new cpus
1771 register_cpu_notifier(&cpucache_notifier
);
1775 * Register a memory hotplug callback that initializes and frees
1778 hotplug_memory_notifier(slab_memory_callback
, SLAB_CALLBACK_PRI
);
1782 * The reap timers are started later, with a module init call: That part
1783 * of the kernel is not yet operational.
1787 static int __init
cpucache_init(void)
1792 * Register the timers that return unneeded pages to the page allocator
1794 for_each_online_cpu(cpu
)
1795 start_cpu_timer(cpu
);
1801 __initcall(cpucache_init
);
1803 static noinline
void
1804 slab_out_of_memory(struct kmem_cache
*cachep
, gfp_t gfpflags
, int nodeid
)
1806 struct kmem_list3
*l3
;
1808 unsigned long flags
;
1812 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1814 printk(KERN_WARNING
" cache: %s, object size: %d, order: %d\n",
1815 cachep
->name
, cachep
->size
, cachep
->gfporder
);
1817 for_each_online_node(node
) {
1818 unsigned long active_objs
= 0, num_objs
= 0, free_objects
= 0;
1819 unsigned long active_slabs
= 0, num_slabs
= 0;
1821 l3
= cachep
->nodelists
[node
];
1825 spin_lock_irqsave(&l3
->list_lock
, flags
);
1826 list_for_each_entry(slabp
, &l3
->slabs_full
, list
) {
1827 active_objs
+= cachep
->num
;
1830 list_for_each_entry(slabp
, &l3
->slabs_partial
, list
) {
1831 active_objs
+= slabp
->inuse
;
1834 list_for_each_entry(slabp
, &l3
->slabs_free
, list
)
1837 free_objects
+= l3
->free_objects
;
1838 spin_unlock_irqrestore(&l3
->list_lock
, flags
);
1840 num_slabs
+= active_slabs
;
1841 num_objs
= num_slabs
* cachep
->num
;
1843 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1844 node
, active_slabs
, num_slabs
, active_objs
, num_objs
,
1850 * Interface to system's page allocator. No need to hold the cache-lock.
1852 * If we requested dmaable memory, we will get it. Even if we
1853 * did not request dmaable memory, we might get it, but that
1854 * would be relatively rare and ignorable.
1856 static void *kmem_getpages(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
1864 * Nommu uses slab's for process anonymous memory allocations, and thus
1865 * requires __GFP_COMP to properly refcount higher order allocations
1867 flags
|= __GFP_COMP
;
1870 flags
|= cachep
->allocflags
;
1871 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1872 flags
|= __GFP_RECLAIMABLE
;
1874 page
= alloc_pages_exact_node(nodeid
, flags
| __GFP_NOTRACK
, cachep
->gfporder
);
1876 if (!(flags
& __GFP_NOWARN
) && printk_ratelimit())
1877 slab_out_of_memory(cachep
, flags
, nodeid
);
1881 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1882 if (unlikely(page
->pfmemalloc
))
1883 pfmemalloc_active
= true;
1885 nr_pages
= (1 << cachep
->gfporder
);
1886 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1887 add_zone_page_state(page_zone(page
),
1888 NR_SLAB_RECLAIMABLE
, nr_pages
);
1890 add_zone_page_state(page_zone(page
),
1891 NR_SLAB_UNRECLAIMABLE
, nr_pages
);
1892 for (i
= 0; i
< nr_pages
; i
++) {
1893 __SetPageSlab(page
+ i
);
1895 if (page
->pfmemalloc
)
1896 SetPageSlabPfmemalloc(page
+ i
);
1898 memcg_bind_pages(cachep
, cachep
->gfporder
);
1900 if (kmemcheck_enabled
&& !(cachep
->flags
& SLAB_NOTRACK
)) {
1901 kmemcheck_alloc_shadow(page
, cachep
->gfporder
, flags
, nodeid
);
1904 kmemcheck_mark_uninitialized_pages(page
, nr_pages
);
1906 kmemcheck_mark_unallocated_pages(page
, nr_pages
);
1909 return page_address(page
);
1913 * Interface to system's page release.
1915 static void kmem_freepages(struct kmem_cache
*cachep
, void *addr
)
1917 unsigned long i
= (1 << cachep
->gfporder
);
1918 struct page
*page
= virt_to_page(addr
);
1919 const unsigned long nr_freed
= i
;
1921 kmemcheck_free_shadow(page
, cachep
->gfporder
);
1923 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1924 sub_zone_page_state(page_zone(page
),
1925 NR_SLAB_RECLAIMABLE
, nr_freed
);
1927 sub_zone_page_state(page_zone(page
),
1928 NR_SLAB_UNRECLAIMABLE
, nr_freed
);
1930 BUG_ON(!PageSlab(page
));
1931 __ClearPageSlabPfmemalloc(page
);
1932 __ClearPageSlab(page
);
1936 memcg_release_pages(cachep
, cachep
->gfporder
);
1937 if (current
->reclaim_state
)
1938 current
->reclaim_state
->reclaimed_slab
+= nr_freed
;
1939 free_memcg_kmem_pages((unsigned long)addr
, cachep
->gfporder
);
1942 static void kmem_rcu_free(struct rcu_head
*head
)
1944 struct slab_rcu
*slab_rcu
= (struct slab_rcu
*)head
;
1945 struct kmem_cache
*cachep
= slab_rcu
->cachep
;
1947 kmem_freepages(cachep
, slab_rcu
->addr
);
1948 if (OFF_SLAB(cachep
))
1949 kmem_cache_free(cachep
->slabp_cache
, slab_rcu
);
1954 #ifdef CONFIG_DEBUG_PAGEALLOC
1955 static void store_stackinfo(struct kmem_cache
*cachep
, unsigned long *addr
,
1956 unsigned long caller
)
1958 int size
= cachep
->object_size
;
1960 addr
= (unsigned long *)&((char *)addr
)[obj_offset(cachep
)];
1962 if (size
< 5 * sizeof(unsigned long))
1965 *addr
++ = 0x12345678;
1967 *addr
++ = smp_processor_id();
1968 size
-= 3 * sizeof(unsigned long);
1970 unsigned long *sptr
= &caller
;
1971 unsigned long svalue
;
1973 while (!kstack_end(sptr
)) {
1975 if (kernel_text_address(svalue
)) {
1977 size
-= sizeof(unsigned long);
1978 if (size
<= sizeof(unsigned long))
1984 *addr
++ = 0x87654321;
1988 static void poison_obj(struct kmem_cache
*cachep
, void *addr
, unsigned char val
)
1990 int size
= cachep
->object_size
;
1991 addr
= &((char *)addr
)[obj_offset(cachep
)];
1993 memset(addr
, val
, size
);
1994 *(unsigned char *)(addr
+ size
- 1) = POISON_END
;
1997 static void dump_line(char *data
, int offset
, int limit
)
2000 unsigned char error
= 0;
2003 printk(KERN_ERR
"%03x: ", offset
);
2004 for (i
= 0; i
< limit
; i
++) {
2005 if (data
[offset
+ i
] != POISON_FREE
) {
2006 error
= data
[offset
+ i
];
2010 print_hex_dump(KERN_CONT
, "", 0, 16, 1,
2011 &data
[offset
], limit
, 1);
2013 if (bad_count
== 1) {
2014 error
^= POISON_FREE
;
2015 if (!(error
& (error
- 1))) {
2016 printk(KERN_ERR
"Single bit error detected. Probably "
2019 printk(KERN_ERR
"Run memtest86+ or a similar memory "
2022 printk(KERN_ERR
"Run a memory test tool.\n");
2031 static void print_objinfo(struct kmem_cache
*cachep
, void *objp
, int lines
)
2036 if (cachep
->flags
& SLAB_RED_ZONE
) {
2037 printk(KERN_ERR
"Redzone: 0x%llx/0x%llx.\n",
2038 *dbg_redzone1(cachep
, objp
),
2039 *dbg_redzone2(cachep
, objp
));
2042 if (cachep
->flags
& SLAB_STORE_USER
) {
2043 printk(KERN_ERR
"Last user: [<%p>]",
2044 *dbg_userword(cachep
, objp
));
2045 print_symbol("(%s)",
2046 (unsigned long)*dbg_userword(cachep
, objp
));
2049 realobj
= (char *)objp
+ obj_offset(cachep
);
2050 size
= cachep
->object_size
;
2051 for (i
= 0; i
< size
&& lines
; i
+= 16, lines
--) {
2054 if (i
+ limit
> size
)
2056 dump_line(realobj
, i
, limit
);
2060 static void check_poison_obj(struct kmem_cache
*cachep
, void *objp
)
2066 realobj
= (char *)objp
+ obj_offset(cachep
);
2067 size
= cachep
->object_size
;
2069 for (i
= 0; i
< size
; i
++) {
2070 char exp
= POISON_FREE
;
2073 if (realobj
[i
] != exp
) {
2079 "Slab corruption (%s): %s start=%p, len=%d\n",
2080 print_tainted(), cachep
->name
, realobj
, size
);
2081 print_objinfo(cachep
, objp
, 0);
2083 /* Hexdump the affected line */
2086 if (i
+ limit
> size
)
2088 dump_line(realobj
, i
, limit
);
2091 /* Limit to 5 lines */
2097 /* Print some data about the neighboring objects, if they
2100 struct slab
*slabp
= virt_to_slab(objp
);
2103 objnr
= obj_to_index(cachep
, slabp
, objp
);
2105 objp
= index_to_obj(cachep
, slabp
, objnr
- 1);
2106 realobj
= (char *)objp
+ obj_offset(cachep
);
2107 printk(KERN_ERR
"Prev obj: start=%p, len=%d\n",
2109 print_objinfo(cachep
, objp
, 2);
2111 if (objnr
+ 1 < cachep
->num
) {
2112 objp
= index_to_obj(cachep
, slabp
, objnr
+ 1);
2113 realobj
= (char *)objp
+ obj_offset(cachep
);
2114 printk(KERN_ERR
"Next obj: start=%p, len=%d\n",
2116 print_objinfo(cachep
, objp
, 2);
2123 static void slab_destroy_debugcheck(struct kmem_cache
*cachep
, struct slab
*slabp
)
2126 for (i
= 0; i
< cachep
->num
; i
++) {
2127 void *objp
= index_to_obj(cachep
, slabp
, i
);
2129 if (cachep
->flags
& SLAB_POISON
) {
2130 #ifdef CONFIG_DEBUG_PAGEALLOC
2131 if (cachep
->size
% PAGE_SIZE
== 0 &&
2133 kernel_map_pages(virt_to_page(objp
),
2134 cachep
->size
/ PAGE_SIZE
, 1);
2136 check_poison_obj(cachep
, objp
);
2138 check_poison_obj(cachep
, objp
);
2141 if (cachep
->flags
& SLAB_RED_ZONE
) {
2142 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
2143 slab_error(cachep
, "start of a freed object "
2145 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
2146 slab_error(cachep
, "end of a freed object "
2152 static void slab_destroy_debugcheck(struct kmem_cache
*cachep
, struct slab
*slabp
)
2158 * slab_destroy - destroy and release all objects in a slab
2159 * @cachep: cache pointer being destroyed
2160 * @slabp: slab pointer being destroyed
2162 * Destroy all the objs in a slab, and release the mem back to the system.
2163 * Before calling the slab must have been unlinked from the cache. The
2164 * cache-lock is not held/needed.
2166 static void slab_destroy(struct kmem_cache
*cachep
, struct slab
*slabp
)
2168 void *addr
= slabp
->s_mem
- slabp
->colouroff
;
2170 slab_destroy_debugcheck(cachep
, slabp
);
2171 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
)) {
2172 struct slab_rcu
*slab_rcu
;
2174 slab_rcu
= (struct slab_rcu
*)slabp
;
2175 slab_rcu
->cachep
= cachep
;
2176 slab_rcu
->addr
= addr
;
2177 call_rcu(&slab_rcu
->head
, kmem_rcu_free
);
2179 kmem_freepages(cachep
, addr
);
2180 if (OFF_SLAB(cachep
))
2181 kmem_cache_free(cachep
->slabp_cache
, slabp
);
2186 * calculate_slab_order - calculate size (page order) of slabs
2187 * @cachep: pointer to the cache that is being created
2188 * @size: size of objects to be created in this cache.
2189 * @align: required alignment for the objects.
2190 * @flags: slab allocation flags
2192 * Also calculates the number of objects per slab.
2194 * This could be made much more intelligent. For now, try to avoid using
2195 * high order pages for slabs. When the gfp() functions are more friendly
2196 * towards high-order requests, this should be changed.
2198 static size_t calculate_slab_order(struct kmem_cache
*cachep
,
2199 size_t size
, size_t align
, unsigned long flags
)
2201 unsigned long offslab_limit
;
2202 size_t left_over
= 0;
2205 for (gfporder
= 0; gfporder
<= KMALLOC_MAX_ORDER
; gfporder
++) {
2209 cache_estimate(gfporder
, size
, align
, flags
, &remainder
, &num
);
2213 if (flags
& CFLGS_OFF_SLAB
) {
2215 * Max number of objs-per-slab for caches which
2216 * use off-slab slabs. Needed to avoid a possible
2217 * looping condition in cache_grow().
2219 offslab_limit
= size
- sizeof(struct slab
);
2220 offslab_limit
/= sizeof(kmem_bufctl_t
);
2222 if (num
> offslab_limit
)
2226 /* Found something acceptable - save it away */
2228 cachep
->gfporder
= gfporder
;
2229 left_over
= remainder
;
2232 * A VFS-reclaimable slab tends to have most allocations
2233 * as GFP_NOFS and we really don't want to have to be allocating
2234 * higher-order pages when we are unable to shrink dcache.
2236 if (flags
& SLAB_RECLAIM_ACCOUNT
)
2240 * Large number of objects is good, but very large slabs are
2241 * currently bad for the gfp()s.
2243 if (gfporder
>= slab_max_order
)
2247 * Acceptable internal fragmentation?
2249 if (left_over
* 8 <= (PAGE_SIZE
<< gfporder
))
2255 static int __init_refok
setup_cpu_cache(struct kmem_cache
*cachep
, gfp_t gfp
)
2257 if (slab_state
>= FULL
)
2258 return enable_cpucache(cachep
, gfp
);
2260 if (slab_state
== DOWN
) {
2262 * Note: Creation of first cache (kmem_cache).
2263 * The setup_list3s is taken care
2264 * of by the caller of __kmem_cache_create
2266 cachep
->array
[smp_processor_id()] = &initarray_generic
.cache
;
2267 slab_state
= PARTIAL
;
2268 } else if (slab_state
== PARTIAL
) {
2270 * Note: the second kmem_cache_create must create the cache
2271 * that's used by kmalloc(24), otherwise the creation of
2272 * further caches will BUG().
2274 cachep
->array
[smp_processor_id()] = &initarray_generic
.cache
;
2277 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2278 * the second cache, then we need to set up all its list3s,
2279 * otherwise the creation of further caches will BUG().
2281 set_up_list3s(cachep
, SIZE_AC
);
2282 if (INDEX_AC
== INDEX_L3
)
2283 slab_state
= PARTIAL_L3
;
2285 slab_state
= PARTIAL_ARRAYCACHE
;
2287 /* Remaining boot caches */
2288 cachep
->array
[smp_processor_id()] =
2289 kmalloc(sizeof(struct arraycache_init
), gfp
);
2291 if (slab_state
== PARTIAL_ARRAYCACHE
) {
2292 set_up_list3s(cachep
, SIZE_L3
);
2293 slab_state
= PARTIAL_L3
;
2296 for_each_online_node(node
) {
2297 cachep
->nodelists
[node
] =
2298 kmalloc_node(sizeof(struct kmem_list3
),
2300 BUG_ON(!cachep
->nodelists
[node
]);
2301 kmem_list3_init(cachep
->nodelists
[node
]);
2305 cachep
->nodelists
[numa_mem_id()]->next_reap
=
2306 jiffies
+ REAPTIMEOUT_LIST3
+
2307 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
2309 cpu_cache_get(cachep
)->avail
= 0;
2310 cpu_cache_get(cachep
)->limit
= BOOT_CPUCACHE_ENTRIES
;
2311 cpu_cache_get(cachep
)->batchcount
= 1;
2312 cpu_cache_get(cachep
)->touched
= 0;
2313 cachep
->batchcount
= 1;
2314 cachep
->limit
= BOOT_CPUCACHE_ENTRIES
;
2319 * __kmem_cache_create - Create a cache.
2320 * @cachep: cache management descriptor
2321 * @flags: SLAB flags
2323 * Returns a ptr to the cache on success, NULL on failure.
2324 * Cannot be called within a int, but can be interrupted.
2325 * The @ctor is run when new pages are allocated by the cache.
2329 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2330 * to catch references to uninitialised memory.
2332 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2333 * for buffer overruns.
2335 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2336 * cacheline. This can be beneficial if you're counting cycles as closely
2340 __kmem_cache_create (struct kmem_cache
*cachep
, unsigned long flags
)
2342 size_t left_over
, slab_size
, ralign
;
2345 size_t size
= cachep
->size
;
2350 * Enable redzoning and last user accounting, except for caches with
2351 * large objects, if the increased size would increase the object size
2352 * above the next power of two: caches with object sizes just above a
2353 * power of two have a significant amount of internal fragmentation.
2355 if (size
< 4096 || fls(size
- 1) == fls(size
-1 + REDZONE_ALIGN
+
2356 2 * sizeof(unsigned long long)))
2357 flags
|= SLAB_RED_ZONE
| SLAB_STORE_USER
;
2358 if (!(flags
& SLAB_DESTROY_BY_RCU
))
2359 flags
|= SLAB_POISON
;
2361 if (flags
& SLAB_DESTROY_BY_RCU
)
2362 BUG_ON(flags
& SLAB_POISON
);
2366 * Check that size is in terms of words. This is needed to avoid
2367 * unaligned accesses for some archs when redzoning is used, and makes
2368 * sure any on-slab bufctl's are also correctly aligned.
2370 if (size
& (BYTES_PER_WORD
- 1)) {
2371 size
+= (BYTES_PER_WORD
- 1);
2372 size
&= ~(BYTES_PER_WORD
- 1);
2376 * Redzoning and user store require word alignment or possibly larger.
2377 * Note this will be overridden by architecture or caller mandated
2378 * alignment if either is greater than BYTES_PER_WORD.
2380 if (flags
& SLAB_STORE_USER
)
2381 ralign
= BYTES_PER_WORD
;
2383 if (flags
& SLAB_RED_ZONE
) {
2384 ralign
= REDZONE_ALIGN
;
2385 /* If redzoning, ensure that the second redzone is suitably
2386 * aligned, by adjusting the object size accordingly. */
2387 size
+= REDZONE_ALIGN
- 1;
2388 size
&= ~(REDZONE_ALIGN
- 1);
2391 /* 3) caller mandated alignment */
2392 if (ralign
< cachep
->align
) {
2393 ralign
= cachep
->align
;
2395 /* disable debug if necessary */
2396 if (ralign
> __alignof__(unsigned long long))
2397 flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
2401 cachep
->align
= ralign
;
2403 if (slab_is_available())
2408 setup_nodelists_pointer(cachep
);
2412 * Both debugging options require word-alignment which is calculated
2415 if (flags
& SLAB_RED_ZONE
) {
2416 /* add space for red zone words */
2417 cachep
->obj_offset
+= sizeof(unsigned long long);
2418 size
+= 2 * sizeof(unsigned long long);
2420 if (flags
& SLAB_STORE_USER
) {
2421 /* user store requires one word storage behind the end of
2422 * the real object. But if the second red zone needs to be
2423 * aligned to 64 bits, we must allow that much space.
2425 if (flags
& SLAB_RED_ZONE
)
2426 size
+= REDZONE_ALIGN
;
2428 size
+= BYTES_PER_WORD
;
2430 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2431 if (size
>= malloc_sizes
[INDEX_L3
+ 1].cs_size
2432 && cachep
->object_size
> cache_line_size()
2433 && ALIGN(size
, cachep
->align
) < PAGE_SIZE
) {
2434 cachep
->obj_offset
+= PAGE_SIZE
- ALIGN(size
, cachep
->align
);
2441 * Determine if the slab management is 'on' or 'off' slab.
2442 * (bootstrapping cannot cope with offslab caches so don't do
2443 * it too early on. Always use on-slab management when
2444 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2446 if ((size
>= (PAGE_SIZE
>> 3)) && !slab_early_init
&&
2447 !(flags
& SLAB_NOLEAKTRACE
))
2449 * Size is large, assume best to place the slab management obj
2450 * off-slab (should allow better packing of objs).
2452 flags
|= CFLGS_OFF_SLAB
;
2454 size
= ALIGN(size
, cachep
->align
);
2456 left_over
= calculate_slab_order(cachep
, size
, cachep
->align
, flags
);
2461 slab_size
= ALIGN(cachep
->num
* sizeof(kmem_bufctl_t
)
2462 + sizeof(struct slab
), cachep
->align
);
2465 * If the slab has been placed off-slab, and we have enough space then
2466 * move it on-slab. This is at the expense of any extra colouring.
2468 if (flags
& CFLGS_OFF_SLAB
&& left_over
>= slab_size
) {
2469 flags
&= ~CFLGS_OFF_SLAB
;
2470 left_over
-= slab_size
;
2473 if (flags
& CFLGS_OFF_SLAB
) {
2474 /* really off slab. No need for manual alignment */
2476 cachep
->num
* sizeof(kmem_bufctl_t
) + sizeof(struct slab
);
2478 #ifdef CONFIG_PAGE_POISONING
2479 /* If we're going to use the generic kernel_map_pages()
2480 * poisoning, then it's going to smash the contents of
2481 * the redzone and userword anyhow, so switch them off.
2483 if (size
% PAGE_SIZE
== 0 && flags
& SLAB_POISON
)
2484 flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
2488 cachep
->colour_off
= cache_line_size();
2489 /* Offset must be a multiple of the alignment. */
2490 if (cachep
->colour_off
< cachep
->align
)
2491 cachep
->colour_off
= cachep
->align
;
2492 cachep
->colour
= left_over
/ cachep
->colour_off
;
2493 cachep
->slab_size
= slab_size
;
2494 cachep
->flags
= flags
;
2495 cachep
->allocflags
= 0;
2496 if (CONFIG_ZONE_DMA_FLAG
&& (flags
& SLAB_CACHE_DMA
))
2497 cachep
->allocflags
|= GFP_DMA
;
2498 cachep
->size
= size
;
2499 cachep
->reciprocal_buffer_size
= reciprocal_value(size
);
2501 if (flags
& CFLGS_OFF_SLAB
) {
2502 cachep
->slabp_cache
= kmem_find_general_cachep(slab_size
, 0u);
2504 * This is a possibility for one of the malloc_sizes caches.
2505 * But since we go off slab only for object size greater than
2506 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2507 * this should not happen at all.
2508 * But leave a BUG_ON for some lucky dude.
2510 BUG_ON(ZERO_OR_NULL_PTR(cachep
->slabp_cache
));
2513 err
= setup_cpu_cache(cachep
, gfp
);
2515 __kmem_cache_shutdown(cachep
);
2519 if (flags
& SLAB_DEBUG_OBJECTS
) {
2521 * Would deadlock through slab_destroy()->call_rcu()->
2522 * debug_object_activate()->kmem_cache_alloc().
2524 WARN_ON_ONCE(flags
& SLAB_DESTROY_BY_RCU
);
2526 slab_set_debugobj_lock_classes(cachep
);
2527 } else if (!OFF_SLAB(cachep
) && !(flags
& SLAB_DESTROY_BY_RCU
))
2528 on_slab_lock_classes(cachep
);
2534 static void check_irq_off(void)
2536 BUG_ON(!irqs_disabled());
2539 static void check_irq_on(void)
2541 BUG_ON(irqs_disabled());
2544 static void check_spinlock_acquired(struct kmem_cache
*cachep
)
2548 assert_spin_locked(&cachep
->nodelists
[numa_mem_id()]->list_lock
);
2552 static void check_spinlock_acquired_node(struct kmem_cache
*cachep
, int node
)
2556 assert_spin_locked(&cachep
->nodelists
[node
]->list_lock
);
2561 #define check_irq_off() do { } while(0)
2562 #define check_irq_on() do { } while(0)
2563 #define check_spinlock_acquired(x) do { } while(0)
2564 #define check_spinlock_acquired_node(x, y) do { } while(0)
2567 static void drain_array(struct kmem_cache
*cachep
, struct kmem_list3
*l3
,
2568 struct array_cache
*ac
,
2569 int force
, int node
);
2571 static void do_drain(void *arg
)
2573 struct kmem_cache
*cachep
= arg
;
2574 struct array_cache
*ac
;
2575 int node
= numa_mem_id();
2578 ac
= cpu_cache_get(cachep
);
2579 spin_lock(&cachep
->nodelists
[node
]->list_lock
);
2580 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
2581 spin_unlock(&cachep
->nodelists
[node
]->list_lock
);
2585 static void drain_cpu_caches(struct kmem_cache
*cachep
)
2587 struct kmem_list3
*l3
;
2590 on_each_cpu(do_drain
, cachep
, 1);
2592 for_each_online_node(node
) {
2593 l3
= cachep
->nodelists
[node
];
2594 if (l3
&& l3
->alien
)
2595 drain_alien_cache(cachep
, l3
->alien
);
2598 for_each_online_node(node
) {
2599 l3
= cachep
->nodelists
[node
];
2601 drain_array(cachep
, l3
, l3
->shared
, 1, node
);
2606 * Remove slabs from the list of free slabs.
2607 * Specify the number of slabs to drain in tofree.
2609 * Returns the actual number of slabs released.
2611 static int drain_freelist(struct kmem_cache
*cache
,
2612 struct kmem_list3
*l3
, int tofree
)
2614 struct list_head
*p
;
2619 while (nr_freed
< tofree
&& !list_empty(&l3
->slabs_free
)) {
2621 spin_lock_irq(&l3
->list_lock
);
2622 p
= l3
->slabs_free
.prev
;
2623 if (p
== &l3
->slabs_free
) {
2624 spin_unlock_irq(&l3
->list_lock
);
2628 slabp
= list_entry(p
, struct slab
, list
);
2630 BUG_ON(slabp
->inuse
);
2632 list_del(&slabp
->list
);
2634 * Safe to drop the lock. The slab is no longer linked
2637 l3
->free_objects
-= cache
->num
;
2638 spin_unlock_irq(&l3
->list_lock
);
2639 slab_destroy(cache
, slabp
);
2646 /* Called with slab_mutex held to protect against cpu hotplug */
2647 static int __cache_shrink(struct kmem_cache
*cachep
)
2650 struct kmem_list3
*l3
;
2652 drain_cpu_caches(cachep
);
2655 for_each_online_node(i
) {
2656 l3
= cachep
->nodelists
[i
];
2660 drain_freelist(cachep
, l3
, l3
->free_objects
);
2662 ret
+= !list_empty(&l3
->slabs_full
) ||
2663 !list_empty(&l3
->slabs_partial
);
2665 return (ret
? 1 : 0);
2669 * kmem_cache_shrink - Shrink a cache.
2670 * @cachep: The cache to shrink.
2672 * Releases as many slabs as possible for a cache.
2673 * To help debugging, a zero exit status indicates all slabs were released.
2675 int kmem_cache_shrink(struct kmem_cache
*cachep
)
2678 BUG_ON(!cachep
|| in_interrupt());
2681 mutex_lock(&slab_mutex
);
2682 ret
= __cache_shrink(cachep
);
2683 mutex_unlock(&slab_mutex
);
2687 EXPORT_SYMBOL(kmem_cache_shrink
);
2689 int __kmem_cache_shutdown(struct kmem_cache
*cachep
)
2692 struct kmem_list3
*l3
;
2693 int rc
= __cache_shrink(cachep
);
2698 for_each_online_cpu(i
)
2699 kfree(cachep
->array
[i
]);
2701 /* NUMA: free the list3 structures */
2702 for_each_online_node(i
) {
2703 l3
= cachep
->nodelists
[i
];
2706 free_alien_cache(l3
->alien
);
2714 * Get the memory for a slab management obj.
2715 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2716 * always come from malloc_sizes caches. The slab descriptor cannot
2717 * come from the same cache which is getting created because,
2718 * when we are searching for an appropriate cache for these
2719 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2720 * If we are creating a malloc_sizes cache here it would not be visible to
2721 * kmem_find_general_cachep till the initialization is complete.
2722 * Hence we cannot have slabp_cache same as the original cache.
2724 static struct slab
*alloc_slabmgmt(struct kmem_cache
*cachep
, void *objp
,
2725 int colour_off
, gfp_t local_flags
,
2730 if (OFF_SLAB(cachep
)) {
2731 /* Slab management obj is off-slab. */
2732 slabp
= kmem_cache_alloc_node(cachep
->slabp_cache
,
2733 local_flags
, nodeid
);
2735 * If the first object in the slab is leaked (it's allocated
2736 * but no one has a reference to it), we want to make sure
2737 * kmemleak does not treat the ->s_mem pointer as a reference
2738 * to the object. Otherwise we will not report the leak.
2740 kmemleak_scan_area(&slabp
->list
, sizeof(struct list_head
),
2745 slabp
= objp
+ colour_off
;
2746 colour_off
+= cachep
->slab_size
;
2749 slabp
->colouroff
= colour_off
;
2750 slabp
->s_mem
= objp
+ colour_off
;
2751 slabp
->nodeid
= nodeid
;
2756 static inline kmem_bufctl_t
*slab_bufctl(struct slab
*slabp
)
2758 return (kmem_bufctl_t
*) (slabp
+ 1);
2761 static void cache_init_objs(struct kmem_cache
*cachep
,
2766 for (i
= 0; i
< cachep
->num
; i
++) {
2767 void *objp
= index_to_obj(cachep
, slabp
, i
);
2769 /* need to poison the objs? */
2770 if (cachep
->flags
& SLAB_POISON
)
2771 poison_obj(cachep
, objp
, POISON_FREE
);
2772 if (cachep
->flags
& SLAB_STORE_USER
)
2773 *dbg_userword(cachep
, objp
) = NULL
;
2775 if (cachep
->flags
& SLAB_RED_ZONE
) {
2776 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2777 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2780 * Constructors are not allowed to allocate memory from the same
2781 * cache which they are a constructor for. Otherwise, deadlock.
2782 * They must also be threaded.
2784 if (cachep
->ctor
&& !(cachep
->flags
& SLAB_POISON
))
2785 cachep
->ctor(objp
+ obj_offset(cachep
));
2787 if (cachep
->flags
& SLAB_RED_ZONE
) {
2788 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
2789 slab_error(cachep
, "constructor overwrote the"
2790 " end of an object");
2791 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
2792 slab_error(cachep
, "constructor overwrote the"
2793 " start of an object");
2795 if ((cachep
->size
% PAGE_SIZE
) == 0 &&
2796 OFF_SLAB(cachep
) && cachep
->flags
& SLAB_POISON
)
2797 kernel_map_pages(virt_to_page(objp
),
2798 cachep
->size
/ PAGE_SIZE
, 0);
2803 slab_bufctl(slabp
)[i
] = i
+ 1;
2805 slab_bufctl(slabp
)[i
- 1] = BUFCTL_END
;
2808 static void kmem_flagcheck(struct kmem_cache
*cachep
, gfp_t flags
)
2810 if (CONFIG_ZONE_DMA_FLAG
) {
2811 if (flags
& GFP_DMA
)
2812 BUG_ON(!(cachep
->allocflags
& GFP_DMA
));
2814 BUG_ON(cachep
->allocflags
& GFP_DMA
);
2818 static void *slab_get_obj(struct kmem_cache
*cachep
, struct slab
*slabp
,
2821 void *objp
= index_to_obj(cachep
, slabp
, slabp
->free
);
2825 next
= slab_bufctl(slabp
)[slabp
->free
];
2827 slab_bufctl(slabp
)[slabp
->free
] = BUFCTL_FREE
;
2828 WARN_ON(slabp
->nodeid
!= nodeid
);
2835 static void slab_put_obj(struct kmem_cache
*cachep
, struct slab
*slabp
,
2836 void *objp
, int nodeid
)
2838 unsigned int objnr
= obj_to_index(cachep
, slabp
, objp
);
2841 /* Verify that the slab belongs to the intended node */
2842 WARN_ON(slabp
->nodeid
!= nodeid
);
2844 if (slab_bufctl(slabp
)[objnr
] + 1 <= SLAB_LIMIT
+ 1) {
2845 printk(KERN_ERR
"slab: double free detected in cache "
2846 "'%s', objp %p\n", cachep
->name
, objp
);
2850 slab_bufctl(slabp
)[objnr
] = slabp
->free
;
2851 slabp
->free
= objnr
;
2856 * Map pages beginning at addr to the given cache and slab. This is required
2857 * for the slab allocator to be able to lookup the cache and slab of a
2858 * virtual address for kfree, ksize, and slab debugging.
2860 static void slab_map_pages(struct kmem_cache
*cache
, struct slab
*slab
,
2866 page
= virt_to_page(addr
);
2869 if (likely(!PageCompound(page
)))
2870 nr_pages
<<= cache
->gfporder
;
2873 page
->slab_cache
= cache
;
2874 page
->slab_page
= slab
;
2876 } while (--nr_pages
);
2880 * Grow (by 1) the number of slabs within a cache. This is called by
2881 * kmem_cache_alloc() when there are no active objs left in a cache.
2883 static int cache_grow(struct kmem_cache
*cachep
,
2884 gfp_t flags
, int nodeid
, void *objp
)
2889 struct kmem_list3
*l3
;
2892 * Be lazy and only check for valid flags here, keeping it out of the
2893 * critical path in kmem_cache_alloc().
2895 BUG_ON(flags
& GFP_SLAB_BUG_MASK
);
2896 local_flags
= flags
& (GFP_CONSTRAINT_MASK
|GFP_RECLAIM_MASK
);
2898 /* Take the l3 list lock to change the colour_next on this node */
2900 l3
= cachep
->nodelists
[nodeid
];
2901 spin_lock(&l3
->list_lock
);
2903 /* Get colour for the slab, and cal the next value. */
2904 offset
= l3
->colour_next
;
2906 if (l3
->colour_next
>= cachep
->colour
)
2907 l3
->colour_next
= 0;
2908 spin_unlock(&l3
->list_lock
);
2910 offset
*= cachep
->colour_off
;
2912 if (local_flags
& __GFP_WAIT
)
2916 * The test for missing atomic flag is performed here, rather than
2917 * the more obvious place, simply to reduce the critical path length
2918 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2919 * will eventually be caught here (where it matters).
2921 kmem_flagcheck(cachep
, flags
);
2924 * Get mem for the objs. Attempt to allocate a physical page from
2928 objp
= kmem_getpages(cachep
, local_flags
, nodeid
);
2932 /* Get slab management. */
2933 slabp
= alloc_slabmgmt(cachep
, objp
, offset
,
2934 local_flags
& ~GFP_CONSTRAINT_MASK
, nodeid
);
2938 slab_map_pages(cachep
, slabp
, objp
);
2940 cache_init_objs(cachep
, slabp
);
2942 if (local_flags
& __GFP_WAIT
)
2943 local_irq_disable();
2945 spin_lock(&l3
->list_lock
);
2947 /* Make slab active. */
2948 list_add_tail(&slabp
->list
, &(l3
->slabs_free
));
2949 STATS_INC_GROWN(cachep
);
2950 l3
->free_objects
+= cachep
->num
;
2951 spin_unlock(&l3
->list_lock
);
2954 kmem_freepages(cachep
, objp
);
2956 if (local_flags
& __GFP_WAIT
)
2957 local_irq_disable();
2964 * Perform extra freeing checks:
2965 * - detect bad pointers.
2966 * - POISON/RED_ZONE checking
2968 static void kfree_debugcheck(const void *objp
)
2970 if (!virt_addr_valid(objp
)) {
2971 printk(KERN_ERR
"kfree_debugcheck: out of range ptr %lxh.\n",
2972 (unsigned long)objp
);
2977 static inline void verify_redzone_free(struct kmem_cache
*cache
, void *obj
)
2979 unsigned long long redzone1
, redzone2
;
2981 redzone1
= *dbg_redzone1(cache
, obj
);
2982 redzone2
= *dbg_redzone2(cache
, obj
);
2987 if (redzone1
== RED_ACTIVE
&& redzone2
== RED_ACTIVE
)
2990 if (redzone1
== RED_INACTIVE
&& redzone2
== RED_INACTIVE
)
2991 slab_error(cache
, "double free detected");
2993 slab_error(cache
, "memory outside object was overwritten");
2995 printk(KERN_ERR
"%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2996 obj
, redzone1
, redzone2
);
2999 static void *cache_free_debugcheck(struct kmem_cache
*cachep
, void *objp
,
3000 unsigned long caller
)
3006 BUG_ON(virt_to_cache(objp
) != cachep
);
3008 objp
-= obj_offset(cachep
);
3009 kfree_debugcheck(objp
);
3010 page
= virt_to_head_page(objp
);
3012 slabp
= page
->slab_page
;
3014 if (cachep
->flags
& SLAB_RED_ZONE
) {
3015 verify_redzone_free(cachep
, objp
);
3016 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
3017 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
3019 if (cachep
->flags
& SLAB_STORE_USER
)
3020 *dbg_userword(cachep
, objp
) = (void *)caller
;
3022 objnr
= obj_to_index(cachep
, slabp
, objp
);
3024 BUG_ON(objnr
>= cachep
->num
);
3025 BUG_ON(objp
!= index_to_obj(cachep
, slabp
, objnr
));
3027 #ifdef CONFIG_DEBUG_SLAB_LEAK
3028 slab_bufctl(slabp
)[objnr
] = BUFCTL_FREE
;
3030 if (cachep
->flags
& SLAB_POISON
) {
3031 #ifdef CONFIG_DEBUG_PAGEALLOC
3032 if ((cachep
->size
% PAGE_SIZE
)==0 && OFF_SLAB(cachep
)) {
3033 store_stackinfo(cachep
, objp
, caller
);
3034 kernel_map_pages(virt_to_page(objp
),
3035 cachep
->size
/ PAGE_SIZE
, 0);
3037 poison_obj(cachep
, objp
, POISON_FREE
);
3040 poison_obj(cachep
, objp
, POISON_FREE
);
3046 static void check_slabp(struct kmem_cache
*cachep
, struct slab
*slabp
)
3051 /* Check slab's freelist to see if this obj is there. */
3052 for (i
= slabp
->free
; i
!= BUFCTL_END
; i
= slab_bufctl(slabp
)[i
]) {
3054 if (entries
> cachep
->num
|| i
>= cachep
->num
)
3057 if (entries
!= cachep
->num
- slabp
->inuse
) {
3059 printk(KERN_ERR
"slab: Internal list corruption detected in "
3060 "cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
3061 cachep
->name
, cachep
->num
, slabp
, slabp
->inuse
,
3063 print_hex_dump(KERN_ERR
, "", DUMP_PREFIX_OFFSET
, 16, 1, slabp
,
3064 sizeof(*slabp
) + cachep
->num
* sizeof(kmem_bufctl_t
),
3070 #define kfree_debugcheck(x) do { } while(0)
3071 #define cache_free_debugcheck(x,objp,z) (objp)
3072 #define check_slabp(x,y) do { } while(0)
3075 static void *cache_alloc_refill(struct kmem_cache
*cachep
, gfp_t flags
,
3079 struct kmem_list3
*l3
;
3080 struct array_cache
*ac
;
3084 node
= numa_mem_id();
3085 if (unlikely(force_refill
))
3088 ac
= cpu_cache_get(cachep
);
3089 batchcount
= ac
->batchcount
;
3090 if (!ac
->touched
&& batchcount
> BATCHREFILL_LIMIT
) {
3092 * If there was little recent activity on this cache, then
3093 * perform only a partial refill. Otherwise we could generate
3096 batchcount
= BATCHREFILL_LIMIT
;
3098 l3
= cachep
->nodelists
[node
];
3100 BUG_ON(ac
->avail
> 0 || !l3
);
3101 spin_lock(&l3
->list_lock
);
3103 /* See if we can refill from the shared array */
3104 if (l3
->shared
&& transfer_objects(ac
, l3
->shared
, batchcount
)) {
3105 l3
->shared
->touched
= 1;
3109 while (batchcount
> 0) {
3110 struct list_head
*entry
;
3112 /* Get slab alloc is to come from. */
3113 entry
= l3
->slabs_partial
.next
;
3114 if (entry
== &l3
->slabs_partial
) {
3115 l3
->free_touched
= 1;
3116 entry
= l3
->slabs_free
.next
;
3117 if (entry
== &l3
->slabs_free
)
3121 slabp
= list_entry(entry
, struct slab
, list
);
3122 check_slabp(cachep
, slabp
);
3123 check_spinlock_acquired(cachep
);
3126 * The slab was either on partial or free list so
3127 * there must be at least one object available for
3130 BUG_ON(slabp
->inuse
>= cachep
->num
);
3132 while (slabp
->inuse
< cachep
->num
&& batchcount
--) {
3133 STATS_INC_ALLOCED(cachep
);
3134 STATS_INC_ACTIVE(cachep
);
3135 STATS_SET_HIGH(cachep
);
3137 ac_put_obj(cachep
, ac
, slab_get_obj(cachep
, slabp
,
3140 check_slabp(cachep
, slabp
);
3142 /* move slabp to correct slabp list: */
3143 list_del(&slabp
->list
);
3144 if (slabp
->free
== BUFCTL_END
)
3145 list_add(&slabp
->list
, &l3
->slabs_full
);
3147 list_add(&slabp
->list
, &l3
->slabs_partial
);
3151 l3
->free_objects
-= ac
->avail
;
3153 spin_unlock(&l3
->list_lock
);
3155 if (unlikely(!ac
->avail
)) {
3158 x
= cache_grow(cachep
, flags
| GFP_THISNODE
, node
, NULL
);
3160 /* cache_grow can reenable interrupts, then ac could change. */
3161 ac
= cpu_cache_get(cachep
);
3162 node
= numa_mem_id();
3164 /* no objects in sight? abort */
3165 if (!x
&& (ac
->avail
== 0 || force_refill
))
3168 if (!ac
->avail
) /* objects refilled by interrupt? */
3173 return ac_get_obj(cachep
, ac
, flags
, force_refill
);
3176 static inline void cache_alloc_debugcheck_before(struct kmem_cache
*cachep
,
3179 might_sleep_if(flags
& __GFP_WAIT
);
3181 kmem_flagcheck(cachep
, flags
);
3186 static void *cache_alloc_debugcheck_after(struct kmem_cache
*cachep
,
3187 gfp_t flags
, void *objp
, unsigned long caller
)
3191 if (cachep
->flags
& SLAB_POISON
) {
3192 #ifdef CONFIG_DEBUG_PAGEALLOC
3193 if ((cachep
->size
% PAGE_SIZE
) == 0 && OFF_SLAB(cachep
))
3194 kernel_map_pages(virt_to_page(objp
),
3195 cachep
->size
/ PAGE_SIZE
, 1);
3197 check_poison_obj(cachep
, objp
);
3199 check_poison_obj(cachep
, objp
);
3201 poison_obj(cachep
, objp
, POISON_INUSE
);
3203 if (cachep
->flags
& SLAB_STORE_USER
)
3204 *dbg_userword(cachep
, objp
) = (void *)caller
;
3206 if (cachep
->flags
& SLAB_RED_ZONE
) {
3207 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
||
3208 *dbg_redzone2(cachep
, objp
) != RED_INACTIVE
) {
3209 slab_error(cachep
, "double free, or memory outside"
3210 " object was overwritten");
3212 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3213 objp
, *dbg_redzone1(cachep
, objp
),
3214 *dbg_redzone2(cachep
, objp
));
3216 *dbg_redzone1(cachep
, objp
) = RED_ACTIVE
;
3217 *dbg_redzone2(cachep
, objp
) = RED_ACTIVE
;
3219 #ifdef CONFIG_DEBUG_SLAB_LEAK
3224 slabp
= virt_to_head_page(objp
)->slab_page
;
3225 objnr
= (unsigned)(objp
- slabp
->s_mem
) / cachep
->size
;
3226 slab_bufctl(slabp
)[objnr
] = BUFCTL_ACTIVE
;
3229 objp
+= obj_offset(cachep
);
3230 if (cachep
->ctor
&& cachep
->flags
& SLAB_POISON
)
3232 if (ARCH_SLAB_MINALIGN
&&
3233 ((unsigned long)objp
& (ARCH_SLAB_MINALIGN
-1))) {
3234 printk(KERN_ERR
"0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3235 objp
, (int)ARCH_SLAB_MINALIGN
);
3240 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3243 static bool slab_should_failslab(struct kmem_cache
*cachep
, gfp_t flags
)
3245 if (cachep
== kmem_cache
)
3248 return should_failslab(cachep
->object_size
, flags
, cachep
->flags
);
3251 static inline void *____cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3254 struct array_cache
*ac
;
3255 bool force_refill
= false;
3259 ac
= cpu_cache_get(cachep
);
3260 if (likely(ac
->avail
)) {
3262 objp
= ac_get_obj(cachep
, ac
, flags
, false);
3265 * Allow for the possibility all avail objects are not allowed
3266 * by the current flags
3269 STATS_INC_ALLOCHIT(cachep
);
3272 force_refill
= true;
3275 STATS_INC_ALLOCMISS(cachep
);
3276 objp
= cache_alloc_refill(cachep
, flags
, force_refill
);
3278 * the 'ac' may be updated by cache_alloc_refill(),
3279 * and kmemleak_erase() requires its correct value.
3281 ac
= cpu_cache_get(cachep
);
3285 * To avoid a false negative, if an object that is in one of the
3286 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3287 * treat the array pointers as a reference to the object.
3290 kmemleak_erase(&ac
->entry
[ac
->avail
]);
3296 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3298 * If we are in_interrupt, then process context, including cpusets and
3299 * mempolicy, may not apply and should not be used for allocation policy.
3301 static void *alternate_node_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3303 int nid_alloc
, nid_here
;
3305 if (in_interrupt() || (flags
& __GFP_THISNODE
))
3307 nid_alloc
= nid_here
= numa_mem_id();
3308 if (cpuset_do_slab_mem_spread() && (cachep
->flags
& SLAB_MEM_SPREAD
))
3309 nid_alloc
= cpuset_slab_spread_node();
3310 else if (current
->mempolicy
)
3311 nid_alloc
= slab_node();
3312 if (nid_alloc
!= nid_here
)
3313 return ____cache_alloc_node(cachep
, flags
, nid_alloc
);
3318 * Fallback function if there was no memory available and no objects on a
3319 * certain node and fall back is permitted. First we scan all the
3320 * available nodelists for available objects. If that fails then we
3321 * perform an allocation without specifying a node. This allows the page
3322 * allocator to do its reclaim / fallback magic. We then insert the
3323 * slab into the proper nodelist and then allocate from it.
3325 static void *fallback_alloc(struct kmem_cache
*cache
, gfp_t flags
)
3327 struct zonelist
*zonelist
;
3331 enum zone_type high_zoneidx
= gfp_zone(flags
);
3334 unsigned int cpuset_mems_cookie
;
3336 if (flags
& __GFP_THISNODE
)
3339 local_flags
= flags
& (GFP_CONSTRAINT_MASK
|GFP_RECLAIM_MASK
);
3342 cpuset_mems_cookie
= get_mems_allowed();
3343 zonelist
= node_zonelist(slab_node(), flags
);
3347 * Look through allowed nodes for objects available
3348 * from existing per node queues.
3350 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
3351 nid
= zone_to_nid(zone
);
3353 if (cpuset_zone_allowed_hardwall(zone
, flags
) &&
3354 cache
->nodelists
[nid
] &&
3355 cache
->nodelists
[nid
]->free_objects
) {
3356 obj
= ____cache_alloc_node(cache
,
3357 flags
| GFP_THISNODE
, nid
);
3365 * This allocation will be performed within the constraints
3366 * of the current cpuset / memory policy requirements.
3367 * We may trigger various forms of reclaim on the allowed
3368 * set and go into memory reserves if necessary.
3370 if (local_flags
& __GFP_WAIT
)
3372 kmem_flagcheck(cache
, flags
);
3373 obj
= kmem_getpages(cache
, local_flags
, numa_mem_id());
3374 if (local_flags
& __GFP_WAIT
)
3375 local_irq_disable();
3378 * Insert into the appropriate per node queues
3380 nid
= page_to_nid(virt_to_page(obj
));
3381 if (cache_grow(cache
, flags
, nid
, obj
)) {
3382 obj
= ____cache_alloc_node(cache
,
3383 flags
| GFP_THISNODE
, nid
);
3386 * Another processor may allocate the
3387 * objects in the slab since we are
3388 * not holding any locks.
3392 /* cache_grow already freed obj */
3398 if (unlikely(!put_mems_allowed(cpuset_mems_cookie
) && !obj
))
3404 * A interface to enable slab creation on nodeid
3406 static void *____cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
,
3409 struct list_head
*entry
;
3411 struct kmem_list3
*l3
;
3415 l3
= cachep
->nodelists
[nodeid
];
3420 spin_lock(&l3
->list_lock
);
3421 entry
= l3
->slabs_partial
.next
;
3422 if (entry
== &l3
->slabs_partial
) {
3423 l3
->free_touched
= 1;
3424 entry
= l3
->slabs_free
.next
;
3425 if (entry
== &l3
->slabs_free
)
3429 slabp
= list_entry(entry
, struct slab
, list
);
3430 check_spinlock_acquired_node(cachep
, nodeid
);
3431 check_slabp(cachep
, slabp
);
3433 STATS_INC_NODEALLOCS(cachep
);
3434 STATS_INC_ACTIVE(cachep
);
3435 STATS_SET_HIGH(cachep
);
3437 BUG_ON(slabp
->inuse
== cachep
->num
);
3439 obj
= slab_get_obj(cachep
, slabp
, nodeid
);
3440 check_slabp(cachep
, slabp
);
3442 /* move slabp to correct slabp list: */
3443 list_del(&slabp
->list
);
3445 if (slabp
->free
== BUFCTL_END
)
3446 list_add(&slabp
->list
, &l3
->slabs_full
);
3448 list_add(&slabp
->list
, &l3
->slabs_partial
);
3450 spin_unlock(&l3
->list_lock
);
3454 spin_unlock(&l3
->list_lock
);
3455 x
= cache_grow(cachep
, flags
| GFP_THISNODE
, nodeid
, NULL
);
3459 return fallback_alloc(cachep
, flags
);
3466 * kmem_cache_alloc_node - Allocate an object on the specified node
3467 * @cachep: The cache to allocate from.
3468 * @flags: See kmalloc().
3469 * @nodeid: node number of the target node.
3470 * @caller: return address of caller, used for debug information
3472 * Identical to kmem_cache_alloc but it will allocate memory on the given
3473 * node, which can improve the performance for cpu bound structures.
3475 * Fallback to other node is possible if __GFP_THISNODE is not set.
3477 static __always_inline
void *
3478 slab_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
,
3479 unsigned long caller
)
3481 unsigned long save_flags
;
3483 int slab_node
= numa_mem_id();
3485 flags
&= gfp_allowed_mask
;
3487 lockdep_trace_alloc(flags
);
3489 if (slab_should_failslab(cachep
, flags
))
3492 cachep
= memcg_kmem_get_cache(cachep
, flags
);
3494 cache_alloc_debugcheck_before(cachep
, flags
);
3495 local_irq_save(save_flags
);
3497 if (nodeid
== NUMA_NO_NODE
)
3500 if (unlikely(!cachep
->nodelists
[nodeid
])) {
3501 /* Node not bootstrapped yet */
3502 ptr
= fallback_alloc(cachep
, flags
);
3506 if (nodeid
== slab_node
) {
3508 * Use the locally cached objects if possible.
3509 * However ____cache_alloc does not allow fallback
3510 * to other nodes. It may fail while we still have
3511 * objects on other nodes available.
3513 ptr
= ____cache_alloc(cachep
, flags
);
3517 /* ___cache_alloc_node can fall back to other nodes */
3518 ptr
= ____cache_alloc_node(cachep
, flags
, nodeid
);
3520 local_irq_restore(save_flags
);
3521 ptr
= cache_alloc_debugcheck_after(cachep
, flags
, ptr
, caller
);
3522 kmemleak_alloc_recursive(ptr
, cachep
->object_size
, 1, cachep
->flags
,
3526 kmemcheck_slab_alloc(cachep
, flags
, ptr
, cachep
->object_size
);
3528 if (unlikely((flags
& __GFP_ZERO
) && ptr
))
3529 memset(ptr
, 0, cachep
->object_size
);
3534 static __always_inline
void *
3535 __do_cache_alloc(struct kmem_cache
*cache
, gfp_t flags
)
3539 if (unlikely(current
->flags
& (PF_SPREAD_SLAB
| PF_MEMPOLICY
))) {
3540 objp
= alternate_node_alloc(cache
, flags
);
3544 objp
= ____cache_alloc(cache
, flags
);
3547 * We may just have run out of memory on the local node.
3548 * ____cache_alloc_node() knows how to locate memory on other nodes
3551 objp
= ____cache_alloc_node(cache
, flags
, numa_mem_id());
3558 static __always_inline
void *
3559 __do_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3561 return ____cache_alloc(cachep
, flags
);
3564 #endif /* CONFIG_NUMA */
3566 static __always_inline
void *
3567 slab_alloc(struct kmem_cache
*cachep
, gfp_t flags
, unsigned long caller
)
3569 unsigned long save_flags
;
3572 flags
&= gfp_allowed_mask
;
3574 lockdep_trace_alloc(flags
);
3576 if (slab_should_failslab(cachep
, flags
))
3579 cachep
= memcg_kmem_get_cache(cachep
, flags
);
3581 cache_alloc_debugcheck_before(cachep
, flags
);
3582 local_irq_save(save_flags
);
3583 objp
= __do_cache_alloc(cachep
, flags
);
3584 local_irq_restore(save_flags
);
3585 objp
= cache_alloc_debugcheck_after(cachep
, flags
, objp
, caller
);
3586 kmemleak_alloc_recursive(objp
, cachep
->object_size
, 1, cachep
->flags
,
3591 kmemcheck_slab_alloc(cachep
, flags
, objp
, cachep
->object_size
);
3593 if (unlikely((flags
& __GFP_ZERO
) && objp
))
3594 memset(objp
, 0, cachep
->object_size
);
3600 * Caller needs to acquire correct kmem_list's list_lock
3602 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int nr_objects
,
3606 struct kmem_list3
*l3
;
3608 for (i
= 0; i
< nr_objects
; i
++) {
3612 clear_obj_pfmemalloc(&objpp
[i
]);
3615 slabp
= virt_to_slab(objp
);
3616 l3
= cachep
->nodelists
[node
];
3617 list_del(&slabp
->list
);
3618 check_spinlock_acquired_node(cachep
, node
);
3619 check_slabp(cachep
, slabp
);
3620 slab_put_obj(cachep
, slabp
, objp
, node
);
3621 STATS_DEC_ACTIVE(cachep
);
3623 check_slabp(cachep
, slabp
);
3625 /* fixup slab chains */
3626 if (slabp
->inuse
== 0) {
3627 if (l3
->free_objects
> l3
->free_limit
) {
3628 l3
->free_objects
-= cachep
->num
;
3629 /* No need to drop any previously held
3630 * lock here, even if we have a off-slab slab
3631 * descriptor it is guaranteed to come from
3632 * a different cache, refer to comments before
3635 slab_destroy(cachep
, slabp
);
3637 list_add(&slabp
->list
, &l3
->slabs_free
);
3640 /* Unconditionally move a slab to the end of the
3641 * partial list on free - maximum time for the
3642 * other objects to be freed, too.
3644 list_add_tail(&slabp
->list
, &l3
->slabs_partial
);
3649 static void cache_flusharray(struct kmem_cache
*cachep
, struct array_cache
*ac
)
3652 struct kmem_list3
*l3
;
3653 int node
= numa_mem_id();
3655 batchcount
= ac
->batchcount
;
3657 BUG_ON(!batchcount
|| batchcount
> ac
->avail
);
3660 l3
= cachep
->nodelists
[node
];
3661 spin_lock(&l3
->list_lock
);
3663 struct array_cache
*shared_array
= l3
->shared
;
3664 int max
= shared_array
->limit
- shared_array
->avail
;
3666 if (batchcount
> max
)
3668 memcpy(&(shared_array
->entry
[shared_array
->avail
]),
3669 ac
->entry
, sizeof(void *) * batchcount
);
3670 shared_array
->avail
+= batchcount
;
3675 free_block(cachep
, ac
->entry
, batchcount
, node
);
3680 struct list_head
*p
;
3682 p
= l3
->slabs_free
.next
;
3683 while (p
!= &(l3
->slabs_free
)) {
3686 slabp
= list_entry(p
, struct slab
, list
);
3687 BUG_ON(slabp
->inuse
);
3692 STATS_SET_FREEABLE(cachep
, i
);
3695 spin_unlock(&l3
->list_lock
);
3696 ac
->avail
-= batchcount
;
3697 memmove(ac
->entry
, &(ac
->entry
[batchcount
]), sizeof(void *)*ac
->avail
);
3701 * Release an obj back to its cache. If the obj has a constructed state, it must
3702 * be in this state _before_ it is released. Called with disabled ints.
3704 static inline void __cache_free(struct kmem_cache
*cachep
, void *objp
,
3705 unsigned long caller
)
3707 struct array_cache
*ac
= cpu_cache_get(cachep
);
3710 kmemleak_free_recursive(objp
, cachep
->flags
);
3711 objp
= cache_free_debugcheck(cachep
, objp
, caller
);
3713 kmemcheck_slab_free(cachep
, objp
, cachep
->object_size
);
3716 * Skip calling cache_free_alien() when the platform is not numa.
3717 * This will avoid cache misses that happen while accessing slabp (which
3718 * is per page memory reference) to get nodeid. Instead use a global
3719 * variable to skip the call, which is mostly likely to be present in
3722 if (nr_online_nodes
> 1 && cache_free_alien(cachep
, objp
))
3725 if (likely(ac
->avail
< ac
->limit
)) {
3726 STATS_INC_FREEHIT(cachep
);
3728 STATS_INC_FREEMISS(cachep
);
3729 cache_flusharray(cachep
, ac
);
3732 ac_put_obj(cachep
, ac
, objp
);
3736 * kmem_cache_alloc - Allocate an object
3737 * @cachep: The cache to allocate from.
3738 * @flags: See kmalloc().
3740 * Allocate an object from this cache. The flags are only relevant
3741 * if the cache has no available objects.
3743 void *kmem_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3745 void *ret
= slab_alloc(cachep
, flags
, _RET_IP_
);
3747 trace_kmem_cache_alloc(_RET_IP_
, ret
,
3748 cachep
->object_size
, cachep
->size
, flags
);
3752 EXPORT_SYMBOL(kmem_cache_alloc
);
3754 #ifdef CONFIG_TRACING
3756 kmem_cache_alloc_trace(struct kmem_cache
*cachep
, gfp_t flags
, size_t size
)
3760 ret
= slab_alloc(cachep
, flags
, _RET_IP_
);
3762 trace_kmalloc(_RET_IP_
, ret
,
3763 size
, cachep
->size
, flags
);
3766 EXPORT_SYMBOL(kmem_cache_alloc_trace
);
3770 void *kmem_cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
3772 void *ret
= slab_alloc_node(cachep
, flags
, nodeid
, _RET_IP_
);
3774 trace_kmem_cache_alloc_node(_RET_IP_
, ret
,
3775 cachep
->object_size
, cachep
->size
,
3780 EXPORT_SYMBOL(kmem_cache_alloc_node
);
3782 #ifdef CONFIG_TRACING
3783 void *kmem_cache_alloc_node_trace(struct kmem_cache
*cachep
,
3790 ret
= slab_alloc_node(cachep
, flags
, nodeid
, _RET_IP_
);
3792 trace_kmalloc_node(_RET_IP_
, ret
,
3797 EXPORT_SYMBOL(kmem_cache_alloc_node_trace
);
3800 static __always_inline
void *
3801 __do_kmalloc_node(size_t size
, gfp_t flags
, int node
, unsigned long caller
)
3803 struct kmem_cache
*cachep
;
3805 cachep
= kmem_find_general_cachep(size
, flags
);
3806 if (unlikely(ZERO_OR_NULL_PTR(cachep
)))
3808 return kmem_cache_alloc_node_trace(cachep
, flags
, node
, size
);
3811 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3812 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3814 return __do_kmalloc_node(size
, flags
, node
, _RET_IP_
);
3816 EXPORT_SYMBOL(__kmalloc_node
);
3818 void *__kmalloc_node_track_caller(size_t size
, gfp_t flags
,
3819 int node
, unsigned long caller
)
3821 return __do_kmalloc_node(size
, flags
, node
, caller
);
3823 EXPORT_SYMBOL(__kmalloc_node_track_caller
);
3825 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3827 return __do_kmalloc_node(size
, flags
, node
, 0);
3829 EXPORT_SYMBOL(__kmalloc_node
);
3830 #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3831 #endif /* CONFIG_NUMA */
3834 * __do_kmalloc - allocate memory
3835 * @size: how many bytes of memory are required.
3836 * @flags: the type of memory to allocate (see kmalloc).
3837 * @caller: function caller for debug tracking of the caller
3839 static __always_inline
void *__do_kmalloc(size_t size
, gfp_t flags
,
3840 unsigned long caller
)
3842 struct kmem_cache
*cachep
;
3845 /* If you want to save a few bytes .text space: replace
3847 * Then kmalloc uses the uninlined functions instead of the inline
3850 cachep
= __find_general_cachep(size
, flags
);
3851 if (unlikely(ZERO_OR_NULL_PTR(cachep
)))
3853 ret
= slab_alloc(cachep
, flags
, caller
);
3855 trace_kmalloc(caller
, ret
,
3856 size
, cachep
->size
, flags
);
3862 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3863 void *__kmalloc(size_t size
, gfp_t flags
)
3865 return __do_kmalloc(size
, flags
, _RET_IP_
);
3867 EXPORT_SYMBOL(__kmalloc
);
3869 void *__kmalloc_track_caller(size_t size
, gfp_t flags
, unsigned long caller
)
3871 return __do_kmalloc(size
, flags
, caller
);
3873 EXPORT_SYMBOL(__kmalloc_track_caller
);
3876 void *__kmalloc(size_t size
, gfp_t flags
)
3878 return __do_kmalloc(size
, flags
, 0);
3880 EXPORT_SYMBOL(__kmalloc
);
3884 * kmem_cache_free - Deallocate an object
3885 * @cachep: The cache the allocation was from.
3886 * @objp: The previously allocated object.
3888 * Free an object which was previously allocated from this
3891 void kmem_cache_free(struct kmem_cache
*cachep
, void *objp
)
3893 unsigned long flags
;
3894 cachep
= cache_from_obj(cachep
, objp
);
3898 local_irq_save(flags
);
3899 debug_check_no_locks_freed(objp
, cachep
->object_size
);
3900 if (!(cachep
->flags
& SLAB_DEBUG_OBJECTS
))
3901 debug_check_no_obj_freed(objp
, cachep
->object_size
);
3902 __cache_free(cachep
, objp
, _RET_IP_
);
3903 local_irq_restore(flags
);
3905 trace_kmem_cache_free(_RET_IP_
, objp
);
3907 EXPORT_SYMBOL(kmem_cache_free
);
3910 * kfree - free previously allocated memory
3911 * @objp: pointer returned by kmalloc.
3913 * If @objp is NULL, no operation is performed.
3915 * Don't free memory not originally allocated by kmalloc()
3916 * or you will run into trouble.
3918 void kfree(const void *objp
)
3920 struct kmem_cache
*c
;
3921 unsigned long flags
;
3923 trace_kfree(_RET_IP_
, objp
);
3925 if (unlikely(ZERO_OR_NULL_PTR(objp
)))
3927 local_irq_save(flags
);
3928 kfree_debugcheck(objp
);
3929 c
= virt_to_cache(objp
);
3930 debug_check_no_locks_freed(objp
, c
->object_size
);
3932 debug_check_no_obj_freed(objp
, c
->object_size
);
3933 __cache_free(c
, (void *)objp
, _RET_IP_
);
3934 local_irq_restore(flags
);
3936 EXPORT_SYMBOL(kfree
);
3939 * This initializes kmem_list3 or resizes various caches for all nodes.
3941 static int alloc_kmemlist(struct kmem_cache
*cachep
, gfp_t gfp
)
3944 struct kmem_list3
*l3
;
3945 struct array_cache
*new_shared
;
3946 struct array_cache
**new_alien
= NULL
;
3948 for_each_online_node(node
) {
3950 if (use_alien_caches
) {
3951 new_alien
= alloc_alien_cache(node
, cachep
->limit
, gfp
);
3957 if (cachep
->shared
) {
3958 new_shared
= alloc_arraycache(node
,
3959 cachep
->shared
*cachep
->batchcount
,
3962 free_alien_cache(new_alien
);
3967 l3
= cachep
->nodelists
[node
];
3969 struct array_cache
*shared
= l3
->shared
;
3971 spin_lock_irq(&l3
->list_lock
);
3974 free_block(cachep
, shared
->entry
,
3975 shared
->avail
, node
);
3977 l3
->shared
= new_shared
;
3979 l3
->alien
= new_alien
;
3982 l3
->free_limit
= (1 + nr_cpus_node(node
)) *
3983 cachep
->batchcount
+ cachep
->num
;
3984 spin_unlock_irq(&l3
->list_lock
);
3986 free_alien_cache(new_alien
);
3989 l3
= kmalloc_node(sizeof(struct kmem_list3
), gfp
, node
);
3991 free_alien_cache(new_alien
);
3996 kmem_list3_init(l3
);
3997 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
3998 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
3999 l3
->shared
= new_shared
;
4000 l3
->alien
= new_alien
;
4001 l3
->free_limit
= (1 + nr_cpus_node(node
)) *
4002 cachep
->batchcount
+ cachep
->num
;
4003 cachep
->nodelists
[node
] = l3
;
4008 if (!cachep
->list
.next
) {
4009 /* Cache is not active yet. Roll back what we did */
4012 if (cachep
->nodelists
[node
]) {
4013 l3
= cachep
->nodelists
[node
];
4016 free_alien_cache(l3
->alien
);
4018 cachep
->nodelists
[node
] = NULL
;
4026 struct ccupdate_struct
{
4027 struct kmem_cache
*cachep
;
4028 struct array_cache
*new[0];
4031 static void do_ccupdate_local(void *info
)
4033 struct ccupdate_struct
*new = info
;
4034 struct array_cache
*old
;
4037 old
= cpu_cache_get(new->cachep
);
4039 new->cachep
->array
[smp_processor_id()] = new->new[smp_processor_id()];
4040 new->new[smp_processor_id()] = old
;
4043 /* Always called with the slab_mutex held */
4044 static int __do_tune_cpucache(struct kmem_cache
*cachep
, int limit
,
4045 int batchcount
, int shared
, gfp_t gfp
)
4047 struct ccupdate_struct
*new;
4050 new = kzalloc(sizeof(*new) + nr_cpu_ids
* sizeof(struct array_cache
*),
4055 for_each_online_cpu(i
) {
4056 new->new[i
] = alloc_arraycache(cpu_to_mem(i
), limit
,
4059 for (i
--; i
>= 0; i
--)
4065 new->cachep
= cachep
;
4067 on_each_cpu(do_ccupdate_local
, (void *)new, 1);
4070 cachep
->batchcount
= batchcount
;
4071 cachep
->limit
= limit
;
4072 cachep
->shared
= shared
;
4074 for_each_online_cpu(i
) {
4075 struct array_cache
*ccold
= new->new[i
];
4078 spin_lock_irq(&cachep
->nodelists
[cpu_to_mem(i
)]->list_lock
);
4079 free_block(cachep
, ccold
->entry
, ccold
->avail
, cpu_to_mem(i
));
4080 spin_unlock_irq(&cachep
->nodelists
[cpu_to_mem(i
)]->list_lock
);
4084 return alloc_kmemlist(cachep
, gfp
);
4087 static int do_tune_cpucache(struct kmem_cache
*cachep
, int limit
,
4088 int batchcount
, int shared
, gfp_t gfp
)
4091 struct kmem_cache
*c
= NULL
;
4094 ret
= __do_tune_cpucache(cachep
, limit
, batchcount
, shared
, gfp
);
4096 if (slab_state
< FULL
)
4099 if ((ret
< 0) || !is_root_cache(cachep
))
4102 VM_BUG_ON(!mutex_is_locked(&slab_mutex
));
4103 for_each_memcg_cache_index(i
) {
4104 c
= cache_from_memcg(cachep
, i
);
4106 /* return value determined by the parent cache only */
4107 __do_tune_cpucache(c
, limit
, batchcount
, shared
, gfp
);
4113 /* Called with slab_mutex held always */
4114 static int enable_cpucache(struct kmem_cache
*cachep
, gfp_t gfp
)
4121 if (!is_root_cache(cachep
)) {
4122 struct kmem_cache
*root
= memcg_root_cache(cachep
);
4123 limit
= root
->limit
;
4124 shared
= root
->shared
;
4125 batchcount
= root
->batchcount
;
4128 if (limit
&& shared
&& batchcount
)
4131 * The head array serves three purposes:
4132 * - create a LIFO ordering, i.e. return objects that are cache-warm
4133 * - reduce the number of spinlock operations.
4134 * - reduce the number of linked list operations on the slab and
4135 * bufctl chains: array operations are cheaper.
4136 * The numbers are guessed, we should auto-tune as described by
4139 if (cachep
->size
> 131072)
4141 else if (cachep
->size
> PAGE_SIZE
)
4143 else if (cachep
->size
> 1024)
4145 else if (cachep
->size
> 256)
4151 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
4152 * allocation behaviour: Most allocs on one cpu, most free operations
4153 * on another cpu. For these cases, an efficient object passing between
4154 * cpus is necessary. This is provided by a shared array. The array
4155 * replaces Bonwick's magazine layer.
4156 * On uniprocessor, it's functionally equivalent (but less efficient)
4157 * to a larger limit. Thus disabled by default.
4160 if (cachep
->size
<= PAGE_SIZE
&& num_possible_cpus() > 1)
4165 * With debugging enabled, large batchcount lead to excessively long
4166 * periods with disabled local interrupts. Limit the batchcount
4171 batchcount
= (limit
+ 1) / 2;
4173 err
= do_tune_cpucache(cachep
, limit
, batchcount
, shared
, gfp
);
4175 printk(KERN_ERR
"enable_cpucache failed for %s, error %d.\n",
4176 cachep
->name
, -err
);
4181 * Drain an array if it contains any elements taking the l3 lock only if
4182 * necessary. Note that the l3 listlock also protects the array_cache
4183 * if drain_array() is used on the shared array.
4185 static void drain_array(struct kmem_cache
*cachep
, struct kmem_list3
*l3
,
4186 struct array_cache
*ac
, int force
, int node
)
4190 if (!ac
|| !ac
->avail
)
4192 if (ac
->touched
&& !force
) {
4195 spin_lock_irq(&l3
->list_lock
);
4197 tofree
= force
? ac
->avail
: (ac
->limit
+ 4) / 5;
4198 if (tofree
> ac
->avail
)
4199 tofree
= (ac
->avail
+ 1) / 2;
4200 free_block(cachep
, ac
->entry
, tofree
, node
);
4201 ac
->avail
-= tofree
;
4202 memmove(ac
->entry
, &(ac
->entry
[tofree
]),
4203 sizeof(void *) * ac
->avail
);
4205 spin_unlock_irq(&l3
->list_lock
);
4210 * cache_reap - Reclaim memory from caches.
4211 * @w: work descriptor
4213 * Called from workqueue/eventd every few seconds.
4215 * - clear the per-cpu caches for this CPU.
4216 * - return freeable pages to the main free memory pool.
4218 * If we cannot acquire the cache chain mutex then just give up - we'll try
4219 * again on the next iteration.
4221 static void cache_reap(struct work_struct
*w
)
4223 struct kmem_cache
*searchp
;
4224 struct kmem_list3
*l3
;
4225 int node
= numa_mem_id();
4226 struct delayed_work
*work
= to_delayed_work(w
);
4228 if (!mutex_trylock(&slab_mutex
))
4229 /* Give up. Setup the next iteration. */
4232 list_for_each_entry(searchp
, &slab_caches
, list
) {
4236 * We only take the l3 lock if absolutely necessary and we
4237 * have established with reasonable certainty that
4238 * we can do some work if the lock was obtained.
4240 l3
= searchp
->nodelists
[node
];
4242 reap_alien(searchp
, l3
);
4244 drain_array(searchp
, l3
, cpu_cache_get(searchp
), 0, node
);
4247 * These are racy checks but it does not matter
4248 * if we skip one check or scan twice.
4250 if (time_after(l3
->next_reap
, jiffies
))
4253 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
;
4255 drain_array(searchp
, l3
, l3
->shared
, 0, node
);
4257 if (l3
->free_touched
)
4258 l3
->free_touched
= 0;
4262 freed
= drain_freelist(searchp
, l3
, (l3
->free_limit
+
4263 5 * searchp
->num
- 1) / (5 * searchp
->num
));
4264 STATS_ADD_REAPED(searchp
, freed
);
4270 mutex_unlock(&slab_mutex
);
4273 /* Set up the next iteration */
4274 schedule_delayed_work(work
, round_jiffies_relative(REAPTIMEOUT_CPUC
));
4277 #ifdef CONFIG_SLABINFO
4278 void get_slabinfo(struct kmem_cache
*cachep
, struct slabinfo
*sinfo
)
4281 unsigned long active_objs
;
4282 unsigned long num_objs
;
4283 unsigned long active_slabs
= 0;
4284 unsigned long num_slabs
, free_objects
= 0, shared_avail
= 0;
4288 struct kmem_list3
*l3
;
4292 for_each_online_node(node
) {
4293 l3
= cachep
->nodelists
[node
];
4298 spin_lock_irq(&l3
->list_lock
);
4300 list_for_each_entry(slabp
, &l3
->slabs_full
, list
) {
4301 if (slabp
->inuse
!= cachep
->num
&& !error
)
4302 error
= "slabs_full accounting error";
4303 active_objs
+= cachep
->num
;
4306 list_for_each_entry(slabp
, &l3
->slabs_partial
, list
) {
4307 if (slabp
->inuse
== cachep
->num
&& !error
)
4308 error
= "slabs_partial inuse accounting error";
4309 if (!slabp
->inuse
&& !error
)
4310 error
= "slabs_partial/inuse accounting error";
4311 active_objs
+= slabp
->inuse
;
4314 list_for_each_entry(slabp
, &l3
->slabs_free
, list
) {
4315 if (slabp
->inuse
&& !error
)
4316 error
= "slabs_free/inuse accounting error";
4319 free_objects
+= l3
->free_objects
;
4321 shared_avail
+= l3
->shared
->avail
;
4323 spin_unlock_irq(&l3
->list_lock
);
4325 num_slabs
+= active_slabs
;
4326 num_objs
= num_slabs
* cachep
->num
;
4327 if (num_objs
- active_objs
!= free_objects
&& !error
)
4328 error
= "free_objects accounting error";
4330 name
= cachep
->name
;
4332 printk(KERN_ERR
"slab: cache %s error: %s\n", name
, error
);
4334 sinfo
->active_objs
= active_objs
;
4335 sinfo
->num_objs
= num_objs
;
4336 sinfo
->active_slabs
= active_slabs
;
4337 sinfo
->num_slabs
= num_slabs
;
4338 sinfo
->shared_avail
= shared_avail
;
4339 sinfo
->limit
= cachep
->limit
;
4340 sinfo
->batchcount
= cachep
->batchcount
;
4341 sinfo
->shared
= cachep
->shared
;
4342 sinfo
->objects_per_slab
= cachep
->num
;
4343 sinfo
->cache_order
= cachep
->gfporder
;
4346 void slabinfo_show_stats(struct seq_file
*m
, struct kmem_cache
*cachep
)
4350 unsigned long high
= cachep
->high_mark
;
4351 unsigned long allocs
= cachep
->num_allocations
;
4352 unsigned long grown
= cachep
->grown
;
4353 unsigned long reaped
= cachep
->reaped
;
4354 unsigned long errors
= cachep
->errors
;
4355 unsigned long max_freeable
= cachep
->max_freeable
;
4356 unsigned long node_allocs
= cachep
->node_allocs
;
4357 unsigned long node_frees
= cachep
->node_frees
;
4358 unsigned long overflows
= cachep
->node_overflow
;
4360 seq_printf(m
, " : globalstat %7lu %6lu %5lu %4lu "
4361 "%4lu %4lu %4lu %4lu %4lu",
4362 allocs
, high
, grown
,
4363 reaped
, errors
, max_freeable
, node_allocs
,
4364 node_frees
, overflows
);
4368 unsigned long allochit
= atomic_read(&cachep
->allochit
);
4369 unsigned long allocmiss
= atomic_read(&cachep
->allocmiss
);
4370 unsigned long freehit
= atomic_read(&cachep
->freehit
);
4371 unsigned long freemiss
= atomic_read(&cachep
->freemiss
);
4373 seq_printf(m
, " : cpustat %6lu %6lu %6lu %6lu",
4374 allochit
, allocmiss
, freehit
, freemiss
);
4379 #define MAX_SLABINFO_WRITE 128
4381 * slabinfo_write - Tuning for the slab allocator
4383 * @buffer: user buffer
4384 * @count: data length
4387 ssize_t
slabinfo_write(struct file
*file
, const char __user
*buffer
,
4388 size_t count
, loff_t
*ppos
)
4390 char kbuf
[MAX_SLABINFO_WRITE
+ 1], *tmp
;
4391 int limit
, batchcount
, shared
, res
;
4392 struct kmem_cache
*cachep
;
4394 if (count
> MAX_SLABINFO_WRITE
)
4396 if (copy_from_user(&kbuf
, buffer
, count
))
4398 kbuf
[MAX_SLABINFO_WRITE
] = '\0';
4400 tmp
= strchr(kbuf
, ' ');
4405 if (sscanf(tmp
, " %d %d %d", &limit
, &batchcount
, &shared
) != 3)
4408 /* Find the cache in the chain of caches. */
4409 mutex_lock(&slab_mutex
);
4411 list_for_each_entry(cachep
, &slab_caches
, list
) {
4412 if (!strcmp(cachep
->name
, kbuf
)) {
4413 if (limit
< 1 || batchcount
< 1 ||
4414 batchcount
> limit
|| shared
< 0) {
4417 res
= do_tune_cpucache(cachep
, limit
,
4424 mutex_unlock(&slab_mutex
);
4430 #ifdef CONFIG_DEBUG_SLAB_LEAK
4432 static void *leaks_start(struct seq_file
*m
, loff_t
*pos
)
4434 mutex_lock(&slab_mutex
);
4435 return seq_list_start(&slab_caches
, *pos
);
4438 static inline int add_caller(unsigned long *n
, unsigned long v
)
4448 unsigned long *q
= p
+ 2 * i
;
4462 memmove(p
+ 2, p
, n
[1] * 2 * sizeof(unsigned long) - ((void *)p
- (void *)n
));
4468 static void handle_slab(unsigned long *n
, struct kmem_cache
*c
, struct slab
*s
)
4474 for (i
= 0, p
= s
->s_mem
; i
< c
->num
; i
++, p
+= c
->size
) {
4475 if (slab_bufctl(s
)[i
] != BUFCTL_ACTIVE
)
4477 if (!add_caller(n
, (unsigned long)*dbg_userword(c
, p
)))
4482 static void show_symbol(struct seq_file
*m
, unsigned long address
)
4484 #ifdef CONFIG_KALLSYMS
4485 unsigned long offset
, size
;
4486 char modname
[MODULE_NAME_LEN
], name
[KSYM_NAME_LEN
];
4488 if (lookup_symbol_attrs(address
, &size
, &offset
, modname
, name
) == 0) {
4489 seq_printf(m
, "%s+%#lx/%#lx", name
, offset
, size
);
4491 seq_printf(m
, " [%s]", modname
);
4495 seq_printf(m
, "%p", (void *)address
);
4498 static int leaks_show(struct seq_file
*m
, void *p
)
4500 struct kmem_cache
*cachep
= list_entry(p
, struct kmem_cache
, list
);
4502 struct kmem_list3
*l3
;
4504 unsigned long *n
= m
->private;
4508 if (!(cachep
->flags
& SLAB_STORE_USER
))
4510 if (!(cachep
->flags
& SLAB_RED_ZONE
))
4513 /* OK, we can do it */
4517 for_each_online_node(node
) {
4518 l3
= cachep
->nodelists
[node
];
4523 spin_lock_irq(&l3
->list_lock
);
4525 list_for_each_entry(slabp
, &l3
->slabs_full
, list
)
4526 handle_slab(n
, cachep
, slabp
);
4527 list_for_each_entry(slabp
, &l3
->slabs_partial
, list
)
4528 handle_slab(n
, cachep
, slabp
);
4529 spin_unlock_irq(&l3
->list_lock
);
4531 name
= cachep
->name
;
4533 /* Increase the buffer size */
4534 mutex_unlock(&slab_mutex
);
4535 m
->private = kzalloc(n
[0] * 4 * sizeof(unsigned long), GFP_KERNEL
);
4537 /* Too bad, we are really out */
4539 mutex_lock(&slab_mutex
);
4542 *(unsigned long *)m
->private = n
[0] * 2;
4544 mutex_lock(&slab_mutex
);
4545 /* Now make sure this entry will be retried */
4549 for (i
= 0; i
< n
[1]; i
++) {
4550 seq_printf(m
, "%s: %lu ", name
, n
[2*i
+3]);
4551 show_symbol(m
, n
[2*i
+2]);
4558 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
4560 return seq_list_next(p
, &slab_caches
, pos
);
4563 static void s_stop(struct seq_file
*m
, void *p
)
4565 mutex_unlock(&slab_mutex
);
4568 static const struct seq_operations slabstats_op
= {
4569 .start
= leaks_start
,
4575 static int slabstats_open(struct inode
*inode
, struct file
*file
)
4577 unsigned long *n
= kzalloc(PAGE_SIZE
, GFP_KERNEL
);
4580 ret
= seq_open(file
, &slabstats_op
);
4582 struct seq_file
*m
= file
->private_data
;
4583 *n
= PAGE_SIZE
/ (2 * sizeof(unsigned long));
4592 static const struct file_operations proc_slabstats_operations
= {
4593 .open
= slabstats_open
,
4595 .llseek
= seq_lseek
,
4596 .release
= seq_release_private
,
4600 static int __init
slab_proc_init(void)
4602 #ifdef CONFIG_DEBUG_SLAB_LEAK
4603 proc_create("slab_allocators", 0, NULL
, &proc_slabstats_operations
);
4607 module_init(slab_proc_init
);
4611 * ksize - get the actual amount of memory allocated for a given object
4612 * @objp: Pointer to the object
4614 * kmalloc may internally round up allocations and return more memory
4615 * than requested. ksize() can be used to determine the actual amount of
4616 * memory allocated. The caller may use this additional memory, even though
4617 * a smaller amount of memory was initially specified with the kmalloc call.
4618 * The caller must guarantee that objp points to a valid object previously
4619 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4620 * must not be freed during the duration of the call.
4622 size_t ksize(const void *objp
)
4625 if (unlikely(objp
== ZERO_SIZE_PTR
))
4628 return virt_to_cache(objp
)->object_size
;
4630 EXPORT_SYMBOL(ksize
);