3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/slab.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/rcupdate.h>
106 #include <linux/string.h>
107 #include <linux/uaccess.h>
108 #include <linux/nodemask.h>
109 #include <linux/kmemleak.h>
110 #include <linux/mempolicy.h>
111 #include <linux/mutex.h>
112 #include <linux/fault-inject.h>
113 #include <linux/rtmutex.h>
114 #include <linux/reciprocal_div.h>
115 #include <linux/debugobjects.h>
116 #include <linux/kmemcheck.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
120 #include <asm/cacheflush.h>
121 #include <asm/tlbflush.h>
122 #include <asm/page.h>
124 #include <trace/events/kmem.h>
127 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
128 * 0 for faster, smaller code (especially in the critical paths).
130 * STATS - 1 to collect stats for /proc/slabinfo.
131 * 0 for faster, smaller code (especially in the critical paths).
133 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
136 #ifdef CONFIG_DEBUG_SLAB
139 #define FORCED_DEBUG 1
143 #define FORCED_DEBUG 0
146 /* Shouldn't this be in a header file somewhere? */
147 #define BYTES_PER_WORD sizeof(void *)
148 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
150 #ifndef ARCH_KMALLOC_FLAGS
151 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
154 /* Legal flag mask for kmem_cache_create(). */
156 # define CREATE_MASK (SLAB_RED_ZONE | \
157 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
160 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
161 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
162 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
164 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
166 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
167 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
168 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
174 * Bufctl's are used for linking objs within a slab
177 * This implementation relies on "struct page" for locating the cache &
178 * slab an object belongs to.
179 * This allows the bufctl structure to be small (one int), but limits
180 * the number of objects a slab (not a cache) can contain when off-slab
181 * bufctls are used. The limit is the size of the largest general cache
182 * that does not use off-slab slabs.
183 * For 32bit archs with 4 kB pages, is this 56.
184 * This is not serious, as it is only for large objects, when it is unwise
185 * to have too many per slab.
186 * Note: This limit can be raised by introducing a general cache whose size
187 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
190 typedef unsigned int kmem_bufctl_t
;
191 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
192 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
193 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
194 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
199 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
200 * arrange for kmem_freepages to be called via RCU. This is useful if
201 * we need to approach a kernel structure obliquely, from its address
202 * obtained without the usual locking. We can lock the structure to
203 * stabilize it and check it's still at the given address, only if we
204 * can be sure that the memory has not been meanwhile reused for some
205 * other kind of object (which our subsystem's lock might corrupt).
207 * rcu_read_lock before reading the address, then rcu_read_unlock after
208 * taking the spinlock within the structure expected at that address.
211 struct rcu_head head
;
212 struct kmem_cache
*cachep
;
219 * Manages the objs in a slab. Placed either at the beginning of mem allocated
220 * for a slab, or allocated from an general cache.
221 * Slabs are chained into three list: fully used, partial, fully free slabs.
226 struct list_head list
;
227 unsigned long colouroff
;
228 void *s_mem
; /* including colour offset */
229 unsigned int inuse
; /* num of objs active in slab */
231 unsigned short nodeid
;
233 struct slab_rcu __slab_cover_slab_rcu
;
241 * - LIFO ordering, to hand out cache-warm objects from _alloc
242 * - reduce the number of linked list operations
243 * - reduce spinlock operations
245 * The limit is stored in the per-cpu structure to reduce the data cache
252 unsigned int batchcount
;
253 unsigned int touched
;
256 * Must have this definition in here for the proper
257 * alignment of array_cache. Also simplifies accessing
263 * bootstrap: The caches do not work without cpuarrays anymore, but the
264 * cpuarrays are allocated from the generic caches...
266 #define BOOT_CPUCACHE_ENTRIES 1
267 struct arraycache_init
{
268 struct array_cache cache
;
269 void *entries
[BOOT_CPUCACHE_ENTRIES
];
273 * The slab lists for all objects.
276 struct list_head slabs_partial
; /* partial list first, better asm code */
277 struct list_head slabs_full
;
278 struct list_head slabs_free
;
279 unsigned long free_objects
;
280 unsigned int free_limit
;
281 unsigned int colour_next
; /* Per-node cache coloring */
282 spinlock_t list_lock
;
283 struct array_cache
*shared
; /* shared per node */
284 struct array_cache
**alien
; /* on other nodes */
285 unsigned long next_reap
; /* updated without locking */
286 int free_touched
; /* updated without locking */
290 * Need this for bootstrapping a per node allocator.
292 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
293 static struct kmem_list3 __initdata initkmem_list3
[NUM_INIT_LISTS
];
294 #define CACHE_CACHE 0
295 #define SIZE_AC MAX_NUMNODES
296 #define SIZE_L3 (2 * MAX_NUMNODES)
298 static int drain_freelist(struct kmem_cache
*cache
,
299 struct kmem_list3
*l3
, int tofree
);
300 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int len
,
302 static int enable_cpucache(struct kmem_cache
*cachep
, gfp_t gfp
);
303 static void cache_reap(struct work_struct
*unused
);
306 * This function must be completely optimized away if a constant is passed to
307 * it. Mostly the same as what is in linux/slab.h except it returns an index.
309 static __always_inline
int index_of(const size_t size
)
311 extern void __bad_size(void);
313 if (__builtin_constant_p(size
)) {
321 #include <linux/kmalloc_sizes.h>
329 static int slab_early_init
= 1;
331 #define INDEX_AC index_of(sizeof(struct arraycache_init))
332 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
334 static void kmem_list3_init(struct kmem_list3
*parent
)
336 INIT_LIST_HEAD(&parent
->slabs_full
);
337 INIT_LIST_HEAD(&parent
->slabs_partial
);
338 INIT_LIST_HEAD(&parent
->slabs_free
);
339 parent
->shared
= NULL
;
340 parent
->alien
= NULL
;
341 parent
->colour_next
= 0;
342 spin_lock_init(&parent
->list_lock
);
343 parent
->free_objects
= 0;
344 parent
->free_touched
= 0;
347 #define MAKE_LIST(cachep, listp, slab, nodeid) \
349 INIT_LIST_HEAD(listp); \
350 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
353 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
355 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
356 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
357 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
360 #define CFLGS_OFF_SLAB (0x80000000UL)
361 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
363 #define BATCHREFILL_LIMIT 16
365 * Optimization question: fewer reaps means less probability for unnessary
366 * cpucache drain/refill cycles.
368 * OTOH the cpuarrays can contain lots of objects,
369 * which could lock up otherwise freeable slabs.
371 #define REAPTIMEOUT_CPUC (2*HZ)
372 #define REAPTIMEOUT_LIST3 (4*HZ)
375 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
376 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
377 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
378 #define STATS_INC_GROWN(x) ((x)->grown++)
379 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
380 #define STATS_SET_HIGH(x) \
382 if ((x)->num_active > (x)->high_mark) \
383 (x)->high_mark = (x)->num_active; \
385 #define STATS_INC_ERR(x) ((x)->errors++)
386 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
387 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
388 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
389 #define STATS_SET_FREEABLE(x, i) \
391 if ((x)->max_freeable < i) \
392 (x)->max_freeable = i; \
394 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
395 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
396 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
397 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
399 #define STATS_INC_ACTIVE(x) do { } while (0)
400 #define STATS_DEC_ACTIVE(x) do { } while (0)
401 #define STATS_INC_ALLOCED(x) do { } while (0)
402 #define STATS_INC_GROWN(x) do { } while (0)
403 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
404 #define STATS_SET_HIGH(x) do { } while (0)
405 #define STATS_INC_ERR(x) do { } while (0)
406 #define STATS_INC_NODEALLOCS(x) do { } while (0)
407 #define STATS_INC_NODEFREES(x) do { } while (0)
408 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
409 #define STATS_SET_FREEABLE(x, i) do { } while (0)
410 #define STATS_INC_ALLOCHIT(x) do { } while (0)
411 #define STATS_INC_ALLOCMISS(x) do { } while (0)
412 #define STATS_INC_FREEHIT(x) do { } while (0)
413 #define STATS_INC_FREEMISS(x) do { } while (0)
419 * memory layout of objects:
421 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
422 * the end of an object is aligned with the end of the real
423 * allocation. Catches writes behind the end of the allocation.
424 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
426 * cachep->obj_offset: The real object.
427 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
428 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
429 * [BYTES_PER_WORD long]
431 static int obj_offset(struct kmem_cache
*cachep
)
433 return cachep
->obj_offset
;
436 static int obj_size(struct kmem_cache
*cachep
)
438 return cachep
->obj_size
;
441 static unsigned long long *dbg_redzone1(struct kmem_cache
*cachep
, void *objp
)
443 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
444 return (unsigned long long*) (objp
+ obj_offset(cachep
) -
445 sizeof(unsigned long long));
448 static unsigned long long *dbg_redzone2(struct kmem_cache
*cachep
, void *objp
)
450 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
451 if (cachep
->flags
& SLAB_STORE_USER
)
452 return (unsigned long long *)(objp
+ cachep
->buffer_size
-
453 sizeof(unsigned long long) -
455 return (unsigned long long *) (objp
+ cachep
->buffer_size
-
456 sizeof(unsigned long long));
459 static void **dbg_userword(struct kmem_cache
*cachep
, void *objp
)
461 BUG_ON(!(cachep
->flags
& SLAB_STORE_USER
));
462 return (void **)(objp
+ cachep
->buffer_size
- BYTES_PER_WORD
);
467 #define obj_offset(x) 0
468 #define obj_size(cachep) (cachep->buffer_size)
469 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
470 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
471 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
475 #ifdef CONFIG_TRACING
476 size_t slab_buffer_size(struct kmem_cache
*cachep
)
478 return cachep
->buffer_size
;
480 EXPORT_SYMBOL(slab_buffer_size
);
484 * Do not go above this order unless 0 objects fit into the slab or
485 * overridden on the command line.
487 #define SLAB_MAX_ORDER_HI 1
488 #define SLAB_MAX_ORDER_LO 0
489 static int slab_max_order
= SLAB_MAX_ORDER_LO
;
490 static bool slab_max_order_set __initdata
;
493 * Functions for storing/retrieving the cachep and or slab from the page
494 * allocator. These are used to find the slab an obj belongs to. With kfree(),
495 * these are used to find the cache which an obj belongs to.
497 static inline void page_set_cache(struct page
*page
, struct kmem_cache
*cache
)
499 page
->lru
.next
= (struct list_head
*)cache
;
502 static inline struct kmem_cache
*page_get_cache(struct page
*page
)
504 page
= compound_head(page
);
505 BUG_ON(!PageSlab(page
));
506 return (struct kmem_cache
*)page
->lru
.next
;
509 static inline void page_set_slab(struct page
*page
, struct slab
*slab
)
511 page
->lru
.prev
= (struct list_head
*)slab
;
514 static inline struct slab
*page_get_slab(struct page
*page
)
516 BUG_ON(!PageSlab(page
));
517 return (struct slab
*)page
->lru
.prev
;
520 static inline struct kmem_cache
*virt_to_cache(const void *obj
)
522 struct page
*page
= virt_to_head_page(obj
);
523 return page_get_cache(page
);
526 static inline struct slab
*virt_to_slab(const void *obj
)
528 struct page
*page
= virt_to_head_page(obj
);
529 return page_get_slab(page
);
532 static inline void *index_to_obj(struct kmem_cache
*cache
, struct slab
*slab
,
535 return slab
->s_mem
+ cache
->buffer_size
* idx
;
539 * We want to avoid an expensive divide : (offset / cache->buffer_size)
540 * Using the fact that buffer_size is a constant for a particular cache,
541 * we can replace (offset / cache->buffer_size) by
542 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
544 static inline unsigned int obj_to_index(const struct kmem_cache
*cache
,
545 const struct slab
*slab
, void *obj
)
547 u32 offset
= (obj
- slab
->s_mem
);
548 return reciprocal_divide(offset
, cache
->reciprocal_buffer_size
);
552 * These are the default caches for kmalloc. Custom caches can have other sizes.
554 struct cache_sizes malloc_sizes
[] = {
555 #define CACHE(x) { .cs_size = (x) },
556 #include <linux/kmalloc_sizes.h>
560 EXPORT_SYMBOL(malloc_sizes
);
562 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
568 static struct cache_names __initdata cache_names
[] = {
569 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
570 #include <linux/kmalloc_sizes.h>
575 static struct arraycache_init initarray_cache __initdata
=
576 { {0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
577 static struct arraycache_init initarray_generic
=
578 { {0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
580 /* internal cache of cache description objs */
581 static struct kmem_list3
*cache_cache_nodelists
[MAX_NUMNODES
];
582 static struct kmem_cache cache_cache
= {
583 .nodelists
= cache_cache_nodelists
,
585 .limit
= BOOT_CPUCACHE_ENTRIES
,
587 .buffer_size
= sizeof(struct kmem_cache
),
588 .name
= "kmem_cache",
591 #define BAD_ALIEN_MAGIC 0x01020304ul
594 * chicken and egg problem: delay the per-cpu array allocation
595 * until the general caches are up.
607 * used by boot code to determine if it can use slab based allocator
609 int slab_is_available(void)
611 return g_cpucache_up
>= EARLY
;
614 #ifdef CONFIG_LOCKDEP
617 * Slab sometimes uses the kmalloc slabs to store the slab headers
618 * for other slabs "off slab".
619 * The locking for this is tricky in that it nests within the locks
620 * of all other slabs in a few places; to deal with this special
621 * locking we put on-slab caches into a separate lock-class.
623 * We set lock class for alien array caches which are up during init.
624 * The lock annotation will be lost if all cpus of a node goes down and
625 * then comes back up during hotplug
627 static struct lock_class_key on_slab_l3_key
;
628 static struct lock_class_key on_slab_alc_key
;
630 static struct lock_class_key debugobj_l3_key
;
631 static struct lock_class_key debugobj_alc_key
;
633 static void slab_set_lock_classes(struct kmem_cache
*cachep
,
634 struct lock_class_key
*l3_key
, struct lock_class_key
*alc_key
,
637 struct array_cache
**alc
;
638 struct kmem_list3
*l3
;
641 l3
= cachep
->nodelists
[q
];
645 lockdep_set_class(&l3
->list_lock
, l3_key
);
648 * FIXME: This check for BAD_ALIEN_MAGIC
649 * should go away when common slab code is taught to
650 * work even without alien caches.
651 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
652 * for alloc_alien_cache,
654 if (!alc
|| (unsigned long)alc
== BAD_ALIEN_MAGIC
)
658 lockdep_set_class(&alc
[r
]->lock
, alc_key
);
662 static void slab_set_debugobj_lock_classes_node(struct kmem_cache
*cachep
, int node
)
664 slab_set_lock_classes(cachep
, &debugobj_l3_key
, &debugobj_alc_key
, node
);
667 static void slab_set_debugobj_lock_classes(struct kmem_cache
*cachep
)
671 for_each_online_node(node
)
672 slab_set_debugobj_lock_classes_node(cachep
, node
);
675 static void init_node_lock_keys(int q
)
677 struct cache_sizes
*s
= malloc_sizes
;
679 if (g_cpucache_up
< LATE
)
682 for (s
= malloc_sizes
; s
->cs_size
!= ULONG_MAX
; s
++) {
683 struct kmem_list3
*l3
;
685 l3
= s
->cs_cachep
->nodelists
[q
];
686 if (!l3
|| OFF_SLAB(s
->cs_cachep
))
689 slab_set_lock_classes(s
->cs_cachep
, &on_slab_l3_key
,
690 &on_slab_alc_key
, q
);
694 static inline void init_lock_keys(void)
699 init_node_lock_keys(node
);
702 static void init_node_lock_keys(int q
)
706 static inline void init_lock_keys(void)
710 static void slab_set_debugobj_lock_classes_node(struct kmem_cache
*cachep
, int node
)
714 static void slab_set_debugobj_lock_classes(struct kmem_cache
*cachep
)
720 * Guard access to the cache-chain.
722 static DEFINE_MUTEX(cache_chain_mutex
);
723 static struct list_head cache_chain
;
725 static DEFINE_PER_CPU(struct delayed_work
, slab_reap_work
);
727 static inline struct array_cache
*cpu_cache_get(struct kmem_cache
*cachep
)
729 return cachep
->array
[smp_processor_id()];
732 static inline struct kmem_cache
*__find_general_cachep(size_t size
,
735 struct cache_sizes
*csizep
= malloc_sizes
;
738 /* This happens if someone tries to call
739 * kmem_cache_create(), or __kmalloc(), before
740 * the generic caches are initialized.
742 BUG_ON(malloc_sizes
[INDEX_AC
].cs_cachep
== NULL
);
745 return ZERO_SIZE_PTR
;
747 while (size
> csizep
->cs_size
)
751 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
752 * has cs_{dma,}cachep==NULL. Thus no special case
753 * for large kmalloc calls required.
755 #ifdef CONFIG_ZONE_DMA
756 if (unlikely(gfpflags
& GFP_DMA
))
757 return csizep
->cs_dmacachep
;
759 return csizep
->cs_cachep
;
762 static struct kmem_cache
*kmem_find_general_cachep(size_t size
, gfp_t gfpflags
)
764 return __find_general_cachep(size
, gfpflags
);
767 static size_t slab_mgmt_size(size_t nr_objs
, size_t align
)
769 return ALIGN(sizeof(struct slab
)+nr_objs
*sizeof(kmem_bufctl_t
), align
);
773 * Calculate the number of objects and left-over bytes for a given buffer size.
775 static void cache_estimate(unsigned long gfporder
, size_t buffer_size
,
776 size_t align
, int flags
, size_t *left_over
,
781 size_t slab_size
= PAGE_SIZE
<< gfporder
;
784 * The slab management structure can be either off the slab or
785 * on it. For the latter case, the memory allocated for a
789 * - One kmem_bufctl_t for each object
790 * - Padding to respect alignment of @align
791 * - @buffer_size bytes for each object
793 * If the slab management structure is off the slab, then the
794 * alignment will already be calculated into the size. Because
795 * the slabs are all pages aligned, the objects will be at the
796 * correct alignment when allocated.
798 if (flags
& CFLGS_OFF_SLAB
) {
800 nr_objs
= slab_size
/ buffer_size
;
802 if (nr_objs
> SLAB_LIMIT
)
803 nr_objs
= SLAB_LIMIT
;
806 * Ignore padding for the initial guess. The padding
807 * is at most @align-1 bytes, and @buffer_size is at
808 * least @align. In the worst case, this result will
809 * be one greater than the number of objects that fit
810 * into the memory allocation when taking the padding
813 nr_objs
= (slab_size
- sizeof(struct slab
)) /
814 (buffer_size
+ sizeof(kmem_bufctl_t
));
817 * This calculated number will be either the right
818 * amount, or one greater than what we want.
820 if (slab_mgmt_size(nr_objs
, align
) + nr_objs
*buffer_size
824 if (nr_objs
> SLAB_LIMIT
)
825 nr_objs
= SLAB_LIMIT
;
827 mgmt_size
= slab_mgmt_size(nr_objs
, align
);
830 *left_over
= slab_size
- nr_objs
*buffer_size
- mgmt_size
;
833 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
835 static void __slab_error(const char *function
, struct kmem_cache
*cachep
,
838 printk(KERN_ERR
"slab error in %s(): cache `%s': %s\n",
839 function
, cachep
->name
, msg
);
844 * By default on NUMA we use alien caches to stage the freeing of
845 * objects allocated from other nodes. This causes massive memory
846 * inefficiencies when using fake NUMA setup to split memory into a
847 * large number of small nodes, so it can be disabled on the command
851 static int use_alien_caches __read_mostly
= 1;
852 static int __init
noaliencache_setup(char *s
)
854 use_alien_caches
= 0;
857 __setup("noaliencache", noaliencache_setup
);
859 static int __init
slab_max_order_setup(char *str
)
861 get_option(&str
, &slab_max_order
);
862 slab_max_order
= slab_max_order
< 0 ? 0 :
863 min(slab_max_order
, MAX_ORDER
- 1);
864 slab_max_order_set
= true;
868 __setup("slab_max_order=", slab_max_order_setup
);
872 * Special reaping functions for NUMA systems called from cache_reap().
873 * These take care of doing round robin flushing of alien caches (containing
874 * objects freed on different nodes from which they were allocated) and the
875 * flushing of remote pcps by calling drain_node_pages.
877 static DEFINE_PER_CPU(unsigned long, slab_reap_node
);
879 static void init_reap_node(int cpu
)
883 node
= next_node(cpu_to_mem(cpu
), node_online_map
);
884 if (node
== MAX_NUMNODES
)
885 node
= first_node(node_online_map
);
887 per_cpu(slab_reap_node
, cpu
) = node
;
890 static void next_reap_node(void)
892 int node
= __this_cpu_read(slab_reap_node
);
894 node
= next_node(node
, node_online_map
);
895 if (unlikely(node
>= MAX_NUMNODES
))
896 node
= first_node(node_online_map
);
897 __this_cpu_write(slab_reap_node
, node
);
901 #define init_reap_node(cpu) do { } while (0)
902 #define next_reap_node(void) do { } while (0)
906 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
907 * via the workqueue/eventd.
908 * Add the CPU number into the expiration time to minimize the possibility of
909 * the CPUs getting into lockstep and contending for the global cache chain
912 static void __cpuinit
start_cpu_timer(int cpu
)
914 struct delayed_work
*reap_work
= &per_cpu(slab_reap_work
, cpu
);
917 * When this gets called from do_initcalls via cpucache_init(),
918 * init_workqueues() has already run, so keventd will be setup
921 if (keventd_up() && reap_work
->work
.func
== NULL
) {
923 INIT_DELAYED_WORK_DEFERRABLE(reap_work
, cache_reap
);
924 schedule_delayed_work_on(cpu
, reap_work
,
925 __round_jiffies_relative(HZ
, cpu
));
929 static struct array_cache
*alloc_arraycache(int node
, int entries
,
930 int batchcount
, gfp_t gfp
)
932 int memsize
= sizeof(void *) * entries
+ sizeof(struct array_cache
);
933 struct array_cache
*nc
= NULL
;
935 nc
= kmalloc_node(memsize
, gfp
, node
);
937 * The array_cache structures contain pointers to free object.
938 * However, when such objects are allocated or transferred to another
939 * cache the pointers are not cleared and they could be counted as
940 * valid references during a kmemleak scan. Therefore, kmemleak must
941 * not scan such objects.
943 kmemleak_no_scan(nc
);
947 nc
->batchcount
= batchcount
;
949 spin_lock_init(&nc
->lock
);
955 * Transfer objects in one arraycache to another.
956 * Locking must be handled by the caller.
958 * Return the number of entries transferred.
960 static int transfer_objects(struct array_cache
*to
,
961 struct array_cache
*from
, unsigned int max
)
963 /* Figure out how many entries to transfer */
964 int nr
= min3(from
->avail
, max
, to
->limit
- to
->avail
);
969 memcpy(to
->entry
+ to
->avail
, from
->entry
+ from
->avail
-nr
,
979 #define drain_alien_cache(cachep, alien) do { } while (0)
980 #define reap_alien(cachep, l3) do { } while (0)
982 static inline struct array_cache
**alloc_alien_cache(int node
, int limit
, gfp_t gfp
)
984 return (struct array_cache
**)BAD_ALIEN_MAGIC
;
987 static inline void free_alien_cache(struct array_cache
**ac_ptr
)
991 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
996 static inline void *alternate_node_alloc(struct kmem_cache
*cachep
,
1002 static inline void *____cache_alloc_node(struct kmem_cache
*cachep
,
1003 gfp_t flags
, int nodeid
)
1008 #else /* CONFIG_NUMA */
1010 static void *____cache_alloc_node(struct kmem_cache
*, gfp_t
, int);
1011 static void *alternate_node_alloc(struct kmem_cache
*, gfp_t
);
1013 static struct array_cache
**alloc_alien_cache(int node
, int limit
, gfp_t gfp
)
1015 struct array_cache
**ac_ptr
;
1016 int memsize
= sizeof(void *) * nr_node_ids
;
1021 ac_ptr
= kzalloc_node(memsize
, gfp
, node
);
1024 if (i
== node
|| !node_online(i
))
1026 ac_ptr
[i
] = alloc_arraycache(node
, limit
, 0xbaadf00d, gfp
);
1028 for (i
--; i
>= 0; i
--)
1038 static void free_alien_cache(struct array_cache
**ac_ptr
)
1049 static void __drain_alien_cache(struct kmem_cache
*cachep
,
1050 struct array_cache
*ac
, int node
)
1052 struct kmem_list3
*rl3
= cachep
->nodelists
[node
];
1055 spin_lock(&rl3
->list_lock
);
1057 * Stuff objects into the remote nodes shared array first.
1058 * That way we could avoid the overhead of putting the objects
1059 * into the free lists and getting them back later.
1062 transfer_objects(rl3
->shared
, ac
, ac
->limit
);
1064 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
1066 spin_unlock(&rl3
->list_lock
);
1071 * Called from cache_reap() to regularly drain alien caches round robin.
1073 static void reap_alien(struct kmem_cache
*cachep
, struct kmem_list3
*l3
)
1075 int node
= __this_cpu_read(slab_reap_node
);
1078 struct array_cache
*ac
= l3
->alien
[node
];
1080 if (ac
&& ac
->avail
&& spin_trylock_irq(&ac
->lock
)) {
1081 __drain_alien_cache(cachep
, ac
, node
);
1082 spin_unlock_irq(&ac
->lock
);
1087 static void drain_alien_cache(struct kmem_cache
*cachep
,
1088 struct array_cache
**alien
)
1091 struct array_cache
*ac
;
1092 unsigned long flags
;
1094 for_each_online_node(i
) {
1097 spin_lock_irqsave(&ac
->lock
, flags
);
1098 __drain_alien_cache(cachep
, ac
, i
);
1099 spin_unlock_irqrestore(&ac
->lock
, flags
);
1104 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
1106 struct slab
*slabp
= virt_to_slab(objp
);
1107 int nodeid
= slabp
->nodeid
;
1108 struct kmem_list3
*l3
;
1109 struct array_cache
*alien
= NULL
;
1112 node
= numa_mem_id();
1115 * Make sure we are not freeing a object from another node to the array
1116 * cache on this cpu.
1118 if (likely(slabp
->nodeid
== node
))
1121 l3
= cachep
->nodelists
[node
];
1122 STATS_INC_NODEFREES(cachep
);
1123 if (l3
->alien
&& l3
->alien
[nodeid
]) {
1124 alien
= l3
->alien
[nodeid
];
1125 spin_lock(&alien
->lock
);
1126 if (unlikely(alien
->avail
== alien
->limit
)) {
1127 STATS_INC_ACOVERFLOW(cachep
);
1128 __drain_alien_cache(cachep
, alien
, nodeid
);
1130 alien
->entry
[alien
->avail
++] = objp
;
1131 spin_unlock(&alien
->lock
);
1133 spin_lock(&(cachep
->nodelists
[nodeid
])->list_lock
);
1134 free_block(cachep
, &objp
, 1, nodeid
);
1135 spin_unlock(&(cachep
->nodelists
[nodeid
])->list_lock
);
1142 * Allocates and initializes nodelists for a node on each slab cache, used for
1143 * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3
1144 * will be allocated off-node since memory is not yet online for the new node.
1145 * When hotplugging memory or a cpu, existing nodelists are not replaced if
1148 * Must hold cache_chain_mutex.
1150 static int init_cache_nodelists_node(int node
)
1152 struct kmem_cache
*cachep
;
1153 struct kmem_list3
*l3
;
1154 const int memsize
= sizeof(struct kmem_list3
);
1156 list_for_each_entry(cachep
, &cache_chain
, next
) {
1158 * Set up the size64 kmemlist for cpu before we can
1159 * begin anything. Make sure some other cpu on this
1160 * node has not already allocated this
1162 if (!cachep
->nodelists
[node
]) {
1163 l3
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
1166 kmem_list3_init(l3
);
1167 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
1168 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1171 * The l3s don't come and go as CPUs come and
1172 * go. cache_chain_mutex is sufficient
1175 cachep
->nodelists
[node
] = l3
;
1178 spin_lock_irq(&cachep
->nodelists
[node
]->list_lock
);
1179 cachep
->nodelists
[node
]->free_limit
=
1180 (1 + nr_cpus_node(node
)) *
1181 cachep
->batchcount
+ cachep
->num
;
1182 spin_unlock_irq(&cachep
->nodelists
[node
]->list_lock
);
1187 static void __cpuinit
cpuup_canceled(long cpu
)
1189 struct kmem_cache
*cachep
;
1190 struct kmem_list3
*l3
= NULL
;
1191 int node
= cpu_to_mem(cpu
);
1192 const struct cpumask
*mask
= cpumask_of_node(node
);
1194 list_for_each_entry(cachep
, &cache_chain
, next
) {
1195 struct array_cache
*nc
;
1196 struct array_cache
*shared
;
1197 struct array_cache
**alien
;
1199 /* cpu is dead; no one can alloc from it. */
1200 nc
= cachep
->array
[cpu
];
1201 cachep
->array
[cpu
] = NULL
;
1202 l3
= cachep
->nodelists
[node
];
1205 goto free_array_cache
;
1207 spin_lock_irq(&l3
->list_lock
);
1209 /* Free limit for this kmem_list3 */
1210 l3
->free_limit
-= cachep
->batchcount
;
1212 free_block(cachep
, nc
->entry
, nc
->avail
, node
);
1214 if (!cpumask_empty(mask
)) {
1215 spin_unlock_irq(&l3
->list_lock
);
1216 goto free_array_cache
;
1219 shared
= l3
->shared
;
1221 free_block(cachep
, shared
->entry
,
1222 shared
->avail
, node
);
1229 spin_unlock_irq(&l3
->list_lock
);
1233 drain_alien_cache(cachep
, alien
);
1234 free_alien_cache(alien
);
1240 * In the previous loop, all the objects were freed to
1241 * the respective cache's slabs, now we can go ahead and
1242 * shrink each nodelist to its limit.
1244 list_for_each_entry(cachep
, &cache_chain
, next
) {
1245 l3
= cachep
->nodelists
[node
];
1248 drain_freelist(cachep
, l3
, l3
->free_objects
);
1252 static int __cpuinit
cpuup_prepare(long cpu
)
1254 struct kmem_cache
*cachep
;
1255 struct kmem_list3
*l3
= NULL
;
1256 int node
= cpu_to_mem(cpu
);
1260 * We need to do this right in the beginning since
1261 * alloc_arraycache's are going to use this list.
1262 * kmalloc_node allows us to add the slab to the right
1263 * kmem_list3 and not this cpu's kmem_list3
1265 err
= init_cache_nodelists_node(node
);
1270 * Now we can go ahead with allocating the shared arrays and
1273 list_for_each_entry(cachep
, &cache_chain
, next
) {
1274 struct array_cache
*nc
;
1275 struct array_cache
*shared
= NULL
;
1276 struct array_cache
**alien
= NULL
;
1278 nc
= alloc_arraycache(node
, cachep
->limit
,
1279 cachep
->batchcount
, GFP_KERNEL
);
1282 if (cachep
->shared
) {
1283 shared
= alloc_arraycache(node
,
1284 cachep
->shared
* cachep
->batchcount
,
1285 0xbaadf00d, GFP_KERNEL
);
1291 if (use_alien_caches
) {
1292 alien
= alloc_alien_cache(node
, cachep
->limit
, GFP_KERNEL
);
1299 cachep
->array
[cpu
] = nc
;
1300 l3
= cachep
->nodelists
[node
];
1303 spin_lock_irq(&l3
->list_lock
);
1306 * We are serialised from CPU_DEAD or
1307 * CPU_UP_CANCELLED by the cpucontrol lock
1309 l3
->shared
= shared
;
1318 spin_unlock_irq(&l3
->list_lock
);
1320 free_alien_cache(alien
);
1321 if (cachep
->flags
& SLAB_DEBUG_OBJECTS
)
1322 slab_set_debugobj_lock_classes_node(cachep
, node
);
1324 init_node_lock_keys(node
);
1328 cpuup_canceled(cpu
);
1332 static int __cpuinit
cpuup_callback(struct notifier_block
*nfb
,
1333 unsigned long action
, void *hcpu
)
1335 long cpu
= (long)hcpu
;
1339 case CPU_UP_PREPARE
:
1340 case CPU_UP_PREPARE_FROZEN
:
1341 mutex_lock(&cache_chain_mutex
);
1342 err
= cpuup_prepare(cpu
);
1343 mutex_unlock(&cache_chain_mutex
);
1346 case CPU_ONLINE_FROZEN
:
1347 start_cpu_timer(cpu
);
1349 #ifdef CONFIG_HOTPLUG_CPU
1350 case CPU_DOWN_PREPARE
:
1351 case CPU_DOWN_PREPARE_FROZEN
:
1353 * Shutdown cache reaper. Note that the cache_chain_mutex is
1354 * held so that if cache_reap() is invoked it cannot do
1355 * anything expensive but will only modify reap_work
1356 * and reschedule the timer.
1358 cancel_delayed_work_sync(&per_cpu(slab_reap_work
, cpu
));
1359 /* Now the cache_reaper is guaranteed to be not running. */
1360 per_cpu(slab_reap_work
, cpu
).work
.func
= NULL
;
1362 case CPU_DOWN_FAILED
:
1363 case CPU_DOWN_FAILED_FROZEN
:
1364 start_cpu_timer(cpu
);
1367 case CPU_DEAD_FROZEN
:
1369 * Even if all the cpus of a node are down, we don't free the
1370 * kmem_list3 of any cache. This to avoid a race between
1371 * cpu_down, and a kmalloc allocation from another cpu for
1372 * memory from the node of the cpu going down. The list3
1373 * structure is usually allocated from kmem_cache_create() and
1374 * gets destroyed at kmem_cache_destroy().
1378 case CPU_UP_CANCELED
:
1379 case CPU_UP_CANCELED_FROZEN
:
1380 mutex_lock(&cache_chain_mutex
);
1381 cpuup_canceled(cpu
);
1382 mutex_unlock(&cache_chain_mutex
);
1385 return notifier_from_errno(err
);
1388 static struct notifier_block __cpuinitdata cpucache_notifier
= {
1389 &cpuup_callback
, NULL
, 0
1392 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1394 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1395 * Returns -EBUSY if all objects cannot be drained so that the node is not
1398 * Must hold cache_chain_mutex.
1400 static int __meminit
drain_cache_nodelists_node(int node
)
1402 struct kmem_cache
*cachep
;
1405 list_for_each_entry(cachep
, &cache_chain
, next
) {
1406 struct kmem_list3
*l3
;
1408 l3
= cachep
->nodelists
[node
];
1412 drain_freelist(cachep
, l3
, l3
->free_objects
);
1414 if (!list_empty(&l3
->slabs_full
) ||
1415 !list_empty(&l3
->slabs_partial
)) {
1423 static int __meminit
slab_memory_callback(struct notifier_block
*self
,
1424 unsigned long action
, void *arg
)
1426 struct memory_notify
*mnb
= arg
;
1430 nid
= mnb
->status_change_nid
;
1435 case MEM_GOING_ONLINE
:
1436 mutex_lock(&cache_chain_mutex
);
1437 ret
= init_cache_nodelists_node(nid
);
1438 mutex_unlock(&cache_chain_mutex
);
1440 case MEM_GOING_OFFLINE
:
1441 mutex_lock(&cache_chain_mutex
);
1442 ret
= drain_cache_nodelists_node(nid
);
1443 mutex_unlock(&cache_chain_mutex
);
1447 case MEM_CANCEL_ONLINE
:
1448 case MEM_CANCEL_OFFLINE
:
1452 return notifier_from_errno(ret
);
1454 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1457 * swap the static kmem_list3 with kmalloced memory
1459 static void __init
init_list(struct kmem_cache
*cachep
, struct kmem_list3
*list
,
1462 struct kmem_list3
*ptr
;
1464 ptr
= kmalloc_node(sizeof(struct kmem_list3
), GFP_NOWAIT
, nodeid
);
1467 memcpy(ptr
, list
, sizeof(struct kmem_list3
));
1469 * Do not assume that spinlocks can be initialized via memcpy:
1471 spin_lock_init(&ptr
->list_lock
);
1473 MAKE_ALL_LISTS(cachep
, ptr
, nodeid
);
1474 cachep
->nodelists
[nodeid
] = ptr
;
1478 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1479 * size of kmem_list3.
1481 static void __init
set_up_list3s(struct kmem_cache
*cachep
, int index
)
1485 for_each_online_node(node
) {
1486 cachep
->nodelists
[node
] = &initkmem_list3
[index
+ node
];
1487 cachep
->nodelists
[node
]->next_reap
= jiffies
+
1489 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1494 * Initialisation. Called after the page allocator have been initialised and
1495 * before smp_init().
1497 void __init
kmem_cache_init(void)
1500 struct cache_sizes
*sizes
;
1501 struct cache_names
*names
;
1506 if (num_possible_nodes() == 1)
1507 use_alien_caches
= 0;
1509 for (i
= 0; i
< NUM_INIT_LISTS
; i
++) {
1510 kmem_list3_init(&initkmem_list3
[i
]);
1511 if (i
< MAX_NUMNODES
)
1512 cache_cache
.nodelists
[i
] = NULL
;
1514 set_up_list3s(&cache_cache
, CACHE_CACHE
);
1517 * Fragmentation resistance on low memory - only use bigger
1518 * page orders on machines with more than 32MB of memory if
1519 * not overridden on the command line.
1521 if (!slab_max_order_set
&& totalram_pages
> (32 << 20) >> PAGE_SHIFT
)
1522 slab_max_order
= SLAB_MAX_ORDER_HI
;
1524 /* Bootstrap is tricky, because several objects are allocated
1525 * from caches that do not exist yet:
1526 * 1) initialize the cache_cache cache: it contains the struct
1527 * kmem_cache structures of all caches, except cache_cache itself:
1528 * cache_cache is statically allocated.
1529 * Initially an __init data area is used for the head array and the
1530 * kmem_list3 structures, it's replaced with a kmalloc allocated
1531 * array at the end of the bootstrap.
1532 * 2) Create the first kmalloc cache.
1533 * The struct kmem_cache for the new cache is allocated normally.
1534 * An __init data area is used for the head array.
1535 * 3) Create the remaining kmalloc caches, with minimally sized
1537 * 4) Replace the __init data head arrays for cache_cache and the first
1538 * kmalloc cache with kmalloc allocated arrays.
1539 * 5) Replace the __init data for kmem_list3 for cache_cache and
1540 * the other cache's with kmalloc allocated memory.
1541 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1544 node
= numa_mem_id();
1546 /* 1) create the cache_cache */
1547 INIT_LIST_HEAD(&cache_chain
);
1548 list_add(&cache_cache
.next
, &cache_chain
);
1549 cache_cache
.colour_off
= cache_line_size();
1550 cache_cache
.array
[smp_processor_id()] = &initarray_cache
.cache
;
1551 cache_cache
.nodelists
[node
] = &initkmem_list3
[CACHE_CACHE
+ node
];
1554 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1556 cache_cache
.buffer_size
= offsetof(struct kmem_cache
, array
[nr_cpu_ids
]) +
1557 nr_node_ids
* sizeof(struct kmem_list3
*);
1559 cache_cache
.obj_size
= cache_cache
.buffer_size
;
1561 cache_cache
.buffer_size
= ALIGN(cache_cache
.buffer_size
,
1563 cache_cache
.reciprocal_buffer_size
=
1564 reciprocal_value(cache_cache
.buffer_size
);
1566 for (order
= 0; order
< MAX_ORDER
; order
++) {
1567 cache_estimate(order
, cache_cache
.buffer_size
,
1568 cache_line_size(), 0, &left_over
, &cache_cache
.num
);
1569 if (cache_cache
.num
)
1572 BUG_ON(!cache_cache
.num
);
1573 cache_cache
.gfporder
= order
;
1574 cache_cache
.colour
= left_over
/ cache_cache
.colour_off
;
1575 cache_cache
.slab_size
= ALIGN(cache_cache
.num
* sizeof(kmem_bufctl_t
) +
1576 sizeof(struct slab
), cache_line_size());
1578 /* 2+3) create the kmalloc caches */
1579 sizes
= malloc_sizes
;
1580 names
= cache_names
;
1583 * Initialize the caches that provide memory for the array cache and the
1584 * kmem_list3 structures first. Without this, further allocations will
1588 sizes
[INDEX_AC
].cs_cachep
= kmem_cache_create(names
[INDEX_AC
].name
,
1589 sizes
[INDEX_AC
].cs_size
,
1590 ARCH_KMALLOC_MINALIGN
,
1591 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1594 if (INDEX_AC
!= INDEX_L3
) {
1595 sizes
[INDEX_L3
].cs_cachep
=
1596 kmem_cache_create(names
[INDEX_L3
].name
,
1597 sizes
[INDEX_L3
].cs_size
,
1598 ARCH_KMALLOC_MINALIGN
,
1599 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1603 slab_early_init
= 0;
1605 while (sizes
->cs_size
!= ULONG_MAX
) {
1607 * For performance, all the general caches are L1 aligned.
1608 * This should be particularly beneficial on SMP boxes, as it
1609 * eliminates "false sharing".
1610 * Note for systems short on memory removing the alignment will
1611 * allow tighter packing of the smaller caches.
1613 if (!sizes
->cs_cachep
) {
1614 sizes
->cs_cachep
= kmem_cache_create(names
->name
,
1616 ARCH_KMALLOC_MINALIGN
,
1617 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1620 #ifdef CONFIG_ZONE_DMA
1621 sizes
->cs_dmacachep
= kmem_cache_create(
1624 ARCH_KMALLOC_MINALIGN
,
1625 ARCH_KMALLOC_FLAGS
|SLAB_CACHE_DMA
|
1632 /* 4) Replace the bootstrap head arrays */
1634 struct array_cache
*ptr
;
1636 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_NOWAIT
);
1638 BUG_ON(cpu_cache_get(&cache_cache
) != &initarray_cache
.cache
);
1639 memcpy(ptr
, cpu_cache_get(&cache_cache
),
1640 sizeof(struct arraycache_init
));
1642 * Do not assume that spinlocks can be initialized via memcpy:
1644 spin_lock_init(&ptr
->lock
);
1646 cache_cache
.array
[smp_processor_id()] = ptr
;
1648 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_NOWAIT
);
1650 BUG_ON(cpu_cache_get(malloc_sizes
[INDEX_AC
].cs_cachep
)
1651 != &initarray_generic
.cache
);
1652 memcpy(ptr
, cpu_cache_get(malloc_sizes
[INDEX_AC
].cs_cachep
),
1653 sizeof(struct arraycache_init
));
1655 * Do not assume that spinlocks can be initialized via memcpy:
1657 spin_lock_init(&ptr
->lock
);
1659 malloc_sizes
[INDEX_AC
].cs_cachep
->array
[smp_processor_id()] =
1662 /* 5) Replace the bootstrap kmem_list3's */
1666 for_each_online_node(nid
) {
1667 init_list(&cache_cache
, &initkmem_list3
[CACHE_CACHE
+ nid
], nid
);
1669 init_list(malloc_sizes
[INDEX_AC
].cs_cachep
,
1670 &initkmem_list3
[SIZE_AC
+ nid
], nid
);
1672 if (INDEX_AC
!= INDEX_L3
) {
1673 init_list(malloc_sizes
[INDEX_L3
].cs_cachep
,
1674 &initkmem_list3
[SIZE_L3
+ nid
], nid
);
1679 g_cpucache_up
= EARLY
;
1682 void __init
kmem_cache_init_late(void)
1684 struct kmem_cache
*cachep
;
1686 g_cpucache_up
= LATE
;
1688 /* Annotate slab for lockdep -- annotate the malloc caches */
1691 /* 6) resize the head arrays to their final sizes */
1692 mutex_lock(&cache_chain_mutex
);
1693 list_for_each_entry(cachep
, &cache_chain
, next
)
1694 if (enable_cpucache(cachep
, GFP_NOWAIT
))
1696 mutex_unlock(&cache_chain_mutex
);
1699 g_cpucache_up
= FULL
;
1702 * Register a cpu startup notifier callback that initializes
1703 * cpu_cache_get for all new cpus
1705 register_cpu_notifier(&cpucache_notifier
);
1709 * Register a memory hotplug callback that initializes and frees
1712 hotplug_memory_notifier(slab_memory_callback
, SLAB_CALLBACK_PRI
);
1716 * The reap timers are started later, with a module init call: That part
1717 * of the kernel is not yet operational.
1721 static int __init
cpucache_init(void)
1726 * Register the timers that return unneeded pages to the page allocator
1728 for_each_online_cpu(cpu
)
1729 start_cpu_timer(cpu
);
1732 __initcall(cpucache_init
);
1734 static noinline
void
1735 slab_out_of_memory(struct kmem_cache
*cachep
, gfp_t gfpflags
, int nodeid
)
1737 struct kmem_list3
*l3
;
1739 unsigned long flags
;
1743 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1745 printk(KERN_WARNING
" cache: %s, object size: %d, order: %d\n",
1746 cachep
->name
, cachep
->buffer_size
, cachep
->gfporder
);
1748 for_each_online_node(node
) {
1749 unsigned long active_objs
= 0, num_objs
= 0, free_objects
= 0;
1750 unsigned long active_slabs
= 0, num_slabs
= 0;
1752 l3
= cachep
->nodelists
[node
];
1756 spin_lock_irqsave(&l3
->list_lock
, flags
);
1757 list_for_each_entry(slabp
, &l3
->slabs_full
, list
) {
1758 active_objs
+= cachep
->num
;
1761 list_for_each_entry(slabp
, &l3
->slabs_partial
, list
) {
1762 active_objs
+= slabp
->inuse
;
1765 list_for_each_entry(slabp
, &l3
->slabs_free
, list
)
1768 free_objects
+= l3
->free_objects
;
1769 spin_unlock_irqrestore(&l3
->list_lock
, flags
);
1771 num_slabs
+= active_slabs
;
1772 num_objs
= num_slabs
* cachep
->num
;
1774 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1775 node
, active_slabs
, num_slabs
, active_objs
, num_objs
,
1781 * Interface to system's page allocator. No need to hold the cache-lock.
1783 * If we requested dmaable memory, we will get it. Even if we
1784 * did not request dmaable memory, we might get it, but that
1785 * would be relatively rare and ignorable.
1787 static void *kmem_getpages(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
1795 * Nommu uses slab's for process anonymous memory allocations, and thus
1796 * requires __GFP_COMP to properly refcount higher order allocations
1798 flags
|= __GFP_COMP
;
1801 flags
|= cachep
->gfpflags
;
1802 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1803 flags
|= __GFP_RECLAIMABLE
;
1805 page
= alloc_pages_exact_node(nodeid
, flags
| __GFP_NOTRACK
, cachep
->gfporder
);
1807 if (!(flags
& __GFP_NOWARN
) && printk_ratelimit())
1808 slab_out_of_memory(cachep
, flags
, nodeid
);
1812 nr_pages
= (1 << cachep
->gfporder
);
1813 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1814 add_zone_page_state(page_zone(page
),
1815 NR_SLAB_RECLAIMABLE
, nr_pages
);
1817 add_zone_page_state(page_zone(page
),
1818 NR_SLAB_UNRECLAIMABLE
, nr_pages
);
1819 for (i
= 0; i
< nr_pages
; i
++)
1820 __SetPageSlab(page
+ i
);
1822 if (kmemcheck_enabled
&& !(cachep
->flags
& SLAB_NOTRACK
)) {
1823 kmemcheck_alloc_shadow(page
, cachep
->gfporder
, flags
, nodeid
);
1826 kmemcheck_mark_uninitialized_pages(page
, nr_pages
);
1828 kmemcheck_mark_unallocated_pages(page
, nr_pages
);
1831 return page_address(page
);
1835 * Interface to system's page release.
1837 static void kmem_freepages(struct kmem_cache
*cachep
, void *addr
)
1839 unsigned long i
= (1 << cachep
->gfporder
);
1840 struct page
*page
= virt_to_page(addr
);
1841 const unsigned long nr_freed
= i
;
1843 kmemcheck_free_shadow(page
, cachep
->gfporder
);
1845 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1846 sub_zone_page_state(page_zone(page
),
1847 NR_SLAB_RECLAIMABLE
, nr_freed
);
1849 sub_zone_page_state(page_zone(page
),
1850 NR_SLAB_UNRECLAIMABLE
, nr_freed
);
1852 BUG_ON(!PageSlab(page
));
1853 __ClearPageSlab(page
);
1856 if (current
->reclaim_state
)
1857 current
->reclaim_state
->reclaimed_slab
+= nr_freed
;
1858 free_pages((unsigned long)addr
, cachep
->gfporder
);
1861 static void kmem_rcu_free(struct rcu_head
*head
)
1863 struct slab_rcu
*slab_rcu
= (struct slab_rcu
*)head
;
1864 struct kmem_cache
*cachep
= slab_rcu
->cachep
;
1866 kmem_freepages(cachep
, slab_rcu
->addr
);
1867 if (OFF_SLAB(cachep
))
1868 kmem_cache_free(cachep
->slabp_cache
, slab_rcu
);
1873 #ifdef CONFIG_DEBUG_PAGEALLOC
1874 static void store_stackinfo(struct kmem_cache
*cachep
, unsigned long *addr
,
1875 unsigned long caller
)
1877 int size
= obj_size(cachep
);
1879 addr
= (unsigned long *)&((char *)addr
)[obj_offset(cachep
)];
1881 if (size
< 5 * sizeof(unsigned long))
1884 *addr
++ = 0x12345678;
1886 *addr
++ = smp_processor_id();
1887 size
-= 3 * sizeof(unsigned long);
1889 unsigned long *sptr
= &caller
;
1890 unsigned long svalue
;
1892 while (!kstack_end(sptr
)) {
1894 if (kernel_text_address(svalue
)) {
1896 size
-= sizeof(unsigned long);
1897 if (size
<= sizeof(unsigned long))
1903 *addr
++ = 0x87654321;
1907 static void poison_obj(struct kmem_cache
*cachep
, void *addr
, unsigned char val
)
1909 int size
= obj_size(cachep
);
1910 addr
= &((char *)addr
)[obj_offset(cachep
)];
1912 memset(addr
, val
, size
);
1913 *(unsigned char *)(addr
+ size
- 1) = POISON_END
;
1916 static void dump_line(char *data
, int offset
, int limit
)
1919 unsigned char error
= 0;
1922 printk(KERN_ERR
"%03x: ", offset
);
1923 for (i
= 0; i
< limit
; i
++) {
1924 if (data
[offset
+ i
] != POISON_FREE
) {
1925 error
= data
[offset
+ i
];
1929 print_hex_dump(KERN_CONT
, "", 0, 16, 1,
1930 &data
[offset
], limit
, 1);
1932 if (bad_count
== 1) {
1933 error
^= POISON_FREE
;
1934 if (!(error
& (error
- 1))) {
1935 printk(KERN_ERR
"Single bit error detected. Probably "
1938 printk(KERN_ERR
"Run memtest86+ or a similar memory "
1941 printk(KERN_ERR
"Run a memory test tool.\n");
1950 static void print_objinfo(struct kmem_cache
*cachep
, void *objp
, int lines
)
1955 if (cachep
->flags
& SLAB_RED_ZONE
) {
1956 printk(KERN_ERR
"Redzone: 0x%llx/0x%llx.\n",
1957 *dbg_redzone1(cachep
, objp
),
1958 *dbg_redzone2(cachep
, objp
));
1961 if (cachep
->flags
& SLAB_STORE_USER
) {
1962 printk(KERN_ERR
"Last user: [<%p>]",
1963 *dbg_userword(cachep
, objp
));
1964 print_symbol("(%s)",
1965 (unsigned long)*dbg_userword(cachep
, objp
));
1968 realobj
= (char *)objp
+ obj_offset(cachep
);
1969 size
= obj_size(cachep
);
1970 for (i
= 0; i
< size
&& lines
; i
+= 16, lines
--) {
1973 if (i
+ limit
> size
)
1975 dump_line(realobj
, i
, limit
);
1979 static void check_poison_obj(struct kmem_cache
*cachep
, void *objp
)
1985 realobj
= (char *)objp
+ obj_offset(cachep
);
1986 size
= obj_size(cachep
);
1988 for (i
= 0; i
< size
; i
++) {
1989 char exp
= POISON_FREE
;
1992 if (realobj
[i
] != exp
) {
1998 "Slab corruption (%s): %s start=%p, len=%d\n",
1999 print_tainted(), cachep
->name
, realobj
, size
);
2000 print_objinfo(cachep
, objp
, 0);
2002 /* Hexdump the affected line */
2005 if (i
+ limit
> size
)
2007 dump_line(realobj
, i
, limit
);
2010 /* Limit to 5 lines */
2016 /* Print some data about the neighboring objects, if they
2019 struct slab
*slabp
= virt_to_slab(objp
);
2022 objnr
= obj_to_index(cachep
, slabp
, objp
);
2024 objp
= index_to_obj(cachep
, slabp
, objnr
- 1);
2025 realobj
= (char *)objp
+ obj_offset(cachep
);
2026 printk(KERN_ERR
"Prev obj: start=%p, len=%d\n",
2028 print_objinfo(cachep
, objp
, 2);
2030 if (objnr
+ 1 < cachep
->num
) {
2031 objp
= index_to_obj(cachep
, slabp
, objnr
+ 1);
2032 realobj
= (char *)objp
+ obj_offset(cachep
);
2033 printk(KERN_ERR
"Next obj: start=%p, len=%d\n",
2035 print_objinfo(cachep
, objp
, 2);
2042 static void slab_destroy_debugcheck(struct kmem_cache
*cachep
, struct slab
*slabp
)
2045 for (i
= 0; i
< cachep
->num
; i
++) {
2046 void *objp
= index_to_obj(cachep
, slabp
, i
);
2048 if (cachep
->flags
& SLAB_POISON
) {
2049 #ifdef CONFIG_DEBUG_PAGEALLOC
2050 if (cachep
->buffer_size
% PAGE_SIZE
== 0 &&
2052 kernel_map_pages(virt_to_page(objp
),
2053 cachep
->buffer_size
/ PAGE_SIZE
, 1);
2055 check_poison_obj(cachep
, objp
);
2057 check_poison_obj(cachep
, objp
);
2060 if (cachep
->flags
& SLAB_RED_ZONE
) {
2061 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
2062 slab_error(cachep
, "start of a freed object "
2064 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
2065 slab_error(cachep
, "end of a freed object "
2071 static void slab_destroy_debugcheck(struct kmem_cache
*cachep
, struct slab
*slabp
)
2077 * slab_destroy - destroy and release all objects in a slab
2078 * @cachep: cache pointer being destroyed
2079 * @slabp: slab pointer being destroyed
2081 * Destroy all the objs in a slab, and release the mem back to the system.
2082 * Before calling the slab must have been unlinked from the cache. The
2083 * cache-lock is not held/needed.
2085 static void slab_destroy(struct kmem_cache
*cachep
, struct slab
*slabp
)
2087 void *addr
= slabp
->s_mem
- slabp
->colouroff
;
2089 slab_destroy_debugcheck(cachep
, slabp
);
2090 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
)) {
2091 struct slab_rcu
*slab_rcu
;
2093 slab_rcu
= (struct slab_rcu
*)slabp
;
2094 slab_rcu
->cachep
= cachep
;
2095 slab_rcu
->addr
= addr
;
2096 call_rcu(&slab_rcu
->head
, kmem_rcu_free
);
2098 kmem_freepages(cachep
, addr
);
2099 if (OFF_SLAB(cachep
))
2100 kmem_cache_free(cachep
->slabp_cache
, slabp
);
2104 static void __kmem_cache_destroy(struct kmem_cache
*cachep
)
2107 struct kmem_list3
*l3
;
2109 for_each_online_cpu(i
)
2110 kfree(cachep
->array
[i
]);
2112 /* NUMA: free the list3 structures */
2113 for_each_online_node(i
) {
2114 l3
= cachep
->nodelists
[i
];
2117 free_alien_cache(l3
->alien
);
2121 kmem_cache_free(&cache_cache
, cachep
);
2126 * calculate_slab_order - calculate size (page order) of slabs
2127 * @cachep: pointer to the cache that is being created
2128 * @size: size of objects to be created in this cache.
2129 * @align: required alignment for the objects.
2130 * @flags: slab allocation flags
2132 * Also calculates the number of objects per slab.
2134 * This could be made much more intelligent. For now, try to avoid using
2135 * high order pages for slabs. When the gfp() functions are more friendly
2136 * towards high-order requests, this should be changed.
2138 static size_t calculate_slab_order(struct kmem_cache
*cachep
,
2139 size_t size
, size_t align
, unsigned long flags
)
2141 unsigned long offslab_limit
;
2142 size_t left_over
= 0;
2145 for (gfporder
= 0; gfporder
<= KMALLOC_MAX_ORDER
; gfporder
++) {
2149 cache_estimate(gfporder
, size
, align
, flags
, &remainder
, &num
);
2153 if (flags
& CFLGS_OFF_SLAB
) {
2155 * Max number of objs-per-slab for caches which
2156 * use off-slab slabs. Needed to avoid a possible
2157 * looping condition in cache_grow().
2159 offslab_limit
= size
- sizeof(struct slab
);
2160 offslab_limit
/= sizeof(kmem_bufctl_t
);
2162 if (num
> offslab_limit
)
2166 /* Found something acceptable - save it away */
2168 cachep
->gfporder
= gfporder
;
2169 left_over
= remainder
;
2172 * A VFS-reclaimable slab tends to have most allocations
2173 * as GFP_NOFS and we really don't want to have to be allocating
2174 * higher-order pages when we are unable to shrink dcache.
2176 if (flags
& SLAB_RECLAIM_ACCOUNT
)
2180 * Large number of objects is good, but very large slabs are
2181 * currently bad for the gfp()s.
2183 if (gfporder
>= slab_max_order
)
2187 * Acceptable internal fragmentation?
2189 if (left_over
* 8 <= (PAGE_SIZE
<< gfporder
))
2195 static int __init_refok
setup_cpu_cache(struct kmem_cache
*cachep
, gfp_t gfp
)
2197 if (g_cpucache_up
== FULL
)
2198 return enable_cpucache(cachep
, gfp
);
2200 if (g_cpucache_up
== NONE
) {
2202 * Note: the first kmem_cache_create must create the cache
2203 * that's used by kmalloc(24), otherwise the creation of
2204 * further caches will BUG().
2206 cachep
->array
[smp_processor_id()] = &initarray_generic
.cache
;
2209 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2210 * the first cache, then we need to set up all its list3s,
2211 * otherwise the creation of further caches will BUG().
2213 set_up_list3s(cachep
, SIZE_AC
);
2214 if (INDEX_AC
== INDEX_L3
)
2215 g_cpucache_up
= PARTIAL_L3
;
2217 g_cpucache_up
= PARTIAL_AC
;
2219 cachep
->array
[smp_processor_id()] =
2220 kmalloc(sizeof(struct arraycache_init
), gfp
);
2222 if (g_cpucache_up
== PARTIAL_AC
) {
2223 set_up_list3s(cachep
, SIZE_L3
);
2224 g_cpucache_up
= PARTIAL_L3
;
2227 for_each_online_node(node
) {
2228 cachep
->nodelists
[node
] =
2229 kmalloc_node(sizeof(struct kmem_list3
),
2231 BUG_ON(!cachep
->nodelists
[node
]);
2232 kmem_list3_init(cachep
->nodelists
[node
]);
2236 cachep
->nodelists
[numa_mem_id()]->next_reap
=
2237 jiffies
+ REAPTIMEOUT_LIST3
+
2238 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
2240 cpu_cache_get(cachep
)->avail
= 0;
2241 cpu_cache_get(cachep
)->limit
= BOOT_CPUCACHE_ENTRIES
;
2242 cpu_cache_get(cachep
)->batchcount
= 1;
2243 cpu_cache_get(cachep
)->touched
= 0;
2244 cachep
->batchcount
= 1;
2245 cachep
->limit
= BOOT_CPUCACHE_ENTRIES
;
2250 * kmem_cache_create - Create a cache.
2251 * @name: A string which is used in /proc/slabinfo to identify this cache.
2252 * @size: The size of objects to be created in this cache.
2253 * @align: The required alignment for the objects.
2254 * @flags: SLAB flags
2255 * @ctor: A constructor for the objects.
2257 * Returns a ptr to the cache on success, NULL on failure.
2258 * Cannot be called within a int, but can be interrupted.
2259 * The @ctor is run when new pages are allocated by the cache.
2261 * @name must be valid until the cache is destroyed. This implies that
2262 * the module calling this has to destroy the cache before getting unloaded.
2266 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2267 * to catch references to uninitialised memory.
2269 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2270 * for buffer overruns.
2272 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2273 * cacheline. This can be beneficial if you're counting cycles as closely
2277 kmem_cache_create (const char *name
, size_t size
, size_t align
,
2278 unsigned long flags
, void (*ctor
)(void *))
2280 size_t left_over
, slab_size
, ralign
;
2281 struct kmem_cache
*cachep
= NULL
, *pc
;
2285 * Sanity checks... these are all serious usage bugs.
2287 if (!name
|| in_interrupt() || (size
< BYTES_PER_WORD
) ||
2288 size
> KMALLOC_MAX_SIZE
) {
2289 printk(KERN_ERR
"%s: Early error in slab %s\n", __func__
,
2295 * We use cache_chain_mutex to ensure a consistent view of
2296 * cpu_online_mask as well. Please see cpuup_callback
2298 if (slab_is_available()) {
2300 mutex_lock(&cache_chain_mutex
);
2303 list_for_each_entry(pc
, &cache_chain
, next
) {
2308 * This happens when the module gets unloaded and doesn't
2309 * destroy its slab cache and no-one else reuses the vmalloc
2310 * area of the module. Print a warning.
2312 res
= probe_kernel_address(pc
->name
, tmp
);
2315 "SLAB: cache with size %d has lost its name\n",
2320 if (!strcmp(pc
->name
, name
)) {
2322 "kmem_cache_create: duplicate cache %s\n", name
);
2329 WARN_ON(strchr(name
, ' ')); /* It confuses parsers */
2332 * Enable redzoning and last user accounting, except for caches with
2333 * large objects, if the increased size would increase the object size
2334 * above the next power of two: caches with object sizes just above a
2335 * power of two have a significant amount of internal fragmentation.
2337 if (size
< 4096 || fls(size
- 1) == fls(size
-1 + REDZONE_ALIGN
+
2338 2 * sizeof(unsigned long long)))
2339 flags
|= SLAB_RED_ZONE
| SLAB_STORE_USER
;
2340 if (!(flags
& SLAB_DESTROY_BY_RCU
))
2341 flags
|= SLAB_POISON
;
2343 if (flags
& SLAB_DESTROY_BY_RCU
)
2344 BUG_ON(flags
& SLAB_POISON
);
2347 * Always checks flags, a caller might be expecting debug support which
2350 BUG_ON(flags
& ~CREATE_MASK
);
2353 * Check that size is in terms of words. This is needed to avoid
2354 * unaligned accesses for some archs when redzoning is used, and makes
2355 * sure any on-slab bufctl's are also correctly aligned.
2357 if (size
& (BYTES_PER_WORD
- 1)) {
2358 size
+= (BYTES_PER_WORD
- 1);
2359 size
&= ~(BYTES_PER_WORD
- 1);
2362 /* calculate the final buffer alignment: */
2364 /* 1) arch recommendation: can be overridden for debug */
2365 if (flags
& SLAB_HWCACHE_ALIGN
) {
2367 * Default alignment: as specified by the arch code. Except if
2368 * an object is really small, then squeeze multiple objects into
2371 ralign
= cache_line_size();
2372 while (size
<= ralign
/ 2)
2375 ralign
= BYTES_PER_WORD
;
2379 * Redzoning and user store require word alignment or possibly larger.
2380 * Note this will be overridden by architecture or caller mandated
2381 * alignment if either is greater than BYTES_PER_WORD.
2383 if (flags
& SLAB_STORE_USER
)
2384 ralign
= BYTES_PER_WORD
;
2386 if (flags
& SLAB_RED_ZONE
) {
2387 ralign
= REDZONE_ALIGN
;
2388 /* If redzoning, ensure that the second redzone is suitably
2389 * aligned, by adjusting the object size accordingly. */
2390 size
+= REDZONE_ALIGN
- 1;
2391 size
&= ~(REDZONE_ALIGN
- 1);
2394 /* 2) arch mandated alignment */
2395 if (ralign
< ARCH_SLAB_MINALIGN
) {
2396 ralign
= ARCH_SLAB_MINALIGN
;
2398 /* 3) caller mandated alignment */
2399 if (ralign
< align
) {
2402 /* disable debug if necessary */
2403 if (ralign
> __alignof__(unsigned long long))
2404 flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
2410 if (slab_is_available())
2415 /* Get cache's description obj. */
2416 cachep
= kmem_cache_zalloc(&cache_cache
, gfp
);
2420 cachep
->nodelists
= (struct kmem_list3
**)&cachep
->array
[nr_cpu_ids
];
2422 cachep
->obj_size
= size
;
2425 * Both debugging options require word-alignment which is calculated
2428 if (flags
& SLAB_RED_ZONE
) {
2429 /* add space for red zone words */
2430 cachep
->obj_offset
+= sizeof(unsigned long long);
2431 size
+= 2 * sizeof(unsigned long long);
2433 if (flags
& SLAB_STORE_USER
) {
2434 /* user store requires one word storage behind the end of
2435 * the real object. But if the second red zone needs to be
2436 * aligned to 64 bits, we must allow that much space.
2438 if (flags
& SLAB_RED_ZONE
)
2439 size
+= REDZONE_ALIGN
;
2441 size
+= BYTES_PER_WORD
;
2443 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2444 if (size
>= malloc_sizes
[INDEX_L3
+ 1].cs_size
2445 && cachep
->obj_size
> cache_line_size() && ALIGN(size
, align
) < PAGE_SIZE
) {
2446 cachep
->obj_offset
+= PAGE_SIZE
- ALIGN(size
, align
);
2453 * Determine if the slab management is 'on' or 'off' slab.
2454 * (bootstrapping cannot cope with offslab caches so don't do
2455 * it too early on. Always use on-slab management when
2456 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2458 if ((size
>= (PAGE_SIZE
>> 3)) && !slab_early_init
&&
2459 !(flags
& SLAB_NOLEAKTRACE
))
2461 * Size is large, assume best to place the slab management obj
2462 * off-slab (should allow better packing of objs).
2464 flags
|= CFLGS_OFF_SLAB
;
2466 size
= ALIGN(size
, align
);
2468 left_over
= calculate_slab_order(cachep
, size
, align
, flags
);
2472 "kmem_cache_create: couldn't create cache %s.\n", name
);
2473 kmem_cache_free(&cache_cache
, cachep
);
2477 slab_size
= ALIGN(cachep
->num
* sizeof(kmem_bufctl_t
)
2478 + sizeof(struct slab
), align
);
2481 * If the slab has been placed off-slab, and we have enough space then
2482 * move it on-slab. This is at the expense of any extra colouring.
2484 if (flags
& CFLGS_OFF_SLAB
&& left_over
>= slab_size
) {
2485 flags
&= ~CFLGS_OFF_SLAB
;
2486 left_over
-= slab_size
;
2489 if (flags
& CFLGS_OFF_SLAB
) {
2490 /* really off slab. No need for manual alignment */
2492 cachep
->num
* sizeof(kmem_bufctl_t
) + sizeof(struct slab
);
2494 #ifdef CONFIG_PAGE_POISONING
2495 /* If we're going to use the generic kernel_map_pages()
2496 * poisoning, then it's going to smash the contents of
2497 * the redzone and userword anyhow, so switch them off.
2499 if (size
% PAGE_SIZE
== 0 && flags
& SLAB_POISON
)
2500 flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
2504 cachep
->colour_off
= cache_line_size();
2505 /* Offset must be a multiple of the alignment. */
2506 if (cachep
->colour_off
< align
)
2507 cachep
->colour_off
= align
;
2508 cachep
->colour
= left_over
/ cachep
->colour_off
;
2509 cachep
->slab_size
= slab_size
;
2510 cachep
->flags
= flags
;
2511 cachep
->gfpflags
= 0;
2512 if (CONFIG_ZONE_DMA_FLAG
&& (flags
& SLAB_CACHE_DMA
))
2513 cachep
->gfpflags
|= GFP_DMA
;
2514 cachep
->buffer_size
= size
;
2515 cachep
->reciprocal_buffer_size
= reciprocal_value(size
);
2517 if (flags
& CFLGS_OFF_SLAB
) {
2518 cachep
->slabp_cache
= kmem_find_general_cachep(slab_size
, 0u);
2520 * This is a possibility for one of the malloc_sizes caches.
2521 * But since we go off slab only for object size greater than
2522 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2523 * this should not happen at all.
2524 * But leave a BUG_ON for some lucky dude.
2526 BUG_ON(ZERO_OR_NULL_PTR(cachep
->slabp_cache
));
2528 cachep
->ctor
= ctor
;
2529 cachep
->name
= name
;
2531 if (setup_cpu_cache(cachep
, gfp
)) {
2532 __kmem_cache_destroy(cachep
);
2537 if (flags
& SLAB_DEBUG_OBJECTS
) {
2539 * Would deadlock through slab_destroy()->call_rcu()->
2540 * debug_object_activate()->kmem_cache_alloc().
2542 WARN_ON_ONCE(flags
& SLAB_DESTROY_BY_RCU
);
2544 slab_set_debugobj_lock_classes(cachep
);
2547 /* cache setup completed, link it into the list */
2548 list_add(&cachep
->next
, &cache_chain
);
2550 if (!cachep
&& (flags
& SLAB_PANIC
))
2551 panic("kmem_cache_create(): failed to create slab `%s'\n",
2553 if (slab_is_available()) {
2554 mutex_unlock(&cache_chain_mutex
);
2559 EXPORT_SYMBOL(kmem_cache_create
);
2562 static void check_irq_off(void)
2564 BUG_ON(!irqs_disabled());
2567 static void check_irq_on(void)
2569 BUG_ON(irqs_disabled());
2572 static void check_spinlock_acquired(struct kmem_cache
*cachep
)
2576 assert_spin_locked(&cachep
->nodelists
[numa_mem_id()]->list_lock
);
2580 static void check_spinlock_acquired_node(struct kmem_cache
*cachep
, int node
)
2584 assert_spin_locked(&cachep
->nodelists
[node
]->list_lock
);
2589 #define check_irq_off() do { } while(0)
2590 #define check_irq_on() do { } while(0)
2591 #define check_spinlock_acquired(x) do { } while(0)
2592 #define check_spinlock_acquired_node(x, y) do { } while(0)
2595 static void drain_array(struct kmem_cache
*cachep
, struct kmem_list3
*l3
,
2596 struct array_cache
*ac
,
2597 int force
, int node
);
2599 static void do_drain(void *arg
)
2601 struct kmem_cache
*cachep
= arg
;
2602 struct array_cache
*ac
;
2603 int node
= numa_mem_id();
2606 ac
= cpu_cache_get(cachep
);
2607 spin_lock(&cachep
->nodelists
[node
]->list_lock
);
2608 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
2609 spin_unlock(&cachep
->nodelists
[node
]->list_lock
);
2613 static void drain_cpu_caches(struct kmem_cache
*cachep
)
2615 struct kmem_list3
*l3
;
2618 on_each_cpu(do_drain
, cachep
, 1);
2620 for_each_online_node(node
) {
2621 l3
= cachep
->nodelists
[node
];
2622 if (l3
&& l3
->alien
)
2623 drain_alien_cache(cachep
, l3
->alien
);
2626 for_each_online_node(node
) {
2627 l3
= cachep
->nodelists
[node
];
2629 drain_array(cachep
, l3
, l3
->shared
, 1, node
);
2634 * Remove slabs from the list of free slabs.
2635 * Specify the number of slabs to drain in tofree.
2637 * Returns the actual number of slabs released.
2639 static int drain_freelist(struct kmem_cache
*cache
,
2640 struct kmem_list3
*l3
, int tofree
)
2642 struct list_head
*p
;
2647 while (nr_freed
< tofree
&& !list_empty(&l3
->slabs_free
)) {
2649 spin_lock_irq(&l3
->list_lock
);
2650 p
= l3
->slabs_free
.prev
;
2651 if (p
== &l3
->slabs_free
) {
2652 spin_unlock_irq(&l3
->list_lock
);
2656 slabp
= list_entry(p
, struct slab
, list
);
2658 BUG_ON(slabp
->inuse
);
2660 list_del(&slabp
->list
);
2662 * Safe to drop the lock. The slab is no longer linked
2665 l3
->free_objects
-= cache
->num
;
2666 spin_unlock_irq(&l3
->list_lock
);
2667 slab_destroy(cache
, slabp
);
2674 /* Called with cache_chain_mutex held to protect against cpu hotplug */
2675 static int __cache_shrink(struct kmem_cache
*cachep
)
2678 struct kmem_list3
*l3
;
2680 drain_cpu_caches(cachep
);
2683 for_each_online_node(i
) {
2684 l3
= cachep
->nodelists
[i
];
2688 drain_freelist(cachep
, l3
, l3
->free_objects
);
2690 ret
+= !list_empty(&l3
->slabs_full
) ||
2691 !list_empty(&l3
->slabs_partial
);
2693 return (ret
? 1 : 0);
2697 * kmem_cache_shrink - Shrink a cache.
2698 * @cachep: The cache to shrink.
2700 * Releases as many slabs as possible for a cache.
2701 * To help debugging, a zero exit status indicates all slabs were released.
2703 int kmem_cache_shrink(struct kmem_cache
*cachep
)
2706 BUG_ON(!cachep
|| in_interrupt());
2709 mutex_lock(&cache_chain_mutex
);
2710 ret
= __cache_shrink(cachep
);
2711 mutex_unlock(&cache_chain_mutex
);
2715 EXPORT_SYMBOL(kmem_cache_shrink
);
2718 * kmem_cache_destroy - delete a cache
2719 * @cachep: the cache to destroy
2721 * Remove a &struct kmem_cache object from the slab cache.
2723 * It is expected this function will be called by a module when it is
2724 * unloaded. This will remove the cache completely, and avoid a duplicate
2725 * cache being allocated each time a module is loaded and unloaded, if the
2726 * module doesn't have persistent in-kernel storage across loads and unloads.
2728 * The cache must be empty before calling this function.
2730 * The caller must guarantee that no one will allocate memory from the cache
2731 * during the kmem_cache_destroy().
2733 void kmem_cache_destroy(struct kmem_cache
*cachep
)
2735 BUG_ON(!cachep
|| in_interrupt());
2737 /* Find the cache in the chain of caches. */
2739 mutex_lock(&cache_chain_mutex
);
2741 * the chain is never empty, cache_cache is never destroyed
2743 list_del(&cachep
->next
);
2744 if (__cache_shrink(cachep
)) {
2745 slab_error(cachep
, "Can't free all objects");
2746 list_add(&cachep
->next
, &cache_chain
);
2747 mutex_unlock(&cache_chain_mutex
);
2752 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
))
2755 __kmem_cache_destroy(cachep
);
2756 mutex_unlock(&cache_chain_mutex
);
2759 EXPORT_SYMBOL(kmem_cache_destroy
);
2762 * Get the memory for a slab management obj.
2763 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2764 * always come from malloc_sizes caches. The slab descriptor cannot
2765 * come from the same cache which is getting created because,
2766 * when we are searching for an appropriate cache for these
2767 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2768 * If we are creating a malloc_sizes cache here it would not be visible to
2769 * kmem_find_general_cachep till the initialization is complete.
2770 * Hence we cannot have slabp_cache same as the original cache.
2772 static struct slab
*alloc_slabmgmt(struct kmem_cache
*cachep
, void *objp
,
2773 int colour_off
, gfp_t local_flags
,
2778 if (OFF_SLAB(cachep
)) {
2779 /* Slab management obj is off-slab. */
2780 slabp
= kmem_cache_alloc_node(cachep
->slabp_cache
,
2781 local_flags
, nodeid
);
2783 * If the first object in the slab is leaked (it's allocated
2784 * but no one has a reference to it), we want to make sure
2785 * kmemleak does not treat the ->s_mem pointer as a reference
2786 * to the object. Otherwise we will not report the leak.
2788 kmemleak_scan_area(&slabp
->list
, sizeof(struct list_head
),
2793 slabp
= objp
+ colour_off
;
2794 colour_off
+= cachep
->slab_size
;
2797 slabp
->colouroff
= colour_off
;
2798 slabp
->s_mem
= objp
+ colour_off
;
2799 slabp
->nodeid
= nodeid
;
2804 static inline kmem_bufctl_t
*slab_bufctl(struct slab
*slabp
)
2806 return (kmem_bufctl_t
*) (slabp
+ 1);
2809 static void cache_init_objs(struct kmem_cache
*cachep
,
2814 for (i
= 0; i
< cachep
->num
; i
++) {
2815 void *objp
= index_to_obj(cachep
, slabp
, i
);
2817 /* need to poison the objs? */
2818 if (cachep
->flags
& SLAB_POISON
)
2819 poison_obj(cachep
, objp
, POISON_FREE
);
2820 if (cachep
->flags
& SLAB_STORE_USER
)
2821 *dbg_userword(cachep
, objp
) = NULL
;
2823 if (cachep
->flags
& SLAB_RED_ZONE
) {
2824 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2825 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2828 * Constructors are not allowed to allocate memory from the same
2829 * cache which they are a constructor for. Otherwise, deadlock.
2830 * They must also be threaded.
2832 if (cachep
->ctor
&& !(cachep
->flags
& SLAB_POISON
))
2833 cachep
->ctor(objp
+ obj_offset(cachep
));
2835 if (cachep
->flags
& SLAB_RED_ZONE
) {
2836 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
2837 slab_error(cachep
, "constructor overwrote the"
2838 " end of an object");
2839 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
2840 slab_error(cachep
, "constructor overwrote the"
2841 " start of an object");
2843 if ((cachep
->buffer_size
% PAGE_SIZE
) == 0 &&
2844 OFF_SLAB(cachep
) && cachep
->flags
& SLAB_POISON
)
2845 kernel_map_pages(virt_to_page(objp
),
2846 cachep
->buffer_size
/ PAGE_SIZE
, 0);
2851 slab_bufctl(slabp
)[i
] = i
+ 1;
2853 slab_bufctl(slabp
)[i
- 1] = BUFCTL_END
;
2856 static void kmem_flagcheck(struct kmem_cache
*cachep
, gfp_t flags
)
2858 if (CONFIG_ZONE_DMA_FLAG
) {
2859 if (flags
& GFP_DMA
)
2860 BUG_ON(!(cachep
->gfpflags
& GFP_DMA
));
2862 BUG_ON(cachep
->gfpflags
& GFP_DMA
);
2866 static void *slab_get_obj(struct kmem_cache
*cachep
, struct slab
*slabp
,
2869 void *objp
= index_to_obj(cachep
, slabp
, slabp
->free
);
2873 next
= slab_bufctl(slabp
)[slabp
->free
];
2875 slab_bufctl(slabp
)[slabp
->free
] = BUFCTL_FREE
;
2876 WARN_ON(slabp
->nodeid
!= nodeid
);
2883 static void slab_put_obj(struct kmem_cache
*cachep
, struct slab
*slabp
,
2884 void *objp
, int nodeid
)
2886 unsigned int objnr
= obj_to_index(cachep
, slabp
, objp
);
2889 /* Verify that the slab belongs to the intended node */
2890 WARN_ON(slabp
->nodeid
!= nodeid
);
2892 if (slab_bufctl(slabp
)[objnr
] + 1 <= SLAB_LIMIT
+ 1) {
2893 printk(KERN_ERR
"slab: double free detected in cache "
2894 "'%s', objp %p\n", cachep
->name
, objp
);
2898 slab_bufctl(slabp
)[objnr
] = slabp
->free
;
2899 slabp
->free
= objnr
;
2904 * Map pages beginning at addr to the given cache and slab. This is required
2905 * for the slab allocator to be able to lookup the cache and slab of a
2906 * virtual address for kfree, ksize, and slab debugging.
2908 static void slab_map_pages(struct kmem_cache
*cache
, struct slab
*slab
,
2914 page
= virt_to_page(addr
);
2917 if (likely(!PageCompound(page
)))
2918 nr_pages
<<= cache
->gfporder
;
2921 page_set_cache(page
, cache
);
2922 page_set_slab(page
, slab
);
2924 } while (--nr_pages
);
2928 * Grow (by 1) the number of slabs within a cache. This is called by
2929 * kmem_cache_alloc() when there are no active objs left in a cache.
2931 static int cache_grow(struct kmem_cache
*cachep
,
2932 gfp_t flags
, int nodeid
, void *objp
)
2937 struct kmem_list3
*l3
;
2940 * Be lazy and only check for valid flags here, keeping it out of the
2941 * critical path in kmem_cache_alloc().
2943 BUG_ON(flags
& GFP_SLAB_BUG_MASK
);
2944 local_flags
= flags
& (GFP_CONSTRAINT_MASK
|GFP_RECLAIM_MASK
);
2946 /* Take the l3 list lock to change the colour_next on this node */
2948 l3
= cachep
->nodelists
[nodeid
];
2949 spin_lock(&l3
->list_lock
);
2951 /* Get colour for the slab, and cal the next value. */
2952 offset
= l3
->colour_next
;
2954 if (l3
->colour_next
>= cachep
->colour
)
2955 l3
->colour_next
= 0;
2956 spin_unlock(&l3
->list_lock
);
2958 offset
*= cachep
->colour_off
;
2960 if (local_flags
& __GFP_WAIT
)
2964 * The test for missing atomic flag is performed here, rather than
2965 * the more obvious place, simply to reduce the critical path length
2966 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2967 * will eventually be caught here (where it matters).
2969 kmem_flagcheck(cachep
, flags
);
2972 * Get mem for the objs. Attempt to allocate a physical page from
2976 objp
= kmem_getpages(cachep
, local_flags
, nodeid
);
2980 /* Get slab management. */
2981 slabp
= alloc_slabmgmt(cachep
, objp
, offset
,
2982 local_flags
& ~GFP_CONSTRAINT_MASK
, nodeid
);
2986 slab_map_pages(cachep
, slabp
, objp
);
2988 cache_init_objs(cachep
, slabp
);
2990 if (local_flags
& __GFP_WAIT
)
2991 local_irq_disable();
2993 spin_lock(&l3
->list_lock
);
2995 /* Make slab active. */
2996 list_add_tail(&slabp
->list
, &(l3
->slabs_free
));
2997 STATS_INC_GROWN(cachep
);
2998 l3
->free_objects
+= cachep
->num
;
2999 spin_unlock(&l3
->list_lock
);
3002 kmem_freepages(cachep
, objp
);
3004 if (local_flags
& __GFP_WAIT
)
3005 local_irq_disable();
3012 * Perform extra freeing checks:
3013 * - detect bad pointers.
3014 * - POISON/RED_ZONE checking
3016 static void kfree_debugcheck(const void *objp
)
3018 if (!virt_addr_valid(objp
)) {
3019 printk(KERN_ERR
"kfree_debugcheck: out of range ptr %lxh.\n",
3020 (unsigned long)objp
);
3025 static inline void verify_redzone_free(struct kmem_cache
*cache
, void *obj
)
3027 unsigned long long redzone1
, redzone2
;
3029 redzone1
= *dbg_redzone1(cache
, obj
);
3030 redzone2
= *dbg_redzone2(cache
, obj
);
3035 if (redzone1
== RED_ACTIVE
&& redzone2
== RED_ACTIVE
)
3038 if (redzone1
== RED_INACTIVE
&& redzone2
== RED_INACTIVE
)
3039 slab_error(cache
, "double free detected");
3041 slab_error(cache
, "memory outside object was overwritten");
3043 printk(KERN_ERR
"%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
3044 obj
, redzone1
, redzone2
);
3047 static void *cache_free_debugcheck(struct kmem_cache
*cachep
, void *objp
,
3054 BUG_ON(virt_to_cache(objp
) != cachep
);
3056 objp
-= obj_offset(cachep
);
3057 kfree_debugcheck(objp
);
3058 page
= virt_to_head_page(objp
);
3060 slabp
= page_get_slab(page
);
3062 if (cachep
->flags
& SLAB_RED_ZONE
) {
3063 verify_redzone_free(cachep
, objp
);
3064 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
3065 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
3067 if (cachep
->flags
& SLAB_STORE_USER
)
3068 *dbg_userword(cachep
, objp
) = caller
;
3070 objnr
= obj_to_index(cachep
, slabp
, objp
);
3072 BUG_ON(objnr
>= cachep
->num
);
3073 BUG_ON(objp
!= index_to_obj(cachep
, slabp
, objnr
));
3075 #ifdef CONFIG_DEBUG_SLAB_LEAK
3076 slab_bufctl(slabp
)[objnr
] = BUFCTL_FREE
;
3078 if (cachep
->flags
& SLAB_POISON
) {
3079 #ifdef CONFIG_DEBUG_PAGEALLOC
3080 if ((cachep
->buffer_size
% PAGE_SIZE
)==0 && OFF_SLAB(cachep
)) {
3081 store_stackinfo(cachep
, objp
, (unsigned long)caller
);
3082 kernel_map_pages(virt_to_page(objp
),
3083 cachep
->buffer_size
/ PAGE_SIZE
, 0);
3085 poison_obj(cachep
, objp
, POISON_FREE
);
3088 poison_obj(cachep
, objp
, POISON_FREE
);
3094 static void check_slabp(struct kmem_cache
*cachep
, struct slab
*slabp
)
3099 /* Check slab's freelist to see if this obj is there. */
3100 for (i
= slabp
->free
; i
!= BUFCTL_END
; i
= slab_bufctl(slabp
)[i
]) {
3102 if (entries
> cachep
->num
|| i
>= cachep
->num
)
3105 if (entries
!= cachep
->num
- slabp
->inuse
) {
3107 printk(KERN_ERR
"slab: Internal list corruption detected in "
3108 "cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
3109 cachep
->name
, cachep
->num
, slabp
, slabp
->inuse
,
3111 print_hex_dump(KERN_ERR
, "", DUMP_PREFIX_OFFSET
, 16, 1, slabp
,
3112 sizeof(*slabp
) + cachep
->num
* sizeof(kmem_bufctl_t
),
3118 #define kfree_debugcheck(x) do { } while(0)
3119 #define cache_free_debugcheck(x,objp,z) (objp)
3120 #define check_slabp(x,y) do { } while(0)
3123 static void *cache_alloc_refill(struct kmem_cache
*cachep
, gfp_t flags
)
3126 struct kmem_list3
*l3
;
3127 struct array_cache
*ac
;
3132 node
= numa_mem_id();
3133 ac
= cpu_cache_get(cachep
);
3134 batchcount
= ac
->batchcount
;
3135 if (!ac
->touched
&& batchcount
> BATCHREFILL_LIMIT
) {
3137 * If there was little recent activity on this cache, then
3138 * perform only a partial refill. Otherwise we could generate
3141 batchcount
= BATCHREFILL_LIMIT
;
3143 l3
= cachep
->nodelists
[node
];
3145 BUG_ON(ac
->avail
> 0 || !l3
);
3146 spin_lock(&l3
->list_lock
);
3148 /* See if we can refill from the shared array */
3149 if (l3
->shared
&& transfer_objects(ac
, l3
->shared
, batchcount
)) {
3150 l3
->shared
->touched
= 1;
3154 while (batchcount
> 0) {
3155 struct list_head
*entry
;
3157 /* Get slab alloc is to come from. */
3158 entry
= l3
->slabs_partial
.next
;
3159 if (entry
== &l3
->slabs_partial
) {
3160 l3
->free_touched
= 1;
3161 entry
= l3
->slabs_free
.next
;
3162 if (entry
== &l3
->slabs_free
)
3166 slabp
= list_entry(entry
, struct slab
, list
);
3167 check_slabp(cachep
, slabp
);
3168 check_spinlock_acquired(cachep
);
3171 * The slab was either on partial or free list so
3172 * there must be at least one object available for
3175 BUG_ON(slabp
->inuse
>= cachep
->num
);
3177 while (slabp
->inuse
< cachep
->num
&& batchcount
--) {
3178 STATS_INC_ALLOCED(cachep
);
3179 STATS_INC_ACTIVE(cachep
);
3180 STATS_SET_HIGH(cachep
);
3182 ac
->entry
[ac
->avail
++] = slab_get_obj(cachep
, slabp
,
3185 check_slabp(cachep
, slabp
);
3187 /* move slabp to correct slabp list: */
3188 list_del(&slabp
->list
);
3189 if (slabp
->free
== BUFCTL_END
)
3190 list_add(&slabp
->list
, &l3
->slabs_full
);
3192 list_add(&slabp
->list
, &l3
->slabs_partial
);
3196 l3
->free_objects
-= ac
->avail
;
3198 spin_unlock(&l3
->list_lock
);
3200 if (unlikely(!ac
->avail
)) {
3202 x
= cache_grow(cachep
, flags
| GFP_THISNODE
, node
, NULL
);
3204 /* cache_grow can reenable interrupts, then ac could change. */
3205 ac
= cpu_cache_get(cachep
);
3206 if (!x
&& ac
->avail
== 0) /* no objects in sight? abort */
3209 if (!ac
->avail
) /* objects refilled by interrupt? */
3213 return ac
->entry
[--ac
->avail
];
3216 static inline void cache_alloc_debugcheck_before(struct kmem_cache
*cachep
,
3219 might_sleep_if(flags
& __GFP_WAIT
);
3221 kmem_flagcheck(cachep
, flags
);
3226 static void *cache_alloc_debugcheck_after(struct kmem_cache
*cachep
,
3227 gfp_t flags
, void *objp
, void *caller
)
3231 if (cachep
->flags
& SLAB_POISON
) {
3232 #ifdef CONFIG_DEBUG_PAGEALLOC
3233 if ((cachep
->buffer_size
% PAGE_SIZE
) == 0 && OFF_SLAB(cachep
))
3234 kernel_map_pages(virt_to_page(objp
),
3235 cachep
->buffer_size
/ PAGE_SIZE
, 1);
3237 check_poison_obj(cachep
, objp
);
3239 check_poison_obj(cachep
, objp
);
3241 poison_obj(cachep
, objp
, POISON_INUSE
);
3243 if (cachep
->flags
& SLAB_STORE_USER
)
3244 *dbg_userword(cachep
, objp
) = caller
;
3246 if (cachep
->flags
& SLAB_RED_ZONE
) {
3247 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
||
3248 *dbg_redzone2(cachep
, objp
) != RED_INACTIVE
) {
3249 slab_error(cachep
, "double free, or memory outside"
3250 " object was overwritten");
3252 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3253 objp
, *dbg_redzone1(cachep
, objp
),
3254 *dbg_redzone2(cachep
, objp
));
3256 *dbg_redzone1(cachep
, objp
) = RED_ACTIVE
;
3257 *dbg_redzone2(cachep
, objp
) = RED_ACTIVE
;
3259 #ifdef CONFIG_DEBUG_SLAB_LEAK
3264 slabp
= page_get_slab(virt_to_head_page(objp
));
3265 objnr
= (unsigned)(objp
- slabp
->s_mem
) / cachep
->buffer_size
;
3266 slab_bufctl(slabp
)[objnr
] = BUFCTL_ACTIVE
;
3269 objp
+= obj_offset(cachep
);
3270 if (cachep
->ctor
&& cachep
->flags
& SLAB_POISON
)
3272 if (ARCH_SLAB_MINALIGN
&&
3273 ((unsigned long)objp
& (ARCH_SLAB_MINALIGN
-1))) {
3274 printk(KERN_ERR
"0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3275 objp
, (int)ARCH_SLAB_MINALIGN
);
3280 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3283 static bool slab_should_failslab(struct kmem_cache
*cachep
, gfp_t flags
)
3285 if (cachep
== &cache_cache
)
3288 return should_failslab(obj_size(cachep
), flags
, cachep
->flags
);
3291 static inline void *____cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3294 struct array_cache
*ac
;
3298 ac
= cpu_cache_get(cachep
);
3299 if (likely(ac
->avail
)) {
3300 STATS_INC_ALLOCHIT(cachep
);
3302 objp
= ac
->entry
[--ac
->avail
];
3304 STATS_INC_ALLOCMISS(cachep
);
3305 objp
= cache_alloc_refill(cachep
, flags
);
3307 * the 'ac' may be updated by cache_alloc_refill(),
3308 * and kmemleak_erase() requires its correct value.
3310 ac
= cpu_cache_get(cachep
);
3313 * To avoid a false negative, if an object that is in one of the
3314 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3315 * treat the array pointers as a reference to the object.
3318 kmemleak_erase(&ac
->entry
[ac
->avail
]);
3324 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3326 * If we are in_interrupt, then process context, including cpusets and
3327 * mempolicy, may not apply and should not be used for allocation policy.
3329 static void *alternate_node_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3331 int nid_alloc
, nid_here
;
3333 if (in_interrupt() || (flags
& __GFP_THISNODE
))
3335 nid_alloc
= nid_here
= numa_mem_id();
3336 if (cpuset_do_slab_mem_spread() && (cachep
->flags
& SLAB_MEM_SPREAD
))
3337 nid_alloc
= cpuset_slab_spread_node();
3338 else if (current
->mempolicy
)
3339 nid_alloc
= slab_node(current
->mempolicy
);
3340 if (nid_alloc
!= nid_here
)
3341 return ____cache_alloc_node(cachep
, flags
, nid_alloc
);
3346 * Fallback function if there was no memory available and no objects on a
3347 * certain node and fall back is permitted. First we scan all the
3348 * available nodelists for available objects. If that fails then we
3349 * perform an allocation without specifying a node. This allows the page
3350 * allocator to do its reclaim / fallback magic. We then insert the
3351 * slab into the proper nodelist and then allocate from it.
3353 static void *fallback_alloc(struct kmem_cache
*cache
, gfp_t flags
)
3355 struct zonelist
*zonelist
;
3359 enum zone_type high_zoneidx
= gfp_zone(flags
);
3362 unsigned int cpuset_mems_cookie
;
3364 if (flags
& __GFP_THISNODE
)
3367 local_flags
= flags
& (GFP_CONSTRAINT_MASK
|GFP_RECLAIM_MASK
);
3370 cpuset_mems_cookie
= get_mems_allowed();
3371 zonelist
= node_zonelist(slab_node(current
->mempolicy
), flags
);
3375 * Look through allowed nodes for objects available
3376 * from existing per node queues.
3378 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
3379 nid
= zone_to_nid(zone
);
3381 if (cpuset_zone_allowed_hardwall(zone
, flags
) &&
3382 cache
->nodelists
[nid
] &&
3383 cache
->nodelists
[nid
]->free_objects
) {
3384 obj
= ____cache_alloc_node(cache
,
3385 flags
| GFP_THISNODE
, nid
);
3393 * This allocation will be performed within the constraints
3394 * of the current cpuset / memory policy requirements.
3395 * We may trigger various forms of reclaim on the allowed
3396 * set and go into memory reserves if necessary.
3398 if (local_flags
& __GFP_WAIT
)
3400 kmem_flagcheck(cache
, flags
);
3401 obj
= kmem_getpages(cache
, local_flags
, numa_mem_id());
3402 if (local_flags
& __GFP_WAIT
)
3403 local_irq_disable();
3406 * Insert into the appropriate per node queues
3408 nid
= page_to_nid(virt_to_page(obj
));
3409 if (cache_grow(cache
, flags
, nid
, obj
)) {
3410 obj
= ____cache_alloc_node(cache
,
3411 flags
| GFP_THISNODE
, nid
);
3414 * Another processor may allocate the
3415 * objects in the slab since we are
3416 * not holding any locks.
3420 /* cache_grow already freed obj */
3426 if (unlikely(!put_mems_allowed(cpuset_mems_cookie
) && !obj
))
3432 * A interface to enable slab creation on nodeid
3434 static void *____cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
,
3437 struct list_head
*entry
;
3439 struct kmem_list3
*l3
;
3443 l3
= cachep
->nodelists
[nodeid
];
3448 spin_lock(&l3
->list_lock
);
3449 entry
= l3
->slabs_partial
.next
;
3450 if (entry
== &l3
->slabs_partial
) {
3451 l3
->free_touched
= 1;
3452 entry
= l3
->slabs_free
.next
;
3453 if (entry
== &l3
->slabs_free
)
3457 slabp
= list_entry(entry
, struct slab
, list
);
3458 check_spinlock_acquired_node(cachep
, nodeid
);
3459 check_slabp(cachep
, slabp
);
3461 STATS_INC_NODEALLOCS(cachep
);
3462 STATS_INC_ACTIVE(cachep
);
3463 STATS_SET_HIGH(cachep
);
3465 BUG_ON(slabp
->inuse
== cachep
->num
);
3467 obj
= slab_get_obj(cachep
, slabp
, nodeid
);
3468 check_slabp(cachep
, slabp
);
3470 /* move slabp to correct slabp list: */
3471 list_del(&slabp
->list
);
3473 if (slabp
->free
== BUFCTL_END
)
3474 list_add(&slabp
->list
, &l3
->slabs_full
);
3476 list_add(&slabp
->list
, &l3
->slabs_partial
);
3478 spin_unlock(&l3
->list_lock
);
3482 spin_unlock(&l3
->list_lock
);
3483 x
= cache_grow(cachep
, flags
| GFP_THISNODE
, nodeid
, NULL
);
3487 return fallback_alloc(cachep
, flags
);
3494 * kmem_cache_alloc_node - Allocate an object on the specified node
3495 * @cachep: The cache to allocate from.
3496 * @flags: See kmalloc().
3497 * @nodeid: node number of the target node.
3498 * @caller: return address of caller, used for debug information
3500 * Identical to kmem_cache_alloc but it will allocate memory on the given
3501 * node, which can improve the performance for cpu bound structures.
3503 * Fallback to other node is possible if __GFP_THISNODE is not set.
3505 static __always_inline
void *
3506 __cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
,
3509 unsigned long save_flags
;
3511 int slab_node
= numa_mem_id();
3513 flags
&= gfp_allowed_mask
;
3515 lockdep_trace_alloc(flags
);
3517 if (slab_should_failslab(cachep
, flags
))
3520 cache_alloc_debugcheck_before(cachep
, flags
);
3521 local_irq_save(save_flags
);
3523 if (nodeid
== NUMA_NO_NODE
)
3526 if (unlikely(!cachep
->nodelists
[nodeid
])) {
3527 /* Node not bootstrapped yet */
3528 ptr
= fallback_alloc(cachep
, flags
);
3532 if (nodeid
== slab_node
) {
3534 * Use the locally cached objects if possible.
3535 * However ____cache_alloc does not allow fallback
3536 * to other nodes. It may fail while we still have
3537 * objects on other nodes available.
3539 ptr
= ____cache_alloc(cachep
, flags
);
3543 /* ___cache_alloc_node can fall back to other nodes */
3544 ptr
= ____cache_alloc_node(cachep
, flags
, nodeid
);
3546 local_irq_restore(save_flags
);
3547 ptr
= cache_alloc_debugcheck_after(cachep
, flags
, ptr
, caller
);
3548 kmemleak_alloc_recursive(ptr
, obj_size(cachep
), 1, cachep
->flags
,
3552 kmemcheck_slab_alloc(cachep
, flags
, ptr
, obj_size(cachep
));
3554 if (unlikely((flags
& __GFP_ZERO
) && ptr
))
3555 memset(ptr
, 0, obj_size(cachep
));
3560 static __always_inline
void *
3561 __do_cache_alloc(struct kmem_cache
*cache
, gfp_t flags
)
3565 if (unlikely(current
->flags
& (PF_SPREAD_SLAB
| PF_MEMPOLICY
))) {
3566 objp
= alternate_node_alloc(cache
, flags
);
3570 objp
= ____cache_alloc(cache
, flags
);
3573 * We may just have run out of memory on the local node.
3574 * ____cache_alloc_node() knows how to locate memory on other nodes
3577 objp
= ____cache_alloc_node(cache
, flags
, numa_mem_id());
3584 static __always_inline
void *
3585 __do_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3587 return ____cache_alloc(cachep
, flags
);
3590 #endif /* CONFIG_NUMA */
3592 static __always_inline
void *
3593 __cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
, void *caller
)
3595 unsigned long save_flags
;
3598 flags
&= gfp_allowed_mask
;
3600 lockdep_trace_alloc(flags
);
3602 if (slab_should_failslab(cachep
, flags
))
3605 cache_alloc_debugcheck_before(cachep
, flags
);
3606 local_irq_save(save_flags
);
3607 objp
= __do_cache_alloc(cachep
, flags
);
3608 local_irq_restore(save_flags
);
3609 objp
= cache_alloc_debugcheck_after(cachep
, flags
, objp
, caller
);
3610 kmemleak_alloc_recursive(objp
, obj_size(cachep
), 1, cachep
->flags
,
3615 kmemcheck_slab_alloc(cachep
, flags
, objp
, obj_size(cachep
));
3617 if (unlikely((flags
& __GFP_ZERO
) && objp
))
3618 memset(objp
, 0, obj_size(cachep
));
3624 * Caller needs to acquire correct kmem_list's list_lock
3626 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int nr_objects
,
3630 struct kmem_list3
*l3
;
3632 for (i
= 0; i
< nr_objects
; i
++) {
3633 void *objp
= objpp
[i
];
3636 slabp
= virt_to_slab(objp
);
3637 l3
= cachep
->nodelists
[node
];
3638 list_del(&slabp
->list
);
3639 check_spinlock_acquired_node(cachep
, node
);
3640 check_slabp(cachep
, slabp
);
3641 slab_put_obj(cachep
, slabp
, objp
, node
);
3642 STATS_DEC_ACTIVE(cachep
);
3644 check_slabp(cachep
, slabp
);
3646 /* fixup slab chains */
3647 if (slabp
->inuse
== 0) {
3648 if (l3
->free_objects
> l3
->free_limit
) {
3649 l3
->free_objects
-= cachep
->num
;
3650 /* No need to drop any previously held
3651 * lock here, even if we have a off-slab slab
3652 * descriptor it is guaranteed to come from
3653 * a different cache, refer to comments before
3656 slab_destroy(cachep
, slabp
);
3658 list_add(&slabp
->list
, &l3
->slabs_free
);
3661 /* Unconditionally move a slab to the end of the
3662 * partial list on free - maximum time for the
3663 * other objects to be freed, too.
3665 list_add_tail(&slabp
->list
, &l3
->slabs_partial
);
3670 static void cache_flusharray(struct kmem_cache
*cachep
, struct array_cache
*ac
)
3673 struct kmem_list3
*l3
;
3674 int node
= numa_mem_id();
3676 batchcount
= ac
->batchcount
;
3678 BUG_ON(!batchcount
|| batchcount
> ac
->avail
);
3681 l3
= cachep
->nodelists
[node
];
3682 spin_lock(&l3
->list_lock
);
3684 struct array_cache
*shared_array
= l3
->shared
;
3685 int max
= shared_array
->limit
- shared_array
->avail
;
3687 if (batchcount
> max
)
3689 memcpy(&(shared_array
->entry
[shared_array
->avail
]),
3690 ac
->entry
, sizeof(void *) * batchcount
);
3691 shared_array
->avail
+= batchcount
;
3696 free_block(cachep
, ac
->entry
, batchcount
, node
);
3701 struct list_head
*p
;
3703 p
= l3
->slabs_free
.next
;
3704 while (p
!= &(l3
->slabs_free
)) {
3707 slabp
= list_entry(p
, struct slab
, list
);
3708 BUG_ON(slabp
->inuse
);
3713 STATS_SET_FREEABLE(cachep
, i
);
3716 spin_unlock(&l3
->list_lock
);
3717 ac
->avail
-= batchcount
;
3718 memmove(ac
->entry
, &(ac
->entry
[batchcount
]), sizeof(void *)*ac
->avail
);
3722 * Release an obj back to its cache. If the obj has a constructed state, it must
3723 * be in this state _before_ it is released. Called with disabled ints.
3725 static inline void __cache_free(struct kmem_cache
*cachep
, void *objp
,
3728 struct array_cache
*ac
= cpu_cache_get(cachep
);
3731 kmemleak_free_recursive(objp
, cachep
->flags
);
3732 objp
= cache_free_debugcheck(cachep
, objp
, caller
);
3734 kmemcheck_slab_free(cachep
, objp
, obj_size(cachep
));
3737 * Skip calling cache_free_alien() when the platform is not numa.
3738 * This will avoid cache misses that happen while accessing slabp (which
3739 * is per page memory reference) to get nodeid. Instead use a global
3740 * variable to skip the call, which is mostly likely to be present in
3743 if (nr_online_nodes
> 1 && cache_free_alien(cachep
, objp
))
3746 if (likely(ac
->avail
< ac
->limit
)) {
3747 STATS_INC_FREEHIT(cachep
);
3749 STATS_INC_FREEMISS(cachep
);
3750 cache_flusharray(cachep
, ac
);
3753 ac
->entry
[ac
->avail
++] = objp
;
3757 * kmem_cache_alloc - Allocate an object
3758 * @cachep: The cache to allocate from.
3759 * @flags: See kmalloc().
3761 * Allocate an object from this cache. The flags are only relevant
3762 * if the cache has no available objects.
3764 void *kmem_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3766 void *ret
= __cache_alloc(cachep
, flags
, __builtin_return_address(0));
3768 trace_kmem_cache_alloc(_RET_IP_
, ret
,
3769 obj_size(cachep
), cachep
->buffer_size
, flags
);
3773 EXPORT_SYMBOL(kmem_cache_alloc
);
3775 #ifdef CONFIG_TRACING
3777 kmem_cache_alloc_trace(size_t size
, struct kmem_cache
*cachep
, gfp_t flags
)
3781 ret
= __cache_alloc(cachep
, flags
, __builtin_return_address(0));
3783 trace_kmalloc(_RET_IP_
, ret
,
3784 size
, slab_buffer_size(cachep
), flags
);
3787 EXPORT_SYMBOL(kmem_cache_alloc_trace
);
3791 void *kmem_cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
3793 void *ret
= __cache_alloc_node(cachep
, flags
, nodeid
,
3794 __builtin_return_address(0));
3796 trace_kmem_cache_alloc_node(_RET_IP_
, ret
,
3797 obj_size(cachep
), cachep
->buffer_size
,
3802 EXPORT_SYMBOL(kmem_cache_alloc_node
);
3804 #ifdef CONFIG_TRACING
3805 void *kmem_cache_alloc_node_trace(size_t size
,
3806 struct kmem_cache
*cachep
,
3812 ret
= __cache_alloc_node(cachep
, flags
, nodeid
,
3813 __builtin_return_address(0));
3814 trace_kmalloc_node(_RET_IP_
, ret
,
3815 size
, slab_buffer_size(cachep
),
3819 EXPORT_SYMBOL(kmem_cache_alloc_node_trace
);
3822 static __always_inline
void *
3823 __do_kmalloc_node(size_t size
, gfp_t flags
, int node
, void *caller
)
3825 struct kmem_cache
*cachep
;
3827 cachep
= kmem_find_general_cachep(size
, flags
);
3828 if (unlikely(ZERO_OR_NULL_PTR(cachep
)))
3830 return kmem_cache_alloc_node_trace(size
, cachep
, flags
, node
);
3833 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3834 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3836 return __do_kmalloc_node(size
, flags
, node
,
3837 __builtin_return_address(0));
3839 EXPORT_SYMBOL(__kmalloc_node
);
3841 void *__kmalloc_node_track_caller(size_t size
, gfp_t flags
,
3842 int node
, unsigned long caller
)
3844 return __do_kmalloc_node(size
, flags
, node
, (void *)caller
);
3846 EXPORT_SYMBOL(__kmalloc_node_track_caller
);
3848 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3850 return __do_kmalloc_node(size
, flags
, node
, NULL
);
3852 EXPORT_SYMBOL(__kmalloc_node
);
3853 #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3854 #endif /* CONFIG_NUMA */
3857 * __do_kmalloc - allocate memory
3858 * @size: how many bytes of memory are required.
3859 * @flags: the type of memory to allocate (see kmalloc).
3860 * @caller: function caller for debug tracking of the caller
3862 static __always_inline
void *__do_kmalloc(size_t size
, gfp_t flags
,
3865 struct kmem_cache
*cachep
;
3868 /* If you want to save a few bytes .text space: replace
3870 * Then kmalloc uses the uninlined functions instead of the inline
3873 cachep
= __find_general_cachep(size
, flags
);
3874 if (unlikely(ZERO_OR_NULL_PTR(cachep
)))
3876 ret
= __cache_alloc(cachep
, flags
, caller
);
3878 trace_kmalloc((unsigned long) caller
, ret
,
3879 size
, cachep
->buffer_size
, flags
);
3885 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3886 void *__kmalloc(size_t size
, gfp_t flags
)
3888 return __do_kmalloc(size
, flags
, __builtin_return_address(0));
3890 EXPORT_SYMBOL(__kmalloc
);
3892 void *__kmalloc_track_caller(size_t size
, gfp_t flags
, unsigned long caller
)
3894 return __do_kmalloc(size
, flags
, (void *)caller
);
3896 EXPORT_SYMBOL(__kmalloc_track_caller
);
3899 void *__kmalloc(size_t size
, gfp_t flags
)
3901 return __do_kmalloc(size
, flags
, NULL
);
3903 EXPORT_SYMBOL(__kmalloc
);
3907 * kmem_cache_free - Deallocate an object
3908 * @cachep: The cache the allocation was from.
3909 * @objp: The previously allocated object.
3911 * Free an object which was previously allocated from this
3914 void kmem_cache_free(struct kmem_cache
*cachep
, void *objp
)
3916 unsigned long flags
;
3918 local_irq_save(flags
);
3919 debug_check_no_locks_freed(objp
, obj_size(cachep
));
3920 if (!(cachep
->flags
& SLAB_DEBUG_OBJECTS
))
3921 debug_check_no_obj_freed(objp
, obj_size(cachep
));
3922 __cache_free(cachep
, objp
, __builtin_return_address(0));
3923 local_irq_restore(flags
);
3925 trace_kmem_cache_free(_RET_IP_
, objp
);
3927 EXPORT_SYMBOL(kmem_cache_free
);
3930 * kfree - free previously allocated memory
3931 * @objp: pointer returned by kmalloc.
3933 * If @objp is NULL, no operation is performed.
3935 * Don't free memory not originally allocated by kmalloc()
3936 * or you will run into trouble.
3938 void kfree(const void *objp
)
3940 struct kmem_cache
*c
;
3941 unsigned long flags
;
3943 trace_kfree(_RET_IP_
, objp
);
3945 if (unlikely(ZERO_OR_NULL_PTR(objp
)))
3947 local_irq_save(flags
);
3948 kfree_debugcheck(objp
);
3949 c
= virt_to_cache(objp
);
3950 debug_check_no_locks_freed(objp
, obj_size(c
));
3951 debug_check_no_obj_freed(objp
, obj_size(c
));
3952 __cache_free(c
, (void *)objp
, __builtin_return_address(0));
3953 local_irq_restore(flags
);
3955 EXPORT_SYMBOL(kfree
);
3957 unsigned int kmem_cache_size(struct kmem_cache
*cachep
)
3959 return obj_size(cachep
);
3961 EXPORT_SYMBOL(kmem_cache_size
);
3964 * This initializes kmem_list3 or resizes various caches for all nodes.
3966 static int alloc_kmemlist(struct kmem_cache
*cachep
, gfp_t gfp
)
3969 struct kmem_list3
*l3
;
3970 struct array_cache
*new_shared
;
3971 struct array_cache
**new_alien
= NULL
;
3973 for_each_online_node(node
) {
3975 if (use_alien_caches
) {
3976 new_alien
= alloc_alien_cache(node
, cachep
->limit
, gfp
);
3982 if (cachep
->shared
) {
3983 new_shared
= alloc_arraycache(node
,
3984 cachep
->shared
*cachep
->batchcount
,
3987 free_alien_cache(new_alien
);
3992 l3
= cachep
->nodelists
[node
];
3994 struct array_cache
*shared
= l3
->shared
;
3996 spin_lock_irq(&l3
->list_lock
);
3999 free_block(cachep
, shared
->entry
,
4000 shared
->avail
, node
);
4002 l3
->shared
= new_shared
;
4004 l3
->alien
= new_alien
;
4007 l3
->free_limit
= (1 + nr_cpus_node(node
)) *
4008 cachep
->batchcount
+ cachep
->num
;
4009 spin_unlock_irq(&l3
->list_lock
);
4011 free_alien_cache(new_alien
);
4014 l3
= kmalloc_node(sizeof(struct kmem_list3
), gfp
, node
);
4016 free_alien_cache(new_alien
);
4021 kmem_list3_init(l3
);
4022 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
4023 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
4024 l3
->shared
= new_shared
;
4025 l3
->alien
= new_alien
;
4026 l3
->free_limit
= (1 + nr_cpus_node(node
)) *
4027 cachep
->batchcount
+ cachep
->num
;
4028 cachep
->nodelists
[node
] = l3
;
4033 if (!cachep
->next
.next
) {
4034 /* Cache is not active yet. Roll back what we did */
4037 if (cachep
->nodelists
[node
]) {
4038 l3
= cachep
->nodelists
[node
];
4041 free_alien_cache(l3
->alien
);
4043 cachep
->nodelists
[node
] = NULL
;
4051 struct ccupdate_struct
{
4052 struct kmem_cache
*cachep
;
4053 struct array_cache
*new[0];
4056 static void do_ccupdate_local(void *info
)
4058 struct ccupdate_struct
*new = info
;
4059 struct array_cache
*old
;
4062 old
= cpu_cache_get(new->cachep
);
4064 new->cachep
->array
[smp_processor_id()] = new->new[smp_processor_id()];
4065 new->new[smp_processor_id()] = old
;
4068 /* Always called with the cache_chain_mutex held */
4069 static int do_tune_cpucache(struct kmem_cache
*cachep
, int limit
,
4070 int batchcount
, int shared
, gfp_t gfp
)
4072 struct ccupdate_struct
*new;
4075 new = kzalloc(sizeof(*new) + nr_cpu_ids
* sizeof(struct array_cache
*),
4080 for_each_online_cpu(i
) {
4081 new->new[i
] = alloc_arraycache(cpu_to_mem(i
), limit
,
4084 for (i
--; i
>= 0; i
--)
4090 new->cachep
= cachep
;
4092 on_each_cpu(do_ccupdate_local
, (void *)new, 1);
4095 cachep
->batchcount
= batchcount
;
4096 cachep
->limit
= limit
;
4097 cachep
->shared
= shared
;
4099 for_each_online_cpu(i
) {
4100 struct array_cache
*ccold
= new->new[i
];
4103 spin_lock_irq(&cachep
->nodelists
[cpu_to_mem(i
)]->list_lock
);
4104 free_block(cachep
, ccold
->entry
, ccold
->avail
, cpu_to_mem(i
));
4105 spin_unlock_irq(&cachep
->nodelists
[cpu_to_mem(i
)]->list_lock
);
4109 return alloc_kmemlist(cachep
, gfp
);
4112 /* Called with cache_chain_mutex held always */
4113 static int enable_cpucache(struct kmem_cache
*cachep
, gfp_t gfp
)
4119 * The head array serves three purposes:
4120 * - create a LIFO ordering, i.e. return objects that are cache-warm
4121 * - reduce the number of spinlock operations.
4122 * - reduce the number of linked list operations on the slab and
4123 * bufctl chains: array operations are cheaper.
4124 * The numbers are guessed, we should auto-tune as described by
4127 if (cachep
->buffer_size
> 131072)
4129 else if (cachep
->buffer_size
> PAGE_SIZE
)
4131 else if (cachep
->buffer_size
> 1024)
4133 else if (cachep
->buffer_size
> 256)
4139 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
4140 * allocation behaviour: Most allocs on one cpu, most free operations
4141 * on another cpu. For these cases, an efficient object passing between
4142 * cpus is necessary. This is provided by a shared array. The array
4143 * replaces Bonwick's magazine layer.
4144 * On uniprocessor, it's functionally equivalent (but less efficient)
4145 * to a larger limit. Thus disabled by default.
4148 if (cachep
->buffer_size
<= PAGE_SIZE
&& num_possible_cpus() > 1)
4153 * With debugging enabled, large batchcount lead to excessively long
4154 * periods with disabled local interrupts. Limit the batchcount
4159 err
= do_tune_cpucache(cachep
, limit
, (limit
+ 1) / 2, shared
, gfp
);
4161 printk(KERN_ERR
"enable_cpucache failed for %s, error %d.\n",
4162 cachep
->name
, -err
);
4167 * Drain an array if it contains any elements taking the l3 lock only if
4168 * necessary. Note that the l3 listlock also protects the array_cache
4169 * if drain_array() is used on the shared array.
4171 static void drain_array(struct kmem_cache
*cachep
, struct kmem_list3
*l3
,
4172 struct array_cache
*ac
, int force
, int node
)
4176 if (!ac
|| !ac
->avail
)
4178 if (ac
->touched
&& !force
) {
4181 spin_lock_irq(&l3
->list_lock
);
4183 tofree
= force
? ac
->avail
: (ac
->limit
+ 4) / 5;
4184 if (tofree
> ac
->avail
)
4185 tofree
= (ac
->avail
+ 1) / 2;
4186 free_block(cachep
, ac
->entry
, tofree
, node
);
4187 ac
->avail
-= tofree
;
4188 memmove(ac
->entry
, &(ac
->entry
[tofree
]),
4189 sizeof(void *) * ac
->avail
);
4191 spin_unlock_irq(&l3
->list_lock
);
4196 * cache_reap - Reclaim memory from caches.
4197 * @w: work descriptor
4199 * Called from workqueue/eventd every few seconds.
4201 * - clear the per-cpu caches for this CPU.
4202 * - return freeable pages to the main free memory pool.
4204 * If we cannot acquire the cache chain mutex then just give up - we'll try
4205 * again on the next iteration.
4207 static void cache_reap(struct work_struct
*w
)
4209 struct kmem_cache
*searchp
;
4210 struct kmem_list3
*l3
;
4211 int node
= numa_mem_id();
4212 struct delayed_work
*work
= to_delayed_work(w
);
4214 if (!mutex_trylock(&cache_chain_mutex
))
4215 /* Give up. Setup the next iteration. */
4218 list_for_each_entry(searchp
, &cache_chain
, next
) {
4222 * We only take the l3 lock if absolutely necessary and we
4223 * have established with reasonable certainty that
4224 * we can do some work if the lock was obtained.
4226 l3
= searchp
->nodelists
[node
];
4228 reap_alien(searchp
, l3
);
4230 drain_array(searchp
, l3
, cpu_cache_get(searchp
), 0, node
);
4233 * These are racy checks but it does not matter
4234 * if we skip one check or scan twice.
4236 if (time_after(l3
->next_reap
, jiffies
))
4239 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
;
4241 drain_array(searchp
, l3
, l3
->shared
, 0, node
);
4243 if (l3
->free_touched
)
4244 l3
->free_touched
= 0;
4248 freed
= drain_freelist(searchp
, l3
, (l3
->free_limit
+
4249 5 * searchp
->num
- 1) / (5 * searchp
->num
));
4250 STATS_ADD_REAPED(searchp
, freed
);
4256 mutex_unlock(&cache_chain_mutex
);
4259 /* Set up the next iteration */
4260 schedule_delayed_work(work
, round_jiffies_relative(REAPTIMEOUT_CPUC
));
4263 #ifdef CONFIG_SLABINFO
4265 static void print_slabinfo_header(struct seq_file
*m
)
4268 * Output format version, so at least we can change it
4269 * without _too_ many complaints.
4272 seq_puts(m
, "slabinfo - version: 2.1 (statistics)\n");
4274 seq_puts(m
, "slabinfo - version: 2.1\n");
4276 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> "
4277 "<objperslab> <pagesperslab>");
4278 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
4279 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4281 seq_puts(m
, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4282 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4283 seq_puts(m
, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4288 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
4292 mutex_lock(&cache_chain_mutex
);
4294 print_slabinfo_header(m
);
4296 return seq_list_start(&cache_chain
, *pos
);
4299 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
4301 return seq_list_next(p
, &cache_chain
, pos
);
4304 static void s_stop(struct seq_file
*m
, void *p
)
4306 mutex_unlock(&cache_chain_mutex
);
4309 static int s_show(struct seq_file
*m
, void *p
)
4311 struct kmem_cache
*cachep
= list_entry(p
, struct kmem_cache
, next
);
4313 unsigned long active_objs
;
4314 unsigned long num_objs
;
4315 unsigned long active_slabs
= 0;
4316 unsigned long num_slabs
, free_objects
= 0, shared_avail
= 0;
4320 struct kmem_list3
*l3
;
4324 for_each_online_node(node
) {
4325 l3
= cachep
->nodelists
[node
];
4330 spin_lock_irq(&l3
->list_lock
);
4332 list_for_each_entry(slabp
, &l3
->slabs_full
, list
) {
4333 if (slabp
->inuse
!= cachep
->num
&& !error
)
4334 error
= "slabs_full accounting error";
4335 active_objs
+= cachep
->num
;
4338 list_for_each_entry(slabp
, &l3
->slabs_partial
, list
) {
4339 if (slabp
->inuse
== cachep
->num
&& !error
)
4340 error
= "slabs_partial inuse accounting error";
4341 if (!slabp
->inuse
&& !error
)
4342 error
= "slabs_partial/inuse accounting error";
4343 active_objs
+= slabp
->inuse
;
4346 list_for_each_entry(slabp
, &l3
->slabs_free
, list
) {
4347 if (slabp
->inuse
&& !error
)
4348 error
= "slabs_free/inuse accounting error";
4351 free_objects
+= l3
->free_objects
;
4353 shared_avail
+= l3
->shared
->avail
;
4355 spin_unlock_irq(&l3
->list_lock
);
4357 num_slabs
+= active_slabs
;
4358 num_objs
= num_slabs
* cachep
->num
;
4359 if (num_objs
- active_objs
!= free_objects
&& !error
)
4360 error
= "free_objects accounting error";
4362 name
= cachep
->name
;
4364 printk(KERN_ERR
"slab: cache %s error: %s\n", name
, error
);
4366 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d",
4367 name
, active_objs
, num_objs
, cachep
->buffer_size
,
4368 cachep
->num
, (1 << cachep
->gfporder
));
4369 seq_printf(m
, " : tunables %4u %4u %4u",
4370 cachep
->limit
, cachep
->batchcount
, cachep
->shared
);
4371 seq_printf(m
, " : slabdata %6lu %6lu %6lu",
4372 active_slabs
, num_slabs
, shared_avail
);
4375 unsigned long high
= cachep
->high_mark
;
4376 unsigned long allocs
= cachep
->num_allocations
;
4377 unsigned long grown
= cachep
->grown
;
4378 unsigned long reaped
= cachep
->reaped
;
4379 unsigned long errors
= cachep
->errors
;
4380 unsigned long max_freeable
= cachep
->max_freeable
;
4381 unsigned long node_allocs
= cachep
->node_allocs
;
4382 unsigned long node_frees
= cachep
->node_frees
;
4383 unsigned long overflows
= cachep
->node_overflow
;
4385 seq_printf(m
, " : globalstat %7lu %6lu %5lu %4lu "
4386 "%4lu %4lu %4lu %4lu %4lu",
4387 allocs
, high
, grown
,
4388 reaped
, errors
, max_freeable
, node_allocs
,
4389 node_frees
, overflows
);
4393 unsigned long allochit
= atomic_read(&cachep
->allochit
);
4394 unsigned long allocmiss
= atomic_read(&cachep
->allocmiss
);
4395 unsigned long freehit
= atomic_read(&cachep
->freehit
);
4396 unsigned long freemiss
= atomic_read(&cachep
->freemiss
);
4398 seq_printf(m
, " : cpustat %6lu %6lu %6lu %6lu",
4399 allochit
, allocmiss
, freehit
, freemiss
);
4407 * slabinfo_op - iterator that generates /proc/slabinfo
4416 * num-pages-per-slab
4417 * + further values on SMP and with statistics enabled
4420 static const struct seq_operations slabinfo_op
= {
4427 #define MAX_SLABINFO_WRITE 128
4429 * slabinfo_write - Tuning for the slab allocator
4431 * @buffer: user buffer
4432 * @count: data length
4435 static ssize_t
slabinfo_write(struct file
*file
, const char __user
*buffer
,
4436 size_t count
, loff_t
*ppos
)
4438 char kbuf
[MAX_SLABINFO_WRITE
+ 1], *tmp
;
4439 int limit
, batchcount
, shared
, res
;
4440 struct kmem_cache
*cachep
;
4442 if (count
> MAX_SLABINFO_WRITE
)
4444 if (copy_from_user(&kbuf
, buffer
, count
))
4446 kbuf
[MAX_SLABINFO_WRITE
] = '\0';
4448 tmp
= strchr(kbuf
, ' ');
4453 if (sscanf(tmp
, " %d %d %d", &limit
, &batchcount
, &shared
) != 3)
4456 /* Find the cache in the chain of caches. */
4457 mutex_lock(&cache_chain_mutex
);
4459 list_for_each_entry(cachep
, &cache_chain
, next
) {
4460 if (!strcmp(cachep
->name
, kbuf
)) {
4461 if (limit
< 1 || batchcount
< 1 ||
4462 batchcount
> limit
|| shared
< 0) {
4465 res
= do_tune_cpucache(cachep
, limit
,
4472 mutex_unlock(&cache_chain_mutex
);
4478 static int slabinfo_open(struct inode
*inode
, struct file
*file
)
4480 return seq_open(file
, &slabinfo_op
);
4483 static const struct file_operations proc_slabinfo_operations
= {
4484 .open
= slabinfo_open
,
4486 .write
= slabinfo_write
,
4487 .llseek
= seq_lseek
,
4488 .release
= seq_release
,
4491 #ifdef CONFIG_DEBUG_SLAB_LEAK
4493 static void *leaks_start(struct seq_file
*m
, loff_t
*pos
)
4495 mutex_lock(&cache_chain_mutex
);
4496 return seq_list_start(&cache_chain
, *pos
);
4499 static inline int add_caller(unsigned long *n
, unsigned long v
)
4509 unsigned long *q
= p
+ 2 * i
;
4523 memmove(p
+ 2, p
, n
[1] * 2 * sizeof(unsigned long) - ((void *)p
- (void *)n
));
4529 static void handle_slab(unsigned long *n
, struct kmem_cache
*c
, struct slab
*s
)
4535 for (i
= 0, p
= s
->s_mem
; i
< c
->num
; i
++, p
+= c
->buffer_size
) {
4536 if (slab_bufctl(s
)[i
] != BUFCTL_ACTIVE
)
4538 if (!add_caller(n
, (unsigned long)*dbg_userword(c
, p
)))
4543 static void show_symbol(struct seq_file
*m
, unsigned long address
)
4545 #ifdef CONFIG_KALLSYMS
4546 unsigned long offset
, size
;
4547 char modname
[MODULE_NAME_LEN
], name
[KSYM_NAME_LEN
];
4549 if (lookup_symbol_attrs(address
, &size
, &offset
, modname
, name
) == 0) {
4550 seq_printf(m
, "%s+%#lx/%#lx", name
, offset
, size
);
4552 seq_printf(m
, " [%s]", modname
);
4556 seq_printf(m
, "%p", (void *)address
);
4559 static int leaks_show(struct seq_file
*m
, void *p
)
4561 struct kmem_cache
*cachep
= list_entry(p
, struct kmem_cache
, next
);
4563 struct kmem_list3
*l3
;
4565 unsigned long *n
= m
->private;
4569 if (!(cachep
->flags
& SLAB_STORE_USER
))
4571 if (!(cachep
->flags
& SLAB_RED_ZONE
))
4574 /* OK, we can do it */
4578 for_each_online_node(node
) {
4579 l3
= cachep
->nodelists
[node
];
4584 spin_lock_irq(&l3
->list_lock
);
4586 list_for_each_entry(slabp
, &l3
->slabs_full
, list
)
4587 handle_slab(n
, cachep
, slabp
);
4588 list_for_each_entry(slabp
, &l3
->slabs_partial
, list
)
4589 handle_slab(n
, cachep
, slabp
);
4590 spin_unlock_irq(&l3
->list_lock
);
4592 name
= cachep
->name
;
4594 /* Increase the buffer size */
4595 mutex_unlock(&cache_chain_mutex
);
4596 m
->private = kzalloc(n
[0] * 4 * sizeof(unsigned long), GFP_KERNEL
);
4598 /* Too bad, we are really out */
4600 mutex_lock(&cache_chain_mutex
);
4603 *(unsigned long *)m
->private = n
[0] * 2;
4605 mutex_lock(&cache_chain_mutex
);
4606 /* Now make sure this entry will be retried */
4610 for (i
= 0; i
< n
[1]; i
++) {
4611 seq_printf(m
, "%s: %lu ", name
, n
[2*i
+3]);
4612 show_symbol(m
, n
[2*i
+2]);
4619 static const struct seq_operations slabstats_op
= {
4620 .start
= leaks_start
,
4626 static int slabstats_open(struct inode
*inode
, struct file
*file
)
4628 unsigned long *n
= kzalloc(PAGE_SIZE
, GFP_KERNEL
);
4631 ret
= seq_open(file
, &slabstats_op
);
4633 struct seq_file
*m
= file
->private_data
;
4634 *n
= PAGE_SIZE
/ (2 * sizeof(unsigned long));
4643 static const struct file_operations proc_slabstats_operations
= {
4644 .open
= slabstats_open
,
4646 .llseek
= seq_lseek
,
4647 .release
= seq_release_private
,
4651 static int __init
slab_proc_init(void)
4653 proc_create("slabinfo",S_IWUSR
|S_IRUSR
,NULL
,&proc_slabinfo_operations
);
4654 #ifdef CONFIG_DEBUG_SLAB_LEAK
4655 proc_create("slab_allocators", 0, NULL
, &proc_slabstats_operations
);
4659 module_init(slab_proc_init
);
4663 * ksize - get the actual amount of memory allocated for a given object
4664 * @objp: Pointer to the object
4666 * kmalloc may internally round up allocations and return more memory
4667 * than requested. ksize() can be used to determine the actual amount of
4668 * memory allocated. The caller may use this additional memory, even though
4669 * a smaller amount of memory was initially specified with the kmalloc call.
4670 * The caller must guarantee that objp points to a valid object previously
4671 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4672 * must not be freed during the duration of the call.
4674 size_t ksize(const void *objp
)
4677 if (unlikely(objp
== ZERO_SIZE_PTR
))
4680 return obj_size(virt_to_cache(objp
));
4682 EXPORT_SYMBOL(ksize
);