2 * kexec.c - kexec system call
3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
9 #include <linux/capability.h>
11 #include <linux/file.h>
12 #include <linux/slab.h>
14 #include <linux/kexec.h>
15 #include <linux/mutex.h>
16 #include <linux/list.h>
17 #include <linux/highmem.h>
18 #include <linux/syscalls.h>
19 #include <linux/reboot.h>
20 #include <linux/ioport.h>
21 #include <linux/hardirq.h>
22 #include <linux/elf.h>
23 #include <linux/elfcore.h>
24 #include <linux/utsname.h>
25 #include <linux/numa.h>
26 #include <linux/suspend.h>
27 #include <linux/device.h>
28 #include <linux/freezer.h>
30 #include <linux/cpu.h>
31 #include <linux/console.h>
32 #include <linux/vmalloc.h>
33 #include <linux/swap.h>
34 #include <linux/syscore_ops.h>
37 #include <asm/uaccess.h>
39 #include <asm/sections.h>
41 /* Per cpu memory for storing cpu states in case of system crash. */
42 note_buf_t __percpu
*crash_notes
;
44 /* vmcoreinfo stuff */
45 static unsigned char vmcoreinfo_data
[VMCOREINFO_BYTES
];
46 u32 vmcoreinfo_note
[VMCOREINFO_NOTE_SIZE
/4];
47 size_t vmcoreinfo_size
;
48 size_t vmcoreinfo_max_size
= sizeof(vmcoreinfo_data
);
50 /* Location of the reserved area for the crash kernel */
51 struct resource crashk_res
= {
52 .name
= "Crash kernel",
55 .flags
= IORESOURCE_BUSY
| IORESOURCE_MEM
57 struct resource crashk_low_res
= {
58 .name
= "Crash kernel",
61 .flags
= IORESOURCE_BUSY
| IORESOURCE_MEM
64 int kexec_should_crash(struct task_struct
*p
)
66 if (in_interrupt() || !p
->pid
|| is_global_init(p
) || panic_on_oops
)
72 * When kexec transitions to the new kernel there is a one-to-one
73 * mapping between physical and virtual addresses. On processors
74 * where you can disable the MMU this is trivial, and easy. For
75 * others it is still a simple predictable page table to setup.
77 * In that environment kexec copies the new kernel to its final
78 * resting place. This means I can only support memory whose
79 * physical address can fit in an unsigned long. In particular
80 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
81 * If the assembly stub has more restrictive requirements
82 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
83 * defined more restrictively in <asm/kexec.h>.
85 * The code for the transition from the current kernel to the
86 * the new kernel is placed in the control_code_buffer, whose size
87 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single
88 * page of memory is necessary, but some architectures require more.
89 * Because this memory must be identity mapped in the transition from
90 * virtual to physical addresses it must live in the range
91 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
94 * The assembly stub in the control code buffer is passed a linked list
95 * of descriptor pages detailing the source pages of the new kernel,
96 * and the destination addresses of those source pages. As this data
97 * structure is not used in the context of the current OS, it must
100 * The code has been made to work with highmem pages and will use a
101 * destination page in its final resting place (if it happens
102 * to allocate it). The end product of this is that most of the
103 * physical address space, and most of RAM can be used.
105 * Future directions include:
106 * - allocating a page table with the control code buffer identity
107 * mapped, to simplify machine_kexec and make kexec_on_panic more
112 * KIMAGE_NO_DEST is an impossible destination address..., for
113 * allocating pages whose destination address we do not care about.
115 #define KIMAGE_NO_DEST (-1UL)
117 static int kimage_is_destination_range(struct kimage
*image
,
118 unsigned long start
, unsigned long end
);
119 static struct page
*kimage_alloc_page(struct kimage
*image
,
123 static int do_kimage_alloc(struct kimage
**rimage
, unsigned long entry
,
124 unsigned long nr_segments
,
125 struct kexec_segment __user
*segments
)
127 size_t segment_bytes
;
128 struct kimage
*image
;
132 /* Allocate a controlling structure */
134 image
= kzalloc(sizeof(*image
), GFP_KERNEL
);
139 image
->entry
= &image
->head
;
140 image
->last_entry
= &image
->head
;
141 image
->control_page
= ~0; /* By default this does not apply */
142 image
->start
= entry
;
143 image
->type
= KEXEC_TYPE_DEFAULT
;
145 /* Initialize the list of control pages */
146 INIT_LIST_HEAD(&image
->control_pages
);
148 /* Initialize the list of destination pages */
149 INIT_LIST_HEAD(&image
->dest_pages
);
151 /* Initialize the list of unusable pages */
152 INIT_LIST_HEAD(&image
->unuseable_pages
);
154 /* Read in the segments */
155 image
->nr_segments
= nr_segments
;
156 segment_bytes
= nr_segments
* sizeof(*segments
);
157 result
= copy_from_user(image
->segment
, segments
, segment_bytes
);
164 * Verify we have good destination addresses. The caller is
165 * responsible for making certain we don't attempt to load
166 * the new image into invalid or reserved areas of RAM. This
167 * just verifies it is an address we can use.
169 * Since the kernel does everything in page size chunks ensure
170 * the destination addresses are page aligned. Too many
171 * special cases crop of when we don't do this. The most
172 * insidious is getting overlapping destination addresses
173 * simply because addresses are changed to page size
176 result
= -EADDRNOTAVAIL
;
177 for (i
= 0; i
< nr_segments
; i
++) {
178 unsigned long mstart
, mend
;
180 mstart
= image
->segment
[i
].mem
;
181 mend
= mstart
+ image
->segment
[i
].memsz
;
182 if ((mstart
& ~PAGE_MASK
) || (mend
& ~PAGE_MASK
))
184 if (mend
>= KEXEC_DESTINATION_MEMORY_LIMIT
)
188 /* Verify our destination addresses do not overlap.
189 * If we alloed overlapping destination addresses
190 * through very weird things can happen with no
191 * easy explanation as one segment stops on another.
194 for (i
= 0; i
< nr_segments
; i
++) {
195 unsigned long mstart
, mend
;
198 mstart
= image
->segment
[i
].mem
;
199 mend
= mstart
+ image
->segment
[i
].memsz
;
200 for (j
= 0; j
< i
; j
++) {
201 unsigned long pstart
, pend
;
202 pstart
= image
->segment
[j
].mem
;
203 pend
= pstart
+ image
->segment
[j
].memsz
;
204 /* Do the segments overlap ? */
205 if ((mend
> pstart
) && (mstart
< pend
))
210 /* Ensure our buffer sizes are strictly less than
211 * our memory sizes. This should always be the case,
212 * and it is easier to check up front than to be surprised
216 for (i
= 0; i
< nr_segments
; i
++) {
217 if (image
->segment
[i
].bufsz
> image
->segment
[i
].memsz
)
232 static void kimage_free_page_list(struct list_head
*list
);
234 static int kimage_normal_alloc(struct kimage
**rimage
, unsigned long entry
,
235 unsigned long nr_segments
,
236 struct kexec_segment __user
*segments
)
239 struct kimage
*image
;
241 /* Allocate and initialize a controlling structure */
243 result
= do_kimage_alloc(&image
, entry
, nr_segments
, segments
);
248 * Find a location for the control code buffer, and add it
249 * the vector of segments so that it's pages will also be
250 * counted as destination pages.
253 image
->control_code_page
= kimage_alloc_control_pages(image
,
254 get_order(KEXEC_CONTROL_PAGE_SIZE
));
255 if (!image
->control_code_page
) {
256 printk(KERN_ERR
"Could not allocate control_code_buffer\n");
260 image
->swap_page
= kimage_alloc_control_pages(image
, 0);
261 if (!image
->swap_page
) {
262 printk(KERN_ERR
"Could not allocate swap buffer\n");
270 kimage_free_page_list(&image
->control_pages
);
276 static int kimage_crash_alloc(struct kimage
**rimage
, unsigned long entry
,
277 unsigned long nr_segments
,
278 struct kexec_segment __user
*segments
)
281 struct kimage
*image
;
285 /* Verify we have a valid entry point */
286 if ((entry
< crashk_res
.start
) || (entry
> crashk_res
.end
)) {
287 result
= -EADDRNOTAVAIL
;
291 /* Allocate and initialize a controlling structure */
292 result
= do_kimage_alloc(&image
, entry
, nr_segments
, segments
);
296 /* Enable the special crash kernel control page
299 image
->control_page
= crashk_res
.start
;
300 image
->type
= KEXEC_TYPE_CRASH
;
303 * Verify we have good destination addresses. Normally
304 * the caller is responsible for making certain we don't
305 * attempt to load the new image into invalid or reserved
306 * areas of RAM. But crash kernels are preloaded into a
307 * reserved area of ram. We must ensure the addresses
308 * are in the reserved area otherwise preloading the
309 * kernel could corrupt things.
311 result
= -EADDRNOTAVAIL
;
312 for (i
= 0; i
< nr_segments
; i
++) {
313 unsigned long mstart
, mend
;
315 mstart
= image
->segment
[i
].mem
;
316 mend
= mstart
+ image
->segment
[i
].memsz
- 1;
317 /* Ensure we are within the crash kernel limits */
318 if ((mstart
< crashk_res
.start
) || (mend
> crashk_res
.end
))
323 * Find a location for the control code buffer, and add
324 * the vector of segments so that it's pages will also be
325 * counted as destination pages.
328 image
->control_code_page
= kimage_alloc_control_pages(image
,
329 get_order(KEXEC_CONTROL_PAGE_SIZE
));
330 if (!image
->control_code_page
) {
331 printk(KERN_ERR
"Could not allocate control_code_buffer\n");
344 static int kimage_is_destination_range(struct kimage
*image
,
350 for (i
= 0; i
< image
->nr_segments
; i
++) {
351 unsigned long mstart
, mend
;
353 mstart
= image
->segment
[i
].mem
;
354 mend
= mstart
+ image
->segment
[i
].memsz
;
355 if ((end
> mstart
) && (start
< mend
))
362 static struct page
*kimage_alloc_pages(gfp_t gfp_mask
, unsigned int order
)
366 pages
= alloc_pages(gfp_mask
, order
);
368 unsigned int count
, i
;
369 pages
->mapping
= NULL
;
370 set_page_private(pages
, order
);
372 for (i
= 0; i
< count
; i
++)
373 SetPageReserved(pages
+ i
);
379 static void kimage_free_pages(struct page
*page
)
381 unsigned int order
, count
, i
;
383 order
= page_private(page
);
385 for (i
= 0; i
< count
; i
++)
386 ClearPageReserved(page
+ i
);
387 __free_pages(page
, order
);
390 static void kimage_free_page_list(struct list_head
*list
)
392 struct list_head
*pos
, *next
;
394 list_for_each_safe(pos
, next
, list
) {
397 page
= list_entry(pos
, struct page
, lru
);
398 list_del(&page
->lru
);
399 kimage_free_pages(page
);
403 static struct page
*kimage_alloc_normal_control_pages(struct kimage
*image
,
406 /* Control pages are special, they are the intermediaries
407 * that are needed while we copy the rest of the pages
408 * to their final resting place. As such they must
409 * not conflict with either the destination addresses
410 * or memory the kernel is already using.
412 * The only case where we really need more than one of
413 * these are for architectures where we cannot disable
414 * the MMU and must instead generate an identity mapped
415 * page table for all of the memory.
417 * At worst this runs in O(N) of the image size.
419 struct list_head extra_pages
;
424 INIT_LIST_HEAD(&extra_pages
);
426 /* Loop while I can allocate a page and the page allocated
427 * is a destination page.
430 unsigned long pfn
, epfn
, addr
, eaddr
;
432 pages
= kimage_alloc_pages(GFP_KERNEL
, order
);
435 pfn
= page_to_pfn(pages
);
437 addr
= pfn
<< PAGE_SHIFT
;
438 eaddr
= epfn
<< PAGE_SHIFT
;
439 if ((epfn
>= (KEXEC_CONTROL_MEMORY_LIMIT
>> PAGE_SHIFT
)) ||
440 kimage_is_destination_range(image
, addr
, eaddr
)) {
441 list_add(&pages
->lru
, &extra_pages
);
447 /* Remember the allocated page... */
448 list_add(&pages
->lru
, &image
->control_pages
);
450 /* Because the page is already in it's destination
451 * location we will never allocate another page at
452 * that address. Therefore kimage_alloc_pages
453 * will not return it (again) and we don't need
454 * to give it an entry in image->segment[].
457 /* Deal with the destination pages I have inadvertently allocated.
459 * Ideally I would convert multi-page allocations into single
460 * page allocations, and add everything to image->dest_pages.
462 * For now it is simpler to just free the pages.
464 kimage_free_page_list(&extra_pages
);
469 static struct page
*kimage_alloc_crash_control_pages(struct kimage
*image
,
472 /* Control pages are special, they are the intermediaries
473 * that are needed while we copy the rest of the pages
474 * to their final resting place. As such they must
475 * not conflict with either the destination addresses
476 * or memory the kernel is already using.
478 * Control pages are also the only pags we must allocate
479 * when loading a crash kernel. All of the other pages
480 * are specified by the segments and we just memcpy
481 * into them directly.
483 * The only case where we really need more than one of
484 * these are for architectures where we cannot disable
485 * the MMU and must instead generate an identity mapped
486 * page table for all of the memory.
488 * Given the low demand this implements a very simple
489 * allocator that finds the first hole of the appropriate
490 * size in the reserved memory region, and allocates all
491 * of the memory up to and including the hole.
493 unsigned long hole_start
, hole_end
, size
;
497 size
= (1 << order
) << PAGE_SHIFT
;
498 hole_start
= (image
->control_page
+ (size
- 1)) & ~(size
- 1);
499 hole_end
= hole_start
+ size
- 1;
500 while (hole_end
<= crashk_res
.end
) {
503 if (hole_end
> KEXEC_CRASH_CONTROL_MEMORY_LIMIT
)
505 /* See if I overlap any of the segments */
506 for (i
= 0; i
< image
->nr_segments
; i
++) {
507 unsigned long mstart
, mend
;
509 mstart
= image
->segment
[i
].mem
;
510 mend
= mstart
+ image
->segment
[i
].memsz
- 1;
511 if ((hole_end
>= mstart
) && (hole_start
<= mend
)) {
512 /* Advance the hole to the end of the segment */
513 hole_start
= (mend
+ (size
- 1)) & ~(size
- 1);
514 hole_end
= hole_start
+ size
- 1;
518 /* If I don't overlap any segments I have found my hole! */
519 if (i
== image
->nr_segments
) {
520 pages
= pfn_to_page(hole_start
>> PAGE_SHIFT
);
525 image
->control_page
= hole_end
;
531 struct page
*kimage_alloc_control_pages(struct kimage
*image
,
534 struct page
*pages
= NULL
;
536 switch (image
->type
) {
537 case KEXEC_TYPE_DEFAULT
:
538 pages
= kimage_alloc_normal_control_pages(image
, order
);
540 case KEXEC_TYPE_CRASH
:
541 pages
= kimage_alloc_crash_control_pages(image
, order
);
548 static int kimage_add_entry(struct kimage
*image
, kimage_entry_t entry
)
550 if (*image
->entry
!= 0)
553 if (image
->entry
== image
->last_entry
) {
554 kimage_entry_t
*ind_page
;
557 page
= kimage_alloc_page(image
, GFP_KERNEL
, KIMAGE_NO_DEST
);
561 ind_page
= page_address(page
);
562 *image
->entry
= virt_to_phys(ind_page
) | IND_INDIRECTION
;
563 image
->entry
= ind_page
;
564 image
->last_entry
= ind_page
+
565 ((PAGE_SIZE
/sizeof(kimage_entry_t
)) - 1);
567 *image
->entry
= entry
;
574 static int kimage_set_destination(struct kimage
*image
,
575 unsigned long destination
)
579 destination
&= PAGE_MASK
;
580 result
= kimage_add_entry(image
, destination
| IND_DESTINATION
);
582 image
->destination
= destination
;
588 static int kimage_add_page(struct kimage
*image
, unsigned long page
)
593 result
= kimage_add_entry(image
, page
| IND_SOURCE
);
595 image
->destination
+= PAGE_SIZE
;
601 static void kimage_free_extra_pages(struct kimage
*image
)
603 /* Walk through and free any extra destination pages I may have */
604 kimage_free_page_list(&image
->dest_pages
);
606 /* Walk through and free any unusable pages I have cached */
607 kimage_free_page_list(&image
->unuseable_pages
);
610 static void kimage_terminate(struct kimage
*image
)
612 if (*image
->entry
!= 0)
615 *image
->entry
= IND_DONE
;
618 #define for_each_kimage_entry(image, ptr, entry) \
619 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
620 ptr = (entry & IND_INDIRECTION)? \
621 phys_to_virt((entry & PAGE_MASK)): ptr +1)
623 static void kimage_free_entry(kimage_entry_t entry
)
627 page
= pfn_to_page(entry
>> PAGE_SHIFT
);
628 kimage_free_pages(page
);
631 static void kimage_free(struct kimage
*image
)
633 kimage_entry_t
*ptr
, entry
;
634 kimage_entry_t ind
= 0;
639 kimage_free_extra_pages(image
);
640 for_each_kimage_entry(image
, ptr
, entry
) {
641 if (entry
& IND_INDIRECTION
) {
642 /* Free the previous indirection page */
643 if (ind
& IND_INDIRECTION
)
644 kimage_free_entry(ind
);
645 /* Save this indirection page until we are
650 else if (entry
& IND_SOURCE
)
651 kimage_free_entry(entry
);
653 /* Free the final indirection page */
654 if (ind
& IND_INDIRECTION
)
655 kimage_free_entry(ind
);
657 /* Handle any machine specific cleanup */
658 machine_kexec_cleanup(image
);
660 /* Free the kexec control pages... */
661 kimage_free_page_list(&image
->control_pages
);
665 static kimage_entry_t
*kimage_dst_used(struct kimage
*image
,
668 kimage_entry_t
*ptr
, entry
;
669 unsigned long destination
= 0;
671 for_each_kimage_entry(image
, ptr
, entry
) {
672 if (entry
& IND_DESTINATION
)
673 destination
= entry
& PAGE_MASK
;
674 else if (entry
& IND_SOURCE
) {
675 if (page
== destination
)
677 destination
+= PAGE_SIZE
;
684 static struct page
*kimage_alloc_page(struct kimage
*image
,
686 unsigned long destination
)
689 * Here we implement safeguards to ensure that a source page
690 * is not copied to its destination page before the data on
691 * the destination page is no longer useful.
693 * To do this we maintain the invariant that a source page is
694 * either its own destination page, or it is not a
695 * destination page at all.
697 * That is slightly stronger than required, but the proof
698 * that no problems will not occur is trivial, and the
699 * implementation is simply to verify.
701 * When allocating all pages normally this algorithm will run
702 * in O(N) time, but in the worst case it will run in O(N^2)
703 * time. If the runtime is a problem the data structures can
710 * Walk through the list of destination pages, and see if I
713 list_for_each_entry(page
, &image
->dest_pages
, lru
) {
714 addr
= page_to_pfn(page
) << PAGE_SHIFT
;
715 if (addr
== destination
) {
716 list_del(&page
->lru
);
724 /* Allocate a page, if we run out of memory give up */
725 page
= kimage_alloc_pages(gfp_mask
, 0);
728 /* If the page cannot be used file it away */
729 if (page_to_pfn(page
) >
730 (KEXEC_SOURCE_MEMORY_LIMIT
>> PAGE_SHIFT
)) {
731 list_add(&page
->lru
, &image
->unuseable_pages
);
734 addr
= page_to_pfn(page
) << PAGE_SHIFT
;
736 /* If it is the destination page we want use it */
737 if (addr
== destination
)
740 /* If the page is not a destination page use it */
741 if (!kimage_is_destination_range(image
, addr
,
746 * I know that the page is someones destination page.
747 * See if there is already a source page for this
748 * destination page. And if so swap the source pages.
750 old
= kimage_dst_used(image
, addr
);
753 unsigned long old_addr
;
754 struct page
*old_page
;
756 old_addr
= *old
& PAGE_MASK
;
757 old_page
= pfn_to_page(old_addr
>> PAGE_SHIFT
);
758 copy_highpage(page
, old_page
);
759 *old
= addr
| (*old
& ~PAGE_MASK
);
761 /* The old page I have found cannot be a
762 * destination page, so return it if it's
763 * gfp_flags honor the ones passed in.
765 if (!(gfp_mask
& __GFP_HIGHMEM
) &&
766 PageHighMem(old_page
)) {
767 kimage_free_pages(old_page
);
775 /* Place the page on the destination list I
778 list_add(&page
->lru
, &image
->dest_pages
);
785 static int kimage_load_normal_segment(struct kimage
*image
,
786 struct kexec_segment
*segment
)
789 size_t ubytes
, mbytes
;
791 unsigned char __user
*buf
;
795 ubytes
= segment
->bufsz
;
796 mbytes
= segment
->memsz
;
797 maddr
= segment
->mem
;
799 result
= kimage_set_destination(image
, maddr
);
806 size_t uchunk
, mchunk
;
808 page
= kimage_alloc_page(image
, GFP_HIGHUSER
, maddr
);
813 result
= kimage_add_page(image
, page_to_pfn(page
)
819 /* Start with a clear page */
821 ptr
+= maddr
& ~PAGE_MASK
;
822 mchunk
= min_t(size_t, mbytes
,
823 PAGE_SIZE
- (maddr
& ~PAGE_MASK
));
824 uchunk
= min(ubytes
, mchunk
);
826 result
= copy_from_user(ptr
, buf
, uchunk
);
841 static int kimage_load_crash_segment(struct kimage
*image
,
842 struct kexec_segment
*segment
)
844 /* For crash dumps kernels we simply copy the data from
845 * user space to it's destination.
846 * We do things a page at a time for the sake of kmap.
849 size_t ubytes
, mbytes
;
851 unsigned char __user
*buf
;
855 ubytes
= segment
->bufsz
;
856 mbytes
= segment
->memsz
;
857 maddr
= segment
->mem
;
861 size_t uchunk
, mchunk
;
863 page
= pfn_to_page(maddr
>> PAGE_SHIFT
);
869 ptr
+= maddr
& ~PAGE_MASK
;
870 mchunk
= min_t(size_t, mbytes
,
871 PAGE_SIZE
- (maddr
& ~PAGE_MASK
));
872 uchunk
= min(ubytes
, mchunk
);
873 if (mchunk
> uchunk
) {
874 /* Zero the trailing part of the page */
875 memset(ptr
+ uchunk
, 0, mchunk
- uchunk
);
877 result
= copy_from_user(ptr
, buf
, uchunk
);
878 kexec_flush_icache_page(page
);
893 static int kimage_load_segment(struct kimage
*image
,
894 struct kexec_segment
*segment
)
896 int result
= -ENOMEM
;
898 switch (image
->type
) {
899 case KEXEC_TYPE_DEFAULT
:
900 result
= kimage_load_normal_segment(image
, segment
);
902 case KEXEC_TYPE_CRASH
:
903 result
= kimage_load_crash_segment(image
, segment
);
911 * Exec Kernel system call: for obvious reasons only root may call it.
913 * This call breaks up into three pieces.
914 * - A generic part which loads the new kernel from the current
915 * address space, and very carefully places the data in the
918 * - A generic part that interacts with the kernel and tells all of
919 * the devices to shut down. Preventing on-going dmas, and placing
920 * the devices in a consistent state so a later kernel can
923 * - A machine specific part that includes the syscall number
924 * and the copies the image to it's final destination. And
925 * jumps into the image at entry.
927 * kexec does not sync, or unmount filesystems so if you need
928 * that to happen you need to do that yourself.
930 struct kimage
*kexec_image
;
931 struct kimage
*kexec_crash_image
;
933 static DEFINE_MUTEX(kexec_mutex
);
935 SYSCALL_DEFINE4(kexec_load
, unsigned long, entry
, unsigned long, nr_segments
,
936 struct kexec_segment __user
*, segments
, unsigned long, flags
)
938 struct kimage
**dest_image
, *image
;
941 /* We only trust the superuser with rebooting the system. */
942 if (!capable(CAP_SYS_BOOT
))
946 * Verify we have a legal set of flags
947 * This leaves us room for future extensions.
949 if ((flags
& KEXEC_FLAGS
) != (flags
& ~KEXEC_ARCH_MASK
))
952 /* Verify we are on the appropriate architecture */
953 if (((flags
& KEXEC_ARCH_MASK
) != KEXEC_ARCH
) &&
954 ((flags
& KEXEC_ARCH_MASK
) != KEXEC_ARCH_DEFAULT
))
957 /* Put an artificial cap on the number
958 * of segments passed to kexec_load.
960 if (nr_segments
> KEXEC_SEGMENT_MAX
)
966 /* Because we write directly to the reserved memory
967 * region when loading crash kernels we need a mutex here to
968 * prevent multiple crash kernels from attempting to load
969 * simultaneously, and to prevent a crash kernel from loading
970 * over the top of a in use crash kernel.
972 * KISS: always take the mutex.
974 if (!mutex_trylock(&kexec_mutex
))
977 dest_image
= &kexec_image
;
978 if (flags
& KEXEC_ON_CRASH
)
979 dest_image
= &kexec_crash_image
;
980 if (nr_segments
> 0) {
983 /* Loading another kernel to reboot into */
984 if ((flags
& KEXEC_ON_CRASH
) == 0)
985 result
= kimage_normal_alloc(&image
, entry
,
986 nr_segments
, segments
);
987 /* Loading another kernel to switch to if this one crashes */
988 else if (flags
& KEXEC_ON_CRASH
) {
989 /* Free any current crash dump kernel before
992 kimage_free(xchg(&kexec_crash_image
, NULL
));
993 result
= kimage_crash_alloc(&image
, entry
,
994 nr_segments
, segments
);
995 crash_map_reserved_pages();
1000 if (flags
& KEXEC_PRESERVE_CONTEXT
)
1001 image
->preserve_context
= 1;
1002 result
= machine_kexec_prepare(image
);
1006 for (i
= 0; i
< nr_segments
; i
++) {
1007 result
= kimage_load_segment(image
, &image
->segment
[i
]);
1011 kimage_terminate(image
);
1012 if (flags
& KEXEC_ON_CRASH
)
1013 crash_unmap_reserved_pages();
1015 /* Install the new kernel, and Uninstall the old */
1016 image
= xchg(dest_image
, image
);
1019 mutex_unlock(&kexec_mutex
);
1026 * Add and remove page tables for crashkernel memory
1028 * Provide an empty default implementation here -- architecture
1029 * code may override this
1031 void __weak
crash_map_reserved_pages(void)
1034 void __weak
crash_unmap_reserved_pages(void)
1037 #ifdef CONFIG_COMPAT
1038 asmlinkage
long compat_sys_kexec_load(unsigned long entry
,
1039 unsigned long nr_segments
,
1040 struct compat_kexec_segment __user
*segments
,
1041 unsigned long flags
)
1043 struct compat_kexec_segment in
;
1044 struct kexec_segment out
, __user
*ksegments
;
1045 unsigned long i
, result
;
1047 /* Don't allow clients that don't understand the native
1048 * architecture to do anything.
1050 if ((flags
& KEXEC_ARCH_MASK
) == KEXEC_ARCH_DEFAULT
)
1053 if (nr_segments
> KEXEC_SEGMENT_MAX
)
1056 ksegments
= compat_alloc_user_space(nr_segments
* sizeof(out
));
1057 for (i
=0; i
< nr_segments
; i
++) {
1058 result
= copy_from_user(&in
, &segments
[i
], sizeof(in
));
1062 out
.buf
= compat_ptr(in
.buf
);
1063 out
.bufsz
= in
.bufsz
;
1065 out
.memsz
= in
.memsz
;
1067 result
= copy_to_user(&ksegments
[i
], &out
, sizeof(out
));
1072 return sys_kexec_load(entry
, nr_segments
, ksegments
, flags
);
1076 void crash_kexec(struct pt_regs
*regs
)
1078 /* Take the kexec_mutex here to prevent sys_kexec_load
1079 * running on one cpu from replacing the crash kernel
1080 * we are using after a panic on a different cpu.
1082 * If the crash kernel was not located in a fixed area
1083 * of memory the xchg(&kexec_crash_image) would be
1084 * sufficient. But since I reuse the memory...
1086 if (mutex_trylock(&kexec_mutex
)) {
1087 if (kexec_crash_image
) {
1088 struct pt_regs fixed_regs
;
1090 crash_setup_regs(&fixed_regs
, regs
);
1091 crash_save_vmcoreinfo();
1092 machine_crash_shutdown(&fixed_regs
);
1093 machine_kexec(kexec_crash_image
);
1095 mutex_unlock(&kexec_mutex
);
1099 size_t crash_get_memory_size(void)
1102 mutex_lock(&kexec_mutex
);
1103 if (crashk_res
.end
!= crashk_res
.start
)
1104 size
= resource_size(&crashk_res
);
1105 mutex_unlock(&kexec_mutex
);
1109 void __weak
crash_free_reserved_phys_range(unsigned long begin
,
1114 for (addr
= begin
; addr
< end
; addr
+= PAGE_SIZE
)
1115 free_reserved_page(pfn_to_page(addr
>> PAGE_SHIFT
));
1118 int crash_shrink_memory(unsigned long new_size
)
1121 unsigned long start
, end
;
1122 unsigned long old_size
;
1123 struct resource
*ram_res
;
1125 mutex_lock(&kexec_mutex
);
1127 if (kexec_crash_image
) {
1131 start
= crashk_res
.start
;
1132 end
= crashk_res
.end
;
1133 old_size
= (end
== 0) ? 0 : end
- start
+ 1;
1134 if (new_size
>= old_size
) {
1135 ret
= (new_size
== old_size
) ? 0 : -EINVAL
;
1139 ram_res
= kzalloc(sizeof(*ram_res
), GFP_KERNEL
);
1145 start
= roundup(start
, KEXEC_CRASH_MEM_ALIGN
);
1146 end
= roundup(start
+ new_size
, KEXEC_CRASH_MEM_ALIGN
);
1148 crash_map_reserved_pages();
1149 crash_free_reserved_phys_range(end
, crashk_res
.end
);
1151 if ((start
== end
) && (crashk_res
.parent
!= NULL
))
1152 release_resource(&crashk_res
);
1154 ram_res
->start
= end
;
1155 ram_res
->end
= crashk_res
.end
;
1156 ram_res
->flags
= IORESOURCE_BUSY
| IORESOURCE_MEM
;
1157 ram_res
->name
= "System RAM";
1159 crashk_res
.end
= end
- 1;
1161 insert_resource(&iomem_resource
, ram_res
);
1162 crash_unmap_reserved_pages();
1165 mutex_unlock(&kexec_mutex
);
1169 static u32
*append_elf_note(u32
*buf
, char *name
, unsigned type
, void *data
,
1172 struct elf_note note
;
1174 note
.n_namesz
= strlen(name
) + 1;
1175 note
.n_descsz
= data_len
;
1177 memcpy(buf
, ¬e
, sizeof(note
));
1178 buf
+= (sizeof(note
) + 3)/4;
1179 memcpy(buf
, name
, note
.n_namesz
);
1180 buf
+= (note
.n_namesz
+ 3)/4;
1181 memcpy(buf
, data
, note
.n_descsz
);
1182 buf
+= (note
.n_descsz
+ 3)/4;
1187 static void final_note(u32
*buf
)
1189 struct elf_note note
;
1194 memcpy(buf
, ¬e
, sizeof(note
));
1197 void crash_save_cpu(struct pt_regs
*regs
, int cpu
)
1199 struct elf_prstatus prstatus
;
1202 if ((cpu
< 0) || (cpu
>= nr_cpu_ids
))
1205 /* Using ELF notes here is opportunistic.
1206 * I need a well defined structure format
1207 * for the data I pass, and I need tags
1208 * on the data to indicate what information I have
1209 * squirrelled away. ELF notes happen to provide
1210 * all of that, so there is no need to invent something new.
1212 buf
= (u32
*)per_cpu_ptr(crash_notes
, cpu
);
1215 memset(&prstatus
, 0, sizeof(prstatus
));
1216 prstatus
.pr_pid
= current
->pid
;
1217 elf_core_copy_kernel_regs(&prstatus
.pr_reg
, regs
);
1218 buf
= append_elf_note(buf
, KEXEC_CORE_NOTE_NAME
, NT_PRSTATUS
,
1219 &prstatus
, sizeof(prstatus
));
1223 static int __init
crash_notes_memory_init(void)
1225 /* Allocate memory for saving cpu registers. */
1226 crash_notes
= alloc_percpu(note_buf_t
);
1228 printk("Kexec: Memory allocation for saving cpu register"
1229 " states failed\n");
1234 module_init(crash_notes_memory_init
)
1238 * parsing the "crashkernel" commandline
1240 * this code is intended to be called from architecture specific code
1245 * This function parses command lines in the format
1247 * crashkernel=ramsize-range:size[,...][@offset]
1249 * The function returns 0 on success and -EINVAL on failure.
1251 static int __init
parse_crashkernel_mem(char *cmdline
,
1252 unsigned long long system_ram
,
1253 unsigned long long *crash_size
,
1254 unsigned long long *crash_base
)
1256 char *cur
= cmdline
, *tmp
;
1258 /* for each entry of the comma-separated list */
1260 unsigned long long start
, end
= ULLONG_MAX
, size
;
1262 /* get the start of the range */
1263 start
= memparse(cur
, &tmp
);
1265 pr_warning("crashkernel: Memory value expected\n");
1270 pr_warning("crashkernel: '-' expected\n");
1275 /* if no ':' is here, than we read the end */
1277 end
= memparse(cur
, &tmp
);
1279 pr_warning("crashkernel: Memory "
1280 "value expected\n");
1285 pr_warning("crashkernel: end <= start\n");
1291 pr_warning("crashkernel: ':' expected\n");
1296 size
= memparse(cur
, &tmp
);
1298 pr_warning("Memory value expected\n");
1302 if (size
>= system_ram
) {
1303 pr_warning("crashkernel: invalid size\n");
1308 if (system_ram
>= start
&& system_ram
< end
) {
1312 } while (*cur
++ == ',');
1314 if (*crash_size
> 0) {
1315 while (*cur
&& *cur
!= ' ' && *cur
!= '@')
1319 *crash_base
= memparse(cur
, &tmp
);
1321 pr_warning("Memory value expected "
1332 * That function parses "simple" (old) crashkernel command lines like
1334 * crashkernel=size[@offset]
1336 * It returns 0 on success and -EINVAL on failure.
1338 static int __init
parse_crashkernel_simple(char *cmdline
,
1339 unsigned long long *crash_size
,
1340 unsigned long long *crash_base
)
1342 char *cur
= cmdline
;
1344 *crash_size
= memparse(cmdline
, &cur
);
1345 if (cmdline
== cur
) {
1346 pr_warning("crashkernel: memory value expected\n");
1351 *crash_base
= memparse(cur
+1, &cur
);
1352 else if (*cur
!= ' ' && *cur
!= '\0') {
1353 pr_warning("crashkernel: unrecognized char\n");
1360 #define SUFFIX_HIGH 0
1361 #define SUFFIX_LOW 1
1362 #define SUFFIX_NULL 2
1363 static __initdata
char *suffix_tbl
[] = {
1364 [SUFFIX_HIGH
] = ",high",
1365 [SUFFIX_LOW
] = ",low",
1366 [SUFFIX_NULL
] = NULL
,
1370 * That function parses "suffix" crashkernel command lines like
1372 * crashkernel=size,[high|low]
1374 * It returns 0 on success and -EINVAL on failure.
1376 static int __init
parse_crashkernel_suffix(char *cmdline
,
1377 unsigned long long *crash_size
,
1378 unsigned long long *crash_base
,
1381 char *cur
= cmdline
;
1383 *crash_size
= memparse(cmdline
, &cur
);
1384 if (cmdline
== cur
) {
1385 pr_warn("crashkernel: memory value expected\n");
1389 /* check with suffix */
1390 if (strncmp(cur
, suffix
, strlen(suffix
))) {
1391 pr_warn("crashkernel: unrecognized char\n");
1394 cur
+= strlen(suffix
);
1395 if (*cur
!= ' ' && *cur
!= '\0') {
1396 pr_warn("crashkernel: unrecognized char\n");
1403 static __init
char *get_last_crashkernel(char *cmdline
,
1407 char *p
= cmdline
, *ck_cmdline
= NULL
;
1409 /* find crashkernel and use the last one if there are more */
1410 p
= strstr(p
, name
);
1412 char *end_p
= strchr(p
, ' ');
1416 end_p
= p
+ strlen(p
);
1421 /* skip the one with any known suffix */
1422 for (i
= 0; suffix_tbl
[i
]; i
++) {
1423 q
= end_p
- strlen(suffix_tbl
[i
]);
1424 if (!strncmp(q
, suffix_tbl
[i
],
1425 strlen(suffix_tbl
[i
])))
1430 q
= end_p
- strlen(suffix
);
1431 if (!strncmp(q
, suffix
, strlen(suffix
)))
1435 p
= strstr(p
+1, name
);
1444 static int __init
__parse_crashkernel(char *cmdline
,
1445 unsigned long long system_ram
,
1446 unsigned long long *crash_size
,
1447 unsigned long long *crash_base
,
1451 char *first_colon
, *first_space
;
1454 BUG_ON(!crash_size
|| !crash_base
);
1458 ck_cmdline
= get_last_crashkernel(cmdline
, name
, suffix
);
1463 ck_cmdline
+= strlen(name
);
1466 return parse_crashkernel_suffix(ck_cmdline
, crash_size
,
1467 crash_base
, suffix
);
1469 * if the commandline contains a ':', then that's the extended
1470 * syntax -- if not, it must be the classic syntax
1472 first_colon
= strchr(ck_cmdline
, ':');
1473 first_space
= strchr(ck_cmdline
, ' ');
1474 if (first_colon
&& (!first_space
|| first_colon
< first_space
))
1475 return parse_crashkernel_mem(ck_cmdline
, system_ram
,
1476 crash_size
, crash_base
);
1478 return parse_crashkernel_simple(ck_cmdline
, crash_size
, crash_base
);
1482 * That function is the entry point for command line parsing and should be
1483 * called from the arch-specific code.
1485 int __init
parse_crashkernel(char *cmdline
,
1486 unsigned long long system_ram
,
1487 unsigned long long *crash_size
,
1488 unsigned long long *crash_base
)
1490 return __parse_crashkernel(cmdline
, system_ram
, crash_size
, crash_base
,
1491 "crashkernel=", NULL
);
1494 int __init
parse_crashkernel_high(char *cmdline
,
1495 unsigned long long system_ram
,
1496 unsigned long long *crash_size
,
1497 unsigned long long *crash_base
)
1499 return __parse_crashkernel(cmdline
, system_ram
, crash_size
, crash_base
,
1500 "crashkernel=", suffix_tbl
[SUFFIX_HIGH
]);
1503 int __init
parse_crashkernel_low(char *cmdline
,
1504 unsigned long long system_ram
,
1505 unsigned long long *crash_size
,
1506 unsigned long long *crash_base
)
1508 return __parse_crashkernel(cmdline
, system_ram
, crash_size
, crash_base
,
1509 "crashkernel=", suffix_tbl
[SUFFIX_LOW
]);
1512 static void update_vmcoreinfo_note(void)
1514 u32
*buf
= vmcoreinfo_note
;
1516 if (!vmcoreinfo_size
)
1518 buf
= append_elf_note(buf
, VMCOREINFO_NOTE_NAME
, 0, vmcoreinfo_data
,
1523 void crash_save_vmcoreinfo(void)
1525 vmcoreinfo_append_str("CRASHTIME=%ld\n", get_seconds());
1526 update_vmcoreinfo_note();
1529 void vmcoreinfo_append_str(const char *fmt
, ...)
1535 va_start(args
, fmt
);
1536 r
= vsnprintf(buf
, sizeof(buf
), fmt
, args
);
1539 r
= min(r
, vmcoreinfo_max_size
- vmcoreinfo_size
);
1541 memcpy(&vmcoreinfo_data
[vmcoreinfo_size
], buf
, r
);
1543 vmcoreinfo_size
+= r
;
1547 * provide an empty default implementation here -- architecture
1548 * code may override this
1550 void __attribute__ ((weak
)) arch_crash_save_vmcoreinfo(void)
1553 unsigned long __attribute__ ((weak
)) paddr_vmcoreinfo_note(void)
1555 return __pa((unsigned long)(char *)&vmcoreinfo_note
);
1558 static int __init
crash_save_vmcoreinfo_init(void)
1560 VMCOREINFO_OSRELEASE(init_uts_ns
.name
.release
);
1561 VMCOREINFO_PAGESIZE(PAGE_SIZE
);
1563 VMCOREINFO_SYMBOL(init_uts_ns
);
1564 VMCOREINFO_SYMBOL(node_online_map
);
1566 VMCOREINFO_SYMBOL(swapper_pg_dir
);
1568 VMCOREINFO_SYMBOL(_stext
);
1569 VMCOREINFO_SYMBOL(vmap_area_list
);
1571 #ifndef CONFIG_NEED_MULTIPLE_NODES
1572 VMCOREINFO_SYMBOL(mem_map
);
1573 VMCOREINFO_SYMBOL(contig_page_data
);
1575 #ifdef CONFIG_SPARSEMEM
1576 VMCOREINFO_SYMBOL(mem_section
);
1577 VMCOREINFO_LENGTH(mem_section
, NR_SECTION_ROOTS
);
1578 VMCOREINFO_STRUCT_SIZE(mem_section
);
1579 VMCOREINFO_OFFSET(mem_section
, section_mem_map
);
1581 VMCOREINFO_STRUCT_SIZE(page
);
1582 VMCOREINFO_STRUCT_SIZE(pglist_data
);
1583 VMCOREINFO_STRUCT_SIZE(zone
);
1584 VMCOREINFO_STRUCT_SIZE(free_area
);
1585 VMCOREINFO_STRUCT_SIZE(list_head
);
1586 VMCOREINFO_SIZE(nodemask_t
);
1587 VMCOREINFO_OFFSET(page
, flags
);
1588 VMCOREINFO_OFFSET(page
, _count
);
1589 VMCOREINFO_OFFSET(page
, mapping
);
1590 VMCOREINFO_OFFSET(page
, lru
);
1591 VMCOREINFO_OFFSET(page
, _mapcount
);
1592 VMCOREINFO_OFFSET(page
, private);
1593 VMCOREINFO_OFFSET(pglist_data
, node_zones
);
1594 VMCOREINFO_OFFSET(pglist_data
, nr_zones
);
1595 #ifdef CONFIG_FLAT_NODE_MEM_MAP
1596 VMCOREINFO_OFFSET(pglist_data
, node_mem_map
);
1598 VMCOREINFO_OFFSET(pglist_data
, node_start_pfn
);
1599 VMCOREINFO_OFFSET(pglist_data
, node_spanned_pages
);
1600 VMCOREINFO_OFFSET(pglist_data
, node_id
);
1601 VMCOREINFO_OFFSET(zone
, free_area
);
1602 VMCOREINFO_OFFSET(zone
, vm_stat
);
1603 VMCOREINFO_OFFSET(zone
, spanned_pages
);
1604 VMCOREINFO_OFFSET(free_area
, free_list
);
1605 VMCOREINFO_OFFSET(list_head
, next
);
1606 VMCOREINFO_OFFSET(list_head
, prev
);
1607 VMCOREINFO_OFFSET(vmap_area
, va_start
);
1608 VMCOREINFO_OFFSET(vmap_area
, list
);
1609 VMCOREINFO_LENGTH(zone
.free_area
, MAX_ORDER
);
1610 log_buf_kexec_setup();
1611 VMCOREINFO_LENGTH(free_area
.free_list
, MIGRATE_TYPES
);
1612 VMCOREINFO_NUMBER(NR_FREE_PAGES
);
1613 VMCOREINFO_NUMBER(PG_lru
);
1614 VMCOREINFO_NUMBER(PG_private
);
1615 VMCOREINFO_NUMBER(PG_swapcache
);
1616 VMCOREINFO_NUMBER(PG_slab
);
1617 #ifdef CONFIG_MEMORY_FAILURE
1618 VMCOREINFO_NUMBER(PG_hwpoison
);
1620 VMCOREINFO_NUMBER(PAGE_BUDDY_MAPCOUNT_VALUE
);
1622 arch_crash_save_vmcoreinfo();
1623 update_vmcoreinfo_note();
1628 module_init(crash_save_vmcoreinfo_init
)
1631 * Move into place and start executing a preloaded standalone
1632 * executable. If nothing was preloaded return an error.
1634 int kernel_kexec(void)
1638 if (!mutex_trylock(&kexec_mutex
))
1645 #ifdef CONFIG_KEXEC_JUMP
1646 if (kexec_image
->preserve_context
) {
1647 lock_system_sleep();
1648 pm_prepare_console();
1649 error
= freeze_processes();
1652 goto Restore_console
;
1655 error
= dpm_suspend_start(PMSG_FREEZE
);
1657 goto Resume_console
;
1658 /* At this point, dpm_suspend_start() has been called,
1659 * but *not* dpm_suspend_end(). We *must* call
1660 * dpm_suspend_end() now. Otherwise, drivers for
1661 * some devices (e.g. interrupt controllers) become
1662 * desynchronized with the actual state of the
1663 * hardware at resume time, and evil weirdness ensues.
1665 error
= dpm_suspend_end(PMSG_FREEZE
);
1667 goto Resume_devices
;
1668 error
= disable_nonboot_cpus();
1671 local_irq_disable();
1672 error
= syscore_suspend();
1678 kernel_restart_prepare(NULL
);
1679 printk(KERN_EMERG
"Starting new kernel\n");
1683 machine_kexec(kexec_image
);
1685 #ifdef CONFIG_KEXEC_JUMP
1686 if (kexec_image
->preserve_context
) {
1691 enable_nonboot_cpus();
1692 dpm_resume_start(PMSG_RESTORE
);
1694 dpm_resume_end(PMSG_RESTORE
);
1699 pm_restore_console();
1700 unlock_system_sleep();
1705 mutex_unlock(&kexec_mutex
);