2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
29 #include <linux/cgroup.h>
30 #include <linux/cred.h>
31 #include <linux/ctype.h>
32 #include <linux/errno.h>
33 #include <linux/init_task.h>
34 #include <linux/kernel.h>
35 #include <linux/list.h>
37 #include <linux/mutex.h>
38 #include <linux/mount.h>
39 #include <linux/pagemap.h>
40 #include <linux/proc_fs.h>
41 #include <linux/rcupdate.h>
42 #include <linux/sched.h>
43 #include <linux/backing-dev.h>
44 #include <linux/seq_file.h>
45 #include <linux/slab.h>
46 #include <linux/magic.h>
47 #include <linux/spinlock.h>
48 #include <linux/string.h>
49 #include <linux/sort.h>
50 #include <linux/kmod.h>
51 #include <linux/module.h>
52 #include <linux/delayacct.h>
53 #include <linux/cgroupstats.h>
54 #include <linux/hashtable.h>
55 #include <linux/namei.h>
56 #include <linux/pid_namespace.h>
57 #include <linux/idr.h>
58 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
59 #include <linux/eventfd.h>
60 #include <linux/poll.h>
61 #include <linux/flex_array.h> /* used in cgroup_attach_task */
62 #include <linux/kthread.h>
63 #include <linux/file.h>
65 #include <linux/atomic.h>
68 * cgroup_mutex is the master lock. Any modification to cgroup or its
69 * hierarchy must be performed while holding it.
71 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
72 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
73 * release_agent_path and so on. Modifying requires both cgroup_mutex and
74 * cgroup_root_mutex. Readers can acquire either of the two. This is to
75 * break the following locking order cycle.
77 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
78 * B. namespace_sem -> cgroup_mutex
80 * B happens only through cgroup_show_options() and using cgroup_root_mutex
83 #ifdef CONFIG_PROVE_RCU
84 DEFINE_MUTEX(cgroup_mutex
);
85 EXPORT_SYMBOL_GPL(cgroup_mutex
); /* only for lockdep */
87 static DEFINE_MUTEX(cgroup_mutex
);
90 static DEFINE_MUTEX(cgroup_root_mutex
);
93 * Generate an array of cgroup subsystem pointers. At boot time, this is
94 * populated with the built in subsystems, and modular subsystems are
95 * registered after that. The mutable section of this array is protected by
98 #define SUBSYS(_x) [_x ## _subsys_id] = &_x ## _subsys,
99 #define IS_SUBSYS_ENABLED(option) IS_BUILTIN(option)
100 static struct cgroup_subsys
*cgroup_subsys
[CGROUP_SUBSYS_COUNT
] = {
101 #include <linux/cgroup_subsys.h>
105 * The dummy hierarchy, reserved for the subsystems that are otherwise
106 * unattached - it never has more than a single cgroup, and all tasks are
107 * part of that cgroup.
109 static struct cgroupfs_root cgroup_dummy_root
;
111 /* dummy_top is a shorthand for the dummy hierarchy's top cgroup */
112 static struct cgroup
* const cgroup_dummy_top
= &cgroup_dummy_root
.top_cgroup
;
115 * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
118 struct list_head node
;
119 struct dentry
*dentry
;
121 struct cgroup_subsys_state
*css
;
124 struct simple_xattrs xattrs
;
128 * cgroup_event represents events which userspace want to receive.
130 struct cgroup_event
{
132 * css which the event belongs to.
134 struct cgroup_subsys_state
*css
;
136 * Control file which the event associated.
140 * eventfd to signal userspace about the event.
142 struct eventfd_ctx
*eventfd
;
144 * Each of these stored in a list by the cgroup.
146 struct list_head list
;
148 * All fields below needed to unregister event when
149 * userspace closes eventfd.
152 wait_queue_head_t
*wqh
;
154 struct work_struct remove
;
157 /* The list of hierarchy roots */
159 static LIST_HEAD(cgroup_roots
);
160 static int cgroup_root_count
;
163 * Hierarchy ID allocation and mapping. It follows the same exclusion
164 * rules as other root ops - both cgroup_mutex and cgroup_root_mutex for
165 * writes, either for reads.
167 static DEFINE_IDR(cgroup_hierarchy_idr
);
169 static struct cgroup_name root_cgroup_name
= { .name
= "/" };
172 * Assign a monotonically increasing serial number to cgroups. It
173 * guarantees cgroups with bigger numbers are newer than those with smaller
174 * numbers. Also, as cgroups are always appended to the parent's
175 * ->children list, it guarantees that sibling cgroups are always sorted in
176 * the ascending serial number order on the list. Protected by
179 static u64 cgroup_serial_nr_next
= 1;
181 /* This flag indicates whether tasks in the fork and exit paths should
182 * check for fork/exit handlers to call. This avoids us having to do
183 * extra work in the fork/exit path if none of the subsystems need to
186 static int need_forkexit_callback __read_mostly
;
188 static struct cftype cgroup_base_files
[];
190 static void cgroup_destroy_css_killed(struct cgroup
*cgrp
);
191 static int cgroup_destroy_locked(struct cgroup
*cgrp
);
192 static int cgroup_addrm_files(struct cgroup
*cgrp
, struct cftype cfts
[],
196 * cgroup_css - obtain a cgroup's css for the specified subsystem
197 * @cgrp: the cgroup of interest
198 * @ss: the subsystem of interest (%NULL returns the dummy_css)
200 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
201 * function must be called either under cgroup_mutex or rcu_read_lock() and
202 * the caller is responsible for pinning the returned css if it wants to
203 * keep accessing it outside the said locks. This function may return
204 * %NULL if @cgrp doesn't have @subsys_id enabled.
206 static struct cgroup_subsys_state
*cgroup_css(struct cgroup
*cgrp
,
207 struct cgroup_subsys
*ss
)
210 return rcu_dereference_check(cgrp
->subsys
[ss
->subsys_id
],
211 lockdep_is_held(&cgroup_mutex
));
213 return &cgrp
->dummy_css
;
216 /* convenient tests for these bits */
217 static inline bool cgroup_is_dead(const struct cgroup
*cgrp
)
219 return test_bit(CGRP_DEAD
, &cgrp
->flags
);
223 * cgroup_is_descendant - test ancestry
224 * @cgrp: the cgroup to be tested
225 * @ancestor: possible ancestor of @cgrp
227 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
228 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
229 * and @ancestor are accessible.
231 bool cgroup_is_descendant(struct cgroup
*cgrp
, struct cgroup
*ancestor
)
234 if (cgrp
== ancestor
)
240 EXPORT_SYMBOL_GPL(cgroup_is_descendant
);
242 static int cgroup_is_releasable(const struct cgroup
*cgrp
)
245 (1 << CGRP_RELEASABLE
) |
246 (1 << CGRP_NOTIFY_ON_RELEASE
);
247 return (cgrp
->flags
& bits
) == bits
;
250 static int notify_on_release(const struct cgroup
*cgrp
)
252 return test_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
256 * for_each_subsys - iterate all loaded cgroup subsystems
257 * @ss: the iteration cursor
258 * @i: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
260 * Should be called under cgroup_mutex.
262 #define for_each_subsys(ss, i) \
263 for ((i) = 0; (i) < CGROUP_SUBSYS_COUNT; (i)++) \
264 if (({ lockdep_assert_held(&cgroup_mutex); \
265 !((ss) = cgroup_subsys[i]); })) { } \
269 * for_each_builtin_subsys - iterate all built-in cgroup subsystems
270 * @ss: the iteration cursor
271 * @i: the index of @ss, CGROUP_BUILTIN_SUBSYS_COUNT after reaching the end
273 * Bulit-in subsystems are always present and iteration itself doesn't
274 * require any synchronization.
276 #define for_each_builtin_subsys(ss, i) \
277 for ((i) = 0; (i) < CGROUP_BUILTIN_SUBSYS_COUNT && \
278 (((ss) = cgroup_subsys[i]) || true); (i)++)
280 /* iterate each subsystem attached to a hierarchy */
281 #define for_each_root_subsys(root, ss) \
282 list_for_each_entry((ss), &(root)->subsys_list, sibling)
284 /* iterate across the active hierarchies */
285 #define for_each_active_root(root) \
286 list_for_each_entry((root), &cgroup_roots, root_list)
288 static inline struct cgroup
*__d_cgrp(struct dentry
*dentry
)
290 return dentry
->d_fsdata
;
293 static inline struct cfent
*__d_cfe(struct dentry
*dentry
)
295 return dentry
->d_fsdata
;
298 static inline struct cftype
*__d_cft(struct dentry
*dentry
)
300 return __d_cfe(dentry
)->type
;
304 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
305 * @cgrp: the cgroup to be checked for liveness
307 * On success, returns true; the mutex should be later unlocked. On
308 * failure returns false with no lock held.
310 static bool cgroup_lock_live_group(struct cgroup
*cgrp
)
312 mutex_lock(&cgroup_mutex
);
313 if (cgroup_is_dead(cgrp
)) {
314 mutex_unlock(&cgroup_mutex
);
320 /* the list of cgroups eligible for automatic release. Protected by
321 * release_list_lock */
322 static LIST_HEAD(release_list
);
323 static DEFINE_RAW_SPINLOCK(release_list_lock
);
324 static void cgroup_release_agent(struct work_struct
*work
);
325 static DECLARE_WORK(release_agent_work
, cgroup_release_agent
);
326 static void check_for_release(struct cgroup
*cgrp
);
329 * A cgroup can be associated with multiple css_sets as different tasks may
330 * belong to different cgroups on different hierarchies. In the other
331 * direction, a css_set is naturally associated with multiple cgroups.
332 * This M:N relationship is represented by the following link structure
333 * which exists for each association and allows traversing the associations
336 struct cgrp_cset_link
{
337 /* the cgroup and css_set this link associates */
339 struct css_set
*cset
;
341 /* list of cgrp_cset_links anchored at cgrp->cset_links */
342 struct list_head cset_link
;
344 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
345 struct list_head cgrp_link
;
348 /* The default css_set - used by init and its children prior to any
349 * hierarchies being mounted. It contains a pointer to the root state
350 * for each subsystem. Also used to anchor the list of css_sets. Not
351 * reference-counted, to improve performance when child cgroups
352 * haven't been created.
355 static struct css_set init_css_set
;
356 static struct cgrp_cset_link init_cgrp_cset_link
;
359 * css_set_lock protects the list of css_set objects, and the chain of
360 * tasks off each css_set. Nests outside task->alloc_lock due to
361 * css_task_iter_start().
363 static DEFINE_RWLOCK(css_set_lock
);
364 static int css_set_count
;
367 * hash table for cgroup groups. This improves the performance to find
368 * an existing css_set. This hash doesn't (currently) take into
369 * account cgroups in empty hierarchies.
371 #define CSS_SET_HASH_BITS 7
372 static DEFINE_HASHTABLE(css_set_table
, CSS_SET_HASH_BITS
);
374 static unsigned long css_set_hash(struct cgroup_subsys_state
*css
[])
376 unsigned long key
= 0UL;
377 struct cgroup_subsys
*ss
;
380 for_each_subsys(ss
, i
)
381 key
+= (unsigned long)css
[i
];
382 key
= (key
>> 16) ^ key
;
388 * We don't maintain the lists running through each css_set to its task
389 * until after the first call to css_task_iter_start(). This reduces the
390 * fork()/exit() overhead for people who have cgroups compiled into their
391 * kernel but not actually in use.
393 static int use_task_css_set_links __read_mostly
;
395 static void __put_css_set(struct css_set
*cset
, int taskexit
)
397 struct cgrp_cset_link
*link
, *tmp_link
;
400 * Ensure that the refcount doesn't hit zero while any readers
401 * can see it. Similar to atomic_dec_and_lock(), but for an
404 if (atomic_add_unless(&cset
->refcount
, -1, 1))
406 write_lock(&css_set_lock
);
407 if (!atomic_dec_and_test(&cset
->refcount
)) {
408 write_unlock(&css_set_lock
);
412 /* This css_set is dead. unlink it and release cgroup refcounts */
413 hash_del(&cset
->hlist
);
416 list_for_each_entry_safe(link
, tmp_link
, &cset
->cgrp_links
, cgrp_link
) {
417 struct cgroup
*cgrp
= link
->cgrp
;
419 list_del(&link
->cset_link
);
420 list_del(&link
->cgrp_link
);
422 /* @cgrp can't go away while we're holding css_set_lock */
423 if (list_empty(&cgrp
->cset_links
) && notify_on_release(cgrp
)) {
425 set_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
426 check_for_release(cgrp
);
432 write_unlock(&css_set_lock
);
433 kfree_rcu(cset
, rcu_head
);
437 * refcounted get/put for css_set objects
439 static inline void get_css_set(struct css_set
*cset
)
441 atomic_inc(&cset
->refcount
);
444 static inline void put_css_set(struct css_set
*cset
)
446 __put_css_set(cset
, 0);
449 static inline void put_css_set_taskexit(struct css_set
*cset
)
451 __put_css_set(cset
, 1);
455 * compare_css_sets - helper function for find_existing_css_set().
456 * @cset: candidate css_set being tested
457 * @old_cset: existing css_set for a task
458 * @new_cgrp: cgroup that's being entered by the task
459 * @template: desired set of css pointers in css_set (pre-calculated)
461 * Returns true if "cset" matches "old_cset" except for the hierarchy
462 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
464 static bool compare_css_sets(struct css_set
*cset
,
465 struct css_set
*old_cset
,
466 struct cgroup
*new_cgrp
,
467 struct cgroup_subsys_state
*template[])
469 struct list_head
*l1
, *l2
;
471 if (memcmp(template, cset
->subsys
, sizeof(cset
->subsys
))) {
472 /* Not all subsystems matched */
477 * Compare cgroup pointers in order to distinguish between
478 * different cgroups in heirarchies with no subsystems. We
479 * could get by with just this check alone (and skip the
480 * memcmp above) but on most setups the memcmp check will
481 * avoid the need for this more expensive check on almost all
485 l1
= &cset
->cgrp_links
;
486 l2
= &old_cset
->cgrp_links
;
488 struct cgrp_cset_link
*link1
, *link2
;
489 struct cgroup
*cgrp1
, *cgrp2
;
493 /* See if we reached the end - both lists are equal length. */
494 if (l1
== &cset
->cgrp_links
) {
495 BUG_ON(l2
!= &old_cset
->cgrp_links
);
498 BUG_ON(l2
== &old_cset
->cgrp_links
);
500 /* Locate the cgroups associated with these links. */
501 link1
= list_entry(l1
, struct cgrp_cset_link
, cgrp_link
);
502 link2
= list_entry(l2
, struct cgrp_cset_link
, cgrp_link
);
505 /* Hierarchies should be linked in the same order. */
506 BUG_ON(cgrp1
->root
!= cgrp2
->root
);
509 * If this hierarchy is the hierarchy of the cgroup
510 * that's changing, then we need to check that this
511 * css_set points to the new cgroup; if it's any other
512 * hierarchy, then this css_set should point to the
513 * same cgroup as the old css_set.
515 if (cgrp1
->root
== new_cgrp
->root
) {
516 if (cgrp1
!= new_cgrp
)
527 * find_existing_css_set - init css array and find the matching css_set
528 * @old_cset: the css_set that we're using before the cgroup transition
529 * @cgrp: the cgroup that we're moving into
530 * @template: out param for the new set of csses, should be clear on entry
532 static struct css_set
*find_existing_css_set(struct css_set
*old_cset
,
534 struct cgroup_subsys_state
*template[])
536 struct cgroupfs_root
*root
= cgrp
->root
;
537 struct cgroup_subsys
*ss
;
538 struct css_set
*cset
;
543 * Build the set of subsystem state objects that we want to see in the
544 * new css_set. while subsystems can change globally, the entries here
545 * won't change, so no need for locking.
547 for_each_subsys(ss
, i
) {
548 if (root
->subsys_mask
& (1UL << i
)) {
549 /* Subsystem is in this hierarchy. So we want
550 * the subsystem state from the new
552 template[i
] = cgroup_css(cgrp
, ss
);
554 /* Subsystem is not in this hierarchy, so we
555 * don't want to change the subsystem state */
556 template[i
] = old_cset
->subsys
[i
];
560 key
= css_set_hash(template);
561 hash_for_each_possible(css_set_table
, cset
, hlist
, key
) {
562 if (!compare_css_sets(cset
, old_cset
, cgrp
, template))
565 /* This css_set matches what we need */
569 /* No existing cgroup group matched */
573 static void free_cgrp_cset_links(struct list_head
*links_to_free
)
575 struct cgrp_cset_link
*link
, *tmp_link
;
577 list_for_each_entry_safe(link
, tmp_link
, links_to_free
, cset_link
) {
578 list_del(&link
->cset_link
);
584 * allocate_cgrp_cset_links - allocate cgrp_cset_links
585 * @count: the number of links to allocate
586 * @tmp_links: list_head the allocated links are put on
588 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
589 * through ->cset_link. Returns 0 on success or -errno.
591 static int allocate_cgrp_cset_links(int count
, struct list_head
*tmp_links
)
593 struct cgrp_cset_link
*link
;
596 INIT_LIST_HEAD(tmp_links
);
598 for (i
= 0; i
< count
; i
++) {
599 link
= kzalloc(sizeof(*link
), GFP_KERNEL
);
601 free_cgrp_cset_links(tmp_links
);
604 list_add(&link
->cset_link
, tmp_links
);
610 * link_css_set - a helper function to link a css_set to a cgroup
611 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
612 * @cset: the css_set to be linked
613 * @cgrp: the destination cgroup
615 static void link_css_set(struct list_head
*tmp_links
, struct css_set
*cset
,
618 struct cgrp_cset_link
*link
;
620 BUG_ON(list_empty(tmp_links
));
621 link
= list_first_entry(tmp_links
, struct cgrp_cset_link
, cset_link
);
624 list_move(&link
->cset_link
, &cgrp
->cset_links
);
626 * Always add links to the tail of the list so that the list
627 * is sorted by order of hierarchy creation
629 list_add_tail(&link
->cgrp_link
, &cset
->cgrp_links
);
633 * find_css_set - return a new css_set with one cgroup updated
634 * @old_cset: the baseline css_set
635 * @cgrp: the cgroup to be updated
637 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
638 * substituted into the appropriate hierarchy.
640 static struct css_set
*find_css_set(struct css_set
*old_cset
,
643 struct cgroup_subsys_state
*template[CGROUP_SUBSYS_COUNT
] = { };
644 struct css_set
*cset
;
645 struct list_head tmp_links
;
646 struct cgrp_cset_link
*link
;
649 lockdep_assert_held(&cgroup_mutex
);
651 /* First see if we already have a cgroup group that matches
653 read_lock(&css_set_lock
);
654 cset
= find_existing_css_set(old_cset
, cgrp
, template);
657 read_unlock(&css_set_lock
);
662 cset
= kzalloc(sizeof(*cset
), GFP_KERNEL
);
666 /* Allocate all the cgrp_cset_link objects that we'll need */
667 if (allocate_cgrp_cset_links(cgroup_root_count
, &tmp_links
) < 0) {
672 atomic_set(&cset
->refcount
, 1);
673 INIT_LIST_HEAD(&cset
->cgrp_links
);
674 INIT_LIST_HEAD(&cset
->tasks
);
675 INIT_HLIST_NODE(&cset
->hlist
);
677 /* Copy the set of subsystem state objects generated in
678 * find_existing_css_set() */
679 memcpy(cset
->subsys
, template, sizeof(cset
->subsys
));
681 write_lock(&css_set_lock
);
682 /* Add reference counts and links from the new css_set. */
683 list_for_each_entry(link
, &old_cset
->cgrp_links
, cgrp_link
) {
684 struct cgroup
*c
= link
->cgrp
;
686 if (c
->root
== cgrp
->root
)
688 link_css_set(&tmp_links
, cset
, c
);
691 BUG_ON(!list_empty(&tmp_links
));
695 /* Add this cgroup group to the hash table */
696 key
= css_set_hash(cset
->subsys
);
697 hash_add(css_set_table
, &cset
->hlist
, key
);
699 write_unlock(&css_set_lock
);
705 * Return the cgroup for "task" from the given hierarchy. Must be
706 * called with cgroup_mutex held.
708 static struct cgroup
*task_cgroup_from_root(struct task_struct
*task
,
709 struct cgroupfs_root
*root
)
711 struct css_set
*cset
;
712 struct cgroup
*res
= NULL
;
714 BUG_ON(!mutex_is_locked(&cgroup_mutex
));
715 read_lock(&css_set_lock
);
717 * No need to lock the task - since we hold cgroup_mutex the
718 * task can't change groups, so the only thing that can happen
719 * is that it exits and its css is set back to init_css_set.
721 cset
= task_css_set(task
);
722 if (cset
== &init_css_set
) {
723 res
= &root
->top_cgroup
;
725 struct cgrp_cset_link
*link
;
727 list_for_each_entry(link
, &cset
->cgrp_links
, cgrp_link
) {
728 struct cgroup
*c
= link
->cgrp
;
730 if (c
->root
== root
) {
736 read_unlock(&css_set_lock
);
742 * There is one global cgroup mutex. We also require taking
743 * task_lock() when dereferencing a task's cgroup subsys pointers.
744 * See "The task_lock() exception", at the end of this comment.
746 * A task must hold cgroup_mutex to modify cgroups.
748 * Any task can increment and decrement the count field without lock.
749 * So in general, code holding cgroup_mutex can't rely on the count
750 * field not changing. However, if the count goes to zero, then only
751 * cgroup_attach_task() can increment it again. Because a count of zero
752 * means that no tasks are currently attached, therefore there is no
753 * way a task attached to that cgroup can fork (the other way to
754 * increment the count). So code holding cgroup_mutex can safely
755 * assume that if the count is zero, it will stay zero. Similarly, if
756 * a task holds cgroup_mutex on a cgroup with zero count, it
757 * knows that the cgroup won't be removed, as cgroup_rmdir()
760 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
761 * (usually) take cgroup_mutex. These are the two most performance
762 * critical pieces of code here. The exception occurs on cgroup_exit(),
763 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
764 * is taken, and if the cgroup count is zero, a usermode call made
765 * to the release agent with the name of the cgroup (path relative to
766 * the root of cgroup file system) as the argument.
768 * A cgroup can only be deleted if both its 'count' of using tasks
769 * is zero, and its list of 'children' cgroups is empty. Since all
770 * tasks in the system use _some_ cgroup, and since there is always at
771 * least one task in the system (init, pid == 1), therefore, top_cgroup
772 * always has either children cgroups and/or using tasks. So we don't
773 * need a special hack to ensure that top_cgroup cannot be deleted.
775 * The task_lock() exception
777 * The need for this exception arises from the action of
778 * cgroup_attach_task(), which overwrites one task's cgroup pointer with
779 * another. It does so using cgroup_mutex, however there are
780 * several performance critical places that need to reference
781 * task->cgroup without the expense of grabbing a system global
782 * mutex. Therefore except as noted below, when dereferencing or, as
783 * in cgroup_attach_task(), modifying a task's cgroup pointer we use
784 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
785 * the task_struct routinely used for such matters.
787 * P.S. One more locking exception. RCU is used to guard the
788 * update of a tasks cgroup pointer by cgroup_attach_task()
792 * A couple of forward declarations required, due to cyclic reference loop:
793 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
794 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
798 static int cgroup_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
);
799 static int cgroup_rmdir(struct inode
*unused_dir
, struct dentry
*dentry
);
800 static int cgroup_populate_dir(struct cgroup
*cgrp
, unsigned long subsys_mask
);
801 static const struct inode_operations cgroup_dir_inode_operations
;
802 static const struct file_operations proc_cgroupstats_operations
;
804 static struct backing_dev_info cgroup_backing_dev_info
= {
806 .capabilities
= BDI_CAP_NO_ACCT_AND_WRITEBACK
,
809 static struct inode
*cgroup_new_inode(umode_t mode
, struct super_block
*sb
)
811 struct inode
*inode
= new_inode(sb
);
814 inode
->i_ino
= get_next_ino();
815 inode
->i_mode
= mode
;
816 inode
->i_uid
= current_fsuid();
817 inode
->i_gid
= current_fsgid();
818 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
819 inode
->i_mapping
->backing_dev_info
= &cgroup_backing_dev_info
;
824 static struct cgroup_name
*cgroup_alloc_name(struct dentry
*dentry
)
826 struct cgroup_name
*name
;
828 name
= kmalloc(sizeof(*name
) + dentry
->d_name
.len
+ 1, GFP_KERNEL
);
831 strcpy(name
->name
, dentry
->d_name
.name
);
835 static void cgroup_free_fn(struct work_struct
*work
)
837 struct cgroup
*cgrp
= container_of(work
, struct cgroup
, destroy_work
);
839 mutex_lock(&cgroup_mutex
);
840 cgrp
->root
->number_of_cgroups
--;
841 mutex_unlock(&cgroup_mutex
);
844 * We get a ref to the parent's dentry, and put the ref when
845 * this cgroup is being freed, so it's guaranteed that the
846 * parent won't be destroyed before its children.
848 dput(cgrp
->parent
->dentry
);
851 * Drop the active superblock reference that we took when we
852 * created the cgroup. This will free cgrp->root, if we are
853 * holding the last reference to @sb.
855 deactivate_super(cgrp
->root
->sb
);
858 * if we're getting rid of the cgroup, refcount should ensure
859 * that there are no pidlists left.
861 BUG_ON(!list_empty(&cgrp
->pidlists
));
863 simple_xattrs_free(&cgrp
->xattrs
);
865 kfree(rcu_dereference_raw(cgrp
->name
));
869 static void cgroup_free_rcu(struct rcu_head
*head
)
871 struct cgroup
*cgrp
= container_of(head
, struct cgroup
, rcu_head
);
873 INIT_WORK(&cgrp
->destroy_work
, cgroup_free_fn
);
874 schedule_work(&cgrp
->destroy_work
);
877 static void cgroup_diput(struct dentry
*dentry
, struct inode
*inode
)
879 /* is dentry a directory ? if so, kfree() associated cgroup */
880 if (S_ISDIR(inode
->i_mode
)) {
881 struct cgroup
*cgrp
= dentry
->d_fsdata
;
883 BUG_ON(!(cgroup_is_dead(cgrp
)));
884 call_rcu(&cgrp
->rcu_head
, cgroup_free_rcu
);
886 struct cfent
*cfe
= __d_cfe(dentry
);
887 struct cgroup
*cgrp
= dentry
->d_parent
->d_fsdata
;
889 WARN_ONCE(!list_empty(&cfe
->node
) &&
890 cgrp
!= &cgrp
->root
->top_cgroup
,
891 "cfe still linked for %s\n", cfe
->type
->name
);
892 simple_xattrs_free(&cfe
->xattrs
);
898 static int cgroup_delete(const struct dentry
*d
)
903 static void remove_dir(struct dentry
*d
)
905 struct dentry
*parent
= dget(d
->d_parent
);
908 simple_rmdir(parent
->d_inode
, d
);
912 static void cgroup_rm_file(struct cgroup
*cgrp
, const struct cftype
*cft
)
916 lockdep_assert_held(&cgrp
->dentry
->d_inode
->i_mutex
);
917 lockdep_assert_held(&cgroup_mutex
);
920 * If we're doing cleanup due to failure of cgroup_create(),
921 * the corresponding @cfe may not exist.
923 list_for_each_entry(cfe
, &cgrp
->files
, node
) {
924 struct dentry
*d
= cfe
->dentry
;
926 if (cft
&& cfe
->type
!= cft
)
931 simple_unlink(cgrp
->dentry
->d_inode
, d
);
932 list_del_init(&cfe
->node
);
940 * cgroup_clear_dir - remove subsys files in a cgroup directory
941 * @cgrp: target cgroup
942 * @subsys_mask: mask of the subsystem ids whose files should be removed
944 static void cgroup_clear_dir(struct cgroup
*cgrp
, unsigned long subsys_mask
)
946 struct cgroup_subsys
*ss
;
949 for_each_subsys(ss
, i
) {
950 struct cftype_set
*set
;
952 if (!test_bit(i
, &subsys_mask
))
954 list_for_each_entry(set
, &ss
->cftsets
, node
)
955 cgroup_addrm_files(cgrp
, set
->cfts
, false);
960 * NOTE : the dentry must have been dget()'ed
962 static void cgroup_d_remove_dir(struct dentry
*dentry
)
964 struct dentry
*parent
;
966 parent
= dentry
->d_parent
;
967 spin_lock(&parent
->d_lock
);
968 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
969 list_del_init(&dentry
->d_u
.d_child
);
970 spin_unlock(&dentry
->d_lock
);
971 spin_unlock(&parent
->d_lock
);
976 * Call with cgroup_mutex held. Drops reference counts on modules, including
977 * any duplicate ones that parse_cgroupfs_options took. If this function
978 * returns an error, no reference counts are touched.
980 static int rebind_subsystems(struct cgroupfs_root
*root
,
981 unsigned long added_mask
, unsigned removed_mask
)
983 struct cgroup
*cgrp
= &root
->top_cgroup
;
984 struct cgroup_subsys
*ss
;
985 unsigned long pinned
= 0;
988 BUG_ON(!mutex_is_locked(&cgroup_mutex
));
989 BUG_ON(!mutex_is_locked(&cgroup_root_mutex
));
991 /* Check that any added subsystems are currently free */
992 for_each_subsys(ss
, i
) {
993 if (!(added_mask
& (1 << i
)))
996 /* is the subsystem mounted elsewhere? */
997 if (ss
->root
!= &cgroup_dummy_root
) {
1002 /* pin the module */
1003 if (!try_module_get(ss
->module
)) {
1010 /* subsys could be missing if unloaded between parsing and here */
1011 if (added_mask
!= pinned
) {
1016 ret
= cgroup_populate_dir(cgrp
, added_mask
);
1021 * Nothing can fail from this point on. Remove files for the
1022 * removed subsystems and rebind each subsystem.
1024 cgroup_clear_dir(cgrp
, removed_mask
);
1026 for_each_subsys(ss
, i
) {
1027 unsigned long bit
= 1UL << i
;
1029 if (bit
& added_mask
) {
1030 /* We're binding this subsystem to this hierarchy */
1031 BUG_ON(cgroup_css(cgrp
, ss
));
1032 BUG_ON(!cgroup_css(cgroup_dummy_top
, ss
));
1033 BUG_ON(cgroup_css(cgroup_dummy_top
, ss
)->cgroup
!= cgroup_dummy_top
);
1035 rcu_assign_pointer(cgrp
->subsys
[i
],
1036 cgroup_css(cgroup_dummy_top
, ss
));
1037 cgroup_css(cgrp
, ss
)->cgroup
= cgrp
;
1039 list_move(&ss
->sibling
, &root
->subsys_list
);
1042 ss
->bind(cgroup_css(cgrp
, ss
));
1044 /* refcount was already taken, and we're keeping it */
1045 root
->subsys_mask
|= bit
;
1046 } else if (bit
& removed_mask
) {
1047 /* We're removing this subsystem */
1048 BUG_ON(cgroup_css(cgrp
, ss
) != cgroup_css(cgroup_dummy_top
, ss
));
1049 BUG_ON(cgroup_css(cgrp
, ss
)->cgroup
!= cgrp
);
1052 ss
->bind(cgroup_css(cgroup_dummy_top
, ss
));
1054 cgroup_css(cgroup_dummy_top
, ss
)->cgroup
= cgroup_dummy_top
;
1055 RCU_INIT_POINTER(cgrp
->subsys
[i
], NULL
);
1057 cgroup_subsys
[i
]->root
= &cgroup_dummy_root
;
1058 list_move(&ss
->sibling
, &cgroup_dummy_root
.subsys_list
);
1060 /* subsystem is now free - drop reference on module */
1061 module_put(ss
->module
);
1062 root
->subsys_mask
&= ~bit
;
1067 * Mark @root has finished binding subsystems. @root->subsys_mask
1068 * now matches the bound subsystems.
1070 root
->flags
|= CGRP_ROOT_SUBSYS_BOUND
;
1075 for_each_subsys(ss
, i
)
1076 if (pinned
& (1 << i
))
1077 module_put(ss
->module
);
1081 static int cgroup_show_options(struct seq_file
*seq
, struct dentry
*dentry
)
1083 struct cgroupfs_root
*root
= dentry
->d_sb
->s_fs_info
;
1084 struct cgroup_subsys
*ss
;
1086 mutex_lock(&cgroup_root_mutex
);
1087 for_each_root_subsys(root
, ss
)
1088 seq_printf(seq
, ",%s", ss
->name
);
1089 if (root
->flags
& CGRP_ROOT_SANE_BEHAVIOR
)
1090 seq_puts(seq
, ",sane_behavior");
1091 if (root
->flags
& CGRP_ROOT_NOPREFIX
)
1092 seq_puts(seq
, ",noprefix");
1093 if (root
->flags
& CGRP_ROOT_XATTR
)
1094 seq_puts(seq
, ",xattr");
1095 if (strlen(root
->release_agent_path
))
1096 seq_printf(seq
, ",release_agent=%s", root
->release_agent_path
);
1097 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN
, &root
->top_cgroup
.flags
))
1098 seq_puts(seq
, ",clone_children");
1099 if (strlen(root
->name
))
1100 seq_printf(seq
, ",name=%s", root
->name
);
1101 mutex_unlock(&cgroup_root_mutex
);
1105 struct cgroup_sb_opts
{
1106 unsigned long subsys_mask
;
1107 unsigned long flags
;
1108 char *release_agent
;
1109 bool cpuset_clone_children
;
1111 /* User explicitly requested empty subsystem */
1114 struct cgroupfs_root
*new_root
;
1119 * Convert a hierarchy specifier into a bitmask of subsystems and
1120 * flags. Call with cgroup_mutex held to protect the cgroup_subsys[]
1121 * array. This function takes refcounts on subsystems to be used, unless it
1122 * returns error, in which case no refcounts are taken.
1124 static int parse_cgroupfs_options(char *data
, struct cgroup_sb_opts
*opts
)
1126 char *token
, *o
= data
;
1127 bool all_ss
= false, one_ss
= false;
1128 unsigned long mask
= (unsigned long)-1;
1129 struct cgroup_subsys
*ss
;
1132 BUG_ON(!mutex_is_locked(&cgroup_mutex
));
1134 #ifdef CONFIG_CPUSETS
1135 mask
= ~(1UL << cpuset_subsys_id
);
1138 memset(opts
, 0, sizeof(*opts
));
1140 while ((token
= strsep(&o
, ",")) != NULL
) {
1143 if (!strcmp(token
, "none")) {
1144 /* Explicitly have no subsystems */
1148 if (!strcmp(token
, "all")) {
1149 /* Mutually exclusive option 'all' + subsystem name */
1155 if (!strcmp(token
, "__DEVEL__sane_behavior")) {
1156 opts
->flags
|= CGRP_ROOT_SANE_BEHAVIOR
;
1159 if (!strcmp(token
, "noprefix")) {
1160 opts
->flags
|= CGRP_ROOT_NOPREFIX
;
1163 if (!strcmp(token
, "clone_children")) {
1164 opts
->cpuset_clone_children
= true;
1167 if (!strcmp(token
, "xattr")) {
1168 opts
->flags
|= CGRP_ROOT_XATTR
;
1171 if (!strncmp(token
, "release_agent=", 14)) {
1172 /* Specifying two release agents is forbidden */
1173 if (opts
->release_agent
)
1175 opts
->release_agent
=
1176 kstrndup(token
+ 14, PATH_MAX
- 1, GFP_KERNEL
);
1177 if (!opts
->release_agent
)
1181 if (!strncmp(token
, "name=", 5)) {
1182 const char *name
= token
+ 5;
1183 /* Can't specify an empty name */
1186 /* Must match [\w.-]+ */
1187 for (i
= 0; i
< strlen(name
); i
++) {
1191 if ((c
== '.') || (c
== '-') || (c
== '_'))
1195 /* Specifying two names is forbidden */
1198 opts
->name
= kstrndup(name
,
1199 MAX_CGROUP_ROOT_NAMELEN
- 1,
1207 for_each_subsys(ss
, i
) {
1208 if (strcmp(token
, ss
->name
))
1213 /* Mutually exclusive option 'all' + subsystem name */
1216 set_bit(i
, &opts
->subsys_mask
);
1221 if (i
== CGROUP_SUBSYS_COUNT
)
1226 * If the 'all' option was specified select all the subsystems,
1227 * otherwise if 'none', 'name=' and a subsystem name options
1228 * were not specified, let's default to 'all'
1230 if (all_ss
|| (!one_ss
&& !opts
->none
&& !opts
->name
))
1231 for_each_subsys(ss
, i
)
1233 set_bit(i
, &opts
->subsys_mask
);
1235 /* Consistency checks */
1237 if (opts
->flags
& CGRP_ROOT_SANE_BEHAVIOR
) {
1238 pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1240 if (opts
->flags
& CGRP_ROOT_NOPREFIX
) {
1241 pr_err("cgroup: sane_behavior: noprefix is not allowed\n");
1245 if (opts
->cpuset_clone_children
) {
1246 pr_err("cgroup: sane_behavior: clone_children is not allowed\n");
1252 * Option noprefix was introduced just for backward compatibility
1253 * with the old cpuset, so we allow noprefix only if mounting just
1254 * the cpuset subsystem.
1256 if ((opts
->flags
& CGRP_ROOT_NOPREFIX
) && (opts
->subsys_mask
& mask
))
1260 /* Can't specify "none" and some subsystems */
1261 if (opts
->subsys_mask
&& opts
->none
)
1265 * We either have to specify by name or by subsystems. (So all
1266 * empty hierarchies must have a name).
1268 if (!opts
->subsys_mask
&& !opts
->name
)
1274 static int cgroup_remount(struct super_block
*sb
, int *flags
, char *data
)
1277 struct cgroupfs_root
*root
= sb
->s_fs_info
;
1278 struct cgroup
*cgrp
= &root
->top_cgroup
;
1279 struct cgroup_sb_opts opts
;
1280 unsigned long added_mask
, removed_mask
;
1282 if (root
->flags
& CGRP_ROOT_SANE_BEHAVIOR
) {
1283 pr_err("cgroup: sane_behavior: remount is not allowed\n");
1287 mutex_lock(&cgrp
->dentry
->d_inode
->i_mutex
);
1288 mutex_lock(&cgroup_mutex
);
1289 mutex_lock(&cgroup_root_mutex
);
1291 /* See what subsystems are wanted */
1292 ret
= parse_cgroupfs_options(data
, &opts
);
1296 if (opts
.subsys_mask
!= root
->subsys_mask
|| opts
.release_agent
)
1297 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1298 task_tgid_nr(current
), current
->comm
);
1300 added_mask
= opts
.subsys_mask
& ~root
->subsys_mask
;
1301 removed_mask
= root
->subsys_mask
& ~opts
.subsys_mask
;
1303 /* Don't allow flags or name to change at remount */
1304 if (((opts
.flags
^ root
->flags
) & CGRP_ROOT_OPTION_MASK
) ||
1305 (opts
.name
&& strcmp(opts
.name
, root
->name
))) {
1306 pr_err("cgroup: option or name mismatch, new: 0x%lx \"%s\", old: 0x%lx \"%s\"\n",
1307 opts
.flags
& CGRP_ROOT_OPTION_MASK
, opts
.name
?: "",
1308 root
->flags
& CGRP_ROOT_OPTION_MASK
, root
->name
);
1313 /* remounting is not allowed for populated hierarchies */
1314 if (root
->number_of_cgroups
> 1) {
1319 ret
= rebind_subsystems(root
, added_mask
, removed_mask
);
1323 if (opts
.release_agent
)
1324 strcpy(root
->release_agent_path
, opts
.release_agent
);
1326 kfree(opts
.release_agent
);
1328 mutex_unlock(&cgroup_root_mutex
);
1329 mutex_unlock(&cgroup_mutex
);
1330 mutex_unlock(&cgrp
->dentry
->d_inode
->i_mutex
);
1334 static const struct super_operations cgroup_ops
= {
1335 .statfs
= simple_statfs
,
1336 .drop_inode
= generic_delete_inode
,
1337 .show_options
= cgroup_show_options
,
1338 .remount_fs
= cgroup_remount
,
1341 static void init_cgroup_housekeeping(struct cgroup
*cgrp
)
1343 INIT_LIST_HEAD(&cgrp
->sibling
);
1344 INIT_LIST_HEAD(&cgrp
->children
);
1345 INIT_LIST_HEAD(&cgrp
->files
);
1346 INIT_LIST_HEAD(&cgrp
->cset_links
);
1347 INIT_LIST_HEAD(&cgrp
->release_list
);
1348 INIT_LIST_HEAD(&cgrp
->pidlists
);
1349 mutex_init(&cgrp
->pidlist_mutex
);
1350 cgrp
->dummy_css
.cgroup
= cgrp
;
1351 INIT_LIST_HEAD(&cgrp
->event_list
);
1352 spin_lock_init(&cgrp
->event_list_lock
);
1353 simple_xattrs_init(&cgrp
->xattrs
);
1356 static void init_cgroup_root(struct cgroupfs_root
*root
)
1358 struct cgroup
*cgrp
= &root
->top_cgroup
;
1360 INIT_LIST_HEAD(&root
->subsys_list
);
1361 INIT_LIST_HEAD(&root
->root_list
);
1362 root
->number_of_cgroups
= 1;
1364 RCU_INIT_POINTER(cgrp
->name
, &root_cgroup_name
);
1365 init_cgroup_housekeeping(cgrp
);
1366 idr_init(&root
->cgroup_idr
);
1369 static int cgroup_init_root_id(struct cgroupfs_root
*root
, int start
, int end
)
1373 lockdep_assert_held(&cgroup_mutex
);
1374 lockdep_assert_held(&cgroup_root_mutex
);
1376 id
= idr_alloc_cyclic(&cgroup_hierarchy_idr
, root
, start
, end
,
1381 root
->hierarchy_id
= id
;
1385 static void cgroup_exit_root_id(struct cgroupfs_root
*root
)
1387 lockdep_assert_held(&cgroup_mutex
);
1388 lockdep_assert_held(&cgroup_root_mutex
);
1390 if (root
->hierarchy_id
) {
1391 idr_remove(&cgroup_hierarchy_idr
, root
->hierarchy_id
);
1392 root
->hierarchy_id
= 0;
1396 static int cgroup_test_super(struct super_block
*sb
, void *data
)
1398 struct cgroup_sb_opts
*opts
= data
;
1399 struct cgroupfs_root
*root
= sb
->s_fs_info
;
1401 /* If we asked for a name then it must match */
1402 if (opts
->name
&& strcmp(opts
->name
, root
->name
))
1406 * If we asked for subsystems (or explicitly for no
1407 * subsystems) then they must match
1409 if ((opts
->subsys_mask
|| opts
->none
)
1410 && (opts
->subsys_mask
!= root
->subsys_mask
))
1416 static struct cgroupfs_root
*cgroup_root_from_opts(struct cgroup_sb_opts
*opts
)
1418 struct cgroupfs_root
*root
;
1420 if (!opts
->subsys_mask
&& !opts
->none
)
1423 root
= kzalloc(sizeof(*root
), GFP_KERNEL
);
1425 return ERR_PTR(-ENOMEM
);
1427 init_cgroup_root(root
);
1430 * We need to set @root->subsys_mask now so that @root can be
1431 * matched by cgroup_test_super() before it finishes
1432 * initialization; otherwise, competing mounts with the same
1433 * options may try to bind the same subsystems instead of waiting
1434 * for the first one leading to unexpected mount errors.
1435 * SUBSYS_BOUND will be set once actual binding is complete.
1437 root
->subsys_mask
= opts
->subsys_mask
;
1438 root
->flags
= opts
->flags
;
1439 if (opts
->release_agent
)
1440 strcpy(root
->release_agent_path
, opts
->release_agent
);
1442 strcpy(root
->name
, opts
->name
);
1443 if (opts
->cpuset_clone_children
)
1444 set_bit(CGRP_CPUSET_CLONE_CHILDREN
, &root
->top_cgroup
.flags
);
1448 static void cgroup_free_root(struct cgroupfs_root
*root
)
1451 /* hierarhcy ID shoulid already have been released */
1452 WARN_ON_ONCE(root
->hierarchy_id
);
1454 idr_destroy(&root
->cgroup_idr
);
1459 static int cgroup_set_super(struct super_block
*sb
, void *data
)
1462 struct cgroup_sb_opts
*opts
= data
;
1464 /* If we don't have a new root, we can't set up a new sb */
1465 if (!opts
->new_root
)
1468 BUG_ON(!opts
->subsys_mask
&& !opts
->none
);
1470 ret
= set_anon_super(sb
, NULL
);
1474 sb
->s_fs_info
= opts
->new_root
;
1475 opts
->new_root
->sb
= sb
;
1477 sb
->s_blocksize
= PAGE_CACHE_SIZE
;
1478 sb
->s_blocksize_bits
= PAGE_CACHE_SHIFT
;
1479 sb
->s_magic
= CGROUP_SUPER_MAGIC
;
1480 sb
->s_op
= &cgroup_ops
;
1485 static int cgroup_get_rootdir(struct super_block
*sb
)
1487 static const struct dentry_operations cgroup_dops
= {
1488 .d_iput
= cgroup_diput
,
1489 .d_delete
= cgroup_delete
,
1492 struct inode
*inode
=
1493 cgroup_new_inode(S_IFDIR
| S_IRUGO
| S_IXUGO
| S_IWUSR
, sb
);
1498 inode
->i_fop
= &simple_dir_operations
;
1499 inode
->i_op
= &cgroup_dir_inode_operations
;
1500 /* directories start off with i_nlink == 2 (for "." entry) */
1502 sb
->s_root
= d_make_root(inode
);
1505 /* for everything else we want ->d_op set */
1506 sb
->s_d_op
= &cgroup_dops
;
1510 static struct dentry
*cgroup_mount(struct file_system_type
*fs_type
,
1511 int flags
, const char *unused_dev_name
,
1514 struct cgroup_sb_opts opts
;
1515 struct cgroupfs_root
*root
;
1517 struct super_block
*sb
;
1518 struct cgroupfs_root
*new_root
;
1519 struct list_head tmp_links
;
1520 struct inode
*inode
;
1521 const struct cred
*cred
;
1523 /* First find the desired set of subsystems */
1524 mutex_lock(&cgroup_mutex
);
1525 ret
= parse_cgroupfs_options(data
, &opts
);
1526 mutex_unlock(&cgroup_mutex
);
1531 * Allocate a new cgroup root. We may not need it if we're
1532 * reusing an existing hierarchy.
1534 new_root
= cgroup_root_from_opts(&opts
);
1535 if (IS_ERR(new_root
)) {
1536 ret
= PTR_ERR(new_root
);
1539 opts
.new_root
= new_root
;
1541 /* Locate an existing or new sb for this hierarchy */
1542 sb
= sget(fs_type
, cgroup_test_super
, cgroup_set_super
, 0, &opts
);
1545 cgroup_free_root(opts
.new_root
);
1549 root
= sb
->s_fs_info
;
1551 if (root
== opts
.new_root
) {
1552 /* We used the new root structure, so this is a new hierarchy */
1553 struct cgroup
*root_cgrp
= &root
->top_cgroup
;
1554 struct cgroupfs_root
*existing_root
;
1556 struct css_set
*cset
;
1558 BUG_ON(sb
->s_root
!= NULL
);
1560 ret
= cgroup_get_rootdir(sb
);
1562 goto drop_new_super
;
1563 inode
= sb
->s_root
->d_inode
;
1565 mutex_lock(&inode
->i_mutex
);
1566 mutex_lock(&cgroup_mutex
);
1567 mutex_lock(&cgroup_root_mutex
);
1569 root_cgrp
->id
= idr_alloc(&root
->cgroup_idr
, root_cgrp
,
1571 if (root_cgrp
->id
< 0)
1574 /* Check for name clashes with existing mounts */
1576 if (strlen(root
->name
))
1577 for_each_active_root(existing_root
)
1578 if (!strcmp(existing_root
->name
, root
->name
))
1582 * We're accessing css_set_count without locking
1583 * css_set_lock here, but that's OK - it can only be
1584 * increased by someone holding cgroup_lock, and
1585 * that's us. The worst that can happen is that we
1586 * have some link structures left over
1588 ret
= allocate_cgrp_cset_links(css_set_count
, &tmp_links
);
1592 /* ID 0 is reserved for dummy root, 1 for unified hierarchy */
1593 ret
= cgroup_init_root_id(root
, 2, 0);
1597 sb
->s_root
->d_fsdata
= root_cgrp
;
1598 root_cgrp
->dentry
= sb
->s_root
;
1601 * We're inside get_sb() and will call lookup_one_len() to
1602 * create the root files, which doesn't work if SELinux is
1603 * in use. The following cred dancing somehow works around
1604 * it. See 2ce9738ba ("cgroupfs: use init_cred when
1605 * populating new cgroupfs mount") for more details.
1607 cred
= override_creds(&init_cred
);
1609 ret
= cgroup_addrm_files(root_cgrp
, cgroup_base_files
, true);
1613 ret
= rebind_subsystems(root
, root
->subsys_mask
, 0);
1620 * There must be no failure case after here, since rebinding
1621 * takes care of subsystems' refcounts, which are explicitly
1622 * dropped in the failure exit path.
1625 list_add(&root
->root_list
, &cgroup_roots
);
1626 cgroup_root_count
++;
1628 /* Link the top cgroup in this hierarchy into all
1629 * the css_set objects */
1630 write_lock(&css_set_lock
);
1631 hash_for_each(css_set_table
, i
, cset
, hlist
)
1632 link_css_set(&tmp_links
, cset
, root_cgrp
);
1633 write_unlock(&css_set_lock
);
1635 free_cgrp_cset_links(&tmp_links
);
1637 BUG_ON(!list_empty(&root_cgrp
->children
));
1638 BUG_ON(root
->number_of_cgroups
!= 1);
1640 mutex_unlock(&cgroup_root_mutex
);
1641 mutex_unlock(&cgroup_mutex
);
1642 mutex_unlock(&inode
->i_mutex
);
1645 * We re-used an existing hierarchy - the new root (if
1646 * any) is not needed
1648 cgroup_free_root(opts
.new_root
);
1650 if ((root
->flags
^ opts
.flags
) & CGRP_ROOT_OPTION_MASK
) {
1651 if ((root
->flags
| opts
.flags
) & CGRP_ROOT_SANE_BEHAVIOR
) {
1652 pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n");
1654 goto drop_new_super
;
1656 pr_warning("cgroup: new mount options do not match the existing superblock, will be ignored\n");
1661 kfree(opts
.release_agent
);
1663 return dget(sb
->s_root
);
1666 free_cgrp_cset_links(&tmp_links
);
1667 cgroup_addrm_files(&root
->top_cgroup
, cgroup_base_files
, false);
1670 cgroup_exit_root_id(root
);
1671 mutex_unlock(&cgroup_root_mutex
);
1672 mutex_unlock(&cgroup_mutex
);
1673 mutex_unlock(&inode
->i_mutex
);
1675 deactivate_locked_super(sb
);
1677 kfree(opts
.release_agent
);
1679 return ERR_PTR(ret
);
1682 static void cgroup_kill_sb(struct super_block
*sb
) {
1683 struct cgroupfs_root
*root
= sb
->s_fs_info
;
1684 struct cgroup
*cgrp
= &root
->top_cgroup
;
1685 struct cgrp_cset_link
*link
, *tmp_link
;
1690 BUG_ON(root
->number_of_cgroups
!= 1);
1691 BUG_ON(!list_empty(&cgrp
->children
));
1693 mutex_lock(&cgrp
->dentry
->d_inode
->i_mutex
);
1694 mutex_lock(&cgroup_mutex
);
1695 mutex_lock(&cgroup_root_mutex
);
1697 /* Rebind all subsystems back to the default hierarchy */
1698 if (root
->flags
& CGRP_ROOT_SUBSYS_BOUND
) {
1699 ret
= rebind_subsystems(root
, 0, root
->subsys_mask
);
1700 /* Shouldn't be able to fail ... */
1705 * Release all the links from cset_links to this hierarchy's
1708 write_lock(&css_set_lock
);
1710 list_for_each_entry_safe(link
, tmp_link
, &cgrp
->cset_links
, cset_link
) {
1711 list_del(&link
->cset_link
);
1712 list_del(&link
->cgrp_link
);
1715 write_unlock(&css_set_lock
);
1717 if (!list_empty(&root
->root_list
)) {
1718 list_del(&root
->root_list
);
1719 cgroup_root_count
--;
1722 cgroup_exit_root_id(root
);
1724 mutex_unlock(&cgroup_root_mutex
);
1725 mutex_unlock(&cgroup_mutex
);
1726 mutex_unlock(&cgrp
->dentry
->d_inode
->i_mutex
);
1728 simple_xattrs_free(&cgrp
->xattrs
);
1730 kill_litter_super(sb
);
1731 cgroup_free_root(root
);
1734 static struct file_system_type cgroup_fs_type
= {
1736 .mount
= cgroup_mount
,
1737 .kill_sb
= cgroup_kill_sb
,
1740 static struct kobject
*cgroup_kobj
;
1743 * cgroup_path - generate the path of a cgroup
1744 * @cgrp: the cgroup in question
1745 * @buf: the buffer to write the path into
1746 * @buflen: the length of the buffer
1748 * Writes path of cgroup into buf. Returns 0 on success, -errno on error.
1750 * We can't generate cgroup path using dentry->d_name, as accessing
1751 * dentry->name must be protected by irq-unsafe dentry->d_lock or parent
1752 * inode's i_mutex, while on the other hand cgroup_path() can be called
1753 * with some irq-safe spinlocks held.
1755 int cgroup_path(const struct cgroup
*cgrp
, char *buf
, int buflen
)
1757 int ret
= -ENAMETOOLONG
;
1760 if (!cgrp
->parent
) {
1761 if (strlcpy(buf
, "/", buflen
) >= buflen
)
1762 return -ENAMETOOLONG
;
1766 start
= buf
+ buflen
- 1;
1771 const char *name
= cgroup_name(cgrp
);
1775 if ((start
-= len
) < buf
)
1777 memcpy(start
, name
, len
);
1783 cgrp
= cgrp
->parent
;
1784 } while (cgrp
->parent
);
1786 memmove(buf
, start
, buf
+ buflen
- start
);
1791 EXPORT_SYMBOL_GPL(cgroup_path
);
1794 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
1795 * @task: target task
1796 * @buf: the buffer to write the path into
1797 * @buflen: the length of the buffer
1799 * Determine @task's cgroup on the first (the one with the lowest non-zero
1800 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1801 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1802 * cgroup controller callbacks.
1804 * Returns 0 on success, fails with -%ENAMETOOLONG if @buflen is too short.
1806 int task_cgroup_path(struct task_struct
*task
, char *buf
, size_t buflen
)
1808 struct cgroupfs_root
*root
;
1809 struct cgroup
*cgrp
;
1810 int hierarchy_id
= 1, ret
= 0;
1813 return -ENAMETOOLONG
;
1815 mutex_lock(&cgroup_mutex
);
1817 root
= idr_get_next(&cgroup_hierarchy_idr
, &hierarchy_id
);
1820 cgrp
= task_cgroup_from_root(task
, root
);
1821 ret
= cgroup_path(cgrp
, buf
, buflen
);
1823 /* if no hierarchy exists, everyone is in "/" */
1824 memcpy(buf
, "/", 2);
1827 mutex_unlock(&cgroup_mutex
);
1830 EXPORT_SYMBOL_GPL(task_cgroup_path
);
1833 * Control Group taskset
1835 struct task_and_cgroup
{
1836 struct task_struct
*task
;
1837 struct cgroup
*cgrp
;
1838 struct css_set
*cset
;
1841 struct cgroup_taskset
{
1842 struct task_and_cgroup single
;
1843 struct flex_array
*tc_array
;
1846 struct cgroup
*cur_cgrp
;
1850 * cgroup_taskset_first - reset taskset and return the first task
1851 * @tset: taskset of interest
1853 * @tset iteration is initialized and the first task is returned.
1855 struct task_struct
*cgroup_taskset_first(struct cgroup_taskset
*tset
)
1857 if (tset
->tc_array
) {
1859 return cgroup_taskset_next(tset
);
1861 tset
->cur_cgrp
= tset
->single
.cgrp
;
1862 return tset
->single
.task
;
1865 EXPORT_SYMBOL_GPL(cgroup_taskset_first
);
1868 * cgroup_taskset_next - iterate to the next task in taskset
1869 * @tset: taskset of interest
1871 * Return the next task in @tset. Iteration must have been initialized
1872 * with cgroup_taskset_first().
1874 struct task_struct
*cgroup_taskset_next(struct cgroup_taskset
*tset
)
1876 struct task_and_cgroup
*tc
;
1878 if (!tset
->tc_array
|| tset
->idx
>= tset
->tc_array_len
)
1881 tc
= flex_array_get(tset
->tc_array
, tset
->idx
++);
1882 tset
->cur_cgrp
= tc
->cgrp
;
1885 EXPORT_SYMBOL_GPL(cgroup_taskset_next
);
1888 * cgroup_taskset_cur_css - return the matching css for the current task
1889 * @tset: taskset of interest
1890 * @subsys_id: the ID of the target subsystem
1892 * Return the css for the current (last returned) task of @tset for
1893 * subsystem specified by @subsys_id. This function must be preceded by
1894 * either cgroup_taskset_first() or cgroup_taskset_next().
1896 struct cgroup_subsys_state
*cgroup_taskset_cur_css(struct cgroup_taskset
*tset
,
1899 return cgroup_css(tset
->cur_cgrp
, cgroup_subsys
[subsys_id
]);
1901 EXPORT_SYMBOL_GPL(cgroup_taskset_cur_css
);
1904 * cgroup_taskset_size - return the number of tasks in taskset
1905 * @tset: taskset of interest
1907 int cgroup_taskset_size(struct cgroup_taskset
*tset
)
1909 return tset
->tc_array
? tset
->tc_array_len
: 1;
1911 EXPORT_SYMBOL_GPL(cgroup_taskset_size
);
1915 * cgroup_task_migrate - move a task from one cgroup to another.
1917 * Must be called with cgroup_mutex and threadgroup locked.
1919 static void cgroup_task_migrate(struct cgroup
*old_cgrp
,
1920 struct task_struct
*tsk
,
1921 struct css_set
*new_cset
)
1923 struct css_set
*old_cset
;
1926 * We are synchronized through threadgroup_lock() against PF_EXITING
1927 * setting such that we can't race against cgroup_exit() changing the
1928 * css_set to init_css_set and dropping the old one.
1930 WARN_ON_ONCE(tsk
->flags
& PF_EXITING
);
1931 old_cset
= task_css_set(tsk
);
1934 rcu_assign_pointer(tsk
->cgroups
, new_cset
);
1937 /* Update the css_set linked lists if we're using them */
1938 write_lock(&css_set_lock
);
1939 if (!list_empty(&tsk
->cg_list
))
1940 list_move(&tsk
->cg_list
, &new_cset
->tasks
);
1941 write_unlock(&css_set_lock
);
1944 * We just gained a reference on old_cset by taking it from the
1945 * task. As trading it for new_cset is protected by cgroup_mutex,
1946 * we're safe to drop it here; it will be freed under RCU.
1948 set_bit(CGRP_RELEASABLE
, &old_cgrp
->flags
);
1949 put_css_set(old_cset
);
1953 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
1954 * @cgrp: the cgroup to attach to
1955 * @tsk: the task or the leader of the threadgroup to be attached
1956 * @threadgroup: attach the whole threadgroup?
1958 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
1959 * task_lock of @tsk or each thread in the threadgroup individually in turn.
1961 static int cgroup_attach_task(struct cgroup
*cgrp
, struct task_struct
*tsk
,
1964 int retval
, i
, group_size
;
1965 struct cgroup_subsys
*ss
, *failed_ss
= NULL
;
1966 struct cgroupfs_root
*root
= cgrp
->root
;
1967 /* threadgroup list cursor and array */
1968 struct task_struct
*leader
= tsk
;
1969 struct task_and_cgroup
*tc
;
1970 struct flex_array
*group
;
1971 struct cgroup_taskset tset
= { };
1974 * step 0: in order to do expensive, possibly blocking operations for
1975 * every thread, we cannot iterate the thread group list, since it needs
1976 * rcu or tasklist locked. instead, build an array of all threads in the
1977 * group - group_rwsem prevents new threads from appearing, and if
1978 * threads exit, this will just be an over-estimate.
1981 group_size
= get_nr_threads(tsk
);
1984 /* flex_array supports very large thread-groups better than kmalloc. */
1985 group
= flex_array_alloc(sizeof(*tc
), group_size
, GFP_KERNEL
);
1988 /* pre-allocate to guarantee space while iterating in rcu read-side. */
1989 retval
= flex_array_prealloc(group
, 0, group_size
, GFP_KERNEL
);
1991 goto out_free_group_list
;
1995 * Prevent freeing of tasks while we take a snapshot. Tasks that are
1996 * already PF_EXITING could be freed from underneath us unless we
1997 * take an rcu_read_lock.
2001 struct task_and_cgroup ent
;
2003 /* @tsk either already exited or can't exit until the end */
2004 if (tsk
->flags
& PF_EXITING
)
2007 /* as per above, nr_threads may decrease, but not increase. */
2008 BUG_ON(i
>= group_size
);
2010 ent
.cgrp
= task_cgroup_from_root(tsk
, root
);
2011 /* nothing to do if this task is already in the cgroup */
2012 if (ent
.cgrp
== cgrp
)
2015 * saying GFP_ATOMIC has no effect here because we did prealloc
2016 * earlier, but it's good form to communicate our expectations.
2018 retval
= flex_array_put(group
, i
, &ent
, GFP_ATOMIC
);
2019 BUG_ON(retval
!= 0);
2024 } while_each_thread(leader
, tsk
);
2026 /* remember the number of threads in the array for later. */
2028 tset
.tc_array
= group
;
2029 tset
.tc_array_len
= group_size
;
2031 /* methods shouldn't be called if no task is actually migrating */
2034 goto out_free_group_list
;
2037 * step 1: check that we can legitimately attach to the cgroup.
2039 for_each_root_subsys(root
, ss
) {
2040 struct cgroup_subsys_state
*css
= cgroup_css(cgrp
, ss
);
2042 if (ss
->can_attach
) {
2043 retval
= ss
->can_attach(css
, &tset
);
2046 goto out_cancel_attach
;
2052 * step 2: make sure css_sets exist for all threads to be migrated.
2053 * we use find_css_set, which allocates a new one if necessary.
2055 for (i
= 0; i
< group_size
; i
++) {
2056 struct css_set
*old_cset
;
2058 tc
= flex_array_get(group
, i
);
2059 old_cset
= task_css_set(tc
->task
);
2060 tc
->cset
= find_css_set(old_cset
, cgrp
);
2063 goto out_put_css_set_refs
;
2068 * step 3: now that we're guaranteed success wrt the css_sets,
2069 * proceed to move all tasks to the new cgroup. There are no
2070 * failure cases after here, so this is the commit point.
2072 for (i
= 0; i
< group_size
; i
++) {
2073 tc
= flex_array_get(group
, i
);
2074 cgroup_task_migrate(tc
->cgrp
, tc
->task
, tc
->cset
);
2076 /* nothing is sensitive to fork() after this point. */
2079 * step 4: do subsystem attach callbacks.
2081 for_each_root_subsys(root
, ss
) {
2082 struct cgroup_subsys_state
*css
= cgroup_css(cgrp
, ss
);
2085 ss
->attach(css
, &tset
);
2089 * step 5: success! and cleanup
2092 out_put_css_set_refs
:
2094 for (i
= 0; i
< group_size
; i
++) {
2095 tc
= flex_array_get(group
, i
);
2098 put_css_set(tc
->cset
);
2103 for_each_root_subsys(root
, ss
) {
2104 struct cgroup_subsys_state
*css
= cgroup_css(cgrp
, ss
);
2106 if (ss
== failed_ss
)
2108 if (ss
->cancel_attach
)
2109 ss
->cancel_attach(css
, &tset
);
2112 out_free_group_list
:
2113 flex_array_free(group
);
2118 * Find the task_struct of the task to attach by vpid and pass it along to the
2119 * function to attach either it or all tasks in its threadgroup. Will lock
2120 * cgroup_mutex and threadgroup; may take task_lock of task.
2122 static int attach_task_by_pid(struct cgroup
*cgrp
, u64 pid
, bool threadgroup
)
2124 struct task_struct
*tsk
;
2125 const struct cred
*cred
= current_cred(), *tcred
;
2128 if (!cgroup_lock_live_group(cgrp
))
2134 tsk
= find_task_by_vpid(pid
);
2138 goto out_unlock_cgroup
;
2141 * even if we're attaching all tasks in the thread group, we
2142 * only need to check permissions on one of them.
2144 tcred
= __task_cred(tsk
);
2145 if (!uid_eq(cred
->euid
, GLOBAL_ROOT_UID
) &&
2146 !uid_eq(cred
->euid
, tcred
->uid
) &&
2147 !uid_eq(cred
->euid
, tcred
->suid
)) {
2150 goto out_unlock_cgroup
;
2156 tsk
= tsk
->group_leader
;
2159 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2160 * trapped in a cpuset, or RT worker may be born in a cgroup
2161 * with no rt_runtime allocated. Just say no.
2163 if (tsk
== kthreadd_task
|| (tsk
->flags
& PF_NO_SETAFFINITY
)) {
2166 goto out_unlock_cgroup
;
2169 get_task_struct(tsk
);
2172 threadgroup_lock(tsk
);
2174 if (!thread_group_leader(tsk
)) {
2176 * a race with de_thread from another thread's exec()
2177 * may strip us of our leadership, if this happens,
2178 * there is no choice but to throw this task away and
2179 * try again; this is
2180 * "double-double-toil-and-trouble-check locking".
2182 threadgroup_unlock(tsk
);
2183 put_task_struct(tsk
);
2184 goto retry_find_task
;
2188 ret
= cgroup_attach_task(cgrp
, tsk
, threadgroup
);
2190 threadgroup_unlock(tsk
);
2192 put_task_struct(tsk
);
2194 mutex_unlock(&cgroup_mutex
);
2199 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2200 * @from: attach to all cgroups of a given task
2201 * @tsk: the task to be attached
2203 int cgroup_attach_task_all(struct task_struct
*from
, struct task_struct
*tsk
)
2205 struct cgroupfs_root
*root
;
2208 mutex_lock(&cgroup_mutex
);
2209 for_each_active_root(root
) {
2210 struct cgroup
*from_cgrp
= task_cgroup_from_root(from
, root
);
2212 retval
= cgroup_attach_task(from_cgrp
, tsk
, false);
2216 mutex_unlock(&cgroup_mutex
);
2220 EXPORT_SYMBOL_GPL(cgroup_attach_task_all
);
2222 static int cgroup_tasks_write(struct cgroup_subsys_state
*css
,
2223 struct cftype
*cft
, u64 pid
)
2225 return attach_task_by_pid(css
->cgroup
, pid
, false);
2228 static int cgroup_procs_write(struct cgroup_subsys_state
*css
,
2229 struct cftype
*cft
, u64 tgid
)
2231 return attach_task_by_pid(css
->cgroup
, tgid
, true);
2234 static int cgroup_release_agent_write(struct cgroup_subsys_state
*css
,
2235 struct cftype
*cft
, const char *buffer
)
2237 BUILD_BUG_ON(sizeof(css
->cgroup
->root
->release_agent_path
) < PATH_MAX
);
2238 if (strlen(buffer
) >= PATH_MAX
)
2240 if (!cgroup_lock_live_group(css
->cgroup
))
2242 mutex_lock(&cgroup_root_mutex
);
2243 strcpy(css
->cgroup
->root
->release_agent_path
, buffer
);
2244 mutex_unlock(&cgroup_root_mutex
);
2245 mutex_unlock(&cgroup_mutex
);
2249 static int cgroup_release_agent_show(struct cgroup_subsys_state
*css
,
2250 struct cftype
*cft
, struct seq_file
*seq
)
2252 struct cgroup
*cgrp
= css
->cgroup
;
2254 if (!cgroup_lock_live_group(cgrp
))
2256 seq_puts(seq
, cgrp
->root
->release_agent_path
);
2257 seq_putc(seq
, '\n');
2258 mutex_unlock(&cgroup_mutex
);
2262 static int cgroup_sane_behavior_show(struct cgroup_subsys_state
*css
,
2263 struct cftype
*cft
, struct seq_file
*seq
)
2265 seq_printf(seq
, "%d\n", cgroup_sane_behavior(css
->cgroup
));
2269 /* A buffer size big enough for numbers or short strings */
2270 #define CGROUP_LOCAL_BUFFER_SIZE 64
2272 static ssize_t
cgroup_write_X64(struct cgroup_subsys_state
*css
,
2273 struct cftype
*cft
, struct file
*file
,
2274 const char __user
*userbuf
, size_t nbytes
,
2275 loff_t
*unused_ppos
)
2277 char buffer
[CGROUP_LOCAL_BUFFER_SIZE
];
2283 if (nbytes
>= sizeof(buffer
))
2285 if (copy_from_user(buffer
, userbuf
, nbytes
))
2288 buffer
[nbytes
] = 0; /* nul-terminate */
2289 if (cft
->write_u64
) {
2290 u64 val
= simple_strtoull(strstrip(buffer
), &end
, 0);
2293 retval
= cft
->write_u64(css
, cft
, val
);
2295 s64 val
= simple_strtoll(strstrip(buffer
), &end
, 0);
2298 retval
= cft
->write_s64(css
, cft
, val
);
2305 static ssize_t
cgroup_write_string(struct cgroup_subsys_state
*css
,
2306 struct cftype
*cft
, struct file
*file
,
2307 const char __user
*userbuf
, size_t nbytes
,
2308 loff_t
*unused_ppos
)
2310 char local_buffer
[CGROUP_LOCAL_BUFFER_SIZE
];
2312 size_t max_bytes
= cft
->max_write_len
;
2313 char *buffer
= local_buffer
;
2316 max_bytes
= sizeof(local_buffer
) - 1;
2317 if (nbytes
>= max_bytes
)
2319 /* Allocate a dynamic buffer if we need one */
2320 if (nbytes
>= sizeof(local_buffer
)) {
2321 buffer
= kmalloc(nbytes
+ 1, GFP_KERNEL
);
2325 if (nbytes
&& copy_from_user(buffer
, userbuf
, nbytes
)) {
2330 buffer
[nbytes
] = 0; /* nul-terminate */
2331 retval
= cft
->write_string(css
, cft
, strstrip(buffer
));
2335 if (buffer
!= local_buffer
)
2340 static ssize_t
cgroup_file_write(struct file
*file
, const char __user
*buf
,
2341 size_t nbytes
, loff_t
*ppos
)
2343 struct cfent
*cfe
= __d_cfe(file
->f_dentry
);
2344 struct cftype
*cft
= __d_cft(file
->f_dentry
);
2345 struct cgroup_subsys_state
*css
= cfe
->css
;
2348 return cft
->write(css
, cft
, file
, buf
, nbytes
, ppos
);
2349 if (cft
->write_u64
|| cft
->write_s64
)
2350 return cgroup_write_X64(css
, cft
, file
, buf
, nbytes
, ppos
);
2351 if (cft
->write_string
)
2352 return cgroup_write_string(css
, cft
, file
, buf
, nbytes
, ppos
);
2354 int ret
= cft
->trigger(css
, (unsigned int)cft
->private);
2355 return ret
? ret
: nbytes
;
2360 static ssize_t
cgroup_read_u64(struct cgroup_subsys_state
*css
,
2361 struct cftype
*cft
, struct file
*file
,
2362 char __user
*buf
, size_t nbytes
, loff_t
*ppos
)
2364 char tmp
[CGROUP_LOCAL_BUFFER_SIZE
];
2365 u64 val
= cft
->read_u64(css
, cft
);
2366 int len
= sprintf(tmp
, "%llu\n", (unsigned long long) val
);
2368 return simple_read_from_buffer(buf
, nbytes
, ppos
, tmp
, len
);
2371 static ssize_t
cgroup_read_s64(struct cgroup_subsys_state
*css
,
2372 struct cftype
*cft
, struct file
*file
,
2373 char __user
*buf
, size_t nbytes
, loff_t
*ppos
)
2375 char tmp
[CGROUP_LOCAL_BUFFER_SIZE
];
2376 s64 val
= cft
->read_s64(css
, cft
);
2377 int len
= sprintf(tmp
, "%lld\n", (long long) val
);
2379 return simple_read_from_buffer(buf
, nbytes
, ppos
, tmp
, len
);
2382 static ssize_t
cgroup_file_read(struct file
*file
, char __user
*buf
,
2383 size_t nbytes
, loff_t
*ppos
)
2385 struct cfent
*cfe
= __d_cfe(file
->f_dentry
);
2386 struct cftype
*cft
= __d_cft(file
->f_dentry
);
2387 struct cgroup_subsys_state
*css
= cfe
->css
;
2390 return cft
->read(css
, cft
, file
, buf
, nbytes
, ppos
);
2392 return cgroup_read_u64(css
, cft
, file
, buf
, nbytes
, ppos
);
2394 return cgroup_read_s64(css
, cft
, file
, buf
, nbytes
, ppos
);
2399 * seqfile ops/methods for returning structured data. Currently just
2400 * supports string->u64 maps, but can be extended in future.
2403 static int cgroup_map_add(struct cgroup_map_cb
*cb
, const char *key
, u64 value
)
2405 struct seq_file
*sf
= cb
->state
;
2406 return seq_printf(sf
, "%s %llu\n", key
, (unsigned long long)value
);
2409 static int cgroup_seqfile_show(struct seq_file
*m
, void *arg
)
2411 struct cfent
*cfe
= m
->private;
2412 struct cftype
*cft
= cfe
->type
;
2413 struct cgroup_subsys_state
*css
= cfe
->css
;
2415 if (cft
->read_map
) {
2416 struct cgroup_map_cb cb
= {
2417 .fill
= cgroup_map_add
,
2420 return cft
->read_map(css
, cft
, &cb
);
2422 return cft
->read_seq_string(css
, cft
, m
);
2425 static const struct file_operations cgroup_seqfile_operations
= {
2427 .write
= cgroup_file_write
,
2428 .llseek
= seq_lseek
,
2429 .release
= single_release
,
2432 static int cgroup_file_open(struct inode
*inode
, struct file
*file
)
2434 struct cfent
*cfe
= __d_cfe(file
->f_dentry
);
2435 struct cftype
*cft
= __d_cft(file
->f_dentry
);
2436 struct cgroup
*cgrp
= __d_cgrp(cfe
->dentry
->d_parent
);
2437 struct cgroup_subsys_state
*css
;
2440 err
= generic_file_open(inode
, file
);
2445 * If the file belongs to a subsystem, pin the css. Will be
2446 * unpinned either on open failure or release. This ensures that
2447 * @css stays alive for all file operations.
2450 css
= cgroup_css(cgrp
, cft
->ss
);
2451 if (cft
->ss
&& !css_tryget(css
))
2459 * @cfe->css is used by read/write/close to determine the
2460 * associated css. @file->private_data would be a better place but
2461 * that's already used by seqfile. Multiple accessors may use it
2462 * simultaneously which is okay as the association never changes.
2464 WARN_ON_ONCE(cfe
->css
&& cfe
->css
!= css
);
2467 if (cft
->read_map
|| cft
->read_seq_string
) {
2468 file
->f_op
= &cgroup_seqfile_operations
;
2469 err
= single_open(file
, cgroup_seqfile_show
, cfe
);
2470 } else if (cft
->open
) {
2471 err
= cft
->open(inode
, file
);
2479 static int cgroup_file_release(struct inode
*inode
, struct file
*file
)
2481 struct cfent
*cfe
= __d_cfe(file
->f_dentry
);
2482 struct cftype
*cft
= __d_cft(file
->f_dentry
);
2483 struct cgroup_subsys_state
*css
= cfe
->css
;
2487 ret
= cft
->release(inode
, file
);
2494 * cgroup_rename - Only allow simple rename of directories in place.
2496 static int cgroup_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
2497 struct inode
*new_dir
, struct dentry
*new_dentry
)
2500 struct cgroup_name
*name
, *old_name
;
2501 struct cgroup
*cgrp
;
2504 * It's convinient to use parent dir's i_mutex to protected
2507 lockdep_assert_held(&old_dir
->i_mutex
);
2509 if (!S_ISDIR(old_dentry
->d_inode
->i_mode
))
2511 if (new_dentry
->d_inode
)
2513 if (old_dir
!= new_dir
)
2516 cgrp
= __d_cgrp(old_dentry
);
2519 * This isn't a proper migration and its usefulness is very
2520 * limited. Disallow if sane_behavior.
2522 if (cgroup_sane_behavior(cgrp
))
2525 name
= cgroup_alloc_name(new_dentry
);
2529 ret
= simple_rename(old_dir
, old_dentry
, new_dir
, new_dentry
);
2535 old_name
= rcu_dereference_protected(cgrp
->name
, true);
2536 rcu_assign_pointer(cgrp
->name
, name
);
2538 kfree_rcu(old_name
, rcu_head
);
2542 static struct simple_xattrs
*__d_xattrs(struct dentry
*dentry
)
2544 if (S_ISDIR(dentry
->d_inode
->i_mode
))
2545 return &__d_cgrp(dentry
)->xattrs
;
2547 return &__d_cfe(dentry
)->xattrs
;
2550 static inline int xattr_enabled(struct dentry
*dentry
)
2552 struct cgroupfs_root
*root
= dentry
->d_sb
->s_fs_info
;
2553 return root
->flags
& CGRP_ROOT_XATTR
;
2556 static bool is_valid_xattr(const char *name
)
2558 if (!strncmp(name
, XATTR_TRUSTED_PREFIX
, XATTR_TRUSTED_PREFIX_LEN
) ||
2559 !strncmp(name
, XATTR_SECURITY_PREFIX
, XATTR_SECURITY_PREFIX_LEN
))
2564 static int cgroup_setxattr(struct dentry
*dentry
, const char *name
,
2565 const void *val
, size_t size
, int flags
)
2567 if (!xattr_enabled(dentry
))
2569 if (!is_valid_xattr(name
))
2571 return simple_xattr_set(__d_xattrs(dentry
), name
, val
, size
, flags
);
2574 static int cgroup_removexattr(struct dentry
*dentry
, const char *name
)
2576 if (!xattr_enabled(dentry
))
2578 if (!is_valid_xattr(name
))
2580 return simple_xattr_remove(__d_xattrs(dentry
), name
);
2583 static ssize_t
cgroup_getxattr(struct dentry
*dentry
, const char *name
,
2584 void *buf
, size_t size
)
2586 if (!xattr_enabled(dentry
))
2588 if (!is_valid_xattr(name
))
2590 return simple_xattr_get(__d_xattrs(dentry
), name
, buf
, size
);
2593 static ssize_t
cgroup_listxattr(struct dentry
*dentry
, char *buf
, size_t size
)
2595 if (!xattr_enabled(dentry
))
2597 return simple_xattr_list(__d_xattrs(dentry
), buf
, size
);
2600 static const struct file_operations cgroup_file_operations
= {
2601 .read
= cgroup_file_read
,
2602 .write
= cgroup_file_write
,
2603 .llseek
= generic_file_llseek
,
2604 .open
= cgroup_file_open
,
2605 .release
= cgroup_file_release
,
2608 static const struct inode_operations cgroup_file_inode_operations
= {
2609 .setxattr
= cgroup_setxattr
,
2610 .getxattr
= cgroup_getxattr
,
2611 .listxattr
= cgroup_listxattr
,
2612 .removexattr
= cgroup_removexattr
,
2615 static const struct inode_operations cgroup_dir_inode_operations
= {
2616 .lookup
= simple_lookup
,
2617 .mkdir
= cgroup_mkdir
,
2618 .rmdir
= cgroup_rmdir
,
2619 .rename
= cgroup_rename
,
2620 .setxattr
= cgroup_setxattr
,
2621 .getxattr
= cgroup_getxattr
,
2622 .listxattr
= cgroup_listxattr
,
2623 .removexattr
= cgroup_removexattr
,
2627 * Check if a file is a control file
2629 static inline struct cftype
*__file_cft(struct file
*file
)
2631 if (file_inode(file
)->i_fop
!= &cgroup_file_operations
)
2632 return ERR_PTR(-EINVAL
);
2633 return __d_cft(file
->f_dentry
);
2636 static int cgroup_create_file(struct dentry
*dentry
, umode_t mode
,
2637 struct super_block
*sb
)
2639 struct inode
*inode
;
2643 if (dentry
->d_inode
)
2646 inode
= cgroup_new_inode(mode
, sb
);
2650 if (S_ISDIR(mode
)) {
2651 inode
->i_op
= &cgroup_dir_inode_operations
;
2652 inode
->i_fop
= &simple_dir_operations
;
2654 /* start off with i_nlink == 2 (for "." entry) */
2656 inc_nlink(dentry
->d_parent
->d_inode
);
2659 * Control reaches here with cgroup_mutex held.
2660 * @inode->i_mutex should nest outside cgroup_mutex but we
2661 * want to populate it immediately without releasing
2662 * cgroup_mutex. As @inode isn't visible to anyone else
2663 * yet, trylock will always succeed without affecting
2666 WARN_ON_ONCE(!mutex_trylock(&inode
->i_mutex
));
2667 } else if (S_ISREG(mode
)) {
2669 inode
->i_fop
= &cgroup_file_operations
;
2670 inode
->i_op
= &cgroup_file_inode_operations
;
2672 d_instantiate(dentry
, inode
);
2673 dget(dentry
); /* Extra count - pin the dentry in core */
2678 * cgroup_file_mode - deduce file mode of a control file
2679 * @cft: the control file in question
2681 * returns cft->mode if ->mode is not 0
2682 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2683 * returns S_IRUGO if it has only a read handler
2684 * returns S_IWUSR if it has only a write hander
2686 static umode_t
cgroup_file_mode(const struct cftype
*cft
)
2693 if (cft
->read
|| cft
->read_u64
|| cft
->read_s64
||
2694 cft
->read_map
|| cft
->read_seq_string
)
2697 if (cft
->write
|| cft
->write_u64
|| cft
->write_s64
||
2698 cft
->write_string
|| cft
->trigger
)
2704 static int cgroup_add_file(struct cgroup
*cgrp
, struct cftype
*cft
)
2706 struct dentry
*dir
= cgrp
->dentry
;
2707 struct cgroup
*parent
= __d_cgrp(dir
);
2708 struct dentry
*dentry
;
2712 char name
[MAX_CGROUP_TYPE_NAMELEN
+ MAX_CFTYPE_NAME
+ 2] = { 0 };
2714 if (cft
->ss
&& !(cft
->flags
& CFTYPE_NO_PREFIX
) &&
2715 !(cgrp
->root
->flags
& CGRP_ROOT_NOPREFIX
)) {
2716 strcpy(name
, cft
->ss
->name
);
2719 strcat(name
, cft
->name
);
2721 BUG_ON(!mutex_is_locked(&dir
->d_inode
->i_mutex
));
2723 cfe
= kzalloc(sizeof(*cfe
), GFP_KERNEL
);
2727 dentry
= lookup_one_len(name
, dir
, strlen(name
));
2728 if (IS_ERR(dentry
)) {
2729 error
= PTR_ERR(dentry
);
2733 cfe
->type
= (void *)cft
;
2734 cfe
->dentry
= dentry
;
2735 dentry
->d_fsdata
= cfe
;
2736 simple_xattrs_init(&cfe
->xattrs
);
2738 mode
= cgroup_file_mode(cft
);
2739 error
= cgroup_create_file(dentry
, mode
| S_IFREG
, cgrp
->root
->sb
);
2741 list_add_tail(&cfe
->node
, &parent
->files
);
2751 * cgroup_addrm_files - add or remove files to a cgroup directory
2752 * @cgrp: the target cgroup
2753 * @cfts: array of cftypes to be added
2754 * @is_add: whether to add or remove
2756 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
2757 * For removals, this function never fails. If addition fails, this
2758 * function doesn't remove files already added. The caller is responsible
2761 static int cgroup_addrm_files(struct cgroup
*cgrp
, struct cftype cfts
[],
2767 lockdep_assert_held(&cgrp
->dentry
->d_inode
->i_mutex
);
2768 lockdep_assert_held(&cgroup_mutex
);
2770 for (cft
= cfts
; cft
->name
[0] != '\0'; cft
++) {
2771 /* does cft->flags tell us to skip this file on @cgrp? */
2772 if ((cft
->flags
& CFTYPE_INSANE
) && cgroup_sane_behavior(cgrp
))
2774 if ((cft
->flags
& CFTYPE_NOT_ON_ROOT
) && !cgrp
->parent
)
2776 if ((cft
->flags
& CFTYPE_ONLY_ON_ROOT
) && cgrp
->parent
)
2780 ret
= cgroup_add_file(cgrp
, cft
);
2782 pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
2787 cgroup_rm_file(cgrp
, cft
);
2793 static void cgroup_cfts_prepare(void)
2794 __acquires(&cgroup_mutex
)
2797 * Thanks to the entanglement with vfs inode locking, we can't walk
2798 * the existing cgroups under cgroup_mutex and create files.
2799 * Instead, we use css_for_each_descendant_pre() and drop RCU read
2800 * lock before calling cgroup_addrm_files().
2802 mutex_lock(&cgroup_mutex
);
2805 static int cgroup_cfts_commit(struct cftype
*cfts
, bool is_add
)
2806 __releases(&cgroup_mutex
)
2809 struct cgroup_subsys
*ss
= cfts
[0].ss
;
2810 struct cgroup
*root
= &ss
->root
->top_cgroup
;
2811 struct super_block
*sb
= ss
->root
->sb
;
2812 struct dentry
*prev
= NULL
;
2813 struct inode
*inode
;
2814 struct cgroup_subsys_state
*css
;
2818 /* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
2819 if (!cfts
|| ss
->root
== &cgroup_dummy_root
||
2820 !atomic_inc_not_zero(&sb
->s_active
)) {
2821 mutex_unlock(&cgroup_mutex
);
2826 * All cgroups which are created after we drop cgroup_mutex will
2827 * have the updated set of files, so we only need to update the
2828 * cgroups created before the current @cgroup_serial_nr_next.
2830 update_before
= cgroup_serial_nr_next
;
2832 mutex_unlock(&cgroup_mutex
);
2834 /* add/rm files for all cgroups created before */
2836 css_for_each_descendant_pre(css
, cgroup_css(root
, ss
)) {
2837 struct cgroup
*cgrp
= css
->cgroup
;
2839 if (cgroup_is_dead(cgrp
))
2842 inode
= cgrp
->dentry
->d_inode
;
2847 prev
= cgrp
->dentry
;
2849 mutex_lock(&inode
->i_mutex
);
2850 mutex_lock(&cgroup_mutex
);
2851 if (cgrp
->serial_nr
< update_before
&& !cgroup_is_dead(cgrp
))
2852 ret
= cgroup_addrm_files(cgrp
, cfts
, is_add
);
2853 mutex_unlock(&cgroup_mutex
);
2854 mutex_unlock(&inode
->i_mutex
);
2862 deactivate_super(sb
);
2867 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2868 * @ss: target cgroup subsystem
2869 * @cfts: zero-length name terminated array of cftypes
2871 * Register @cfts to @ss. Files described by @cfts are created for all
2872 * existing cgroups to which @ss is attached and all future cgroups will
2873 * have them too. This function can be called anytime whether @ss is
2876 * Returns 0 on successful registration, -errno on failure. Note that this
2877 * function currently returns 0 as long as @cfts registration is successful
2878 * even if some file creation attempts on existing cgroups fail.
2880 int cgroup_add_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
2882 struct cftype_set
*set
;
2886 set
= kzalloc(sizeof(*set
), GFP_KERNEL
);
2890 for (cft
= cfts
; cft
->name
[0] != '\0'; cft
++)
2893 cgroup_cfts_prepare();
2895 list_add_tail(&set
->node
, &ss
->cftsets
);
2896 ret
= cgroup_cfts_commit(cfts
, true);
2898 cgroup_rm_cftypes(cfts
);
2901 EXPORT_SYMBOL_GPL(cgroup_add_cftypes
);
2904 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
2905 * @cfts: zero-length name terminated array of cftypes
2907 * Unregister @cfts. Files described by @cfts are removed from all
2908 * existing cgroups and all future cgroups won't have them either. This
2909 * function can be called anytime whether @cfts' subsys is attached or not.
2911 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2914 int cgroup_rm_cftypes(struct cftype
*cfts
)
2916 struct cftype_set
*set
;
2918 if (!cfts
|| !cfts
[0].ss
)
2921 cgroup_cfts_prepare();
2923 list_for_each_entry(set
, &cfts
[0].ss
->cftsets
, node
) {
2924 if (set
->cfts
== cfts
) {
2925 list_del(&set
->node
);
2927 cgroup_cfts_commit(cfts
, false);
2932 cgroup_cfts_commit(NULL
, false);
2937 * cgroup_task_count - count the number of tasks in a cgroup.
2938 * @cgrp: the cgroup in question
2940 * Return the number of tasks in the cgroup.
2942 int cgroup_task_count(const struct cgroup
*cgrp
)
2945 struct cgrp_cset_link
*link
;
2947 read_lock(&css_set_lock
);
2948 list_for_each_entry(link
, &cgrp
->cset_links
, cset_link
)
2949 count
+= atomic_read(&link
->cset
->refcount
);
2950 read_unlock(&css_set_lock
);
2955 * To reduce the fork() overhead for systems that are not actually using
2956 * their cgroups capability, we don't maintain the lists running through
2957 * each css_set to its tasks until we see the list actually used - in other
2958 * words after the first call to css_task_iter_start().
2960 static void cgroup_enable_task_cg_lists(void)
2962 struct task_struct
*p
, *g
;
2963 write_lock(&css_set_lock
);
2964 use_task_css_set_links
= 1;
2966 * We need tasklist_lock because RCU is not safe against
2967 * while_each_thread(). Besides, a forking task that has passed
2968 * cgroup_post_fork() without seeing use_task_css_set_links = 1
2969 * is not guaranteed to have its child immediately visible in the
2970 * tasklist if we walk through it with RCU.
2972 read_lock(&tasklist_lock
);
2973 do_each_thread(g
, p
) {
2976 * We should check if the process is exiting, otherwise
2977 * it will race with cgroup_exit() in that the list
2978 * entry won't be deleted though the process has exited.
2980 if (!(p
->flags
& PF_EXITING
) && list_empty(&p
->cg_list
))
2981 list_add(&p
->cg_list
, &task_css_set(p
)->tasks
);
2983 } while_each_thread(g
, p
);
2984 read_unlock(&tasklist_lock
);
2985 write_unlock(&css_set_lock
);
2989 * css_next_child - find the next child of a given css
2990 * @pos_css: the current position (%NULL to initiate traversal)
2991 * @parent_css: css whose children to walk
2993 * This function returns the next child of @parent_css and should be called
2994 * under RCU read lock. The only requirement is that @parent_css and
2995 * @pos_css are accessible. The next sibling is guaranteed to be returned
2996 * regardless of their states.
2998 struct cgroup_subsys_state
*
2999 css_next_child(struct cgroup_subsys_state
*pos_css
,
3000 struct cgroup_subsys_state
*parent_css
)
3002 struct cgroup
*pos
= pos_css
? pos_css
->cgroup
: NULL
;
3003 struct cgroup
*cgrp
= parent_css
->cgroup
;
3004 struct cgroup
*next
;
3006 WARN_ON_ONCE(!rcu_read_lock_held());
3009 * @pos could already have been removed. Once a cgroup is removed,
3010 * its ->sibling.next is no longer updated when its next sibling
3011 * changes. As CGRP_DEAD assertion is serialized and happens
3012 * before the cgroup is taken off the ->sibling list, if we see it
3013 * unasserted, it's guaranteed that the next sibling hasn't
3014 * finished its grace period even if it's already removed, and thus
3015 * safe to dereference from this RCU critical section. If
3016 * ->sibling.next is inaccessible, cgroup_is_dead() is guaranteed
3017 * to be visible as %true here.
3019 * If @pos is dead, its next pointer can't be dereferenced;
3020 * however, as each cgroup is given a monotonically increasing
3021 * unique serial number and always appended to the sibling list,
3022 * the next one can be found by walking the parent's children until
3023 * we see a cgroup with higher serial number than @pos's. While
3024 * this path can be slower, it's taken only when either the current
3025 * cgroup is removed or iteration and removal race.
3028 next
= list_entry_rcu(cgrp
->children
.next
, struct cgroup
, sibling
);
3029 } else if (likely(!cgroup_is_dead(pos
))) {
3030 next
= list_entry_rcu(pos
->sibling
.next
, struct cgroup
, sibling
);
3032 list_for_each_entry_rcu(next
, &cgrp
->children
, sibling
)
3033 if (next
->serial_nr
> pos
->serial_nr
)
3037 if (&next
->sibling
== &cgrp
->children
)
3040 return cgroup_css(next
, parent_css
->ss
);
3042 EXPORT_SYMBOL_GPL(css_next_child
);
3045 * css_next_descendant_pre - find the next descendant for pre-order walk
3046 * @pos: the current position (%NULL to initiate traversal)
3047 * @root: css whose descendants to walk
3049 * To be used by css_for_each_descendant_pre(). Find the next descendant
3050 * to visit for pre-order traversal of @root's descendants. @root is
3051 * included in the iteration and the first node to be visited.
3053 * While this function requires RCU read locking, it doesn't require the
3054 * whole traversal to be contained in a single RCU critical section. This
3055 * function will return the correct next descendant as long as both @pos
3056 * and @root are accessible and @pos is a descendant of @root.
3058 struct cgroup_subsys_state
*
3059 css_next_descendant_pre(struct cgroup_subsys_state
*pos
,
3060 struct cgroup_subsys_state
*root
)
3062 struct cgroup_subsys_state
*next
;
3064 WARN_ON_ONCE(!rcu_read_lock_held());
3066 /* if first iteration, visit @root */
3070 /* visit the first child if exists */
3071 next
= css_next_child(NULL
, pos
);
3075 /* no child, visit my or the closest ancestor's next sibling */
3076 while (pos
!= root
) {
3077 next
= css_next_child(pos
, css_parent(pos
));
3080 pos
= css_parent(pos
);
3085 EXPORT_SYMBOL_GPL(css_next_descendant_pre
);
3088 * css_rightmost_descendant - return the rightmost descendant of a css
3089 * @pos: css of interest
3091 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3092 * is returned. This can be used during pre-order traversal to skip
3095 * While this function requires RCU read locking, it doesn't require the
3096 * whole traversal to be contained in a single RCU critical section. This
3097 * function will return the correct rightmost descendant as long as @pos is
3100 struct cgroup_subsys_state
*
3101 css_rightmost_descendant(struct cgroup_subsys_state
*pos
)
3103 struct cgroup_subsys_state
*last
, *tmp
;
3105 WARN_ON_ONCE(!rcu_read_lock_held());
3109 /* ->prev isn't RCU safe, walk ->next till the end */
3111 css_for_each_child(tmp
, last
)
3117 EXPORT_SYMBOL_GPL(css_rightmost_descendant
);
3119 static struct cgroup_subsys_state
*
3120 css_leftmost_descendant(struct cgroup_subsys_state
*pos
)
3122 struct cgroup_subsys_state
*last
;
3126 pos
= css_next_child(NULL
, pos
);
3133 * css_next_descendant_post - find the next descendant for post-order walk
3134 * @pos: the current position (%NULL to initiate traversal)
3135 * @root: css whose descendants to walk
3137 * To be used by css_for_each_descendant_post(). Find the next descendant
3138 * to visit for post-order traversal of @root's descendants. @root is
3139 * included in the iteration and the last node to be visited.
3141 * While this function requires RCU read locking, it doesn't require the
3142 * whole traversal to be contained in a single RCU critical section. This
3143 * function will return the correct next descendant as long as both @pos
3144 * and @cgroup are accessible and @pos is a descendant of @cgroup.
3146 struct cgroup_subsys_state
*
3147 css_next_descendant_post(struct cgroup_subsys_state
*pos
,
3148 struct cgroup_subsys_state
*root
)
3150 struct cgroup_subsys_state
*next
;
3152 WARN_ON_ONCE(!rcu_read_lock_held());
3154 /* if first iteration, visit leftmost descendant which may be @root */
3156 return css_leftmost_descendant(root
);
3158 /* if we visited @root, we're done */
3162 /* if there's an unvisited sibling, visit its leftmost descendant */
3163 next
= css_next_child(pos
, css_parent(pos
));
3165 return css_leftmost_descendant(next
);
3167 /* no sibling left, visit parent */
3168 return css_parent(pos
);
3170 EXPORT_SYMBOL_GPL(css_next_descendant_post
);
3173 * css_advance_task_iter - advance a task itererator to the next css_set
3174 * @it: the iterator to advance
3176 * Advance @it to the next css_set to walk.
3178 static void css_advance_task_iter(struct css_task_iter
*it
)
3180 struct list_head
*l
= it
->cset_link
;
3181 struct cgrp_cset_link
*link
;
3182 struct css_set
*cset
;
3184 /* Advance to the next non-empty css_set */
3187 if (l
== &it
->origin_css
->cgroup
->cset_links
) {
3188 it
->cset_link
= NULL
;
3191 link
= list_entry(l
, struct cgrp_cset_link
, cset_link
);
3193 } while (list_empty(&cset
->tasks
));
3195 it
->task
= cset
->tasks
.next
;
3199 * css_task_iter_start - initiate task iteration
3200 * @css: the css to walk tasks of
3201 * @it: the task iterator to use
3203 * Initiate iteration through the tasks of @css. The caller can call
3204 * css_task_iter_next() to walk through the tasks until the function
3205 * returns NULL. On completion of iteration, css_task_iter_end() must be
3208 * Note that this function acquires a lock which is released when the
3209 * iteration finishes. The caller can't sleep while iteration is in
3212 void css_task_iter_start(struct cgroup_subsys_state
*css
,
3213 struct css_task_iter
*it
)
3214 __acquires(css_set_lock
)
3217 * The first time anyone tries to iterate across a css, we need to
3218 * enable the list linking each css_set to its tasks, and fix up
3219 * all existing tasks.
3221 if (!use_task_css_set_links
)
3222 cgroup_enable_task_cg_lists();
3224 read_lock(&css_set_lock
);
3226 it
->origin_css
= css
;
3227 it
->cset_link
= &css
->cgroup
->cset_links
;
3229 css_advance_task_iter(it
);
3233 * css_task_iter_next - return the next task for the iterator
3234 * @it: the task iterator being iterated
3236 * The "next" function for task iteration. @it should have been
3237 * initialized via css_task_iter_start(). Returns NULL when the iteration
3240 struct task_struct
*css_task_iter_next(struct css_task_iter
*it
)
3242 struct task_struct
*res
;
3243 struct list_head
*l
= it
->task
;
3244 struct cgrp_cset_link
*link
;
3246 /* If the iterator cg is NULL, we have no tasks */
3249 res
= list_entry(l
, struct task_struct
, cg_list
);
3250 /* Advance iterator to find next entry */
3252 link
= list_entry(it
->cset_link
, struct cgrp_cset_link
, cset_link
);
3253 if (l
== &link
->cset
->tasks
) {
3255 * We reached the end of this task list - move on to the
3256 * next cgrp_cset_link.
3258 css_advance_task_iter(it
);
3266 * css_task_iter_end - finish task iteration
3267 * @it: the task iterator to finish
3269 * Finish task iteration started by css_task_iter_start().
3271 void css_task_iter_end(struct css_task_iter
*it
)
3272 __releases(css_set_lock
)
3274 read_unlock(&css_set_lock
);
3277 static inline int started_after_time(struct task_struct
*t1
,
3278 struct timespec
*time
,
3279 struct task_struct
*t2
)
3281 int start_diff
= timespec_compare(&t1
->start_time
, time
);
3282 if (start_diff
> 0) {
3284 } else if (start_diff
< 0) {
3288 * Arbitrarily, if two processes started at the same
3289 * time, we'll say that the lower pointer value
3290 * started first. Note that t2 may have exited by now
3291 * so this may not be a valid pointer any longer, but
3292 * that's fine - it still serves to distinguish
3293 * between two tasks started (effectively) simultaneously.
3300 * This function is a callback from heap_insert() and is used to order
3302 * In this case we order the heap in descending task start time.
3304 static inline int started_after(void *p1
, void *p2
)
3306 struct task_struct
*t1
= p1
;
3307 struct task_struct
*t2
= p2
;
3308 return started_after_time(t1
, &t2
->start_time
, t2
);
3312 * css_scan_tasks - iterate though all the tasks in a css
3313 * @css: the css to iterate tasks of
3314 * @test: optional test callback
3315 * @process: process callback
3316 * @data: data passed to @test and @process
3317 * @heap: optional pre-allocated heap used for task iteration
3319 * Iterate through all the tasks in @css, calling @test for each, and if it
3320 * returns %true, call @process for it also.
3322 * @test may be NULL, meaning always true (select all tasks), which
3323 * effectively duplicates css_task_iter_{start,next,end}() but does not
3324 * lock css_set_lock for the call to @process.
3326 * It is guaranteed that @process will act on every task that is a member
3327 * of @css for the duration of this call. This function may or may not
3328 * call @process for tasks that exit or move to a different css during the
3329 * call, or are forked or move into the css during the call.
3331 * Note that @test may be called with locks held, and may in some
3332 * situations be called multiple times for the same task, so it should be
3335 * If @heap is non-NULL, a heap has been pre-allocated and will be used for
3336 * heap operations (and its "gt" member will be overwritten), else a
3337 * temporary heap will be used (allocation of which may cause this function
3340 int css_scan_tasks(struct cgroup_subsys_state
*css
,
3341 bool (*test
)(struct task_struct
*, void *),
3342 void (*process
)(struct task_struct
*, void *),
3343 void *data
, struct ptr_heap
*heap
)
3346 struct css_task_iter it
;
3347 struct task_struct
*p
, *dropped
;
3348 /* Never dereference latest_task, since it's not refcounted */
3349 struct task_struct
*latest_task
= NULL
;
3350 struct ptr_heap tmp_heap
;
3351 struct timespec latest_time
= { 0, 0 };
3354 /* The caller supplied our heap and pre-allocated its memory */
3355 heap
->gt
= &started_after
;
3357 /* We need to allocate our own heap memory */
3359 retval
= heap_init(heap
, PAGE_SIZE
, GFP_KERNEL
, &started_after
);
3361 /* cannot allocate the heap */
3367 * Scan tasks in the css, using the @test callback to determine
3368 * which are of interest, and invoking @process callback on the
3369 * ones which need an update. Since we don't want to hold any
3370 * locks during the task updates, gather tasks to be processed in a
3371 * heap structure. The heap is sorted by descending task start
3372 * time. If the statically-sized heap fills up, we overflow tasks
3373 * that started later, and in future iterations only consider tasks
3374 * that started after the latest task in the previous pass. This
3375 * guarantees forward progress and that we don't miss any tasks.
3378 css_task_iter_start(css
, &it
);
3379 while ((p
= css_task_iter_next(&it
))) {
3381 * Only affect tasks that qualify per the caller's callback,
3382 * if he provided one
3384 if (test
&& !test(p
, data
))
3387 * Only process tasks that started after the last task
3390 if (!started_after_time(p
, &latest_time
, latest_task
))
3392 dropped
= heap_insert(heap
, p
);
3393 if (dropped
== NULL
) {
3395 * The new task was inserted; the heap wasn't
3399 } else if (dropped
!= p
) {
3401 * The new task was inserted, and pushed out a
3405 put_task_struct(dropped
);
3408 * Else the new task was newer than anything already in
3409 * the heap and wasn't inserted
3412 css_task_iter_end(&it
);
3415 for (i
= 0; i
< heap
->size
; i
++) {
3416 struct task_struct
*q
= heap
->ptrs
[i
];
3418 latest_time
= q
->start_time
;
3421 /* Process the task per the caller's callback */
3426 * If we had to process any tasks at all, scan again
3427 * in case some of them were in the middle of forking
3428 * children that didn't get processed.
3429 * Not the most efficient way to do it, but it avoids
3430 * having to take callback_mutex in the fork path
3434 if (heap
== &tmp_heap
)
3435 heap_free(&tmp_heap
);
3439 static void cgroup_transfer_one_task(struct task_struct
*task
, void *data
)
3441 struct cgroup
*new_cgroup
= data
;
3443 mutex_lock(&cgroup_mutex
);
3444 cgroup_attach_task(new_cgroup
, task
, false);
3445 mutex_unlock(&cgroup_mutex
);
3449 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3450 * @to: cgroup to which the tasks will be moved
3451 * @from: cgroup in which the tasks currently reside
3453 int cgroup_transfer_tasks(struct cgroup
*to
, struct cgroup
*from
)
3455 return css_scan_tasks(&from
->dummy_css
, NULL
, cgroup_transfer_one_task
,
3460 * Stuff for reading the 'tasks'/'procs' files.
3462 * Reading this file can return large amounts of data if a cgroup has
3463 * *lots* of attached tasks. So it may need several calls to read(),
3464 * but we cannot guarantee that the information we produce is correct
3465 * unless we produce it entirely atomically.
3469 /* which pidlist file are we talking about? */
3470 enum cgroup_filetype
{
3476 * A pidlist is a list of pids that virtually represents the contents of one
3477 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3478 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3481 struct cgroup_pidlist
{
3483 * used to find which pidlist is wanted. doesn't change as long as
3484 * this particular list stays in the list.
3486 struct { enum cgroup_filetype type
; struct pid_namespace
*ns
; } key
;
3489 /* how many elements the above list has */
3491 /* how many files are using the current array */
3493 /* each of these stored in a list by its cgroup */
3494 struct list_head links
;
3495 /* pointer to the cgroup we belong to, for list removal purposes */
3496 struct cgroup
*owner
;
3497 /* protects the other fields */
3498 struct rw_semaphore rwsem
;
3502 * The following two functions "fix" the issue where there are more pids
3503 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3504 * TODO: replace with a kernel-wide solution to this problem
3506 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3507 static void *pidlist_allocate(int count
)
3509 if (PIDLIST_TOO_LARGE(count
))
3510 return vmalloc(count
* sizeof(pid_t
));
3512 return kmalloc(count
* sizeof(pid_t
), GFP_KERNEL
);
3514 static void pidlist_free(void *p
)
3516 if (is_vmalloc_addr(p
))
3523 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3524 * Returns the number of unique elements.
3526 static int pidlist_uniq(pid_t
*list
, int length
)
3531 * we presume the 0th element is unique, so i starts at 1. trivial
3532 * edge cases first; no work needs to be done for either
3534 if (length
== 0 || length
== 1)
3536 /* src and dest walk down the list; dest counts unique elements */
3537 for (src
= 1; src
< length
; src
++) {
3538 /* find next unique element */
3539 while (list
[src
] == list
[src
-1]) {
3544 /* dest always points to where the next unique element goes */
3545 list
[dest
] = list
[src
];
3552 static int cmppid(const void *a
, const void *b
)
3554 return *(pid_t
*)a
- *(pid_t
*)b
;
3558 * find the appropriate pidlist for our purpose (given procs vs tasks)
3559 * returns with the lock on that pidlist already held, and takes care
3560 * of the use count, or returns NULL with no locks held if we're out of
3563 static struct cgroup_pidlist
*cgroup_pidlist_find(struct cgroup
*cgrp
,
3564 enum cgroup_filetype type
)
3566 struct cgroup_pidlist
*l
;
3567 /* don't need task_nsproxy() if we're looking at ourself */
3568 struct pid_namespace
*ns
= task_active_pid_ns(current
);
3571 * We can't drop the pidlist_mutex before taking the l->rwsem in case
3572 * the last ref-holder is trying to remove l from the list at the same
3573 * time. Holding the pidlist_mutex precludes somebody taking whichever
3574 * list we find out from under us - compare release_pid_array().
3576 mutex_lock(&cgrp
->pidlist_mutex
);
3577 list_for_each_entry(l
, &cgrp
->pidlists
, links
) {
3578 if (l
->key
.type
== type
&& l
->key
.ns
== ns
) {
3579 /* make sure l doesn't vanish out from under us */
3580 down_write(&l
->rwsem
);
3581 mutex_unlock(&cgrp
->pidlist_mutex
);
3585 /* entry not found; create a new one */
3586 l
= kzalloc(sizeof(struct cgroup_pidlist
), GFP_KERNEL
);
3588 mutex_unlock(&cgrp
->pidlist_mutex
);
3591 init_rwsem(&l
->rwsem
);
3592 down_write(&l
->rwsem
);
3594 l
->key
.ns
= get_pid_ns(ns
);
3596 list_add(&l
->links
, &cgrp
->pidlists
);
3597 mutex_unlock(&cgrp
->pidlist_mutex
);
3602 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3604 static int pidlist_array_load(struct cgroup
*cgrp
, enum cgroup_filetype type
,
3605 struct cgroup_pidlist
**lp
)
3609 int pid
, n
= 0; /* used for populating the array */
3610 struct css_task_iter it
;
3611 struct task_struct
*tsk
;
3612 struct cgroup_pidlist
*l
;
3615 * If cgroup gets more users after we read count, we won't have
3616 * enough space - tough. This race is indistinguishable to the
3617 * caller from the case that the additional cgroup users didn't
3618 * show up until sometime later on.
3620 length
= cgroup_task_count(cgrp
);
3621 array
= pidlist_allocate(length
);
3624 /* now, populate the array */
3625 css_task_iter_start(&cgrp
->dummy_css
, &it
);
3626 while ((tsk
= css_task_iter_next(&it
))) {
3627 if (unlikely(n
== length
))
3629 /* get tgid or pid for procs or tasks file respectively */
3630 if (type
== CGROUP_FILE_PROCS
)
3631 pid
= task_tgid_vnr(tsk
);
3633 pid
= task_pid_vnr(tsk
);
3634 if (pid
> 0) /* make sure to only use valid results */
3637 css_task_iter_end(&it
);
3639 /* now sort & (if procs) strip out duplicates */
3640 sort(array
, length
, sizeof(pid_t
), cmppid
, NULL
);
3641 if (type
== CGROUP_FILE_PROCS
)
3642 length
= pidlist_uniq(array
, length
);
3643 l
= cgroup_pidlist_find(cgrp
, type
);
3645 pidlist_free(array
);
3648 /* store array, freeing old if necessary - lock already held */
3649 pidlist_free(l
->list
);
3653 up_write(&l
->rwsem
);
3659 * cgroupstats_build - build and fill cgroupstats
3660 * @stats: cgroupstats to fill information into
3661 * @dentry: A dentry entry belonging to the cgroup for which stats have
3664 * Build and fill cgroupstats so that taskstats can export it to user
3667 int cgroupstats_build(struct cgroupstats
*stats
, struct dentry
*dentry
)
3670 struct cgroup
*cgrp
;
3671 struct css_task_iter it
;
3672 struct task_struct
*tsk
;
3675 * Validate dentry by checking the superblock operations,
3676 * and make sure it's a directory.
3678 if (dentry
->d_sb
->s_op
!= &cgroup_ops
||
3679 !S_ISDIR(dentry
->d_inode
->i_mode
))
3683 cgrp
= dentry
->d_fsdata
;
3685 css_task_iter_start(&cgrp
->dummy_css
, &it
);
3686 while ((tsk
= css_task_iter_next(&it
))) {
3687 switch (tsk
->state
) {
3689 stats
->nr_running
++;
3691 case TASK_INTERRUPTIBLE
:
3692 stats
->nr_sleeping
++;
3694 case TASK_UNINTERRUPTIBLE
:
3695 stats
->nr_uninterruptible
++;
3698 stats
->nr_stopped
++;
3701 if (delayacct_is_task_waiting_on_io(tsk
))
3702 stats
->nr_io_wait
++;
3706 css_task_iter_end(&it
);
3714 * seq_file methods for the tasks/procs files. The seq_file position is the
3715 * next pid to display; the seq_file iterator is a pointer to the pid
3716 * in the cgroup->l->list array.
3719 static void *cgroup_pidlist_start(struct seq_file
*s
, loff_t
*pos
)
3722 * Initially we receive a position value that corresponds to
3723 * one more than the last pid shown (or 0 on the first call or
3724 * after a seek to the start). Use a binary-search to find the
3725 * next pid to display, if any
3727 struct cgroup_pidlist
*l
= s
->private;
3728 int index
= 0, pid
= *pos
;
3731 down_read(&l
->rwsem
);
3733 int end
= l
->length
;
3735 while (index
< end
) {
3736 int mid
= (index
+ end
) / 2;
3737 if (l
->list
[mid
] == pid
) {
3740 } else if (l
->list
[mid
] <= pid
)
3746 /* If we're off the end of the array, we're done */
3747 if (index
>= l
->length
)
3749 /* Update the abstract position to be the actual pid that we found */
3750 iter
= l
->list
+ index
;
3755 static void cgroup_pidlist_stop(struct seq_file
*s
, void *v
)
3757 struct cgroup_pidlist
*l
= s
->private;
3761 static void *cgroup_pidlist_next(struct seq_file
*s
, void *v
, loff_t
*pos
)
3763 struct cgroup_pidlist
*l
= s
->private;
3765 pid_t
*end
= l
->list
+ l
->length
;
3767 * Advance to the next pid in the array. If this goes off the
3779 static int cgroup_pidlist_show(struct seq_file
*s
, void *v
)
3781 return seq_printf(s
, "%d\n", *(int *)v
);
3785 * seq_operations functions for iterating on pidlists through seq_file -
3786 * independent of whether it's tasks or procs
3788 static const struct seq_operations cgroup_pidlist_seq_operations
= {
3789 .start
= cgroup_pidlist_start
,
3790 .stop
= cgroup_pidlist_stop
,
3791 .next
= cgroup_pidlist_next
,
3792 .show
= cgroup_pidlist_show
,
3795 static void cgroup_release_pid_array(struct cgroup_pidlist
*l
)
3798 * the case where we're the last user of this particular pidlist will
3799 * have us remove it from the cgroup's list, which entails taking the
3800 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3801 * pidlist_mutex, we have to take pidlist_mutex first.
3803 mutex_lock(&l
->owner
->pidlist_mutex
);
3804 down_write(&l
->rwsem
);
3805 BUG_ON(!l
->use_count
);
3806 if (!--l
->use_count
) {
3807 /* we're the last user if refcount is 0; remove and free */
3808 list_del(&l
->links
);
3809 mutex_unlock(&l
->owner
->pidlist_mutex
);
3810 pidlist_free(l
->list
);
3811 put_pid_ns(l
->key
.ns
);
3812 up_write(&l
->rwsem
);
3816 mutex_unlock(&l
->owner
->pidlist_mutex
);
3817 up_write(&l
->rwsem
);
3820 static int cgroup_pidlist_release(struct inode
*inode
, struct file
*file
)
3822 struct cgroup_pidlist
*l
;
3823 if (!(file
->f_mode
& FMODE_READ
))
3826 * the seq_file will only be initialized if the file was opened for
3827 * reading; hence we check if it's not null only in that case.
3829 l
= ((struct seq_file
*)file
->private_data
)->private;
3830 cgroup_release_pid_array(l
);
3831 return seq_release(inode
, file
);
3834 static const struct file_operations cgroup_pidlist_operations
= {
3836 .llseek
= seq_lseek
,
3837 .write
= cgroup_file_write
,
3838 .release
= cgroup_pidlist_release
,
3842 * The following functions handle opens on a file that displays a pidlist
3843 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3846 /* helper function for the two below it */
3847 static int cgroup_pidlist_open(struct file
*file
, enum cgroup_filetype type
)
3849 struct cgroup
*cgrp
= __d_cgrp(file
->f_dentry
->d_parent
);
3850 struct cgroup_pidlist
*l
;
3853 /* Nothing to do for write-only files */
3854 if (!(file
->f_mode
& FMODE_READ
))
3857 /* have the array populated */
3858 retval
= pidlist_array_load(cgrp
, type
, &l
);
3861 /* configure file information */
3862 file
->f_op
= &cgroup_pidlist_operations
;
3864 retval
= seq_open(file
, &cgroup_pidlist_seq_operations
);
3866 cgroup_release_pid_array(l
);
3869 ((struct seq_file
*)file
->private_data
)->private = l
;
3872 static int cgroup_tasks_open(struct inode
*unused
, struct file
*file
)
3874 return cgroup_pidlist_open(file
, CGROUP_FILE_TASKS
);
3876 static int cgroup_procs_open(struct inode
*unused
, struct file
*file
)
3878 return cgroup_pidlist_open(file
, CGROUP_FILE_PROCS
);
3881 static u64
cgroup_read_notify_on_release(struct cgroup_subsys_state
*css
,
3884 return notify_on_release(css
->cgroup
);
3887 static int cgroup_write_notify_on_release(struct cgroup_subsys_state
*css
,
3888 struct cftype
*cft
, u64 val
)
3890 clear_bit(CGRP_RELEASABLE
, &css
->cgroup
->flags
);
3892 set_bit(CGRP_NOTIFY_ON_RELEASE
, &css
->cgroup
->flags
);
3894 clear_bit(CGRP_NOTIFY_ON_RELEASE
, &css
->cgroup
->flags
);
3899 * When dput() is called asynchronously, if umount has been done and
3900 * then deactivate_super() in cgroup_free_fn() kills the superblock,
3901 * there's a small window that vfs will see the root dentry with non-zero
3902 * refcnt and trigger BUG().
3904 * That's why we hold a reference before dput() and drop it right after.
3906 static void cgroup_dput(struct cgroup
*cgrp
)
3908 struct super_block
*sb
= cgrp
->root
->sb
;
3910 atomic_inc(&sb
->s_active
);
3912 deactivate_super(sb
);
3916 * Unregister event and free resources.
3918 * Gets called from workqueue.
3920 static void cgroup_event_remove(struct work_struct
*work
)
3922 struct cgroup_event
*event
= container_of(work
, struct cgroup_event
,
3924 struct cgroup_subsys_state
*css
= event
->css
;
3926 remove_wait_queue(event
->wqh
, &event
->wait
);
3928 event
->cft
->unregister_event(css
, event
->cft
, event
->eventfd
);
3930 /* Notify userspace the event is going away. */
3931 eventfd_signal(event
->eventfd
, 1);
3933 eventfd_ctx_put(event
->eventfd
);
3939 * Gets called on POLLHUP on eventfd when user closes it.
3941 * Called with wqh->lock held and interrupts disabled.
3943 static int cgroup_event_wake(wait_queue_t
*wait
, unsigned mode
,
3944 int sync
, void *key
)
3946 struct cgroup_event
*event
= container_of(wait
,
3947 struct cgroup_event
, wait
);
3948 struct cgroup
*cgrp
= event
->css
->cgroup
;
3949 unsigned long flags
= (unsigned long)key
;
3951 if (flags
& POLLHUP
) {
3953 * If the event has been detached at cgroup removal, we
3954 * can simply return knowing the other side will cleanup
3957 * We can't race against event freeing since the other
3958 * side will require wqh->lock via remove_wait_queue(),
3961 spin_lock(&cgrp
->event_list_lock
);
3962 if (!list_empty(&event
->list
)) {
3963 list_del_init(&event
->list
);
3965 * We are in atomic context, but cgroup_event_remove()
3966 * may sleep, so we have to call it in workqueue.
3968 schedule_work(&event
->remove
);
3970 spin_unlock(&cgrp
->event_list_lock
);
3976 static void cgroup_event_ptable_queue_proc(struct file
*file
,
3977 wait_queue_head_t
*wqh
, poll_table
*pt
)
3979 struct cgroup_event
*event
= container_of(pt
,
3980 struct cgroup_event
, pt
);
3983 add_wait_queue(wqh
, &event
->wait
);
3987 * Parse input and register new cgroup event handler.
3989 * Input must be in format '<event_fd> <control_fd> <args>'.
3990 * Interpretation of args is defined by control file implementation.
3992 static int cgroup_write_event_control(struct cgroup_subsys_state
*dummy_css
,
3993 struct cftype
*cft
, const char *buffer
)
3995 struct cgroup
*cgrp
= dummy_css
->cgroup
;
3996 struct cgroup_event
*event
;
3997 struct cgroup_subsys_state
*cfile_css
;
3998 unsigned int efd
, cfd
;
4004 efd
= simple_strtoul(buffer
, &endp
, 10);
4009 cfd
= simple_strtoul(buffer
, &endp
, 10);
4010 if ((*endp
!= ' ') && (*endp
!= '\0'))
4014 event
= kzalloc(sizeof(*event
), GFP_KERNEL
);
4018 INIT_LIST_HEAD(&event
->list
);
4019 init_poll_funcptr(&event
->pt
, cgroup_event_ptable_queue_proc
);
4020 init_waitqueue_func_entry(&event
->wait
, cgroup_event_wake
);
4021 INIT_WORK(&event
->remove
, cgroup_event_remove
);
4029 event
->eventfd
= eventfd_ctx_fileget(efile
.file
);
4030 if (IS_ERR(event
->eventfd
)) {
4031 ret
= PTR_ERR(event
->eventfd
);
4038 goto out_put_eventfd
;
4041 /* the process need read permission on control file */
4042 /* AV: shouldn't we check that it's been opened for read instead? */
4043 ret
= inode_permission(file_inode(cfile
.file
), MAY_READ
);
4047 event
->cft
= __file_cft(cfile
.file
);
4048 if (IS_ERR(event
->cft
)) {
4049 ret
= PTR_ERR(event
->cft
);
4053 if (!event
->cft
->ss
) {
4059 * Determine the css of @cfile, verify it belongs to the same
4060 * cgroup as cgroup.event_control, and associate @event with it.
4061 * Remaining events are automatically removed on cgroup destruction
4062 * but the removal is asynchronous, so take an extra ref.
4067 event
->css
= cgroup_css(cgrp
, event
->cft
->ss
);
4068 cfile_css
= css_from_dir(cfile
.file
->f_dentry
->d_parent
, event
->cft
->ss
);
4069 if (event
->css
&& event
->css
== cfile_css
&& css_tryget(event
->css
))
4076 if (!event
->cft
->register_event
|| !event
->cft
->unregister_event
) {
4081 ret
= event
->cft
->register_event(event
->css
, event
->cft
,
4082 event
->eventfd
, buffer
);
4086 efile
.file
->f_op
->poll(efile
.file
, &event
->pt
);
4088 spin_lock(&cgrp
->event_list_lock
);
4089 list_add(&event
->list
, &cgrp
->event_list
);
4090 spin_unlock(&cgrp
->event_list_lock
);
4098 css_put(event
->css
);
4102 eventfd_ctx_put(event
->eventfd
);
4111 static u64
cgroup_clone_children_read(struct cgroup_subsys_state
*css
,
4114 return test_bit(CGRP_CPUSET_CLONE_CHILDREN
, &css
->cgroup
->flags
);
4117 static int cgroup_clone_children_write(struct cgroup_subsys_state
*css
,
4118 struct cftype
*cft
, u64 val
)
4121 set_bit(CGRP_CPUSET_CLONE_CHILDREN
, &css
->cgroup
->flags
);
4123 clear_bit(CGRP_CPUSET_CLONE_CHILDREN
, &css
->cgroup
->flags
);
4127 static struct cftype cgroup_base_files
[] = {
4129 .name
= "cgroup.procs",
4130 .open
= cgroup_procs_open
,
4131 .write_u64
= cgroup_procs_write
,
4132 .release
= cgroup_pidlist_release
,
4133 .mode
= S_IRUGO
| S_IWUSR
,
4136 .name
= "cgroup.event_control",
4137 .write_string
= cgroup_write_event_control
,
4141 .name
= "cgroup.clone_children",
4142 .flags
= CFTYPE_INSANE
,
4143 .read_u64
= cgroup_clone_children_read
,
4144 .write_u64
= cgroup_clone_children_write
,
4147 .name
= "cgroup.sane_behavior",
4148 .flags
= CFTYPE_ONLY_ON_ROOT
,
4149 .read_seq_string
= cgroup_sane_behavior_show
,
4153 * Historical crazy stuff. These don't have "cgroup." prefix and
4154 * don't exist if sane_behavior. If you're depending on these, be
4155 * prepared to be burned.
4159 .flags
= CFTYPE_INSANE
, /* use "procs" instead */
4160 .open
= cgroup_tasks_open
,
4161 .write_u64
= cgroup_tasks_write
,
4162 .release
= cgroup_pidlist_release
,
4163 .mode
= S_IRUGO
| S_IWUSR
,
4166 .name
= "notify_on_release",
4167 .flags
= CFTYPE_INSANE
,
4168 .read_u64
= cgroup_read_notify_on_release
,
4169 .write_u64
= cgroup_write_notify_on_release
,
4172 .name
= "release_agent",
4173 .flags
= CFTYPE_INSANE
| CFTYPE_ONLY_ON_ROOT
,
4174 .read_seq_string
= cgroup_release_agent_show
,
4175 .write_string
= cgroup_release_agent_write
,
4176 .max_write_len
= PATH_MAX
,
4182 * cgroup_populate_dir - create subsys files in a cgroup directory
4183 * @cgrp: target cgroup
4184 * @subsys_mask: mask of the subsystem ids whose files should be added
4186 * On failure, no file is added.
4188 static int cgroup_populate_dir(struct cgroup
*cgrp
, unsigned long subsys_mask
)
4190 struct cgroup_subsys
*ss
;
4193 /* process cftsets of each subsystem */
4194 for_each_subsys(ss
, i
) {
4195 struct cftype_set
*set
;
4197 if (!test_bit(i
, &subsys_mask
))
4200 list_for_each_entry(set
, &ss
->cftsets
, node
) {
4201 ret
= cgroup_addrm_files(cgrp
, set
->cfts
, true);
4208 cgroup_clear_dir(cgrp
, subsys_mask
);
4213 * css destruction is four-stage process.
4215 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4216 * Implemented in kill_css().
4218 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4219 * and thus css_tryget() is guaranteed to fail, the css can be offlined
4220 * by invoking offline_css(). After offlining, the base ref is put.
4221 * Implemented in css_killed_work_fn().
4223 * 3. When the percpu_ref reaches zero, the only possible remaining
4224 * accessors are inside RCU read sections. css_release() schedules the
4227 * 4. After the grace period, the css can be freed. Implemented in
4228 * css_free_work_fn().
4230 * It is actually hairier because both step 2 and 4 require process context
4231 * and thus involve punting to css->destroy_work adding two additional
4232 * steps to the already complex sequence.
4234 static void css_free_work_fn(struct work_struct
*work
)
4236 struct cgroup_subsys_state
*css
=
4237 container_of(work
, struct cgroup_subsys_state
, destroy_work
);
4238 struct cgroup
*cgrp
= css
->cgroup
;
4241 css_put(css
->parent
);
4243 css
->ss
->css_free(css
);
4247 static void css_free_rcu_fn(struct rcu_head
*rcu_head
)
4249 struct cgroup_subsys_state
*css
=
4250 container_of(rcu_head
, struct cgroup_subsys_state
, rcu_head
);
4253 * css holds an extra ref to @cgrp->dentry which is put on the last
4254 * css_put(). dput() requires process context which we don't have.
4256 INIT_WORK(&css
->destroy_work
, css_free_work_fn
);
4257 schedule_work(&css
->destroy_work
);
4260 static void css_release(struct percpu_ref
*ref
)
4262 struct cgroup_subsys_state
*css
=
4263 container_of(ref
, struct cgroup_subsys_state
, refcnt
);
4265 call_rcu(&css
->rcu_head
, css_free_rcu_fn
);
4268 static void init_css(struct cgroup_subsys_state
*css
, struct cgroup_subsys
*ss
,
4269 struct cgroup
*cgrp
)
4276 css
->parent
= cgroup_css(cgrp
->parent
, ss
);
4278 css
->flags
|= CSS_ROOT
;
4280 BUG_ON(cgroup_css(cgrp
, ss
));
4283 /* invoke ->css_online() on a new CSS and mark it online if successful */
4284 static int online_css(struct cgroup_subsys_state
*css
)
4286 struct cgroup_subsys
*ss
= css
->ss
;
4289 lockdep_assert_held(&cgroup_mutex
);
4292 ret
= ss
->css_online(css
);
4294 css
->flags
|= CSS_ONLINE
;
4295 css
->cgroup
->nr_css
++;
4296 rcu_assign_pointer(css
->cgroup
->subsys
[ss
->subsys_id
], css
);
4301 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4302 static void offline_css(struct cgroup_subsys_state
*css
)
4304 struct cgroup_subsys
*ss
= css
->ss
;
4306 lockdep_assert_held(&cgroup_mutex
);
4308 if (!(css
->flags
& CSS_ONLINE
))
4311 if (ss
->css_offline
)
4312 ss
->css_offline(css
);
4314 css
->flags
&= ~CSS_ONLINE
;
4315 css
->cgroup
->nr_css
--;
4316 RCU_INIT_POINTER(css
->cgroup
->subsys
[ss
->subsys_id
], css
);
4320 * cgroup_create - create a cgroup
4321 * @parent: cgroup that will be parent of the new cgroup
4322 * @dentry: dentry of the new cgroup
4323 * @mode: mode to set on new inode
4325 * Must be called with the mutex on the parent inode held
4327 static long cgroup_create(struct cgroup
*parent
, struct dentry
*dentry
,
4330 struct cgroup_subsys_state
*css_ar
[CGROUP_SUBSYS_COUNT
] = { };
4331 struct cgroup
*cgrp
;
4332 struct cgroup_name
*name
;
4333 struct cgroupfs_root
*root
= parent
->root
;
4335 struct cgroup_subsys
*ss
;
4336 struct super_block
*sb
= root
->sb
;
4338 /* allocate the cgroup and its ID, 0 is reserved for the root */
4339 cgrp
= kzalloc(sizeof(*cgrp
), GFP_KERNEL
);
4343 name
= cgroup_alloc_name(dentry
);
4346 rcu_assign_pointer(cgrp
->name
, name
);
4349 * Temporarily set the pointer to NULL, so idr_find() won't return
4350 * a half-baked cgroup.
4352 cgrp
->id
= idr_alloc(&root
->cgroup_idr
, NULL
, 1, 0, GFP_KERNEL
);
4357 * Only live parents can have children. Note that the liveliness
4358 * check isn't strictly necessary because cgroup_mkdir() and
4359 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
4360 * anyway so that locking is contained inside cgroup proper and we
4361 * don't get nasty surprises if we ever grow another caller.
4363 if (!cgroup_lock_live_group(parent
)) {
4368 /* Grab a reference on the superblock so the hierarchy doesn't
4369 * get deleted on unmount if there are child cgroups. This
4370 * can be done outside cgroup_mutex, since the sb can't
4371 * disappear while someone has an open control file on the
4373 atomic_inc(&sb
->s_active
);
4375 init_cgroup_housekeeping(cgrp
);
4377 dentry
->d_fsdata
= cgrp
;
4378 cgrp
->dentry
= dentry
;
4380 cgrp
->parent
= parent
;
4381 cgrp
->dummy_css
.parent
= &parent
->dummy_css
;
4382 cgrp
->root
= parent
->root
;
4384 if (notify_on_release(parent
))
4385 set_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
4387 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN
, &parent
->flags
))
4388 set_bit(CGRP_CPUSET_CLONE_CHILDREN
, &cgrp
->flags
);
4390 for_each_root_subsys(root
, ss
) {
4391 struct cgroup_subsys_state
*css
;
4393 css
= ss
->css_alloc(cgroup_css(parent
, ss
));
4398 css_ar
[ss
->subsys_id
] = css
;
4400 err
= percpu_ref_init(&css
->refcnt
, css_release
);
4404 init_css(css
, ss
, cgrp
);
4408 * Create directory. cgroup_create_file() returns with the new
4409 * directory locked on success so that it can be populated without
4410 * dropping cgroup_mutex.
4412 err
= cgroup_create_file(dentry
, S_IFDIR
| mode
, sb
);
4415 lockdep_assert_held(&dentry
->d_inode
->i_mutex
);
4417 cgrp
->serial_nr
= cgroup_serial_nr_next
++;
4419 /* allocation complete, commit to creation */
4420 list_add_tail_rcu(&cgrp
->sibling
, &cgrp
->parent
->children
);
4421 root
->number_of_cgroups
++;
4423 /* each css holds a ref to the cgroup's dentry and the parent css */
4424 for_each_root_subsys(root
, ss
) {
4425 struct cgroup_subsys_state
*css
= css_ar
[ss
->subsys_id
];
4428 css_get(css
->parent
);
4431 /* hold a ref to the parent's dentry */
4432 dget(parent
->dentry
);
4434 /* creation succeeded, notify subsystems */
4435 for_each_root_subsys(root
, ss
) {
4436 struct cgroup_subsys_state
*css
= css_ar
[ss
->subsys_id
];
4438 err
= online_css(css
);
4442 if (ss
->broken_hierarchy
&& !ss
->warned_broken_hierarchy
&&
4444 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4445 current
->comm
, current
->pid
, ss
->name
);
4446 if (!strcmp(ss
->name
, "memory"))
4447 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
4448 ss
->warned_broken_hierarchy
= true;
4452 idr_replace(&root
->cgroup_idr
, cgrp
, cgrp
->id
);
4454 err
= cgroup_addrm_files(cgrp
, cgroup_base_files
, true);
4458 err
= cgroup_populate_dir(cgrp
, root
->subsys_mask
);
4462 mutex_unlock(&cgroup_mutex
);
4463 mutex_unlock(&cgrp
->dentry
->d_inode
->i_mutex
);
4468 for_each_root_subsys(root
, ss
) {
4469 struct cgroup_subsys_state
*css
= css_ar
[ss
->subsys_id
];
4472 percpu_ref_cancel_init(&css
->refcnt
);
4476 mutex_unlock(&cgroup_mutex
);
4477 /* Release the reference count that we took on the superblock */
4478 deactivate_super(sb
);
4480 idr_remove(&root
->cgroup_idr
, cgrp
->id
);
4482 kfree(rcu_dereference_raw(cgrp
->name
));
4488 cgroup_destroy_locked(cgrp
);
4489 mutex_unlock(&cgroup_mutex
);
4490 mutex_unlock(&dentry
->d_inode
->i_mutex
);
4494 static int cgroup_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
4496 struct cgroup
*c_parent
= dentry
->d_parent
->d_fsdata
;
4498 /* the vfs holds inode->i_mutex already */
4499 return cgroup_create(c_parent
, dentry
, mode
| S_IFDIR
);
4503 * This is called when the refcnt of a css is confirmed to be killed.
4504 * css_tryget() is now guaranteed to fail.
4506 static void css_killed_work_fn(struct work_struct
*work
)
4508 struct cgroup_subsys_state
*css
=
4509 container_of(work
, struct cgroup_subsys_state
, destroy_work
);
4510 struct cgroup
*cgrp
= css
->cgroup
;
4512 mutex_lock(&cgroup_mutex
);
4515 * css_tryget() is guaranteed to fail now. Tell subsystems to
4516 * initate destruction.
4521 * If @cgrp is marked dead, it's waiting for refs of all css's to
4522 * be disabled before proceeding to the second phase of cgroup
4523 * destruction. If we are the last one, kick it off.
4525 if (!cgrp
->nr_css
&& cgroup_is_dead(cgrp
))
4526 cgroup_destroy_css_killed(cgrp
);
4528 mutex_unlock(&cgroup_mutex
);
4531 * Put the css refs from kill_css(). Each css holds an extra
4532 * reference to the cgroup's dentry and cgroup removal proceeds
4533 * regardless of css refs. On the last put of each css, whenever
4534 * that may be, the extra dentry ref is put so that dentry
4535 * destruction happens only after all css's are released.
4540 /* css kill confirmation processing requires process context, bounce */
4541 static void css_killed_ref_fn(struct percpu_ref
*ref
)
4543 struct cgroup_subsys_state
*css
=
4544 container_of(ref
, struct cgroup_subsys_state
, refcnt
);
4546 INIT_WORK(&css
->destroy_work
, css_killed_work_fn
);
4547 schedule_work(&css
->destroy_work
);
4551 * kill_css - destroy a css
4552 * @css: css to destroy
4554 * This function initiates destruction of @css by removing cgroup interface
4555 * files and putting its base reference. ->css_offline() will be invoked
4556 * asynchronously once css_tryget() is guaranteed to fail and when the
4557 * reference count reaches zero, @css will be released.
4559 static void kill_css(struct cgroup_subsys_state
*css
)
4561 cgroup_clear_dir(css
->cgroup
, 1 << css
->ss
->subsys_id
);
4564 * Killing would put the base ref, but we need to keep it alive
4565 * until after ->css_offline().
4570 * cgroup core guarantees that, by the time ->css_offline() is
4571 * invoked, no new css reference will be given out via
4572 * css_tryget(). We can't simply call percpu_ref_kill() and
4573 * proceed to offlining css's because percpu_ref_kill() doesn't
4574 * guarantee that the ref is seen as killed on all CPUs on return.
4576 * Use percpu_ref_kill_and_confirm() to get notifications as each
4577 * css is confirmed to be seen as killed on all CPUs.
4579 percpu_ref_kill_and_confirm(&css
->refcnt
, css_killed_ref_fn
);
4583 * cgroup_destroy_locked - the first stage of cgroup destruction
4584 * @cgrp: cgroup to be destroyed
4586 * css's make use of percpu refcnts whose killing latency shouldn't be
4587 * exposed to userland and are RCU protected. Also, cgroup core needs to
4588 * guarantee that css_tryget() won't succeed by the time ->css_offline() is
4589 * invoked. To satisfy all the requirements, destruction is implemented in
4590 * the following two steps.
4592 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4593 * userland visible parts and start killing the percpu refcnts of
4594 * css's. Set up so that the next stage will be kicked off once all
4595 * the percpu refcnts are confirmed to be killed.
4597 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4598 * rest of destruction. Once all cgroup references are gone, the
4599 * cgroup is RCU-freed.
4601 * This function implements s1. After this step, @cgrp is gone as far as
4602 * the userland is concerned and a new cgroup with the same name may be
4603 * created. As cgroup doesn't care about the names internally, this
4604 * doesn't cause any problem.
4606 static int cgroup_destroy_locked(struct cgroup
*cgrp
)
4607 __releases(&cgroup_mutex
) __acquires(&cgroup_mutex
)
4609 struct dentry
*d
= cgrp
->dentry
;
4610 struct cgroup_event
*event
, *tmp
;
4611 struct cgroup_subsys
*ss
;
4612 struct cgroup
*child
;
4615 lockdep_assert_held(&d
->d_inode
->i_mutex
);
4616 lockdep_assert_held(&cgroup_mutex
);
4619 * css_set_lock synchronizes access to ->cset_links and prevents
4620 * @cgrp from being removed while __put_css_set() is in progress.
4622 read_lock(&css_set_lock
);
4623 empty
= list_empty(&cgrp
->cset_links
);
4624 read_unlock(&css_set_lock
);
4629 * Make sure there's no live children. We can't test ->children
4630 * emptiness as dead children linger on it while being destroyed;
4631 * otherwise, "rmdir parent/child parent" may fail with -EBUSY.
4635 list_for_each_entry_rcu(child
, &cgrp
->children
, sibling
) {
4636 empty
= cgroup_is_dead(child
);
4645 * Initiate massacre of all css's. cgroup_destroy_css_killed()
4646 * will be invoked to perform the rest of destruction once the
4647 * percpu refs of all css's are confirmed to be killed.
4649 for_each_root_subsys(cgrp
->root
, ss
)
4650 kill_css(cgroup_css(cgrp
, ss
));
4653 * Mark @cgrp dead. This prevents further task migration and child
4654 * creation by disabling cgroup_lock_live_group(). Note that
4655 * CGRP_DEAD assertion is depended upon by css_next_child() to
4656 * resume iteration after dropping RCU read lock. See
4657 * css_next_child() for details.
4659 set_bit(CGRP_DEAD
, &cgrp
->flags
);
4661 /* CGRP_DEAD is set, remove from ->release_list for the last time */
4662 raw_spin_lock(&release_list_lock
);
4663 if (!list_empty(&cgrp
->release_list
))
4664 list_del_init(&cgrp
->release_list
);
4665 raw_spin_unlock(&release_list_lock
);
4668 * If @cgrp has css's attached, the second stage of cgroup
4669 * destruction is kicked off from css_killed_work_fn() after the
4670 * refs of all attached css's are killed. If @cgrp doesn't have
4671 * any css, we kick it off here.
4674 cgroup_destroy_css_killed(cgrp
);
4677 * Clear the base files and remove @cgrp directory. The removal
4678 * puts the base ref but we aren't quite done with @cgrp yet, so
4681 cgroup_addrm_files(cgrp
, cgroup_base_files
, false);
4683 cgroup_d_remove_dir(d
);
4686 * Unregister events and notify userspace.
4687 * Notify userspace about cgroup removing only after rmdir of cgroup
4688 * directory to avoid race between userspace and kernelspace.
4690 spin_lock(&cgrp
->event_list_lock
);
4691 list_for_each_entry_safe(event
, tmp
, &cgrp
->event_list
, list
) {
4692 list_del_init(&event
->list
);
4693 schedule_work(&event
->remove
);
4695 spin_unlock(&cgrp
->event_list_lock
);
4701 * cgroup_destroy_css_killed - the second step of cgroup destruction
4702 * @work: cgroup->destroy_free_work
4704 * This function is invoked from a work item for a cgroup which is being
4705 * destroyed after all css's are offlined and performs the rest of
4706 * destruction. This is the second step of destruction described in the
4707 * comment above cgroup_destroy_locked().
4709 static void cgroup_destroy_css_killed(struct cgroup
*cgrp
)
4711 struct cgroup
*parent
= cgrp
->parent
;
4712 struct dentry
*d
= cgrp
->dentry
;
4714 lockdep_assert_held(&cgroup_mutex
);
4716 /* delete this cgroup from parent->children */
4717 list_del_rcu(&cgrp
->sibling
);
4720 * We should remove the cgroup object from idr before its grace
4721 * period starts, so we won't be looking up a cgroup while the
4722 * cgroup is being freed.
4724 idr_remove(&cgrp
->root
->cgroup_idr
, cgrp
->id
);
4729 set_bit(CGRP_RELEASABLE
, &parent
->flags
);
4730 check_for_release(parent
);
4733 static int cgroup_rmdir(struct inode
*unused_dir
, struct dentry
*dentry
)
4737 mutex_lock(&cgroup_mutex
);
4738 ret
= cgroup_destroy_locked(dentry
->d_fsdata
);
4739 mutex_unlock(&cgroup_mutex
);
4744 static void __init_or_module
cgroup_init_cftsets(struct cgroup_subsys
*ss
)
4746 INIT_LIST_HEAD(&ss
->cftsets
);
4749 * base_cftset is embedded in subsys itself, no need to worry about
4752 if (ss
->base_cftypes
) {
4755 for (cft
= ss
->base_cftypes
; cft
->name
[0] != '\0'; cft
++)
4758 ss
->base_cftset
.cfts
= ss
->base_cftypes
;
4759 list_add_tail(&ss
->base_cftset
.node
, &ss
->cftsets
);
4763 static void __init
cgroup_init_subsys(struct cgroup_subsys
*ss
)
4765 struct cgroup_subsys_state
*css
;
4767 printk(KERN_INFO
"Initializing cgroup subsys %s\n", ss
->name
);
4769 mutex_lock(&cgroup_mutex
);
4771 /* init base cftset */
4772 cgroup_init_cftsets(ss
);
4774 /* Create the top cgroup state for this subsystem */
4775 list_add(&ss
->sibling
, &cgroup_dummy_root
.subsys_list
);
4776 ss
->root
= &cgroup_dummy_root
;
4777 css
= ss
->css_alloc(cgroup_css(cgroup_dummy_top
, ss
));
4778 /* We don't handle early failures gracefully */
4779 BUG_ON(IS_ERR(css
));
4780 init_css(css
, ss
, cgroup_dummy_top
);
4782 /* Update the init_css_set to contain a subsys
4783 * pointer to this state - since the subsystem is
4784 * newly registered, all tasks and hence the
4785 * init_css_set is in the subsystem's top cgroup. */
4786 init_css_set
.subsys
[ss
->subsys_id
] = css
;
4788 need_forkexit_callback
|= ss
->fork
|| ss
->exit
;
4790 /* At system boot, before all subsystems have been
4791 * registered, no tasks have been forked, so we don't
4792 * need to invoke fork callbacks here. */
4793 BUG_ON(!list_empty(&init_task
.tasks
));
4795 BUG_ON(online_css(css
));
4797 mutex_unlock(&cgroup_mutex
);
4799 /* this function shouldn't be used with modular subsystems, since they
4800 * need to register a subsys_id, among other things */
4805 * cgroup_load_subsys: load and register a modular subsystem at runtime
4806 * @ss: the subsystem to load
4808 * This function should be called in a modular subsystem's initcall. If the
4809 * subsystem is built as a module, it will be assigned a new subsys_id and set
4810 * up for use. If the subsystem is built-in anyway, work is delegated to the
4811 * simpler cgroup_init_subsys.
4813 int __init_or_module
cgroup_load_subsys(struct cgroup_subsys
*ss
)
4815 struct cgroup_subsys_state
*css
;
4817 struct hlist_node
*tmp
;
4818 struct css_set
*cset
;
4821 /* check name and function validity */
4822 if (ss
->name
== NULL
|| strlen(ss
->name
) > MAX_CGROUP_TYPE_NAMELEN
||
4823 ss
->css_alloc
== NULL
|| ss
->css_free
== NULL
)
4827 * we don't support callbacks in modular subsystems. this check is
4828 * before the ss->module check for consistency; a subsystem that could
4829 * be a module should still have no callbacks even if the user isn't
4830 * compiling it as one.
4832 if (ss
->fork
|| ss
->exit
)
4836 * an optionally modular subsystem is built-in: we want to do nothing,
4837 * since cgroup_init_subsys will have already taken care of it.
4839 if (ss
->module
== NULL
) {
4840 /* a sanity check */
4841 BUG_ON(cgroup_subsys
[ss
->subsys_id
] != ss
);
4845 /* init base cftset */
4846 cgroup_init_cftsets(ss
);
4848 mutex_lock(&cgroup_mutex
);
4849 cgroup_subsys
[ss
->subsys_id
] = ss
;
4852 * no ss->css_alloc seems to need anything important in the ss
4853 * struct, so this can happen first (i.e. before the dummy root
4856 css
= ss
->css_alloc(cgroup_css(cgroup_dummy_top
, ss
));
4858 /* failure case - need to deassign the cgroup_subsys[] slot. */
4859 cgroup_subsys
[ss
->subsys_id
] = NULL
;
4860 mutex_unlock(&cgroup_mutex
);
4861 return PTR_ERR(css
);
4864 list_add(&ss
->sibling
, &cgroup_dummy_root
.subsys_list
);
4865 ss
->root
= &cgroup_dummy_root
;
4867 /* our new subsystem will be attached to the dummy hierarchy. */
4868 init_css(css
, ss
, cgroup_dummy_top
);
4871 * Now we need to entangle the css into the existing css_sets. unlike
4872 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4873 * will need a new pointer to it; done by iterating the css_set_table.
4874 * furthermore, modifying the existing css_sets will corrupt the hash
4875 * table state, so each changed css_set will need its hash recomputed.
4876 * this is all done under the css_set_lock.
4878 write_lock(&css_set_lock
);
4879 hash_for_each_safe(css_set_table
, i
, tmp
, cset
, hlist
) {
4880 /* skip entries that we already rehashed */
4881 if (cset
->subsys
[ss
->subsys_id
])
4883 /* remove existing entry */
4884 hash_del(&cset
->hlist
);
4886 cset
->subsys
[ss
->subsys_id
] = css
;
4887 /* recompute hash and restore entry */
4888 key
= css_set_hash(cset
->subsys
);
4889 hash_add(css_set_table
, &cset
->hlist
, key
);
4891 write_unlock(&css_set_lock
);
4893 ret
= online_css(css
);
4898 mutex_unlock(&cgroup_mutex
);
4902 mutex_unlock(&cgroup_mutex
);
4903 /* @ss can't be mounted here as try_module_get() would fail */
4904 cgroup_unload_subsys(ss
);
4907 EXPORT_SYMBOL_GPL(cgroup_load_subsys
);
4910 * cgroup_unload_subsys: unload a modular subsystem
4911 * @ss: the subsystem to unload
4913 * This function should be called in a modular subsystem's exitcall. When this
4914 * function is invoked, the refcount on the subsystem's module will be 0, so
4915 * the subsystem will not be attached to any hierarchy.
4917 void cgroup_unload_subsys(struct cgroup_subsys
*ss
)
4919 struct cgrp_cset_link
*link
;
4921 BUG_ON(ss
->module
== NULL
);
4924 * we shouldn't be called if the subsystem is in use, and the use of
4925 * try_module_get() in rebind_subsystems() should ensure that it
4926 * doesn't start being used while we're killing it off.
4928 BUG_ON(ss
->root
!= &cgroup_dummy_root
);
4930 mutex_lock(&cgroup_mutex
);
4932 offline_css(cgroup_css(cgroup_dummy_top
, ss
));
4934 /* deassign the subsys_id */
4935 cgroup_subsys
[ss
->subsys_id
] = NULL
;
4937 /* remove subsystem from the dummy root's list of subsystems */
4938 list_del_init(&ss
->sibling
);
4941 * disentangle the css from all css_sets attached to the dummy
4942 * top. as in loading, we need to pay our respects to the hashtable
4945 write_lock(&css_set_lock
);
4946 list_for_each_entry(link
, &cgroup_dummy_top
->cset_links
, cset_link
) {
4947 struct css_set
*cset
= link
->cset
;
4950 hash_del(&cset
->hlist
);
4951 cset
->subsys
[ss
->subsys_id
] = NULL
;
4952 key
= css_set_hash(cset
->subsys
);
4953 hash_add(css_set_table
, &cset
->hlist
, key
);
4955 write_unlock(&css_set_lock
);
4958 * remove subsystem's css from the cgroup_dummy_top and free it -
4959 * need to free before marking as null because ss->css_free needs
4960 * the cgrp->subsys pointer to find their state.
4962 ss
->css_free(cgroup_css(cgroup_dummy_top
, ss
));
4963 RCU_INIT_POINTER(cgroup_dummy_top
->subsys
[ss
->subsys_id
], NULL
);
4965 mutex_unlock(&cgroup_mutex
);
4967 EXPORT_SYMBOL_GPL(cgroup_unload_subsys
);
4970 * cgroup_init_early - cgroup initialization at system boot
4972 * Initialize cgroups at system boot, and initialize any
4973 * subsystems that request early init.
4975 int __init
cgroup_init_early(void)
4977 struct cgroup_subsys
*ss
;
4980 atomic_set(&init_css_set
.refcount
, 1);
4981 INIT_LIST_HEAD(&init_css_set
.cgrp_links
);
4982 INIT_LIST_HEAD(&init_css_set
.tasks
);
4983 INIT_HLIST_NODE(&init_css_set
.hlist
);
4985 init_cgroup_root(&cgroup_dummy_root
);
4986 cgroup_root_count
= 1;
4987 RCU_INIT_POINTER(init_task
.cgroups
, &init_css_set
);
4989 init_cgrp_cset_link
.cset
= &init_css_set
;
4990 init_cgrp_cset_link
.cgrp
= cgroup_dummy_top
;
4991 list_add(&init_cgrp_cset_link
.cset_link
, &cgroup_dummy_top
->cset_links
);
4992 list_add(&init_cgrp_cset_link
.cgrp_link
, &init_css_set
.cgrp_links
);
4994 /* at bootup time, we don't worry about modular subsystems */
4995 for_each_builtin_subsys(ss
, i
) {
4997 BUG_ON(strlen(ss
->name
) > MAX_CGROUP_TYPE_NAMELEN
);
4998 BUG_ON(!ss
->css_alloc
);
4999 BUG_ON(!ss
->css_free
);
5000 if (ss
->subsys_id
!= i
) {
5001 printk(KERN_ERR
"cgroup: Subsys %s id == %d\n",
5002 ss
->name
, ss
->subsys_id
);
5007 cgroup_init_subsys(ss
);
5013 * cgroup_init - cgroup initialization
5015 * Register cgroup filesystem and /proc file, and initialize
5016 * any subsystems that didn't request early init.
5018 int __init
cgroup_init(void)
5020 struct cgroup_subsys
*ss
;
5024 err
= bdi_init(&cgroup_backing_dev_info
);
5028 for_each_builtin_subsys(ss
, i
) {
5029 if (!ss
->early_init
)
5030 cgroup_init_subsys(ss
);
5033 /* allocate id for the dummy hierarchy */
5034 mutex_lock(&cgroup_mutex
);
5035 mutex_lock(&cgroup_root_mutex
);
5037 /* Add init_css_set to the hash table */
5038 key
= css_set_hash(init_css_set
.subsys
);
5039 hash_add(css_set_table
, &init_css_set
.hlist
, key
);
5041 BUG_ON(cgroup_init_root_id(&cgroup_dummy_root
, 0, 1));
5043 err
= idr_alloc(&cgroup_dummy_root
.cgroup_idr
, cgroup_dummy_top
,
5047 mutex_unlock(&cgroup_root_mutex
);
5048 mutex_unlock(&cgroup_mutex
);
5050 cgroup_kobj
= kobject_create_and_add("cgroup", fs_kobj
);
5056 err
= register_filesystem(&cgroup_fs_type
);
5058 kobject_put(cgroup_kobj
);
5062 proc_create("cgroups", 0, NULL
, &proc_cgroupstats_operations
);
5066 bdi_destroy(&cgroup_backing_dev_info
);
5072 * proc_cgroup_show()
5073 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5074 * - Used for /proc/<pid>/cgroup.
5075 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
5076 * doesn't really matter if tsk->cgroup changes after we read it,
5077 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
5078 * anyway. No need to check that tsk->cgroup != NULL, thanks to
5079 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
5080 * cgroup to top_cgroup.
5083 /* TODO: Use a proper seq_file iterator */
5084 int proc_cgroup_show(struct seq_file
*m
, void *v
)
5087 struct task_struct
*tsk
;
5090 struct cgroupfs_root
*root
;
5093 buf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
5099 tsk
= get_pid_task(pid
, PIDTYPE_PID
);
5105 mutex_lock(&cgroup_mutex
);
5107 for_each_active_root(root
) {
5108 struct cgroup_subsys
*ss
;
5109 struct cgroup
*cgrp
;
5112 seq_printf(m
, "%d:", root
->hierarchy_id
);
5113 for_each_root_subsys(root
, ss
)
5114 seq_printf(m
, "%s%s", count
++ ? "," : "", ss
->name
);
5115 if (strlen(root
->name
))
5116 seq_printf(m
, "%sname=%s", count
? "," : "",
5119 cgrp
= task_cgroup_from_root(tsk
, root
);
5120 retval
= cgroup_path(cgrp
, buf
, PAGE_SIZE
);
5128 mutex_unlock(&cgroup_mutex
);
5129 put_task_struct(tsk
);
5136 /* Display information about each subsystem and each hierarchy */
5137 static int proc_cgroupstats_show(struct seq_file
*m
, void *v
)
5139 struct cgroup_subsys
*ss
;
5142 seq_puts(m
, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
5144 * ideally we don't want subsystems moving around while we do this.
5145 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5146 * subsys/hierarchy state.
5148 mutex_lock(&cgroup_mutex
);
5150 for_each_subsys(ss
, i
)
5151 seq_printf(m
, "%s\t%d\t%d\t%d\n",
5152 ss
->name
, ss
->root
->hierarchy_id
,
5153 ss
->root
->number_of_cgroups
, !ss
->disabled
);
5155 mutex_unlock(&cgroup_mutex
);
5159 static int cgroupstats_open(struct inode
*inode
, struct file
*file
)
5161 return single_open(file
, proc_cgroupstats_show
, NULL
);
5164 static const struct file_operations proc_cgroupstats_operations
= {
5165 .open
= cgroupstats_open
,
5167 .llseek
= seq_lseek
,
5168 .release
= single_release
,
5172 * cgroup_fork - attach newly forked task to its parents cgroup.
5173 * @child: pointer to task_struct of forking parent process.
5175 * Description: A task inherits its parent's cgroup at fork().
5177 * A pointer to the shared css_set was automatically copied in
5178 * fork.c by dup_task_struct(). However, we ignore that copy, since
5179 * it was not made under the protection of RCU or cgroup_mutex, so
5180 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
5181 * have already changed current->cgroups, allowing the previously
5182 * referenced cgroup group to be removed and freed.
5184 * At the point that cgroup_fork() is called, 'current' is the parent
5185 * task, and the passed argument 'child' points to the child task.
5187 void cgroup_fork(struct task_struct
*child
)
5190 get_css_set(task_css_set(current
));
5191 child
->cgroups
= current
->cgroups
;
5192 task_unlock(current
);
5193 INIT_LIST_HEAD(&child
->cg_list
);
5197 * cgroup_post_fork - called on a new task after adding it to the task list
5198 * @child: the task in question
5200 * Adds the task to the list running through its css_set if necessary and
5201 * call the subsystem fork() callbacks. Has to be after the task is
5202 * visible on the task list in case we race with the first call to
5203 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5206 void cgroup_post_fork(struct task_struct
*child
)
5208 struct cgroup_subsys
*ss
;
5212 * use_task_css_set_links is set to 1 before we walk the tasklist
5213 * under the tasklist_lock and we read it here after we added the child
5214 * to the tasklist under the tasklist_lock as well. If the child wasn't
5215 * yet in the tasklist when we walked through it from
5216 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
5217 * should be visible now due to the paired locking and barriers implied
5218 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
5219 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
5222 if (use_task_css_set_links
) {
5223 write_lock(&css_set_lock
);
5225 if (list_empty(&child
->cg_list
))
5226 list_add(&child
->cg_list
, &task_css_set(child
)->tasks
);
5228 write_unlock(&css_set_lock
);
5232 * Call ss->fork(). This must happen after @child is linked on
5233 * css_set; otherwise, @child might change state between ->fork()
5234 * and addition to css_set.
5236 if (need_forkexit_callback
) {
5238 * fork/exit callbacks are supported only for builtin
5239 * subsystems, and the builtin section of the subsys
5240 * array is immutable, so we don't need to lock the
5241 * subsys array here. On the other hand, modular section
5242 * of the array can be freed at module unload, so we
5245 for_each_builtin_subsys(ss
, i
)
5252 * cgroup_exit - detach cgroup from exiting task
5253 * @tsk: pointer to task_struct of exiting process
5254 * @run_callback: run exit callbacks?
5256 * Description: Detach cgroup from @tsk and release it.
5258 * Note that cgroups marked notify_on_release force every task in
5259 * them to take the global cgroup_mutex mutex when exiting.
5260 * This could impact scaling on very large systems. Be reluctant to
5261 * use notify_on_release cgroups where very high task exit scaling
5262 * is required on large systems.
5264 * the_top_cgroup_hack:
5266 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
5268 * We call cgroup_exit() while the task is still competent to
5269 * handle notify_on_release(), then leave the task attached to the
5270 * root cgroup in each hierarchy for the remainder of its exit.
5272 * To do this properly, we would increment the reference count on
5273 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
5274 * code we would add a second cgroup function call, to drop that
5275 * reference. This would just create an unnecessary hot spot on
5276 * the top_cgroup reference count, to no avail.
5278 * Normally, holding a reference to a cgroup without bumping its
5279 * count is unsafe. The cgroup could go away, or someone could
5280 * attach us to a different cgroup, decrementing the count on
5281 * the first cgroup that we never incremented. But in this case,
5282 * top_cgroup isn't going away, and either task has PF_EXITING set,
5283 * which wards off any cgroup_attach_task() attempts, or task is a failed
5284 * fork, never visible to cgroup_attach_task.
5286 void cgroup_exit(struct task_struct
*tsk
, int run_callbacks
)
5288 struct cgroup_subsys
*ss
;
5289 struct css_set
*cset
;
5293 * Unlink from the css_set task list if necessary.
5294 * Optimistically check cg_list before taking
5297 if (!list_empty(&tsk
->cg_list
)) {
5298 write_lock(&css_set_lock
);
5299 if (!list_empty(&tsk
->cg_list
))
5300 list_del_init(&tsk
->cg_list
);
5301 write_unlock(&css_set_lock
);
5304 /* Reassign the task to the init_css_set. */
5306 cset
= task_css_set(tsk
);
5307 RCU_INIT_POINTER(tsk
->cgroups
, &init_css_set
);
5309 if (run_callbacks
&& need_forkexit_callback
) {
5311 * fork/exit callbacks are supported only for builtin
5312 * subsystems, see cgroup_post_fork() for details.
5314 for_each_builtin_subsys(ss
, i
) {
5316 struct cgroup_subsys_state
*old_css
= cset
->subsys
[i
];
5317 struct cgroup_subsys_state
*css
= task_css(tsk
, i
);
5319 ss
->exit(css
, old_css
, tsk
);
5325 put_css_set_taskexit(cset
);
5328 static void check_for_release(struct cgroup
*cgrp
)
5330 if (cgroup_is_releasable(cgrp
) &&
5331 list_empty(&cgrp
->cset_links
) && list_empty(&cgrp
->children
)) {
5333 * Control Group is currently removeable. If it's not
5334 * already queued for a userspace notification, queue
5337 int need_schedule_work
= 0;
5339 raw_spin_lock(&release_list_lock
);
5340 if (!cgroup_is_dead(cgrp
) &&
5341 list_empty(&cgrp
->release_list
)) {
5342 list_add(&cgrp
->release_list
, &release_list
);
5343 need_schedule_work
= 1;
5345 raw_spin_unlock(&release_list_lock
);
5346 if (need_schedule_work
)
5347 schedule_work(&release_agent_work
);
5352 * Notify userspace when a cgroup is released, by running the
5353 * configured release agent with the name of the cgroup (path
5354 * relative to the root of cgroup file system) as the argument.
5356 * Most likely, this user command will try to rmdir this cgroup.
5358 * This races with the possibility that some other task will be
5359 * attached to this cgroup before it is removed, or that some other
5360 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5361 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5362 * unused, and this cgroup will be reprieved from its death sentence,
5363 * to continue to serve a useful existence. Next time it's released,
5364 * we will get notified again, if it still has 'notify_on_release' set.
5366 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5367 * means only wait until the task is successfully execve()'d. The
5368 * separate release agent task is forked by call_usermodehelper(),
5369 * then control in this thread returns here, without waiting for the
5370 * release agent task. We don't bother to wait because the caller of
5371 * this routine has no use for the exit status of the release agent
5372 * task, so no sense holding our caller up for that.
5374 static void cgroup_release_agent(struct work_struct
*work
)
5376 BUG_ON(work
!= &release_agent_work
);
5377 mutex_lock(&cgroup_mutex
);
5378 raw_spin_lock(&release_list_lock
);
5379 while (!list_empty(&release_list
)) {
5380 char *argv
[3], *envp
[3];
5382 char *pathbuf
= NULL
, *agentbuf
= NULL
;
5383 struct cgroup
*cgrp
= list_entry(release_list
.next
,
5386 list_del_init(&cgrp
->release_list
);
5387 raw_spin_unlock(&release_list_lock
);
5388 pathbuf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
5391 if (cgroup_path(cgrp
, pathbuf
, PAGE_SIZE
) < 0)
5393 agentbuf
= kstrdup(cgrp
->root
->release_agent_path
, GFP_KERNEL
);
5398 argv
[i
++] = agentbuf
;
5399 argv
[i
++] = pathbuf
;
5403 /* minimal command environment */
5404 envp
[i
++] = "HOME=/";
5405 envp
[i
++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5408 /* Drop the lock while we invoke the usermode helper,
5409 * since the exec could involve hitting disk and hence
5410 * be a slow process */
5411 mutex_unlock(&cgroup_mutex
);
5412 call_usermodehelper(argv
[0], argv
, envp
, UMH_WAIT_EXEC
);
5413 mutex_lock(&cgroup_mutex
);
5417 raw_spin_lock(&release_list_lock
);
5419 raw_spin_unlock(&release_list_lock
);
5420 mutex_unlock(&cgroup_mutex
);
5423 static int __init
cgroup_disable(char *str
)
5425 struct cgroup_subsys
*ss
;
5429 while ((token
= strsep(&str
, ",")) != NULL
) {
5434 * cgroup_disable, being at boot time, can't know about
5435 * module subsystems, so we don't worry about them.
5437 for_each_builtin_subsys(ss
, i
) {
5438 if (!strcmp(token
, ss
->name
)) {
5440 printk(KERN_INFO
"Disabling %s control group"
5441 " subsystem\n", ss
->name
);
5448 __setup("cgroup_disable=", cgroup_disable
);
5451 * css_from_dir - get corresponding css from the dentry of a cgroup dir
5452 * @dentry: directory dentry of interest
5453 * @ss: subsystem of interest
5455 * Must be called under RCU read lock. The caller is responsible for
5456 * pinning the returned css if it needs to be accessed outside the RCU
5459 struct cgroup_subsys_state
*css_from_dir(struct dentry
*dentry
,
5460 struct cgroup_subsys
*ss
)
5462 struct cgroup
*cgrp
;
5464 WARN_ON_ONCE(!rcu_read_lock_held());
5466 /* is @dentry a cgroup dir? */
5467 if (!dentry
->d_inode
||
5468 dentry
->d_inode
->i_op
!= &cgroup_dir_inode_operations
)
5469 return ERR_PTR(-EBADF
);
5471 cgrp
= __d_cgrp(dentry
);
5472 return cgroup_css(cgrp
, ss
) ?: ERR_PTR(-ENOENT
);
5476 * css_from_id - lookup css by id
5477 * @id: the cgroup id
5478 * @ss: cgroup subsys to be looked into
5480 * Returns the css if there's valid one with @id, otherwise returns NULL.
5481 * Should be called under rcu_read_lock().
5483 struct cgroup_subsys_state
*css_from_id(int id
, struct cgroup_subsys
*ss
)
5485 struct cgroup
*cgrp
;
5487 rcu_lockdep_assert(rcu_read_lock_held() ||
5488 lockdep_is_held(&cgroup_mutex
),
5489 "css_from_id() needs proper protection");
5491 cgrp
= idr_find(&ss
->root
->cgroup_idr
, id
);
5493 return cgroup_css(cgrp
, ss
);
5497 #ifdef CONFIG_CGROUP_DEBUG
5498 static struct cgroup_subsys_state
*
5499 debug_css_alloc(struct cgroup_subsys_state
*parent_css
)
5501 struct cgroup_subsys_state
*css
= kzalloc(sizeof(*css
), GFP_KERNEL
);
5504 return ERR_PTR(-ENOMEM
);
5509 static void debug_css_free(struct cgroup_subsys_state
*css
)
5514 static u64
debug_taskcount_read(struct cgroup_subsys_state
*css
,
5517 return cgroup_task_count(css
->cgroup
);
5520 static u64
current_css_set_read(struct cgroup_subsys_state
*css
,
5523 return (u64
)(unsigned long)current
->cgroups
;
5526 static u64
current_css_set_refcount_read(struct cgroup_subsys_state
*css
,
5532 count
= atomic_read(&task_css_set(current
)->refcount
);
5537 static int current_css_set_cg_links_read(struct cgroup_subsys_state
*css
,
5539 struct seq_file
*seq
)
5541 struct cgrp_cset_link
*link
;
5542 struct css_set
*cset
;
5544 read_lock(&css_set_lock
);
5546 cset
= rcu_dereference(current
->cgroups
);
5547 list_for_each_entry(link
, &cset
->cgrp_links
, cgrp_link
) {
5548 struct cgroup
*c
= link
->cgrp
;
5552 name
= c
->dentry
->d_name
.name
;
5555 seq_printf(seq
, "Root %d group %s\n",
5556 c
->root
->hierarchy_id
, name
);
5559 read_unlock(&css_set_lock
);
5563 #define MAX_TASKS_SHOWN_PER_CSS 25
5564 static int cgroup_css_links_read(struct cgroup_subsys_state
*css
,
5565 struct cftype
*cft
, struct seq_file
*seq
)
5567 struct cgrp_cset_link
*link
;
5569 read_lock(&css_set_lock
);
5570 list_for_each_entry(link
, &css
->cgroup
->cset_links
, cset_link
) {
5571 struct css_set
*cset
= link
->cset
;
5572 struct task_struct
*task
;
5574 seq_printf(seq
, "css_set %p\n", cset
);
5575 list_for_each_entry(task
, &cset
->tasks
, cg_list
) {
5576 if (count
++ > MAX_TASKS_SHOWN_PER_CSS
) {
5577 seq_puts(seq
, " ...\n");
5580 seq_printf(seq
, " task %d\n",
5581 task_pid_vnr(task
));
5585 read_unlock(&css_set_lock
);
5589 static u64
releasable_read(struct cgroup_subsys_state
*css
, struct cftype
*cft
)
5591 return test_bit(CGRP_RELEASABLE
, &css
->cgroup
->flags
);
5594 static struct cftype debug_files
[] = {
5596 .name
= "taskcount",
5597 .read_u64
= debug_taskcount_read
,
5601 .name
= "current_css_set",
5602 .read_u64
= current_css_set_read
,
5606 .name
= "current_css_set_refcount",
5607 .read_u64
= current_css_set_refcount_read
,
5611 .name
= "current_css_set_cg_links",
5612 .read_seq_string
= current_css_set_cg_links_read
,
5616 .name
= "cgroup_css_links",
5617 .read_seq_string
= cgroup_css_links_read
,
5621 .name
= "releasable",
5622 .read_u64
= releasable_read
,
5628 struct cgroup_subsys debug_subsys
= {
5630 .css_alloc
= debug_css_alloc
,
5631 .css_free
= debug_css_free
,
5632 .subsys_id
= debug_subsys_id
,
5633 .base_cftypes
= debug_files
,
5635 #endif /* CONFIG_CGROUP_DEBUG */