rtc: rtc-test: use devm_rtc_device_register()
[linux-2.6.git] / kernel / time / tick-sched.c
bloba19a39952c1b24d3dd0ab0e9bd354fa9c5a7cb46
1 /*
2 * linux/kernel/time/tick-sched.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * No idle tick implementation for low and high resolution timers
10 * Started by: Thomas Gleixner and Ingo Molnar
12 * Distribute under GPLv2.
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23 #include <linux/irq_work.h>
25 #include <asm/irq_regs.h>
27 #include "tick-internal.h"
30 * Per cpu nohz control structure
32 DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
35 * The time, when the last jiffy update happened. Protected by jiffies_lock.
37 static ktime_t last_jiffies_update;
39 struct tick_sched *tick_get_tick_sched(int cpu)
41 return &per_cpu(tick_cpu_sched, cpu);
45 * Must be called with interrupts disabled !
47 static void tick_do_update_jiffies64(ktime_t now)
49 unsigned long ticks = 0;
50 ktime_t delta;
53 * Do a quick check without holding jiffies_lock:
55 delta = ktime_sub(now, last_jiffies_update);
56 if (delta.tv64 < tick_period.tv64)
57 return;
59 /* Reevalute with jiffies_lock held */
60 write_seqlock(&jiffies_lock);
62 delta = ktime_sub(now, last_jiffies_update);
63 if (delta.tv64 >= tick_period.tv64) {
65 delta = ktime_sub(delta, tick_period);
66 last_jiffies_update = ktime_add(last_jiffies_update,
67 tick_period);
69 /* Slow path for long timeouts */
70 if (unlikely(delta.tv64 >= tick_period.tv64)) {
71 s64 incr = ktime_to_ns(tick_period);
73 ticks = ktime_divns(delta, incr);
75 last_jiffies_update = ktime_add_ns(last_jiffies_update,
76 incr * ticks);
78 do_timer(++ticks);
80 /* Keep the tick_next_period variable up to date */
81 tick_next_period = ktime_add(last_jiffies_update, tick_period);
83 write_sequnlock(&jiffies_lock);
87 * Initialize and return retrieve the jiffies update.
89 static ktime_t tick_init_jiffy_update(void)
91 ktime_t period;
93 write_seqlock(&jiffies_lock);
94 /* Did we start the jiffies update yet ? */
95 if (last_jiffies_update.tv64 == 0)
96 last_jiffies_update = tick_next_period;
97 period = last_jiffies_update;
98 write_sequnlock(&jiffies_lock);
99 return period;
103 static void tick_sched_do_timer(ktime_t now)
105 int cpu = smp_processor_id();
107 #ifdef CONFIG_NO_HZ
109 * Check if the do_timer duty was dropped. We don't care about
110 * concurrency: This happens only when the cpu in charge went
111 * into a long sleep. If two cpus happen to assign themself to
112 * this duty, then the jiffies update is still serialized by
113 * jiffies_lock.
115 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
116 tick_do_timer_cpu = cpu;
117 #endif
119 /* Check, if the jiffies need an update */
120 if (tick_do_timer_cpu == cpu)
121 tick_do_update_jiffies64(now);
124 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
126 #ifdef CONFIG_NO_HZ
128 * When we are idle and the tick is stopped, we have to touch
129 * the watchdog as we might not schedule for a really long
130 * time. This happens on complete idle SMP systems while
131 * waiting on the login prompt. We also increment the "start of
132 * idle" jiffy stamp so the idle accounting adjustment we do
133 * when we go busy again does not account too much ticks.
135 if (ts->tick_stopped) {
136 touch_softlockup_watchdog();
137 if (is_idle_task(current))
138 ts->idle_jiffies++;
140 #endif
141 update_process_times(user_mode(regs));
142 profile_tick(CPU_PROFILING);
146 * NOHZ - aka dynamic tick functionality
148 #ifdef CONFIG_NO_HZ
150 * NO HZ enabled ?
152 int tick_nohz_enabled __read_mostly = 1;
155 * Enable / Disable tickless mode
157 static int __init setup_tick_nohz(char *str)
159 if (!strcmp(str, "off"))
160 tick_nohz_enabled = 0;
161 else if (!strcmp(str, "on"))
162 tick_nohz_enabled = 1;
163 else
164 return 0;
165 return 1;
168 __setup("nohz=", setup_tick_nohz);
171 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
173 * Called from interrupt entry when the CPU was idle
175 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
176 * must be updated. Otherwise an interrupt handler could use a stale jiffy
177 * value. We do this unconditionally on any cpu, as we don't know whether the
178 * cpu, which has the update task assigned is in a long sleep.
180 static void tick_nohz_update_jiffies(ktime_t now)
182 int cpu = smp_processor_id();
183 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
184 unsigned long flags;
186 ts->idle_waketime = now;
188 local_irq_save(flags);
189 tick_do_update_jiffies64(now);
190 local_irq_restore(flags);
192 touch_softlockup_watchdog();
196 * Updates the per cpu time idle statistics counters
198 static void
199 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
201 ktime_t delta;
203 if (ts->idle_active) {
204 delta = ktime_sub(now, ts->idle_entrytime);
205 if (nr_iowait_cpu(cpu) > 0)
206 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
207 else
208 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
209 ts->idle_entrytime = now;
212 if (last_update_time)
213 *last_update_time = ktime_to_us(now);
217 static void tick_nohz_stop_idle(int cpu, ktime_t now)
219 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
221 update_ts_time_stats(cpu, ts, now, NULL);
222 ts->idle_active = 0;
224 sched_clock_idle_wakeup_event(0);
227 static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts)
229 ktime_t now = ktime_get();
231 ts->idle_entrytime = now;
232 ts->idle_active = 1;
233 sched_clock_idle_sleep_event();
234 return now;
238 * get_cpu_idle_time_us - get the total idle time of a cpu
239 * @cpu: CPU number to query
240 * @last_update_time: variable to store update time in. Do not update
241 * counters if NULL.
243 * Return the cummulative idle time (since boot) for a given
244 * CPU, in microseconds.
246 * This time is measured via accounting rather than sampling,
247 * and is as accurate as ktime_get() is.
249 * This function returns -1 if NOHZ is not enabled.
251 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
253 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
254 ktime_t now, idle;
256 if (!tick_nohz_enabled)
257 return -1;
259 now = ktime_get();
260 if (last_update_time) {
261 update_ts_time_stats(cpu, ts, now, last_update_time);
262 idle = ts->idle_sleeptime;
263 } else {
264 if (ts->idle_active && !nr_iowait_cpu(cpu)) {
265 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
267 idle = ktime_add(ts->idle_sleeptime, delta);
268 } else {
269 idle = ts->idle_sleeptime;
273 return ktime_to_us(idle);
276 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
279 * get_cpu_iowait_time_us - get the total iowait time of a cpu
280 * @cpu: CPU number to query
281 * @last_update_time: variable to store update time in. Do not update
282 * counters if NULL.
284 * Return the cummulative iowait time (since boot) for a given
285 * CPU, in microseconds.
287 * This time is measured via accounting rather than sampling,
288 * and is as accurate as ktime_get() is.
290 * This function returns -1 if NOHZ is not enabled.
292 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
294 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
295 ktime_t now, iowait;
297 if (!tick_nohz_enabled)
298 return -1;
300 now = ktime_get();
301 if (last_update_time) {
302 update_ts_time_stats(cpu, ts, now, last_update_time);
303 iowait = ts->iowait_sleeptime;
304 } else {
305 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
306 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
308 iowait = ktime_add(ts->iowait_sleeptime, delta);
309 } else {
310 iowait = ts->iowait_sleeptime;
314 return ktime_to_us(iowait);
316 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
318 static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
319 ktime_t now, int cpu)
321 unsigned long seq, last_jiffies, next_jiffies, delta_jiffies;
322 ktime_t last_update, expires, ret = { .tv64 = 0 };
323 unsigned long rcu_delta_jiffies;
324 struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
325 u64 time_delta;
327 /* Read jiffies and the time when jiffies were updated last */
328 do {
329 seq = read_seqbegin(&jiffies_lock);
330 last_update = last_jiffies_update;
331 last_jiffies = jiffies;
332 time_delta = timekeeping_max_deferment();
333 } while (read_seqretry(&jiffies_lock, seq));
335 if (rcu_needs_cpu(cpu, &rcu_delta_jiffies) ||
336 arch_needs_cpu(cpu) || irq_work_needs_cpu()) {
337 next_jiffies = last_jiffies + 1;
338 delta_jiffies = 1;
339 } else {
340 /* Get the next timer wheel timer */
341 next_jiffies = get_next_timer_interrupt(last_jiffies);
342 delta_jiffies = next_jiffies - last_jiffies;
343 if (rcu_delta_jiffies < delta_jiffies) {
344 next_jiffies = last_jiffies + rcu_delta_jiffies;
345 delta_jiffies = rcu_delta_jiffies;
349 * Do not stop the tick, if we are only one off
350 * or if the cpu is required for rcu
352 if (!ts->tick_stopped && delta_jiffies == 1)
353 goto out;
355 /* Schedule the tick, if we are at least one jiffie off */
356 if ((long)delta_jiffies >= 1) {
359 * If this cpu is the one which updates jiffies, then
360 * give up the assignment and let it be taken by the
361 * cpu which runs the tick timer next, which might be
362 * this cpu as well. If we don't drop this here the
363 * jiffies might be stale and do_timer() never
364 * invoked. Keep track of the fact that it was the one
365 * which had the do_timer() duty last. If this cpu is
366 * the one which had the do_timer() duty last, we
367 * limit the sleep time to the timekeeping
368 * max_deferement value which we retrieved
369 * above. Otherwise we can sleep as long as we want.
371 if (cpu == tick_do_timer_cpu) {
372 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
373 ts->do_timer_last = 1;
374 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
375 time_delta = KTIME_MAX;
376 ts->do_timer_last = 0;
377 } else if (!ts->do_timer_last) {
378 time_delta = KTIME_MAX;
382 * calculate the expiry time for the next timer wheel
383 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
384 * that there is no timer pending or at least extremely
385 * far into the future (12 days for HZ=1000). In this
386 * case we set the expiry to the end of time.
388 if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
390 * Calculate the time delta for the next timer event.
391 * If the time delta exceeds the maximum time delta
392 * permitted by the current clocksource then adjust
393 * the time delta accordingly to ensure the
394 * clocksource does not wrap.
396 time_delta = min_t(u64, time_delta,
397 tick_period.tv64 * delta_jiffies);
400 if (time_delta < KTIME_MAX)
401 expires = ktime_add_ns(last_update, time_delta);
402 else
403 expires.tv64 = KTIME_MAX;
405 /* Skip reprogram of event if its not changed */
406 if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
407 goto out;
409 ret = expires;
412 * nohz_stop_sched_tick can be called several times before
413 * the nohz_restart_sched_tick is called. This happens when
414 * interrupts arrive which do not cause a reschedule. In the
415 * first call we save the current tick time, so we can restart
416 * the scheduler tick in nohz_restart_sched_tick.
418 if (!ts->tick_stopped) {
419 nohz_balance_enter_idle(cpu);
420 calc_load_enter_idle();
422 ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
423 ts->tick_stopped = 1;
427 * If the expiration time == KTIME_MAX, then
428 * in this case we simply stop the tick timer.
430 if (unlikely(expires.tv64 == KTIME_MAX)) {
431 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
432 hrtimer_cancel(&ts->sched_timer);
433 goto out;
436 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
437 hrtimer_start(&ts->sched_timer, expires,
438 HRTIMER_MODE_ABS_PINNED);
439 /* Check, if the timer was already in the past */
440 if (hrtimer_active(&ts->sched_timer))
441 goto out;
442 } else if (!tick_program_event(expires, 0))
443 goto out;
445 * We are past the event already. So we crossed a
446 * jiffie boundary. Update jiffies and raise the
447 * softirq.
449 tick_do_update_jiffies64(ktime_get());
451 raise_softirq_irqoff(TIMER_SOFTIRQ);
452 out:
453 ts->next_jiffies = next_jiffies;
454 ts->last_jiffies = last_jiffies;
455 ts->sleep_length = ktime_sub(dev->next_event, now);
457 return ret;
460 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
463 * If this cpu is offline and it is the one which updates
464 * jiffies, then give up the assignment and let it be taken by
465 * the cpu which runs the tick timer next. If we don't drop
466 * this here the jiffies might be stale and do_timer() never
467 * invoked.
469 if (unlikely(!cpu_online(cpu))) {
470 if (cpu == tick_do_timer_cpu)
471 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
474 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
475 return false;
477 if (need_resched())
478 return false;
480 if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
481 static int ratelimit;
483 if (ratelimit < 10 &&
484 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
485 printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
486 (unsigned int) local_softirq_pending());
487 ratelimit++;
489 return false;
492 return true;
495 static void __tick_nohz_idle_enter(struct tick_sched *ts)
497 ktime_t now, expires;
498 int cpu = smp_processor_id();
500 now = tick_nohz_start_idle(cpu, ts);
502 if (can_stop_idle_tick(cpu, ts)) {
503 int was_stopped = ts->tick_stopped;
505 ts->idle_calls++;
507 expires = tick_nohz_stop_sched_tick(ts, now, cpu);
508 if (expires.tv64 > 0LL) {
509 ts->idle_sleeps++;
510 ts->idle_expires = expires;
513 if (!was_stopped && ts->tick_stopped)
514 ts->idle_jiffies = ts->last_jiffies;
519 * tick_nohz_idle_enter - stop the idle tick from the idle task
521 * When the next event is more than a tick into the future, stop the idle tick
522 * Called when we start the idle loop.
524 * The arch is responsible of calling:
526 * - rcu_idle_enter() after its last use of RCU before the CPU is put
527 * to sleep.
528 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
530 void tick_nohz_idle_enter(void)
532 struct tick_sched *ts;
534 WARN_ON_ONCE(irqs_disabled());
537 * Update the idle state in the scheduler domain hierarchy
538 * when tick_nohz_stop_sched_tick() is called from the idle loop.
539 * State will be updated to busy during the first busy tick after
540 * exiting idle.
542 set_cpu_sd_state_idle();
544 local_irq_disable();
546 ts = &__get_cpu_var(tick_cpu_sched);
548 * set ts->inidle unconditionally. even if the system did not
549 * switch to nohz mode the cpu frequency governers rely on the
550 * update of the idle time accounting in tick_nohz_start_idle().
552 ts->inidle = 1;
553 __tick_nohz_idle_enter(ts);
555 local_irq_enable();
557 EXPORT_SYMBOL_GPL(tick_nohz_idle_enter);
560 * tick_nohz_irq_exit - update next tick event from interrupt exit
562 * When an interrupt fires while we are idle and it doesn't cause
563 * a reschedule, it may still add, modify or delete a timer, enqueue
564 * an RCU callback, etc...
565 * So we need to re-calculate and reprogram the next tick event.
567 void tick_nohz_irq_exit(void)
569 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
571 if (!ts->inidle)
572 return;
574 /* Cancel the timer because CPU already waken up from the C-states*/
575 menu_hrtimer_cancel();
576 __tick_nohz_idle_enter(ts);
580 * tick_nohz_get_sleep_length - return the length of the current sleep
582 * Called from power state control code with interrupts disabled
584 ktime_t tick_nohz_get_sleep_length(void)
586 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
588 return ts->sleep_length;
591 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
593 hrtimer_cancel(&ts->sched_timer);
594 hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
596 while (1) {
597 /* Forward the time to expire in the future */
598 hrtimer_forward(&ts->sched_timer, now, tick_period);
600 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
601 hrtimer_start_expires(&ts->sched_timer,
602 HRTIMER_MODE_ABS_PINNED);
603 /* Check, if the timer was already in the past */
604 if (hrtimer_active(&ts->sched_timer))
605 break;
606 } else {
607 if (!tick_program_event(
608 hrtimer_get_expires(&ts->sched_timer), 0))
609 break;
611 /* Reread time and update jiffies */
612 now = ktime_get();
613 tick_do_update_jiffies64(now);
617 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
619 /* Update jiffies first */
620 tick_do_update_jiffies64(now);
621 update_cpu_load_nohz();
623 calc_load_exit_idle();
624 touch_softlockup_watchdog();
626 * Cancel the scheduled timer and restore the tick
628 ts->tick_stopped = 0;
629 ts->idle_exittime = now;
631 tick_nohz_restart(ts, now);
634 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
636 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
637 unsigned long ticks;
639 if (vtime_accounting_enabled())
640 return;
642 * We stopped the tick in idle. Update process times would miss the
643 * time we slept as update_process_times does only a 1 tick
644 * accounting. Enforce that this is accounted to idle !
646 ticks = jiffies - ts->idle_jiffies;
648 * We might be one off. Do not randomly account a huge number of ticks!
650 if (ticks && ticks < LONG_MAX)
651 account_idle_ticks(ticks);
652 #endif
656 * tick_nohz_idle_exit - restart the idle tick from the idle task
658 * Restart the idle tick when the CPU is woken up from idle
659 * This also exit the RCU extended quiescent state. The CPU
660 * can use RCU again after this function is called.
662 void tick_nohz_idle_exit(void)
664 int cpu = smp_processor_id();
665 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
666 ktime_t now;
668 local_irq_disable();
670 WARN_ON_ONCE(!ts->inidle);
672 ts->inidle = 0;
674 /* Cancel the timer because CPU already waken up from the C-states*/
675 menu_hrtimer_cancel();
676 if (ts->idle_active || ts->tick_stopped)
677 now = ktime_get();
679 if (ts->idle_active)
680 tick_nohz_stop_idle(cpu, now);
682 if (ts->tick_stopped) {
683 tick_nohz_restart_sched_tick(ts, now);
684 tick_nohz_account_idle_ticks(ts);
687 local_irq_enable();
689 EXPORT_SYMBOL_GPL(tick_nohz_idle_exit);
691 static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
693 hrtimer_forward(&ts->sched_timer, now, tick_period);
694 return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
698 * The nohz low res interrupt handler
700 static void tick_nohz_handler(struct clock_event_device *dev)
702 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
703 struct pt_regs *regs = get_irq_regs();
704 ktime_t now = ktime_get();
706 dev->next_event.tv64 = KTIME_MAX;
708 tick_sched_do_timer(now);
709 tick_sched_handle(ts, regs);
711 while (tick_nohz_reprogram(ts, now)) {
712 now = ktime_get();
713 tick_do_update_jiffies64(now);
718 * tick_nohz_switch_to_nohz - switch to nohz mode
720 static void tick_nohz_switch_to_nohz(void)
722 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
723 ktime_t next;
725 if (!tick_nohz_enabled)
726 return;
728 local_irq_disable();
729 if (tick_switch_to_oneshot(tick_nohz_handler)) {
730 local_irq_enable();
731 return;
734 ts->nohz_mode = NOHZ_MODE_LOWRES;
737 * Recycle the hrtimer in ts, so we can share the
738 * hrtimer_forward with the highres code.
740 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
741 /* Get the next period */
742 next = tick_init_jiffy_update();
744 for (;;) {
745 hrtimer_set_expires(&ts->sched_timer, next);
746 if (!tick_program_event(next, 0))
747 break;
748 next = ktime_add(next, tick_period);
750 local_irq_enable();
754 * When NOHZ is enabled and the tick is stopped, we need to kick the
755 * tick timer from irq_enter() so that the jiffies update is kept
756 * alive during long running softirqs. That's ugly as hell, but
757 * correctness is key even if we need to fix the offending softirq in
758 * the first place.
760 * Note, this is different to tick_nohz_restart. We just kick the
761 * timer and do not touch the other magic bits which need to be done
762 * when idle is left.
764 static void tick_nohz_kick_tick(int cpu, ktime_t now)
766 #if 0
767 /* Switch back to 2.6.27 behaviour */
769 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
770 ktime_t delta;
773 * Do not touch the tick device, when the next expiry is either
774 * already reached or less/equal than the tick period.
776 delta = ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
777 if (delta.tv64 <= tick_period.tv64)
778 return;
780 tick_nohz_restart(ts, now);
781 #endif
784 static inline void tick_check_nohz(int cpu)
786 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
787 ktime_t now;
789 if (!ts->idle_active && !ts->tick_stopped)
790 return;
791 now = ktime_get();
792 if (ts->idle_active)
793 tick_nohz_stop_idle(cpu, now);
794 if (ts->tick_stopped) {
795 tick_nohz_update_jiffies(now);
796 tick_nohz_kick_tick(cpu, now);
800 #else
802 static inline void tick_nohz_switch_to_nohz(void) { }
803 static inline void tick_check_nohz(int cpu) { }
805 #endif /* NO_HZ */
808 * Called from irq_enter to notify about the possible interruption of idle()
810 void tick_check_idle(int cpu)
812 tick_check_oneshot_broadcast(cpu);
813 tick_check_nohz(cpu);
817 * High resolution timer specific code
819 #ifdef CONFIG_HIGH_RES_TIMERS
821 * We rearm the timer until we get disabled by the idle code.
822 * Called with interrupts disabled.
824 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
826 struct tick_sched *ts =
827 container_of(timer, struct tick_sched, sched_timer);
828 struct pt_regs *regs = get_irq_regs();
829 ktime_t now = ktime_get();
831 tick_sched_do_timer(now);
834 * Do not call, when we are not in irq context and have
835 * no valid regs pointer
837 if (regs)
838 tick_sched_handle(ts, regs);
840 hrtimer_forward(timer, now, tick_period);
842 return HRTIMER_RESTART;
845 static int sched_skew_tick;
847 static int __init skew_tick(char *str)
849 get_option(&str, &sched_skew_tick);
851 return 0;
853 early_param("skew_tick", skew_tick);
856 * tick_setup_sched_timer - setup the tick emulation timer
858 void tick_setup_sched_timer(void)
860 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
861 ktime_t now = ktime_get();
864 * Emulate tick processing via per-CPU hrtimers:
866 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
867 ts->sched_timer.function = tick_sched_timer;
869 /* Get the next period (per cpu) */
870 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
872 /* Offset the tick to avert jiffies_lock contention. */
873 if (sched_skew_tick) {
874 u64 offset = ktime_to_ns(tick_period) >> 1;
875 do_div(offset, num_possible_cpus());
876 offset *= smp_processor_id();
877 hrtimer_add_expires_ns(&ts->sched_timer, offset);
880 for (;;) {
881 hrtimer_forward(&ts->sched_timer, now, tick_period);
882 hrtimer_start_expires(&ts->sched_timer,
883 HRTIMER_MODE_ABS_PINNED);
884 /* Check, if the timer was already in the past */
885 if (hrtimer_active(&ts->sched_timer))
886 break;
887 now = ktime_get();
890 #ifdef CONFIG_NO_HZ
891 if (tick_nohz_enabled)
892 ts->nohz_mode = NOHZ_MODE_HIGHRES;
893 #endif
895 #endif /* HIGH_RES_TIMERS */
897 #if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS
898 void tick_cancel_sched_timer(int cpu)
900 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
902 # ifdef CONFIG_HIGH_RES_TIMERS
903 if (ts->sched_timer.base)
904 hrtimer_cancel(&ts->sched_timer);
905 # endif
907 ts->nohz_mode = NOHZ_MODE_INACTIVE;
909 #endif
912 * Async notification about clocksource changes
914 void tick_clock_notify(void)
916 int cpu;
918 for_each_possible_cpu(cpu)
919 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
923 * Async notification about clock event changes
925 void tick_oneshot_notify(void)
927 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
929 set_bit(0, &ts->check_clocks);
933 * Check, if a change happened, which makes oneshot possible.
935 * Called cyclic from the hrtimer softirq (driven by the timer
936 * softirq) allow_nohz signals, that we can switch into low-res nohz
937 * mode, because high resolution timers are disabled (either compile
938 * or runtime).
940 int tick_check_oneshot_change(int allow_nohz)
942 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
944 if (!test_and_clear_bit(0, &ts->check_clocks))
945 return 0;
947 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
948 return 0;
950 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
951 return 0;
953 if (!allow_nohz)
954 return 1;
956 tick_nohz_switch_to_nohz();
957 return 0;