block, cfq: move ioc ioprio/cgroup changed handling to cic
[linux-2.6.git] / block / cfq-iosched.c
blob51aece2eea7cf0396e45ea8f2bc8246c46413822
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
17 #include "blk.h"
18 #include "cfq.h"
21 * tunables
23 /* max queue in one round of service */
24 static const int cfq_quantum = 8;
25 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
26 /* maximum backwards seek, in KiB */
27 static const int cfq_back_max = 16 * 1024;
28 /* penalty of a backwards seek */
29 static const int cfq_back_penalty = 2;
30 static const int cfq_slice_sync = HZ / 10;
31 static int cfq_slice_async = HZ / 25;
32 static const int cfq_slice_async_rq = 2;
33 static int cfq_slice_idle = HZ / 125;
34 static int cfq_group_idle = HZ / 125;
35 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
36 static const int cfq_hist_divisor = 4;
39 * offset from end of service tree
41 #define CFQ_IDLE_DELAY (HZ / 5)
44 * below this threshold, we consider thinktime immediate
46 #define CFQ_MIN_TT (2)
48 #define CFQ_SLICE_SCALE (5)
49 #define CFQ_HW_QUEUE_MIN (5)
50 #define CFQ_SERVICE_SHIFT 12
52 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
53 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
54 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
55 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
57 #define RQ_CIC(rq) \
58 ((struct cfq_io_context *) (rq)->elevator_private[0])
59 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private[1])
60 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private[2])
62 static struct kmem_cache *cfq_pool;
63 static struct kmem_cache *cfq_ioc_pool;
65 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
66 static struct completion *ioc_gone;
67 static DEFINE_SPINLOCK(ioc_gone_lock);
69 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
70 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
71 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
73 #define sample_valid(samples) ((samples) > 80)
74 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
77 * Most of our rbtree usage is for sorting with min extraction, so
78 * if we cache the leftmost node we don't have to walk down the tree
79 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
80 * move this into the elevator for the rq sorting as well.
82 struct cfq_rb_root {
83 struct rb_root rb;
84 struct rb_node *left;
85 unsigned count;
86 unsigned total_weight;
87 u64 min_vdisktime;
88 struct cfq_ttime ttime;
90 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
91 .ttime = {.last_end_request = jiffies,},}
94 * Per process-grouping structure
96 struct cfq_queue {
97 /* reference count */
98 int ref;
99 /* various state flags, see below */
100 unsigned int flags;
101 /* parent cfq_data */
102 struct cfq_data *cfqd;
103 /* service_tree member */
104 struct rb_node rb_node;
105 /* service_tree key */
106 unsigned long rb_key;
107 /* prio tree member */
108 struct rb_node p_node;
109 /* prio tree root we belong to, if any */
110 struct rb_root *p_root;
111 /* sorted list of pending requests */
112 struct rb_root sort_list;
113 /* if fifo isn't expired, next request to serve */
114 struct request *next_rq;
115 /* requests queued in sort_list */
116 int queued[2];
117 /* currently allocated requests */
118 int allocated[2];
119 /* fifo list of requests in sort_list */
120 struct list_head fifo;
122 /* time when queue got scheduled in to dispatch first request. */
123 unsigned long dispatch_start;
124 unsigned int allocated_slice;
125 unsigned int slice_dispatch;
126 /* time when first request from queue completed and slice started. */
127 unsigned long slice_start;
128 unsigned long slice_end;
129 long slice_resid;
131 /* pending priority requests */
132 int prio_pending;
133 /* number of requests that are on the dispatch list or inside driver */
134 int dispatched;
136 /* io prio of this group */
137 unsigned short ioprio, org_ioprio;
138 unsigned short ioprio_class;
140 pid_t pid;
142 u32 seek_history;
143 sector_t last_request_pos;
145 struct cfq_rb_root *service_tree;
146 struct cfq_queue *new_cfqq;
147 struct cfq_group *cfqg;
148 /* Number of sectors dispatched from queue in single dispatch round */
149 unsigned long nr_sectors;
153 * First index in the service_trees.
154 * IDLE is handled separately, so it has negative index
156 enum wl_prio_t {
157 BE_WORKLOAD = 0,
158 RT_WORKLOAD = 1,
159 IDLE_WORKLOAD = 2,
160 CFQ_PRIO_NR,
164 * Second index in the service_trees.
166 enum wl_type_t {
167 ASYNC_WORKLOAD = 0,
168 SYNC_NOIDLE_WORKLOAD = 1,
169 SYNC_WORKLOAD = 2
172 /* This is per cgroup per device grouping structure */
173 struct cfq_group {
174 /* group service_tree member */
175 struct rb_node rb_node;
177 /* group service_tree key */
178 u64 vdisktime;
179 unsigned int weight;
180 unsigned int new_weight;
181 bool needs_update;
183 /* number of cfqq currently on this group */
184 int nr_cfqq;
187 * Per group busy queues average. Useful for workload slice calc. We
188 * create the array for each prio class but at run time it is used
189 * only for RT and BE class and slot for IDLE class remains unused.
190 * This is primarily done to avoid confusion and a gcc warning.
192 unsigned int busy_queues_avg[CFQ_PRIO_NR];
194 * rr lists of queues with requests. We maintain service trees for
195 * RT and BE classes. These trees are subdivided in subclasses
196 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
197 * class there is no subclassification and all the cfq queues go on
198 * a single tree service_tree_idle.
199 * Counts are embedded in the cfq_rb_root
201 struct cfq_rb_root service_trees[2][3];
202 struct cfq_rb_root service_tree_idle;
204 unsigned long saved_workload_slice;
205 enum wl_type_t saved_workload;
206 enum wl_prio_t saved_serving_prio;
207 struct blkio_group blkg;
208 #ifdef CONFIG_CFQ_GROUP_IOSCHED
209 struct hlist_node cfqd_node;
210 int ref;
211 #endif
212 /* number of requests that are on the dispatch list or inside driver */
213 int dispatched;
214 struct cfq_ttime ttime;
218 * Per block device queue structure
220 struct cfq_data {
221 struct request_queue *queue;
222 /* Root service tree for cfq_groups */
223 struct cfq_rb_root grp_service_tree;
224 struct cfq_group root_group;
227 * The priority currently being served
229 enum wl_prio_t serving_prio;
230 enum wl_type_t serving_type;
231 unsigned long workload_expires;
232 struct cfq_group *serving_group;
235 * Each priority tree is sorted by next_request position. These
236 * trees are used when determining if two or more queues are
237 * interleaving requests (see cfq_close_cooperator).
239 struct rb_root prio_trees[CFQ_PRIO_LISTS];
241 unsigned int busy_queues;
242 unsigned int busy_sync_queues;
244 int rq_in_driver;
245 int rq_in_flight[2];
248 * queue-depth detection
250 int rq_queued;
251 int hw_tag;
253 * hw_tag can be
254 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
255 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
256 * 0 => no NCQ
258 int hw_tag_est_depth;
259 unsigned int hw_tag_samples;
262 * idle window management
264 struct timer_list idle_slice_timer;
265 struct work_struct unplug_work;
267 struct cfq_queue *active_queue;
268 struct cfq_io_context *active_cic;
271 * async queue for each priority case
273 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
274 struct cfq_queue *async_idle_cfqq;
276 sector_t last_position;
279 * tunables, see top of file
281 unsigned int cfq_quantum;
282 unsigned int cfq_fifo_expire[2];
283 unsigned int cfq_back_penalty;
284 unsigned int cfq_back_max;
285 unsigned int cfq_slice[2];
286 unsigned int cfq_slice_async_rq;
287 unsigned int cfq_slice_idle;
288 unsigned int cfq_group_idle;
289 unsigned int cfq_latency;
291 struct list_head cic_list;
294 * Fallback dummy cfqq for extreme OOM conditions
296 struct cfq_queue oom_cfqq;
298 unsigned long last_delayed_sync;
300 /* List of cfq groups being managed on this device*/
301 struct hlist_head cfqg_list;
303 /* Number of groups which are on blkcg->blkg_list */
304 unsigned int nr_blkcg_linked_grps;
307 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
309 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
310 enum wl_prio_t prio,
311 enum wl_type_t type)
313 if (!cfqg)
314 return NULL;
316 if (prio == IDLE_WORKLOAD)
317 return &cfqg->service_tree_idle;
319 return &cfqg->service_trees[prio][type];
322 enum cfqq_state_flags {
323 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
324 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
325 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
326 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
327 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
328 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
329 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
330 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
331 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
332 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
333 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
334 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
335 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
338 #define CFQ_CFQQ_FNS(name) \
339 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
341 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
343 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
345 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
347 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
349 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
352 CFQ_CFQQ_FNS(on_rr);
353 CFQ_CFQQ_FNS(wait_request);
354 CFQ_CFQQ_FNS(must_dispatch);
355 CFQ_CFQQ_FNS(must_alloc_slice);
356 CFQ_CFQQ_FNS(fifo_expire);
357 CFQ_CFQQ_FNS(idle_window);
358 CFQ_CFQQ_FNS(prio_changed);
359 CFQ_CFQQ_FNS(slice_new);
360 CFQ_CFQQ_FNS(sync);
361 CFQ_CFQQ_FNS(coop);
362 CFQ_CFQQ_FNS(split_coop);
363 CFQ_CFQQ_FNS(deep);
364 CFQ_CFQQ_FNS(wait_busy);
365 #undef CFQ_CFQQ_FNS
367 #ifdef CONFIG_CFQ_GROUP_IOSCHED
368 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
369 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
370 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
371 blkg_path(&(cfqq)->cfqg->blkg), ##args)
373 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
374 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
375 blkg_path(&(cfqg)->blkg), ##args) \
377 #else
378 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
379 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
380 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
381 #endif
382 #define cfq_log(cfqd, fmt, args...) \
383 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
385 /* Traverses through cfq group service trees */
386 #define for_each_cfqg_st(cfqg, i, j, st) \
387 for (i = 0; i <= IDLE_WORKLOAD; i++) \
388 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
389 : &cfqg->service_tree_idle; \
390 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
391 (i == IDLE_WORKLOAD && j == 0); \
392 j++, st = i < IDLE_WORKLOAD ? \
393 &cfqg->service_trees[i][j]: NULL) \
395 static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
396 struct cfq_ttime *ttime, bool group_idle)
398 unsigned long slice;
399 if (!sample_valid(ttime->ttime_samples))
400 return false;
401 if (group_idle)
402 slice = cfqd->cfq_group_idle;
403 else
404 slice = cfqd->cfq_slice_idle;
405 return ttime->ttime_mean > slice;
408 static inline bool iops_mode(struct cfq_data *cfqd)
411 * If we are not idling on queues and it is a NCQ drive, parallel
412 * execution of requests is on and measuring time is not possible
413 * in most of the cases until and unless we drive shallower queue
414 * depths and that becomes a performance bottleneck. In such cases
415 * switch to start providing fairness in terms of number of IOs.
417 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
418 return true;
419 else
420 return false;
423 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
425 if (cfq_class_idle(cfqq))
426 return IDLE_WORKLOAD;
427 if (cfq_class_rt(cfqq))
428 return RT_WORKLOAD;
429 return BE_WORKLOAD;
433 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
435 if (!cfq_cfqq_sync(cfqq))
436 return ASYNC_WORKLOAD;
437 if (!cfq_cfqq_idle_window(cfqq))
438 return SYNC_NOIDLE_WORKLOAD;
439 return SYNC_WORKLOAD;
442 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
443 struct cfq_data *cfqd,
444 struct cfq_group *cfqg)
446 if (wl == IDLE_WORKLOAD)
447 return cfqg->service_tree_idle.count;
449 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
450 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
451 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
454 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
455 struct cfq_group *cfqg)
457 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
458 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
461 static void cfq_dispatch_insert(struct request_queue *, struct request *);
462 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
463 struct io_context *, gfp_t);
464 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
465 struct io_context *);
467 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
468 bool is_sync)
470 return cic->cfqq[is_sync];
473 static inline void cic_set_cfqq(struct cfq_io_context *cic,
474 struct cfq_queue *cfqq, bool is_sync)
476 cic->cfqq[is_sync] = cfqq;
479 #define CIC_DEAD_KEY 1ul
480 #define CIC_DEAD_INDEX_SHIFT 1
482 static inline void *cfqd_dead_key(struct cfq_data *cfqd)
484 return (void *)(cfqd->queue->id << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
487 static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
489 struct cfq_data *cfqd = cic->key;
491 if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
492 return NULL;
494 return cfqd;
498 * We regard a request as SYNC, if it's either a read or has the SYNC bit
499 * set (in which case it could also be direct WRITE).
501 static inline bool cfq_bio_sync(struct bio *bio)
503 return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
507 * scheduler run of queue, if there are requests pending and no one in the
508 * driver that will restart queueing
510 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
512 if (cfqd->busy_queues) {
513 cfq_log(cfqd, "schedule dispatch");
514 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
519 * Scale schedule slice based on io priority. Use the sync time slice only
520 * if a queue is marked sync and has sync io queued. A sync queue with async
521 * io only, should not get full sync slice length.
523 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
524 unsigned short prio)
526 const int base_slice = cfqd->cfq_slice[sync];
528 WARN_ON(prio >= IOPRIO_BE_NR);
530 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
533 static inline int
534 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
536 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
539 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
541 u64 d = delta << CFQ_SERVICE_SHIFT;
543 d = d * BLKIO_WEIGHT_DEFAULT;
544 do_div(d, cfqg->weight);
545 return d;
548 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
550 s64 delta = (s64)(vdisktime - min_vdisktime);
551 if (delta > 0)
552 min_vdisktime = vdisktime;
554 return min_vdisktime;
557 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
559 s64 delta = (s64)(vdisktime - min_vdisktime);
560 if (delta < 0)
561 min_vdisktime = vdisktime;
563 return min_vdisktime;
566 static void update_min_vdisktime(struct cfq_rb_root *st)
568 struct cfq_group *cfqg;
570 if (st->left) {
571 cfqg = rb_entry_cfqg(st->left);
572 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
573 cfqg->vdisktime);
578 * get averaged number of queues of RT/BE priority.
579 * average is updated, with a formula that gives more weight to higher numbers,
580 * to quickly follows sudden increases and decrease slowly
583 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
584 struct cfq_group *cfqg, bool rt)
586 unsigned min_q, max_q;
587 unsigned mult = cfq_hist_divisor - 1;
588 unsigned round = cfq_hist_divisor / 2;
589 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
591 min_q = min(cfqg->busy_queues_avg[rt], busy);
592 max_q = max(cfqg->busy_queues_avg[rt], busy);
593 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
594 cfq_hist_divisor;
595 return cfqg->busy_queues_avg[rt];
598 static inline unsigned
599 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
601 struct cfq_rb_root *st = &cfqd->grp_service_tree;
603 return cfq_target_latency * cfqg->weight / st->total_weight;
606 static inline unsigned
607 cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
609 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
610 if (cfqd->cfq_latency) {
612 * interested queues (we consider only the ones with the same
613 * priority class in the cfq group)
615 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
616 cfq_class_rt(cfqq));
617 unsigned sync_slice = cfqd->cfq_slice[1];
618 unsigned expect_latency = sync_slice * iq;
619 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
621 if (expect_latency > group_slice) {
622 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
623 /* scale low_slice according to IO priority
624 * and sync vs async */
625 unsigned low_slice =
626 min(slice, base_low_slice * slice / sync_slice);
627 /* the adapted slice value is scaled to fit all iqs
628 * into the target latency */
629 slice = max(slice * group_slice / expect_latency,
630 low_slice);
633 return slice;
636 static inline void
637 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
639 unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
641 cfqq->slice_start = jiffies;
642 cfqq->slice_end = jiffies + slice;
643 cfqq->allocated_slice = slice;
644 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
648 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
649 * isn't valid until the first request from the dispatch is activated
650 * and the slice time set.
652 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
654 if (cfq_cfqq_slice_new(cfqq))
655 return false;
656 if (time_before(jiffies, cfqq->slice_end))
657 return false;
659 return true;
663 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
664 * We choose the request that is closest to the head right now. Distance
665 * behind the head is penalized and only allowed to a certain extent.
667 static struct request *
668 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
670 sector_t s1, s2, d1 = 0, d2 = 0;
671 unsigned long back_max;
672 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
673 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
674 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
676 if (rq1 == NULL || rq1 == rq2)
677 return rq2;
678 if (rq2 == NULL)
679 return rq1;
681 if (rq_is_sync(rq1) != rq_is_sync(rq2))
682 return rq_is_sync(rq1) ? rq1 : rq2;
684 if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
685 return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
687 s1 = blk_rq_pos(rq1);
688 s2 = blk_rq_pos(rq2);
691 * by definition, 1KiB is 2 sectors
693 back_max = cfqd->cfq_back_max * 2;
696 * Strict one way elevator _except_ in the case where we allow
697 * short backward seeks which are biased as twice the cost of a
698 * similar forward seek.
700 if (s1 >= last)
701 d1 = s1 - last;
702 else if (s1 + back_max >= last)
703 d1 = (last - s1) * cfqd->cfq_back_penalty;
704 else
705 wrap |= CFQ_RQ1_WRAP;
707 if (s2 >= last)
708 d2 = s2 - last;
709 else if (s2 + back_max >= last)
710 d2 = (last - s2) * cfqd->cfq_back_penalty;
711 else
712 wrap |= CFQ_RQ2_WRAP;
714 /* Found required data */
717 * By doing switch() on the bit mask "wrap" we avoid having to
718 * check two variables for all permutations: --> faster!
720 switch (wrap) {
721 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
722 if (d1 < d2)
723 return rq1;
724 else if (d2 < d1)
725 return rq2;
726 else {
727 if (s1 >= s2)
728 return rq1;
729 else
730 return rq2;
733 case CFQ_RQ2_WRAP:
734 return rq1;
735 case CFQ_RQ1_WRAP:
736 return rq2;
737 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
738 default:
740 * Since both rqs are wrapped,
741 * start with the one that's further behind head
742 * (--> only *one* back seek required),
743 * since back seek takes more time than forward.
745 if (s1 <= s2)
746 return rq1;
747 else
748 return rq2;
753 * The below is leftmost cache rbtree addon
755 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
757 /* Service tree is empty */
758 if (!root->count)
759 return NULL;
761 if (!root->left)
762 root->left = rb_first(&root->rb);
764 if (root->left)
765 return rb_entry(root->left, struct cfq_queue, rb_node);
767 return NULL;
770 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
772 if (!root->left)
773 root->left = rb_first(&root->rb);
775 if (root->left)
776 return rb_entry_cfqg(root->left);
778 return NULL;
781 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
783 rb_erase(n, root);
784 RB_CLEAR_NODE(n);
787 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
789 if (root->left == n)
790 root->left = NULL;
791 rb_erase_init(n, &root->rb);
792 --root->count;
796 * would be nice to take fifo expire time into account as well
798 static struct request *
799 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
800 struct request *last)
802 struct rb_node *rbnext = rb_next(&last->rb_node);
803 struct rb_node *rbprev = rb_prev(&last->rb_node);
804 struct request *next = NULL, *prev = NULL;
806 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
808 if (rbprev)
809 prev = rb_entry_rq(rbprev);
811 if (rbnext)
812 next = rb_entry_rq(rbnext);
813 else {
814 rbnext = rb_first(&cfqq->sort_list);
815 if (rbnext && rbnext != &last->rb_node)
816 next = rb_entry_rq(rbnext);
819 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
822 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
823 struct cfq_queue *cfqq)
826 * just an approximation, should be ok.
828 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
829 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
832 static inline s64
833 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
835 return cfqg->vdisktime - st->min_vdisktime;
838 static void
839 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
841 struct rb_node **node = &st->rb.rb_node;
842 struct rb_node *parent = NULL;
843 struct cfq_group *__cfqg;
844 s64 key = cfqg_key(st, cfqg);
845 int left = 1;
847 while (*node != NULL) {
848 parent = *node;
849 __cfqg = rb_entry_cfqg(parent);
851 if (key < cfqg_key(st, __cfqg))
852 node = &parent->rb_left;
853 else {
854 node = &parent->rb_right;
855 left = 0;
859 if (left)
860 st->left = &cfqg->rb_node;
862 rb_link_node(&cfqg->rb_node, parent, node);
863 rb_insert_color(&cfqg->rb_node, &st->rb);
866 static void
867 cfq_update_group_weight(struct cfq_group *cfqg)
869 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
870 if (cfqg->needs_update) {
871 cfqg->weight = cfqg->new_weight;
872 cfqg->needs_update = false;
876 static void
877 cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
879 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
881 cfq_update_group_weight(cfqg);
882 __cfq_group_service_tree_add(st, cfqg);
883 st->total_weight += cfqg->weight;
886 static void
887 cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
889 struct cfq_rb_root *st = &cfqd->grp_service_tree;
890 struct cfq_group *__cfqg;
891 struct rb_node *n;
893 cfqg->nr_cfqq++;
894 if (!RB_EMPTY_NODE(&cfqg->rb_node))
895 return;
898 * Currently put the group at the end. Later implement something
899 * so that groups get lesser vtime based on their weights, so that
900 * if group does not loose all if it was not continuously backlogged.
902 n = rb_last(&st->rb);
903 if (n) {
904 __cfqg = rb_entry_cfqg(n);
905 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
906 } else
907 cfqg->vdisktime = st->min_vdisktime;
908 cfq_group_service_tree_add(st, cfqg);
911 static void
912 cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
914 st->total_weight -= cfqg->weight;
915 if (!RB_EMPTY_NODE(&cfqg->rb_node))
916 cfq_rb_erase(&cfqg->rb_node, st);
919 static void
920 cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
922 struct cfq_rb_root *st = &cfqd->grp_service_tree;
924 BUG_ON(cfqg->nr_cfqq < 1);
925 cfqg->nr_cfqq--;
927 /* If there are other cfq queues under this group, don't delete it */
928 if (cfqg->nr_cfqq)
929 return;
931 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
932 cfq_group_service_tree_del(st, cfqg);
933 cfqg->saved_workload_slice = 0;
934 cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
937 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
938 unsigned int *unaccounted_time)
940 unsigned int slice_used;
943 * Queue got expired before even a single request completed or
944 * got expired immediately after first request completion.
946 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
948 * Also charge the seek time incurred to the group, otherwise
949 * if there are mutiple queues in the group, each can dispatch
950 * a single request on seeky media and cause lots of seek time
951 * and group will never know it.
953 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
955 } else {
956 slice_used = jiffies - cfqq->slice_start;
957 if (slice_used > cfqq->allocated_slice) {
958 *unaccounted_time = slice_used - cfqq->allocated_slice;
959 slice_used = cfqq->allocated_slice;
961 if (time_after(cfqq->slice_start, cfqq->dispatch_start))
962 *unaccounted_time += cfqq->slice_start -
963 cfqq->dispatch_start;
966 return slice_used;
969 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
970 struct cfq_queue *cfqq)
972 struct cfq_rb_root *st = &cfqd->grp_service_tree;
973 unsigned int used_sl, charge, unaccounted_sl = 0;
974 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
975 - cfqg->service_tree_idle.count;
977 BUG_ON(nr_sync < 0);
978 used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
980 if (iops_mode(cfqd))
981 charge = cfqq->slice_dispatch;
982 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
983 charge = cfqq->allocated_slice;
985 /* Can't update vdisktime while group is on service tree */
986 cfq_group_service_tree_del(st, cfqg);
987 cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
988 /* If a new weight was requested, update now, off tree */
989 cfq_group_service_tree_add(st, cfqg);
991 /* This group is being expired. Save the context */
992 if (time_after(cfqd->workload_expires, jiffies)) {
993 cfqg->saved_workload_slice = cfqd->workload_expires
994 - jiffies;
995 cfqg->saved_workload = cfqd->serving_type;
996 cfqg->saved_serving_prio = cfqd->serving_prio;
997 } else
998 cfqg->saved_workload_slice = 0;
1000 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
1001 st->min_vdisktime);
1002 cfq_log_cfqq(cfqq->cfqd, cfqq,
1003 "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
1004 used_sl, cfqq->slice_dispatch, charge,
1005 iops_mode(cfqd), cfqq->nr_sectors);
1006 cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl,
1007 unaccounted_sl);
1008 cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
1011 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1012 static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
1014 if (blkg)
1015 return container_of(blkg, struct cfq_group, blkg);
1016 return NULL;
1019 static void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
1020 unsigned int weight)
1022 struct cfq_group *cfqg = cfqg_of_blkg(blkg);
1023 cfqg->new_weight = weight;
1024 cfqg->needs_update = true;
1027 static void cfq_init_add_cfqg_lists(struct cfq_data *cfqd,
1028 struct cfq_group *cfqg, struct blkio_cgroup *blkcg)
1030 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1031 unsigned int major, minor;
1034 * Add group onto cgroup list. It might happen that bdi->dev is
1035 * not initialized yet. Initialize this new group without major
1036 * and minor info and this info will be filled in once a new thread
1037 * comes for IO.
1039 if (bdi->dev) {
1040 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1041 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1042 (void *)cfqd, MKDEV(major, minor));
1043 } else
1044 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1045 (void *)cfqd, 0);
1047 cfqd->nr_blkcg_linked_grps++;
1048 cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
1050 /* Add group on cfqd list */
1051 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
1055 * Should be called from sleepable context. No request queue lock as per
1056 * cpu stats are allocated dynamically and alloc_percpu needs to be called
1057 * from sleepable context.
1059 static struct cfq_group * cfq_alloc_cfqg(struct cfq_data *cfqd)
1061 struct cfq_group *cfqg = NULL;
1062 int i, j, ret;
1063 struct cfq_rb_root *st;
1065 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
1066 if (!cfqg)
1067 return NULL;
1069 for_each_cfqg_st(cfqg, i, j, st)
1070 *st = CFQ_RB_ROOT;
1071 RB_CLEAR_NODE(&cfqg->rb_node);
1073 cfqg->ttime.last_end_request = jiffies;
1076 * Take the initial reference that will be released on destroy
1077 * This can be thought of a joint reference by cgroup and
1078 * elevator which will be dropped by either elevator exit
1079 * or cgroup deletion path depending on who is exiting first.
1081 cfqg->ref = 1;
1083 ret = blkio_alloc_blkg_stats(&cfqg->blkg);
1084 if (ret) {
1085 kfree(cfqg);
1086 return NULL;
1089 return cfqg;
1092 static struct cfq_group *
1093 cfq_find_cfqg(struct cfq_data *cfqd, struct blkio_cgroup *blkcg)
1095 struct cfq_group *cfqg = NULL;
1096 void *key = cfqd;
1097 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1098 unsigned int major, minor;
1101 * This is the common case when there are no blkio cgroups.
1102 * Avoid lookup in this case
1104 if (blkcg == &blkio_root_cgroup)
1105 cfqg = &cfqd->root_group;
1106 else
1107 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
1109 if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
1110 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1111 cfqg->blkg.dev = MKDEV(major, minor);
1114 return cfqg;
1118 * Search for the cfq group current task belongs to. request_queue lock must
1119 * be held.
1121 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
1123 struct blkio_cgroup *blkcg;
1124 struct cfq_group *cfqg = NULL, *__cfqg = NULL;
1125 struct request_queue *q = cfqd->queue;
1127 rcu_read_lock();
1128 blkcg = task_blkio_cgroup(current);
1129 cfqg = cfq_find_cfqg(cfqd, blkcg);
1130 if (cfqg) {
1131 rcu_read_unlock();
1132 return cfqg;
1136 * Need to allocate a group. Allocation of group also needs allocation
1137 * of per cpu stats which in-turn takes a mutex() and can block. Hence
1138 * we need to drop rcu lock and queue_lock before we call alloc.
1140 * Not taking any queue reference here and assuming that queue is
1141 * around by the time we return. CFQ queue allocation code does
1142 * the same. It might be racy though.
1145 rcu_read_unlock();
1146 spin_unlock_irq(q->queue_lock);
1148 cfqg = cfq_alloc_cfqg(cfqd);
1150 spin_lock_irq(q->queue_lock);
1152 rcu_read_lock();
1153 blkcg = task_blkio_cgroup(current);
1156 * If some other thread already allocated the group while we were
1157 * not holding queue lock, free up the group
1159 __cfqg = cfq_find_cfqg(cfqd, blkcg);
1161 if (__cfqg) {
1162 kfree(cfqg);
1163 rcu_read_unlock();
1164 return __cfqg;
1167 if (!cfqg)
1168 cfqg = &cfqd->root_group;
1170 cfq_init_add_cfqg_lists(cfqd, cfqg, blkcg);
1171 rcu_read_unlock();
1172 return cfqg;
1175 static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1177 cfqg->ref++;
1178 return cfqg;
1181 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1183 /* Currently, all async queues are mapped to root group */
1184 if (!cfq_cfqq_sync(cfqq))
1185 cfqg = &cfqq->cfqd->root_group;
1187 cfqq->cfqg = cfqg;
1188 /* cfqq reference on cfqg */
1189 cfqq->cfqg->ref++;
1192 static void cfq_put_cfqg(struct cfq_group *cfqg)
1194 struct cfq_rb_root *st;
1195 int i, j;
1197 BUG_ON(cfqg->ref <= 0);
1198 cfqg->ref--;
1199 if (cfqg->ref)
1200 return;
1201 for_each_cfqg_st(cfqg, i, j, st)
1202 BUG_ON(!RB_EMPTY_ROOT(&st->rb));
1203 free_percpu(cfqg->blkg.stats_cpu);
1204 kfree(cfqg);
1207 static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1209 /* Something wrong if we are trying to remove same group twice */
1210 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1212 hlist_del_init(&cfqg->cfqd_node);
1214 BUG_ON(cfqd->nr_blkcg_linked_grps <= 0);
1215 cfqd->nr_blkcg_linked_grps--;
1218 * Put the reference taken at the time of creation so that when all
1219 * queues are gone, group can be destroyed.
1221 cfq_put_cfqg(cfqg);
1224 static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1226 struct hlist_node *pos, *n;
1227 struct cfq_group *cfqg;
1229 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1231 * If cgroup removal path got to blk_group first and removed
1232 * it from cgroup list, then it will take care of destroying
1233 * cfqg also.
1235 if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
1236 cfq_destroy_cfqg(cfqd, cfqg);
1241 * Blk cgroup controller notification saying that blkio_group object is being
1242 * delinked as associated cgroup object is going away. That also means that
1243 * no new IO will come in this group. So get rid of this group as soon as
1244 * any pending IO in the group is finished.
1246 * This function is called under rcu_read_lock(). key is the rcu protected
1247 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1248 * read lock.
1250 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1251 * it should not be NULL as even if elevator was exiting, cgroup deltion
1252 * path got to it first.
1254 static void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1256 unsigned long flags;
1257 struct cfq_data *cfqd = key;
1259 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1260 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1261 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1264 #else /* GROUP_IOSCHED */
1265 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
1267 return &cfqd->root_group;
1270 static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1272 return cfqg;
1275 static inline void
1276 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1277 cfqq->cfqg = cfqg;
1280 static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1281 static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1283 #endif /* GROUP_IOSCHED */
1286 * The cfqd->service_trees holds all pending cfq_queue's that have
1287 * requests waiting to be processed. It is sorted in the order that
1288 * we will service the queues.
1290 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1291 bool add_front)
1293 struct rb_node **p, *parent;
1294 struct cfq_queue *__cfqq;
1295 unsigned long rb_key;
1296 struct cfq_rb_root *service_tree;
1297 int left;
1298 int new_cfqq = 1;
1300 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1301 cfqq_type(cfqq));
1302 if (cfq_class_idle(cfqq)) {
1303 rb_key = CFQ_IDLE_DELAY;
1304 parent = rb_last(&service_tree->rb);
1305 if (parent && parent != &cfqq->rb_node) {
1306 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1307 rb_key += __cfqq->rb_key;
1308 } else
1309 rb_key += jiffies;
1310 } else if (!add_front) {
1312 * Get our rb key offset. Subtract any residual slice
1313 * value carried from last service. A negative resid
1314 * count indicates slice overrun, and this should position
1315 * the next service time further away in the tree.
1317 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1318 rb_key -= cfqq->slice_resid;
1319 cfqq->slice_resid = 0;
1320 } else {
1321 rb_key = -HZ;
1322 __cfqq = cfq_rb_first(service_tree);
1323 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1326 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1327 new_cfqq = 0;
1329 * same position, nothing more to do
1331 if (rb_key == cfqq->rb_key &&
1332 cfqq->service_tree == service_tree)
1333 return;
1335 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1336 cfqq->service_tree = NULL;
1339 left = 1;
1340 parent = NULL;
1341 cfqq->service_tree = service_tree;
1342 p = &service_tree->rb.rb_node;
1343 while (*p) {
1344 struct rb_node **n;
1346 parent = *p;
1347 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1350 * sort by key, that represents service time.
1352 if (time_before(rb_key, __cfqq->rb_key))
1353 n = &(*p)->rb_left;
1354 else {
1355 n = &(*p)->rb_right;
1356 left = 0;
1359 p = n;
1362 if (left)
1363 service_tree->left = &cfqq->rb_node;
1365 cfqq->rb_key = rb_key;
1366 rb_link_node(&cfqq->rb_node, parent, p);
1367 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1368 service_tree->count++;
1369 if (add_front || !new_cfqq)
1370 return;
1371 cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
1374 static struct cfq_queue *
1375 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1376 sector_t sector, struct rb_node **ret_parent,
1377 struct rb_node ***rb_link)
1379 struct rb_node **p, *parent;
1380 struct cfq_queue *cfqq = NULL;
1382 parent = NULL;
1383 p = &root->rb_node;
1384 while (*p) {
1385 struct rb_node **n;
1387 parent = *p;
1388 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1391 * Sort strictly based on sector. Smallest to the left,
1392 * largest to the right.
1394 if (sector > blk_rq_pos(cfqq->next_rq))
1395 n = &(*p)->rb_right;
1396 else if (sector < blk_rq_pos(cfqq->next_rq))
1397 n = &(*p)->rb_left;
1398 else
1399 break;
1400 p = n;
1401 cfqq = NULL;
1404 *ret_parent = parent;
1405 if (rb_link)
1406 *rb_link = p;
1407 return cfqq;
1410 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1412 struct rb_node **p, *parent;
1413 struct cfq_queue *__cfqq;
1415 if (cfqq->p_root) {
1416 rb_erase(&cfqq->p_node, cfqq->p_root);
1417 cfqq->p_root = NULL;
1420 if (cfq_class_idle(cfqq))
1421 return;
1422 if (!cfqq->next_rq)
1423 return;
1425 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1426 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1427 blk_rq_pos(cfqq->next_rq), &parent, &p);
1428 if (!__cfqq) {
1429 rb_link_node(&cfqq->p_node, parent, p);
1430 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1431 } else
1432 cfqq->p_root = NULL;
1436 * Update cfqq's position in the service tree.
1438 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1441 * Resorting requires the cfqq to be on the RR list already.
1443 if (cfq_cfqq_on_rr(cfqq)) {
1444 cfq_service_tree_add(cfqd, cfqq, 0);
1445 cfq_prio_tree_add(cfqd, cfqq);
1450 * add to busy list of queues for service, trying to be fair in ordering
1451 * the pending list according to last request service
1453 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1455 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1456 BUG_ON(cfq_cfqq_on_rr(cfqq));
1457 cfq_mark_cfqq_on_rr(cfqq);
1458 cfqd->busy_queues++;
1459 if (cfq_cfqq_sync(cfqq))
1460 cfqd->busy_sync_queues++;
1462 cfq_resort_rr_list(cfqd, cfqq);
1466 * Called when the cfqq no longer has requests pending, remove it from
1467 * the service tree.
1469 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1471 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1472 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1473 cfq_clear_cfqq_on_rr(cfqq);
1475 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1476 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1477 cfqq->service_tree = NULL;
1479 if (cfqq->p_root) {
1480 rb_erase(&cfqq->p_node, cfqq->p_root);
1481 cfqq->p_root = NULL;
1484 cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
1485 BUG_ON(!cfqd->busy_queues);
1486 cfqd->busy_queues--;
1487 if (cfq_cfqq_sync(cfqq))
1488 cfqd->busy_sync_queues--;
1492 * rb tree support functions
1494 static void cfq_del_rq_rb(struct request *rq)
1496 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1497 const int sync = rq_is_sync(rq);
1499 BUG_ON(!cfqq->queued[sync]);
1500 cfqq->queued[sync]--;
1502 elv_rb_del(&cfqq->sort_list, rq);
1504 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1506 * Queue will be deleted from service tree when we actually
1507 * expire it later. Right now just remove it from prio tree
1508 * as it is empty.
1510 if (cfqq->p_root) {
1511 rb_erase(&cfqq->p_node, cfqq->p_root);
1512 cfqq->p_root = NULL;
1517 static void cfq_add_rq_rb(struct request *rq)
1519 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1520 struct cfq_data *cfqd = cfqq->cfqd;
1521 struct request *prev;
1523 cfqq->queued[rq_is_sync(rq)]++;
1525 elv_rb_add(&cfqq->sort_list, rq);
1527 if (!cfq_cfqq_on_rr(cfqq))
1528 cfq_add_cfqq_rr(cfqd, cfqq);
1531 * check if this request is a better next-serve candidate
1533 prev = cfqq->next_rq;
1534 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1537 * adjust priority tree position, if ->next_rq changes
1539 if (prev != cfqq->next_rq)
1540 cfq_prio_tree_add(cfqd, cfqq);
1542 BUG_ON(!cfqq->next_rq);
1545 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1547 elv_rb_del(&cfqq->sort_list, rq);
1548 cfqq->queued[rq_is_sync(rq)]--;
1549 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1550 rq_data_dir(rq), rq_is_sync(rq));
1551 cfq_add_rq_rb(rq);
1552 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
1553 &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
1554 rq_is_sync(rq));
1557 static struct request *
1558 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1560 struct task_struct *tsk = current;
1561 struct cfq_io_context *cic;
1562 struct cfq_queue *cfqq;
1564 cic = cfq_cic_lookup(cfqd, tsk->io_context);
1565 if (!cic)
1566 return NULL;
1568 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1569 if (cfqq) {
1570 sector_t sector = bio->bi_sector + bio_sectors(bio);
1572 return elv_rb_find(&cfqq->sort_list, sector);
1575 return NULL;
1578 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1580 struct cfq_data *cfqd = q->elevator->elevator_data;
1582 cfqd->rq_in_driver++;
1583 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1584 cfqd->rq_in_driver);
1586 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1589 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1591 struct cfq_data *cfqd = q->elevator->elevator_data;
1593 WARN_ON(!cfqd->rq_in_driver);
1594 cfqd->rq_in_driver--;
1595 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1596 cfqd->rq_in_driver);
1599 static void cfq_remove_request(struct request *rq)
1601 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1603 if (cfqq->next_rq == rq)
1604 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1606 list_del_init(&rq->queuelist);
1607 cfq_del_rq_rb(rq);
1609 cfqq->cfqd->rq_queued--;
1610 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1611 rq_data_dir(rq), rq_is_sync(rq));
1612 if (rq->cmd_flags & REQ_PRIO) {
1613 WARN_ON(!cfqq->prio_pending);
1614 cfqq->prio_pending--;
1618 static int cfq_merge(struct request_queue *q, struct request **req,
1619 struct bio *bio)
1621 struct cfq_data *cfqd = q->elevator->elevator_data;
1622 struct request *__rq;
1624 __rq = cfq_find_rq_fmerge(cfqd, bio);
1625 if (__rq && elv_rq_merge_ok(__rq, bio)) {
1626 *req = __rq;
1627 return ELEVATOR_FRONT_MERGE;
1630 return ELEVATOR_NO_MERGE;
1633 static void cfq_merged_request(struct request_queue *q, struct request *req,
1634 int type)
1636 if (type == ELEVATOR_FRONT_MERGE) {
1637 struct cfq_queue *cfqq = RQ_CFQQ(req);
1639 cfq_reposition_rq_rb(cfqq, req);
1643 static void cfq_bio_merged(struct request_queue *q, struct request *req,
1644 struct bio *bio)
1646 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
1647 bio_data_dir(bio), cfq_bio_sync(bio));
1650 static void
1651 cfq_merged_requests(struct request_queue *q, struct request *rq,
1652 struct request *next)
1654 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1656 * reposition in fifo if next is older than rq
1658 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1659 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1660 list_move(&rq->queuelist, &next->queuelist);
1661 rq_set_fifo_time(rq, rq_fifo_time(next));
1664 if (cfqq->next_rq == next)
1665 cfqq->next_rq = rq;
1666 cfq_remove_request(next);
1667 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
1668 rq_data_dir(next), rq_is_sync(next));
1671 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1672 struct bio *bio)
1674 struct cfq_data *cfqd = q->elevator->elevator_data;
1675 struct cfq_io_context *cic;
1676 struct cfq_queue *cfqq;
1679 * Disallow merge of a sync bio into an async request.
1681 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1682 return false;
1685 * Lookup the cfqq that this bio will be queued with. Allow
1686 * merge only if rq is queued there.
1688 cic = cfq_cic_lookup(cfqd, current->io_context);
1689 if (!cic)
1690 return false;
1692 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1693 return cfqq == RQ_CFQQ(rq);
1696 static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1698 del_timer(&cfqd->idle_slice_timer);
1699 cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
1702 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1703 struct cfq_queue *cfqq)
1705 if (cfqq) {
1706 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1707 cfqd->serving_prio, cfqd->serving_type);
1708 cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
1709 cfqq->slice_start = 0;
1710 cfqq->dispatch_start = jiffies;
1711 cfqq->allocated_slice = 0;
1712 cfqq->slice_end = 0;
1713 cfqq->slice_dispatch = 0;
1714 cfqq->nr_sectors = 0;
1716 cfq_clear_cfqq_wait_request(cfqq);
1717 cfq_clear_cfqq_must_dispatch(cfqq);
1718 cfq_clear_cfqq_must_alloc_slice(cfqq);
1719 cfq_clear_cfqq_fifo_expire(cfqq);
1720 cfq_mark_cfqq_slice_new(cfqq);
1722 cfq_del_timer(cfqd, cfqq);
1725 cfqd->active_queue = cfqq;
1729 * current cfqq expired its slice (or was too idle), select new one
1731 static void
1732 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1733 bool timed_out)
1735 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1737 if (cfq_cfqq_wait_request(cfqq))
1738 cfq_del_timer(cfqd, cfqq);
1740 cfq_clear_cfqq_wait_request(cfqq);
1741 cfq_clear_cfqq_wait_busy(cfqq);
1744 * If this cfqq is shared between multiple processes, check to
1745 * make sure that those processes are still issuing I/Os within
1746 * the mean seek distance. If not, it may be time to break the
1747 * queues apart again.
1749 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1750 cfq_mark_cfqq_split_coop(cfqq);
1753 * store what was left of this slice, if the queue idled/timed out
1755 if (timed_out) {
1756 if (cfq_cfqq_slice_new(cfqq))
1757 cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
1758 else
1759 cfqq->slice_resid = cfqq->slice_end - jiffies;
1760 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1763 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1765 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1766 cfq_del_cfqq_rr(cfqd, cfqq);
1768 cfq_resort_rr_list(cfqd, cfqq);
1770 if (cfqq == cfqd->active_queue)
1771 cfqd->active_queue = NULL;
1773 if (cfqd->active_cic) {
1774 put_io_context(cfqd->active_cic->ioc);
1775 cfqd->active_cic = NULL;
1779 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1781 struct cfq_queue *cfqq = cfqd->active_queue;
1783 if (cfqq)
1784 __cfq_slice_expired(cfqd, cfqq, timed_out);
1788 * Get next queue for service. Unless we have a queue preemption,
1789 * we'll simply select the first cfqq in the service tree.
1791 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1793 struct cfq_rb_root *service_tree =
1794 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1795 cfqd->serving_type);
1797 if (!cfqd->rq_queued)
1798 return NULL;
1800 /* There is nothing to dispatch */
1801 if (!service_tree)
1802 return NULL;
1803 if (RB_EMPTY_ROOT(&service_tree->rb))
1804 return NULL;
1805 return cfq_rb_first(service_tree);
1808 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1810 struct cfq_group *cfqg;
1811 struct cfq_queue *cfqq;
1812 int i, j;
1813 struct cfq_rb_root *st;
1815 if (!cfqd->rq_queued)
1816 return NULL;
1818 cfqg = cfq_get_next_cfqg(cfqd);
1819 if (!cfqg)
1820 return NULL;
1822 for_each_cfqg_st(cfqg, i, j, st)
1823 if ((cfqq = cfq_rb_first(st)) != NULL)
1824 return cfqq;
1825 return NULL;
1829 * Get and set a new active queue for service.
1831 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1832 struct cfq_queue *cfqq)
1834 if (!cfqq)
1835 cfqq = cfq_get_next_queue(cfqd);
1837 __cfq_set_active_queue(cfqd, cfqq);
1838 return cfqq;
1841 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1842 struct request *rq)
1844 if (blk_rq_pos(rq) >= cfqd->last_position)
1845 return blk_rq_pos(rq) - cfqd->last_position;
1846 else
1847 return cfqd->last_position - blk_rq_pos(rq);
1850 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1851 struct request *rq)
1853 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
1856 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1857 struct cfq_queue *cur_cfqq)
1859 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1860 struct rb_node *parent, *node;
1861 struct cfq_queue *__cfqq;
1862 sector_t sector = cfqd->last_position;
1864 if (RB_EMPTY_ROOT(root))
1865 return NULL;
1868 * First, if we find a request starting at the end of the last
1869 * request, choose it.
1871 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1872 if (__cfqq)
1873 return __cfqq;
1876 * If the exact sector wasn't found, the parent of the NULL leaf
1877 * will contain the closest sector.
1879 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1880 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1881 return __cfqq;
1883 if (blk_rq_pos(__cfqq->next_rq) < sector)
1884 node = rb_next(&__cfqq->p_node);
1885 else
1886 node = rb_prev(&__cfqq->p_node);
1887 if (!node)
1888 return NULL;
1890 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1891 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1892 return __cfqq;
1894 return NULL;
1898 * cfqd - obvious
1899 * cur_cfqq - passed in so that we don't decide that the current queue is
1900 * closely cooperating with itself.
1902 * So, basically we're assuming that that cur_cfqq has dispatched at least
1903 * one request, and that cfqd->last_position reflects a position on the disk
1904 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1905 * assumption.
1907 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1908 struct cfq_queue *cur_cfqq)
1910 struct cfq_queue *cfqq;
1912 if (cfq_class_idle(cur_cfqq))
1913 return NULL;
1914 if (!cfq_cfqq_sync(cur_cfqq))
1915 return NULL;
1916 if (CFQQ_SEEKY(cur_cfqq))
1917 return NULL;
1920 * Don't search priority tree if it's the only queue in the group.
1922 if (cur_cfqq->cfqg->nr_cfqq == 1)
1923 return NULL;
1926 * We should notice if some of the queues are cooperating, eg
1927 * working closely on the same area of the disk. In that case,
1928 * we can group them together and don't waste time idling.
1930 cfqq = cfqq_close(cfqd, cur_cfqq);
1931 if (!cfqq)
1932 return NULL;
1934 /* If new queue belongs to different cfq_group, don't choose it */
1935 if (cur_cfqq->cfqg != cfqq->cfqg)
1936 return NULL;
1939 * It only makes sense to merge sync queues.
1941 if (!cfq_cfqq_sync(cfqq))
1942 return NULL;
1943 if (CFQQ_SEEKY(cfqq))
1944 return NULL;
1947 * Do not merge queues of different priority classes
1949 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1950 return NULL;
1952 return cfqq;
1956 * Determine whether we should enforce idle window for this queue.
1959 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1961 enum wl_prio_t prio = cfqq_prio(cfqq);
1962 struct cfq_rb_root *service_tree = cfqq->service_tree;
1964 BUG_ON(!service_tree);
1965 BUG_ON(!service_tree->count);
1967 if (!cfqd->cfq_slice_idle)
1968 return false;
1970 /* We never do for idle class queues. */
1971 if (prio == IDLE_WORKLOAD)
1972 return false;
1974 /* We do for queues that were marked with idle window flag. */
1975 if (cfq_cfqq_idle_window(cfqq) &&
1976 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1977 return true;
1980 * Otherwise, we do only if they are the last ones
1981 * in their service tree.
1983 if (service_tree->count == 1 && cfq_cfqq_sync(cfqq) &&
1984 !cfq_io_thinktime_big(cfqd, &service_tree->ttime, false))
1985 return true;
1986 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1987 service_tree->count);
1988 return false;
1991 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1993 struct cfq_queue *cfqq = cfqd->active_queue;
1994 struct cfq_io_context *cic;
1995 unsigned long sl, group_idle = 0;
1998 * SSD device without seek penalty, disable idling. But only do so
1999 * for devices that support queuing, otherwise we still have a problem
2000 * with sync vs async workloads.
2002 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
2003 return;
2005 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
2006 WARN_ON(cfq_cfqq_slice_new(cfqq));
2009 * idle is disabled, either manually or by past process history
2011 if (!cfq_should_idle(cfqd, cfqq)) {
2012 /* no queue idling. Check for group idling */
2013 if (cfqd->cfq_group_idle)
2014 group_idle = cfqd->cfq_group_idle;
2015 else
2016 return;
2020 * still active requests from this queue, don't idle
2022 if (cfqq->dispatched)
2023 return;
2026 * task has exited, don't wait
2028 cic = cfqd->active_cic;
2029 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
2030 return;
2033 * If our average think time is larger than the remaining time
2034 * slice, then don't idle. This avoids overrunning the allotted
2035 * time slice.
2037 if (sample_valid(cic->ttime.ttime_samples) &&
2038 (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
2039 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
2040 cic->ttime.ttime_mean);
2041 return;
2044 /* There are other queues in the group, don't do group idle */
2045 if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2046 return;
2048 cfq_mark_cfqq_wait_request(cfqq);
2050 if (group_idle)
2051 sl = cfqd->cfq_group_idle;
2052 else
2053 sl = cfqd->cfq_slice_idle;
2055 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
2056 cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
2057 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2058 group_idle ? 1 : 0);
2062 * Move request from internal lists to the request queue dispatch list.
2064 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
2066 struct cfq_data *cfqd = q->elevator->elevator_data;
2067 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2069 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2071 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
2072 cfq_remove_request(rq);
2073 cfqq->dispatched++;
2074 (RQ_CFQG(rq))->dispatched++;
2075 elv_dispatch_sort(q, rq);
2077 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
2078 cfqq->nr_sectors += blk_rq_sectors(rq);
2079 cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
2080 rq_data_dir(rq), rq_is_sync(rq));
2084 * return expired entry, or NULL to just start from scratch in rbtree
2086 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
2088 struct request *rq = NULL;
2090 if (cfq_cfqq_fifo_expire(cfqq))
2091 return NULL;
2093 cfq_mark_cfqq_fifo_expire(cfqq);
2095 if (list_empty(&cfqq->fifo))
2096 return NULL;
2098 rq = rq_entry_fifo(cfqq->fifo.next);
2099 if (time_before(jiffies, rq_fifo_time(rq)))
2100 rq = NULL;
2102 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
2103 return rq;
2106 static inline int
2107 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2109 const int base_rq = cfqd->cfq_slice_async_rq;
2111 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
2113 return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
2117 * Must be called with the queue_lock held.
2119 static int cfqq_process_refs(struct cfq_queue *cfqq)
2121 int process_refs, io_refs;
2123 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2124 process_refs = cfqq->ref - io_refs;
2125 BUG_ON(process_refs < 0);
2126 return process_refs;
2129 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2131 int process_refs, new_process_refs;
2132 struct cfq_queue *__cfqq;
2135 * If there are no process references on the new_cfqq, then it is
2136 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2137 * chain may have dropped their last reference (not just their
2138 * last process reference).
2140 if (!cfqq_process_refs(new_cfqq))
2141 return;
2143 /* Avoid a circular list and skip interim queue merges */
2144 while ((__cfqq = new_cfqq->new_cfqq)) {
2145 if (__cfqq == cfqq)
2146 return;
2147 new_cfqq = __cfqq;
2150 process_refs = cfqq_process_refs(cfqq);
2151 new_process_refs = cfqq_process_refs(new_cfqq);
2153 * If the process for the cfqq has gone away, there is no
2154 * sense in merging the queues.
2156 if (process_refs == 0 || new_process_refs == 0)
2157 return;
2160 * Merge in the direction of the lesser amount of work.
2162 if (new_process_refs >= process_refs) {
2163 cfqq->new_cfqq = new_cfqq;
2164 new_cfqq->ref += process_refs;
2165 } else {
2166 new_cfqq->new_cfqq = cfqq;
2167 cfqq->ref += new_process_refs;
2171 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
2172 struct cfq_group *cfqg, enum wl_prio_t prio)
2174 struct cfq_queue *queue;
2175 int i;
2176 bool key_valid = false;
2177 unsigned long lowest_key = 0;
2178 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2180 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2181 /* select the one with lowest rb_key */
2182 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
2183 if (queue &&
2184 (!key_valid || time_before(queue->rb_key, lowest_key))) {
2185 lowest_key = queue->rb_key;
2186 cur_best = i;
2187 key_valid = true;
2191 return cur_best;
2194 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2196 unsigned slice;
2197 unsigned count;
2198 struct cfq_rb_root *st;
2199 unsigned group_slice;
2200 enum wl_prio_t original_prio = cfqd->serving_prio;
2202 /* Choose next priority. RT > BE > IDLE */
2203 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2204 cfqd->serving_prio = RT_WORKLOAD;
2205 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2206 cfqd->serving_prio = BE_WORKLOAD;
2207 else {
2208 cfqd->serving_prio = IDLE_WORKLOAD;
2209 cfqd->workload_expires = jiffies + 1;
2210 return;
2213 if (original_prio != cfqd->serving_prio)
2214 goto new_workload;
2217 * For RT and BE, we have to choose also the type
2218 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2219 * expiration time
2221 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2222 count = st->count;
2225 * check workload expiration, and that we still have other queues ready
2227 if (count && !time_after(jiffies, cfqd->workload_expires))
2228 return;
2230 new_workload:
2231 /* otherwise select new workload type */
2232 cfqd->serving_type =
2233 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2234 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2235 count = st->count;
2238 * the workload slice is computed as a fraction of target latency
2239 * proportional to the number of queues in that workload, over
2240 * all the queues in the same priority class
2242 group_slice = cfq_group_slice(cfqd, cfqg);
2244 slice = group_slice * count /
2245 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2246 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2248 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2249 unsigned int tmp;
2252 * Async queues are currently system wide. Just taking
2253 * proportion of queues with-in same group will lead to higher
2254 * async ratio system wide as generally root group is going
2255 * to have higher weight. A more accurate thing would be to
2256 * calculate system wide asnc/sync ratio.
2258 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2259 tmp = tmp/cfqd->busy_queues;
2260 slice = min_t(unsigned, slice, tmp);
2262 /* async workload slice is scaled down according to
2263 * the sync/async slice ratio. */
2264 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2265 } else
2266 /* sync workload slice is at least 2 * cfq_slice_idle */
2267 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2269 slice = max_t(unsigned, slice, CFQ_MIN_TT);
2270 cfq_log(cfqd, "workload slice:%d", slice);
2271 cfqd->workload_expires = jiffies + slice;
2274 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2276 struct cfq_rb_root *st = &cfqd->grp_service_tree;
2277 struct cfq_group *cfqg;
2279 if (RB_EMPTY_ROOT(&st->rb))
2280 return NULL;
2281 cfqg = cfq_rb_first_group(st);
2282 update_min_vdisktime(st);
2283 return cfqg;
2286 static void cfq_choose_cfqg(struct cfq_data *cfqd)
2288 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2290 cfqd->serving_group = cfqg;
2292 /* Restore the workload type data */
2293 if (cfqg->saved_workload_slice) {
2294 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2295 cfqd->serving_type = cfqg->saved_workload;
2296 cfqd->serving_prio = cfqg->saved_serving_prio;
2297 } else
2298 cfqd->workload_expires = jiffies - 1;
2300 choose_service_tree(cfqd, cfqg);
2304 * Select a queue for service. If we have a current active queue,
2305 * check whether to continue servicing it, or retrieve and set a new one.
2307 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2309 struct cfq_queue *cfqq, *new_cfqq = NULL;
2311 cfqq = cfqd->active_queue;
2312 if (!cfqq)
2313 goto new_queue;
2315 if (!cfqd->rq_queued)
2316 return NULL;
2319 * We were waiting for group to get backlogged. Expire the queue
2321 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2322 goto expire;
2325 * The active queue has run out of time, expire it and select new.
2327 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2329 * If slice had not expired at the completion of last request
2330 * we might not have turned on wait_busy flag. Don't expire
2331 * the queue yet. Allow the group to get backlogged.
2333 * The very fact that we have used the slice, that means we
2334 * have been idling all along on this queue and it should be
2335 * ok to wait for this request to complete.
2337 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2338 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2339 cfqq = NULL;
2340 goto keep_queue;
2341 } else
2342 goto check_group_idle;
2346 * The active queue has requests and isn't expired, allow it to
2347 * dispatch.
2349 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2350 goto keep_queue;
2353 * If another queue has a request waiting within our mean seek
2354 * distance, let it run. The expire code will check for close
2355 * cooperators and put the close queue at the front of the service
2356 * tree. If possible, merge the expiring queue with the new cfqq.
2358 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2359 if (new_cfqq) {
2360 if (!cfqq->new_cfqq)
2361 cfq_setup_merge(cfqq, new_cfqq);
2362 goto expire;
2366 * No requests pending. If the active queue still has requests in
2367 * flight or is idling for a new request, allow either of these
2368 * conditions to happen (or time out) before selecting a new queue.
2370 if (timer_pending(&cfqd->idle_slice_timer)) {
2371 cfqq = NULL;
2372 goto keep_queue;
2376 * This is a deep seek queue, but the device is much faster than
2377 * the queue can deliver, don't idle
2379 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
2380 (cfq_cfqq_slice_new(cfqq) ||
2381 (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
2382 cfq_clear_cfqq_deep(cfqq);
2383 cfq_clear_cfqq_idle_window(cfqq);
2386 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2387 cfqq = NULL;
2388 goto keep_queue;
2392 * If group idle is enabled and there are requests dispatched from
2393 * this group, wait for requests to complete.
2395 check_group_idle:
2396 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
2397 cfqq->cfqg->dispatched &&
2398 !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
2399 cfqq = NULL;
2400 goto keep_queue;
2403 expire:
2404 cfq_slice_expired(cfqd, 0);
2405 new_queue:
2407 * Current queue expired. Check if we have to switch to a new
2408 * service tree
2410 if (!new_cfqq)
2411 cfq_choose_cfqg(cfqd);
2413 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2414 keep_queue:
2415 return cfqq;
2418 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2420 int dispatched = 0;
2422 while (cfqq->next_rq) {
2423 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2424 dispatched++;
2427 BUG_ON(!list_empty(&cfqq->fifo));
2429 /* By default cfqq is not expired if it is empty. Do it explicitly */
2430 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2431 return dispatched;
2435 * Drain our current requests. Used for barriers and when switching
2436 * io schedulers on-the-fly.
2438 static int cfq_forced_dispatch(struct cfq_data *cfqd)
2440 struct cfq_queue *cfqq;
2441 int dispatched = 0;
2443 /* Expire the timeslice of the current active queue first */
2444 cfq_slice_expired(cfqd, 0);
2445 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2446 __cfq_set_active_queue(cfqd, cfqq);
2447 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2450 BUG_ON(cfqd->busy_queues);
2452 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2453 return dispatched;
2456 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2457 struct cfq_queue *cfqq)
2459 /* the queue hasn't finished any request, can't estimate */
2460 if (cfq_cfqq_slice_new(cfqq))
2461 return true;
2462 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2463 cfqq->slice_end))
2464 return true;
2466 return false;
2469 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2471 unsigned int max_dispatch;
2474 * Drain async requests before we start sync IO
2476 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2477 return false;
2480 * If this is an async queue and we have sync IO in flight, let it wait
2482 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2483 return false;
2485 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2486 if (cfq_class_idle(cfqq))
2487 max_dispatch = 1;
2490 * Does this cfqq already have too much IO in flight?
2492 if (cfqq->dispatched >= max_dispatch) {
2493 bool promote_sync = false;
2495 * idle queue must always only have a single IO in flight
2497 if (cfq_class_idle(cfqq))
2498 return false;
2501 * If there is only one sync queue
2502 * we can ignore async queue here and give the sync
2503 * queue no dispatch limit. The reason is a sync queue can
2504 * preempt async queue, limiting the sync queue doesn't make
2505 * sense. This is useful for aiostress test.
2507 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
2508 promote_sync = true;
2511 * We have other queues, don't allow more IO from this one
2513 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
2514 !promote_sync)
2515 return false;
2518 * Sole queue user, no limit
2520 if (cfqd->busy_queues == 1 || promote_sync)
2521 max_dispatch = -1;
2522 else
2524 * Normally we start throttling cfqq when cfq_quantum/2
2525 * requests have been dispatched. But we can drive
2526 * deeper queue depths at the beginning of slice
2527 * subjected to upper limit of cfq_quantum.
2528 * */
2529 max_dispatch = cfqd->cfq_quantum;
2533 * Async queues must wait a bit before being allowed dispatch.
2534 * We also ramp up the dispatch depth gradually for async IO,
2535 * based on the last sync IO we serviced
2537 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2538 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2539 unsigned int depth;
2541 depth = last_sync / cfqd->cfq_slice[1];
2542 if (!depth && !cfqq->dispatched)
2543 depth = 1;
2544 if (depth < max_dispatch)
2545 max_dispatch = depth;
2549 * If we're below the current max, allow a dispatch
2551 return cfqq->dispatched < max_dispatch;
2555 * Dispatch a request from cfqq, moving them to the request queue
2556 * dispatch list.
2558 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2560 struct request *rq;
2562 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2564 if (!cfq_may_dispatch(cfqd, cfqq))
2565 return false;
2568 * follow expired path, else get first next available
2570 rq = cfq_check_fifo(cfqq);
2571 if (!rq)
2572 rq = cfqq->next_rq;
2575 * insert request into driver dispatch list
2577 cfq_dispatch_insert(cfqd->queue, rq);
2579 if (!cfqd->active_cic) {
2580 struct cfq_io_context *cic = RQ_CIC(rq);
2582 atomic_long_inc(&cic->ioc->refcount);
2583 cfqd->active_cic = cic;
2586 return true;
2590 * Find the cfqq that we need to service and move a request from that to the
2591 * dispatch list
2593 static int cfq_dispatch_requests(struct request_queue *q, int force)
2595 struct cfq_data *cfqd = q->elevator->elevator_data;
2596 struct cfq_queue *cfqq;
2598 if (!cfqd->busy_queues)
2599 return 0;
2601 if (unlikely(force))
2602 return cfq_forced_dispatch(cfqd);
2604 cfqq = cfq_select_queue(cfqd);
2605 if (!cfqq)
2606 return 0;
2609 * Dispatch a request from this cfqq, if it is allowed
2611 if (!cfq_dispatch_request(cfqd, cfqq))
2612 return 0;
2614 cfqq->slice_dispatch++;
2615 cfq_clear_cfqq_must_dispatch(cfqq);
2618 * expire an async queue immediately if it has used up its slice. idle
2619 * queue always expire after 1 dispatch round.
2621 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2622 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2623 cfq_class_idle(cfqq))) {
2624 cfqq->slice_end = jiffies + 1;
2625 cfq_slice_expired(cfqd, 0);
2628 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2629 return 1;
2633 * task holds one reference to the queue, dropped when task exits. each rq
2634 * in-flight on this queue also holds a reference, dropped when rq is freed.
2636 * Each cfq queue took a reference on the parent group. Drop it now.
2637 * queue lock must be held here.
2639 static void cfq_put_queue(struct cfq_queue *cfqq)
2641 struct cfq_data *cfqd = cfqq->cfqd;
2642 struct cfq_group *cfqg;
2644 BUG_ON(cfqq->ref <= 0);
2646 cfqq->ref--;
2647 if (cfqq->ref)
2648 return;
2650 cfq_log_cfqq(cfqd, cfqq, "put_queue");
2651 BUG_ON(rb_first(&cfqq->sort_list));
2652 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2653 cfqg = cfqq->cfqg;
2655 if (unlikely(cfqd->active_queue == cfqq)) {
2656 __cfq_slice_expired(cfqd, cfqq, 0);
2657 cfq_schedule_dispatch(cfqd);
2660 BUG_ON(cfq_cfqq_on_rr(cfqq));
2661 kmem_cache_free(cfq_pool, cfqq);
2662 cfq_put_cfqg(cfqg);
2666 * Call func for each cic attached to this ioc.
2668 static void
2669 call_for_each_cic(struct io_context *ioc,
2670 void (*func)(struct io_context *, struct cfq_io_context *))
2672 struct cfq_io_context *cic;
2673 struct hlist_node *n;
2675 rcu_read_lock();
2677 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2678 func(ioc, cic);
2680 rcu_read_unlock();
2683 static void cfq_cic_free_rcu(struct rcu_head *head)
2685 struct cfq_io_context *cic;
2687 cic = container_of(head, struct cfq_io_context, rcu_head);
2689 kmem_cache_free(cfq_ioc_pool, cic);
2690 elv_ioc_count_dec(cfq_ioc_count);
2692 if (ioc_gone) {
2694 * CFQ scheduler is exiting, grab exit lock and check
2695 * the pending io context count. If it hits zero,
2696 * complete ioc_gone and set it back to NULL
2698 spin_lock(&ioc_gone_lock);
2699 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2700 complete(ioc_gone);
2701 ioc_gone = NULL;
2703 spin_unlock(&ioc_gone_lock);
2707 static void cfq_cic_free(struct cfq_io_context *cic)
2709 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2712 static void cfq_release_cic(struct cfq_io_context *cic)
2714 struct io_context *ioc = cic->ioc;
2715 unsigned long dead_key = (unsigned long) cic->key;
2717 BUG_ON(!(dead_key & CIC_DEAD_KEY));
2718 radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
2719 hlist_del_rcu(&cic->cic_list);
2720 cfq_cic_free(cic);
2723 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2725 unsigned long flags;
2727 spin_lock_irqsave(&ioc->lock, flags);
2728 cfq_release_cic(cic);
2729 spin_unlock_irqrestore(&ioc->lock, flags);
2733 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2734 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2735 * and ->trim() which is called with the task lock held
2737 static void cfq_free_io_context(struct io_context *ioc)
2740 * ioc->refcount is zero here, or we are called from elv_unregister(),
2741 * so no more cic's are allowed to be linked into this ioc. So it
2742 * should be ok to iterate over the known list, we will see all cic's
2743 * since no new ones are added.
2745 call_for_each_cic(ioc, cic_free_func);
2748 static void cfq_put_cooperator(struct cfq_queue *cfqq)
2750 struct cfq_queue *__cfqq, *next;
2753 * If this queue was scheduled to merge with another queue, be
2754 * sure to drop the reference taken on that queue (and others in
2755 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2757 __cfqq = cfqq->new_cfqq;
2758 while (__cfqq) {
2759 if (__cfqq == cfqq) {
2760 WARN(1, "cfqq->new_cfqq loop detected\n");
2761 break;
2763 next = __cfqq->new_cfqq;
2764 cfq_put_queue(__cfqq);
2765 __cfqq = next;
2769 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2771 if (unlikely(cfqq == cfqd->active_queue)) {
2772 __cfq_slice_expired(cfqd, cfqq, 0);
2773 cfq_schedule_dispatch(cfqd);
2776 cfq_put_cooperator(cfqq);
2778 cfq_put_queue(cfqq);
2781 static void cfq_exit_cic(struct cfq_io_context *cic)
2783 struct cfq_data *cfqd = cic_to_cfqd(cic);
2784 struct io_context *ioc = cic->ioc;
2786 list_del_init(&cic->queue_list);
2789 * Make sure dead mark is seen for dead queues
2791 smp_wmb();
2792 cic->key = cfqd_dead_key(cfqd);
2794 rcu_read_lock();
2795 if (rcu_dereference(ioc->ioc_data) == cic) {
2796 rcu_read_unlock();
2797 spin_lock(&ioc->lock);
2798 rcu_assign_pointer(ioc->ioc_data, NULL);
2799 spin_unlock(&ioc->lock);
2800 } else
2801 rcu_read_unlock();
2803 if (cic->cfqq[BLK_RW_ASYNC]) {
2804 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2805 cic->cfqq[BLK_RW_ASYNC] = NULL;
2808 if (cic->cfqq[BLK_RW_SYNC]) {
2809 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2810 cic->cfqq[BLK_RW_SYNC] = NULL;
2814 static void cfq_exit_single_io_context(struct io_context *ioc,
2815 struct cfq_io_context *cic)
2817 struct cfq_data *cfqd = cic_to_cfqd(cic);
2819 if (cfqd) {
2820 struct request_queue *q = cfqd->queue;
2821 unsigned long flags;
2823 spin_lock_irqsave(q->queue_lock, flags);
2826 * Ensure we get a fresh copy of the ->key to prevent
2827 * race between exiting task and queue
2829 smp_read_barrier_depends();
2830 if (cic->key == cfqd)
2831 cfq_exit_cic(cic);
2833 spin_unlock_irqrestore(q->queue_lock, flags);
2838 * The process that ioc belongs to has exited, we need to clean up
2839 * and put the internal structures we have that belongs to that process.
2841 static void cfq_exit_io_context(struct io_context *ioc)
2843 call_for_each_cic(ioc, cfq_exit_single_io_context);
2846 static struct cfq_io_context *
2847 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2849 struct cfq_io_context *cic;
2851 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2852 cfqd->queue->node);
2853 if (cic) {
2854 cic->ttime.last_end_request = jiffies;
2855 INIT_LIST_HEAD(&cic->queue_list);
2856 INIT_HLIST_NODE(&cic->cic_list);
2857 cic->dtor = cfq_free_io_context;
2858 cic->exit = cfq_exit_io_context;
2859 elv_ioc_count_inc(cfq_ioc_count);
2862 return cic;
2865 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2867 struct task_struct *tsk = current;
2868 int ioprio_class;
2870 if (!cfq_cfqq_prio_changed(cfqq))
2871 return;
2873 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2874 switch (ioprio_class) {
2875 default:
2876 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2877 case IOPRIO_CLASS_NONE:
2879 * no prio set, inherit CPU scheduling settings
2881 cfqq->ioprio = task_nice_ioprio(tsk);
2882 cfqq->ioprio_class = task_nice_ioclass(tsk);
2883 break;
2884 case IOPRIO_CLASS_RT:
2885 cfqq->ioprio = task_ioprio(ioc);
2886 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2887 break;
2888 case IOPRIO_CLASS_BE:
2889 cfqq->ioprio = task_ioprio(ioc);
2890 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2891 break;
2892 case IOPRIO_CLASS_IDLE:
2893 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2894 cfqq->ioprio = 7;
2895 cfq_clear_cfqq_idle_window(cfqq);
2896 break;
2900 * keep track of original prio settings in case we have to temporarily
2901 * elevate the priority of this queue
2903 cfqq->org_ioprio = cfqq->ioprio;
2904 cfq_clear_cfqq_prio_changed(cfqq);
2907 static void changed_ioprio(struct cfq_io_context *cic)
2909 struct cfq_data *cfqd = cic_to_cfqd(cic);
2910 struct cfq_queue *cfqq;
2911 unsigned long flags;
2913 if (unlikely(!cfqd))
2914 return;
2916 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2918 cfqq = cic->cfqq[BLK_RW_ASYNC];
2919 if (cfqq) {
2920 struct cfq_queue *new_cfqq;
2921 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2922 GFP_ATOMIC);
2923 if (new_cfqq) {
2924 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2925 cfq_put_queue(cfqq);
2929 cfqq = cic->cfqq[BLK_RW_SYNC];
2930 if (cfqq)
2931 cfq_mark_cfqq_prio_changed(cfqq);
2933 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2936 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2937 pid_t pid, bool is_sync)
2939 RB_CLEAR_NODE(&cfqq->rb_node);
2940 RB_CLEAR_NODE(&cfqq->p_node);
2941 INIT_LIST_HEAD(&cfqq->fifo);
2943 cfqq->ref = 0;
2944 cfqq->cfqd = cfqd;
2946 cfq_mark_cfqq_prio_changed(cfqq);
2948 if (is_sync) {
2949 if (!cfq_class_idle(cfqq))
2950 cfq_mark_cfqq_idle_window(cfqq);
2951 cfq_mark_cfqq_sync(cfqq);
2953 cfqq->pid = pid;
2956 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2957 static void changed_cgroup(struct cfq_io_context *cic)
2959 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2960 struct cfq_data *cfqd = cic_to_cfqd(cic);
2961 unsigned long flags;
2962 struct request_queue *q;
2964 if (unlikely(!cfqd))
2965 return;
2967 q = cfqd->queue;
2969 spin_lock_irqsave(q->queue_lock, flags);
2971 if (sync_cfqq) {
2973 * Drop reference to sync queue. A new sync queue will be
2974 * assigned in new group upon arrival of a fresh request.
2976 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2977 cic_set_cfqq(cic, NULL, 1);
2978 cfq_put_queue(sync_cfqq);
2981 spin_unlock_irqrestore(q->queue_lock, flags);
2983 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
2985 static struct cfq_queue *
2986 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2987 struct io_context *ioc, gfp_t gfp_mask)
2989 struct cfq_queue *cfqq, *new_cfqq = NULL;
2990 struct cfq_io_context *cic;
2991 struct cfq_group *cfqg;
2993 retry:
2994 cfqg = cfq_get_cfqg(cfqd);
2995 cic = cfq_cic_lookup(cfqd, ioc);
2996 /* cic always exists here */
2997 cfqq = cic_to_cfqq(cic, is_sync);
3000 * Always try a new alloc if we fell back to the OOM cfqq
3001 * originally, since it should just be a temporary situation.
3003 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3004 cfqq = NULL;
3005 if (new_cfqq) {
3006 cfqq = new_cfqq;
3007 new_cfqq = NULL;
3008 } else if (gfp_mask & __GFP_WAIT) {
3009 spin_unlock_irq(cfqd->queue->queue_lock);
3010 new_cfqq = kmem_cache_alloc_node(cfq_pool,
3011 gfp_mask | __GFP_ZERO,
3012 cfqd->queue->node);
3013 spin_lock_irq(cfqd->queue->queue_lock);
3014 if (new_cfqq)
3015 goto retry;
3016 } else {
3017 cfqq = kmem_cache_alloc_node(cfq_pool,
3018 gfp_mask | __GFP_ZERO,
3019 cfqd->queue->node);
3022 if (cfqq) {
3023 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3024 cfq_init_prio_data(cfqq, ioc);
3025 cfq_link_cfqq_cfqg(cfqq, cfqg);
3026 cfq_log_cfqq(cfqd, cfqq, "alloced");
3027 } else
3028 cfqq = &cfqd->oom_cfqq;
3031 if (new_cfqq)
3032 kmem_cache_free(cfq_pool, new_cfqq);
3034 return cfqq;
3037 static struct cfq_queue **
3038 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
3040 switch (ioprio_class) {
3041 case IOPRIO_CLASS_RT:
3042 return &cfqd->async_cfqq[0][ioprio];
3043 case IOPRIO_CLASS_BE:
3044 return &cfqd->async_cfqq[1][ioprio];
3045 case IOPRIO_CLASS_IDLE:
3046 return &cfqd->async_idle_cfqq;
3047 default:
3048 BUG();
3052 static struct cfq_queue *
3053 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
3054 gfp_t gfp_mask)
3056 const int ioprio = task_ioprio(ioc);
3057 const int ioprio_class = task_ioprio_class(ioc);
3058 struct cfq_queue **async_cfqq = NULL;
3059 struct cfq_queue *cfqq = NULL;
3061 if (!is_sync) {
3062 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
3063 cfqq = *async_cfqq;
3066 if (!cfqq)
3067 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
3070 * pin the queue now that it's allocated, scheduler exit will prune it
3072 if (!is_sync && !(*async_cfqq)) {
3073 cfqq->ref++;
3074 *async_cfqq = cfqq;
3077 cfqq->ref++;
3078 return cfqq;
3082 * We drop cfq io contexts lazily, so we may find a dead one.
3084 static void
3085 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
3086 struct cfq_io_context *cic)
3088 unsigned long flags;
3090 WARN_ON(!list_empty(&cic->queue_list));
3091 BUG_ON(cic->key != cfqd_dead_key(cfqd));
3093 spin_lock_irqsave(&ioc->lock, flags);
3095 BUG_ON(rcu_dereference_check(ioc->ioc_data,
3096 lockdep_is_held(&ioc->lock)) == cic);
3098 radix_tree_delete(&ioc->radix_root, cfqd->queue->id);
3099 hlist_del_rcu(&cic->cic_list);
3100 spin_unlock_irqrestore(&ioc->lock, flags);
3102 cfq_cic_free(cic);
3105 static struct cfq_io_context *
3106 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
3108 struct cfq_io_context *cic;
3109 unsigned long flags;
3111 if (unlikely(!ioc))
3112 return NULL;
3114 rcu_read_lock();
3117 * we maintain a last-hit cache, to avoid browsing over the tree
3119 cic = rcu_dereference(ioc->ioc_data);
3120 if (cic && cic->key == cfqd) {
3121 rcu_read_unlock();
3122 return cic;
3125 do {
3126 cic = radix_tree_lookup(&ioc->radix_root, cfqd->queue->id);
3127 rcu_read_unlock();
3128 if (!cic)
3129 break;
3130 if (unlikely(cic->key != cfqd)) {
3131 cfq_drop_dead_cic(cfqd, ioc, cic);
3132 rcu_read_lock();
3133 continue;
3136 spin_lock_irqsave(&ioc->lock, flags);
3137 rcu_assign_pointer(ioc->ioc_data, cic);
3138 spin_unlock_irqrestore(&ioc->lock, flags);
3139 break;
3140 } while (1);
3142 return cic;
3146 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
3147 * the process specific cfq io context when entered from the block layer.
3148 * Also adds the cic to a per-cfqd list, used when this queue is removed.
3150 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
3151 struct cfq_io_context *cic, gfp_t gfp_mask)
3153 unsigned long flags;
3154 int ret;
3156 ret = radix_tree_preload(gfp_mask);
3157 if (ret)
3158 goto out;
3160 cic->ioc = ioc;
3161 cic->key = cfqd;
3162 cic->q = cfqd->queue;
3164 spin_lock_irqsave(&ioc->lock, flags);
3165 ret = radix_tree_insert(&ioc->radix_root, cfqd->queue->id, cic);
3166 if (!ret)
3167 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
3168 spin_unlock_irqrestore(&ioc->lock, flags);
3170 radix_tree_preload_end();
3172 if (!ret) {
3173 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3174 list_add(&cic->queue_list, &cfqd->cic_list);
3175 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3177 out:
3178 if (ret)
3179 printk(KERN_ERR "cfq: cic link failed!\n");
3180 return ret;
3184 * Setup general io context and cfq io context. There can be several cfq
3185 * io contexts per general io context, if this process is doing io to more
3186 * than one device managed by cfq.
3188 static struct cfq_io_context *
3189 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
3191 struct io_context *ioc = NULL;
3192 struct cfq_io_context *cic = NULL;
3194 might_sleep_if(gfp_mask & __GFP_WAIT);
3196 ioc = current_io_context(gfp_mask, cfqd->queue->node);
3197 if (!ioc)
3198 goto err;
3200 cic = cfq_cic_lookup(cfqd, ioc);
3201 if (cic)
3202 goto out;
3204 cic = cfq_alloc_io_context(cfqd, gfp_mask);
3205 if (cic == NULL)
3206 goto err;
3208 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
3209 goto err;
3210 out:
3211 get_io_context(ioc);
3213 if (unlikely(cic->changed)) {
3214 if (test_and_clear_bit(CIC_IOPRIO_CHANGED, &cic->changed))
3215 changed_ioprio(cic);
3216 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3217 if (test_and_clear_bit(CIC_CGROUP_CHANGED, &cic->changed))
3218 changed_cgroup(cic);
3219 #endif
3222 return cic;
3223 err:
3224 if (cic)
3225 cfq_cic_free(cic);
3226 return NULL;
3229 static void
3230 __cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
3232 unsigned long elapsed = jiffies - ttime->last_end_request;
3233 elapsed = min(elapsed, 2UL * slice_idle);
3235 ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
3236 ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
3237 ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
3240 static void
3241 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3242 struct cfq_io_context *cic)
3244 if (cfq_cfqq_sync(cfqq)) {
3245 __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
3246 __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
3247 cfqd->cfq_slice_idle);
3249 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3250 __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
3251 #endif
3254 static void
3255 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3256 struct request *rq)
3258 sector_t sdist = 0;
3259 sector_t n_sec = blk_rq_sectors(rq);
3260 if (cfqq->last_request_pos) {
3261 if (cfqq->last_request_pos < blk_rq_pos(rq))
3262 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3263 else
3264 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3267 cfqq->seek_history <<= 1;
3268 if (blk_queue_nonrot(cfqd->queue))
3269 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3270 else
3271 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3275 * Disable idle window if the process thinks too long or seeks so much that
3276 * it doesn't matter
3278 static void
3279 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3280 struct cfq_io_context *cic)
3282 int old_idle, enable_idle;
3285 * Don't idle for async or idle io prio class
3287 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3288 return;
3290 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3292 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3293 cfq_mark_cfqq_deep(cfqq);
3295 if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3296 enable_idle = 0;
3297 else if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3298 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3299 enable_idle = 0;
3300 else if (sample_valid(cic->ttime.ttime_samples)) {
3301 if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
3302 enable_idle = 0;
3303 else
3304 enable_idle = 1;
3307 if (old_idle != enable_idle) {
3308 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3309 if (enable_idle)
3310 cfq_mark_cfqq_idle_window(cfqq);
3311 else
3312 cfq_clear_cfqq_idle_window(cfqq);
3317 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3318 * no or if we aren't sure, a 1 will cause a preempt.
3320 static bool
3321 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3322 struct request *rq)
3324 struct cfq_queue *cfqq;
3326 cfqq = cfqd->active_queue;
3327 if (!cfqq)
3328 return false;
3330 if (cfq_class_idle(new_cfqq))
3331 return false;
3333 if (cfq_class_idle(cfqq))
3334 return true;
3337 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3339 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3340 return false;
3343 * if the new request is sync, but the currently running queue is
3344 * not, let the sync request have priority.
3346 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3347 return true;
3349 if (new_cfqq->cfqg != cfqq->cfqg)
3350 return false;
3352 if (cfq_slice_used(cfqq))
3353 return true;
3355 /* Allow preemption only if we are idling on sync-noidle tree */
3356 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3357 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3358 new_cfqq->service_tree->count == 2 &&
3359 RB_EMPTY_ROOT(&cfqq->sort_list))
3360 return true;
3363 * So both queues are sync. Let the new request get disk time if
3364 * it's a metadata request and the current queue is doing regular IO.
3366 if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
3367 return true;
3370 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3372 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3373 return true;
3375 /* An idle queue should not be idle now for some reason */
3376 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3377 return true;
3379 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3380 return false;
3383 * if this request is as-good as one we would expect from the
3384 * current cfqq, let it preempt
3386 if (cfq_rq_close(cfqd, cfqq, rq))
3387 return true;
3389 return false;
3393 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3394 * let it have half of its nominal slice.
3396 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3398 struct cfq_queue *old_cfqq = cfqd->active_queue;
3400 cfq_log_cfqq(cfqd, cfqq, "preempt");
3401 cfq_slice_expired(cfqd, 1);
3404 * workload type is changed, don't save slice, otherwise preempt
3405 * doesn't happen
3407 if (cfqq_type(old_cfqq) != cfqq_type(cfqq))
3408 cfqq->cfqg->saved_workload_slice = 0;
3411 * Put the new queue at the front of the of the current list,
3412 * so we know that it will be selected next.
3414 BUG_ON(!cfq_cfqq_on_rr(cfqq));
3416 cfq_service_tree_add(cfqd, cfqq, 1);
3418 cfqq->slice_end = 0;
3419 cfq_mark_cfqq_slice_new(cfqq);
3423 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3424 * something we should do about it
3426 static void
3427 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3428 struct request *rq)
3430 struct cfq_io_context *cic = RQ_CIC(rq);
3432 cfqd->rq_queued++;
3433 if (rq->cmd_flags & REQ_PRIO)
3434 cfqq->prio_pending++;
3436 cfq_update_io_thinktime(cfqd, cfqq, cic);
3437 cfq_update_io_seektime(cfqd, cfqq, rq);
3438 cfq_update_idle_window(cfqd, cfqq, cic);
3440 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3442 if (cfqq == cfqd->active_queue) {
3444 * Remember that we saw a request from this process, but
3445 * don't start queuing just yet. Otherwise we risk seeing lots
3446 * of tiny requests, because we disrupt the normal plugging
3447 * and merging. If the request is already larger than a single
3448 * page, let it rip immediately. For that case we assume that
3449 * merging is already done. Ditto for a busy system that
3450 * has other work pending, don't risk delaying until the
3451 * idle timer unplug to continue working.
3453 if (cfq_cfqq_wait_request(cfqq)) {
3454 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3455 cfqd->busy_queues > 1) {
3456 cfq_del_timer(cfqd, cfqq);
3457 cfq_clear_cfqq_wait_request(cfqq);
3458 __blk_run_queue(cfqd->queue);
3459 } else {
3460 cfq_blkiocg_update_idle_time_stats(
3461 &cfqq->cfqg->blkg);
3462 cfq_mark_cfqq_must_dispatch(cfqq);
3465 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3467 * not the active queue - expire current slice if it is
3468 * idle and has expired it's mean thinktime or this new queue
3469 * has some old slice time left and is of higher priority or
3470 * this new queue is RT and the current one is BE
3472 cfq_preempt_queue(cfqd, cfqq);
3473 __blk_run_queue(cfqd->queue);
3477 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3479 struct cfq_data *cfqd = q->elevator->elevator_data;
3480 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3482 cfq_log_cfqq(cfqd, cfqq, "insert_request");
3483 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3485 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3486 list_add_tail(&rq->queuelist, &cfqq->fifo);
3487 cfq_add_rq_rb(rq);
3488 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
3489 &cfqd->serving_group->blkg, rq_data_dir(rq),
3490 rq_is_sync(rq));
3491 cfq_rq_enqueued(cfqd, cfqq, rq);
3495 * Update hw_tag based on peak queue depth over 50 samples under
3496 * sufficient load.
3498 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3500 struct cfq_queue *cfqq = cfqd->active_queue;
3502 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3503 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3505 if (cfqd->hw_tag == 1)
3506 return;
3508 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3509 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3510 return;
3513 * If active queue hasn't enough requests and can idle, cfq might not
3514 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3515 * case
3517 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3518 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3519 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3520 return;
3522 if (cfqd->hw_tag_samples++ < 50)
3523 return;
3525 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3526 cfqd->hw_tag = 1;
3527 else
3528 cfqd->hw_tag = 0;
3531 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3533 struct cfq_io_context *cic = cfqd->active_cic;
3535 /* If the queue already has requests, don't wait */
3536 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3537 return false;
3539 /* If there are other queues in the group, don't wait */
3540 if (cfqq->cfqg->nr_cfqq > 1)
3541 return false;
3543 /* the only queue in the group, but think time is big */
3544 if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
3545 return false;
3547 if (cfq_slice_used(cfqq))
3548 return true;
3550 /* if slice left is less than think time, wait busy */
3551 if (cic && sample_valid(cic->ttime.ttime_samples)
3552 && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
3553 return true;
3556 * If think times is less than a jiffy than ttime_mean=0 and above
3557 * will not be true. It might happen that slice has not expired yet
3558 * but will expire soon (4-5 ns) during select_queue(). To cover the
3559 * case where think time is less than a jiffy, mark the queue wait
3560 * busy if only 1 jiffy is left in the slice.
3562 if (cfqq->slice_end - jiffies == 1)
3563 return true;
3565 return false;
3568 static void cfq_completed_request(struct request_queue *q, struct request *rq)
3570 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3571 struct cfq_data *cfqd = cfqq->cfqd;
3572 const int sync = rq_is_sync(rq);
3573 unsigned long now;
3575 now = jiffies;
3576 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3577 !!(rq->cmd_flags & REQ_NOIDLE));
3579 cfq_update_hw_tag(cfqd);
3581 WARN_ON(!cfqd->rq_in_driver);
3582 WARN_ON(!cfqq->dispatched);
3583 cfqd->rq_in_driver--;
3584 cfqq->dispatched--;
3585 (RQ_CFQG(rq))->dispatched--;
3586 cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
3587 rq_start_time_ns(rq), rq_io_start_time_ns(rq),
3588 rq_data_dir(rq), rq_is_sync(rq));
3590 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3592 if (sync) {
3593 struct cfq_rb_root *service_tree;
3595 RQ_CIC(rq)->ttime.last_end_request = now;
3597 if (cfq_cfqq_on_rr(cfqq))
3598 service_tree = cfqq->service_tree;
3599 else
3600 service_tree = service_tree_for(cfqq->cfqg,
3601 cfqq_prio(cfqq), cfqq_type(cfqq));
3602 service_tree->ttime.last_end_request = now;
3603 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3604 cfqd->last_delayed_sync = now;
3607 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3608 cfqq->cfqg->ttime.last_end_request = now;
3609 #endif
3612 * If this is the active queue, check if it needs to be expired,
3613 * or if we want to idle in case it has no pending requests.
3615 if (cfqd->active_queue == cfqq) {
3616 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3618 if (cfq_cfqq_slice_new(cfqq)) {
3619 cfq_set_prio_slice(cfqd, cfqq);
3620 cfq_clear_cfqq_slice_new(cfqq);
3624 * Should we wait for next request to come in before we expire
3625 * the queue.
3627 if (cfq_should_wait_busy(cfqd, cfqq)) {
3628 unsigned long extend_sl = cfqd->cfq_slice_idle;
3629 if (!cfqd->cfq_slice_idle)
3630 extend_sl = cfqd->cfq_group_idle;
3631 cfqq->slice_end = jiffies + extend_sl;
3632 cfq_mark_cfqq_wait_busy(cfqq);
3633 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3637 * Idling is not enabled on:
3638 * - expired queues
3639 * - idle-priority queues
3640 * - async queues
3641 * - queues with still some requests queued
3642 * - when there is a close cooperator
3644 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3645 cfq_slice_expired(cfqd, 1);
3646 else if (sync && cfqq_empty &&
3647 !cfq_close_cooperator(cfqd, cfqq)) {
3648 cfq_arm_slice_timer(cfqd);
3652 if (!cfqd->rq_in_driver)
3653 cfq_schedule_dispatch(cfqd);
3656 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3658 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3659 cfq_mark_cfqq_must_alloc_slice(cfqq);
3660 return ELV_MQUEUE_MUST;
3663 return ELV_MQUEUE_MAY;
3666 static int cfq_may_queue(struct request_queue *q, int rw)
3668 struct cfq_data *cfqd = q->elevator->elevator_data;
3669 struct task_struct *tsk = current;
3670 struct cfq_io_context *cic;
3671 struct cfq_queue *cfqq;
3674 * don't force setup of a queue from here, as a call to may_queue
3675 * does not necessarily imply that a request actually will be queued.
3676 * so just lookup a possibly existing queue, or return 'may queue'
3677 * if that fails
3679 cic = cfq_cic_lookup(cfqd, tsk->io_context);
3680 if (!cic)
3681 return ELV_MQUEUE_MAY;
3683 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3684 if (cfqq) {
3685 cfq_init_prio_data(cfqq, cic->ioc);
3687 return __cfq_may_queue(cfqq);
3690 return ELV_MQUEUE_MAY;
3694 * queue lock held here
3696 static void cfq_put_request(struct request *rq)
3698 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3700 if (cfqq) {
3701 const int rw = rq_data_dir(rq);
3703 BUG_ON(!cfqq->allocated[rw]);
3704 cfqq->allocated[rw]--;
3706 put_io_context(RQ_CIC(rq)->ioc);
3708 rq->elevator_private[0] = NULL;
3709 rq->elevator_private[1] = NULL;
3711 /* Put down rq reference on cfqg */
3712 cfq_put_cfqg(RQ_CFQG(rq));
3713 rq->elevator_private[2] = NULL;
3715 cfq_put_queue(cfqq);
3719 static struct cfq_queue *
3720 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3721 struct cfq_queue *cfqq)
3723 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3724 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3725 cfq_mark_cfqq_coop(cfqq->new_cfqq);
3726 cfq_put_queue(cfqq);
3727 return cic_to_cfqq(cic, 1);
3731 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3732 * was the last process referring to said cfqq.
3734 static struct cfq_queue *
3735 split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3737 if (cfqq_process_refs(cfqq) == 1) {
3738 cfqq->pid = current->pid;
3739 cfq_clear_cfqq_coop(cfqq);
3740 cfq_clear_cfqq_split_coop(cfqq);
3741 return cfqq;
3744 cic_set_cfqq(cic, NULL, 1);
3746 cfq_put_cooperator(cfqq);
3748 cfq_put_queue(cfqq);
3749 return NULL;
3752 * Allocate cfq data structures associated with this request.
3754 static int
3755 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3757 struct cfq_data *cfqd = q->elevator->elevator_data;
3758 struct cfq_io_context *cic;
3759 const int rw = rq_data_dir(rq);
3760 const bool is_sync = rq_is_sync(rq);
3761 struct cfq_queue *cfqq;
3762 unsigned long flags;
3764 might_sleep_if(gfp_mask & __GFP_WAIT);
3766 cic = cfq_get_io_context(cfqd, gfp_mask);
3768 spin_lock_irqsave(q->queue_lock, flags);
3770 if (!cic)
3771 goto queue_fail;
3773 new_queue:
3774 cfqq = cic_to_cfqq(cic, is_sync);
3775 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3776 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3777 cic_set_cfqq(cic, cfqq, is_sync);
3778 } else {
3780 * If the queue was seeky for too long, break it apart.
3782 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3783 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3784 cfqq = split_cfqq(cic, cfqq);
3785 if (!cfqq)
3786 goto new_queue;
3790 * Check to see if this queue is scheduled to merge with
3791 * another, closely cooperating queue. The merging of
3792 * queues happens here as it must be done in process context.
3793 * The reference on new_cfqq was taken in merge_cfqqs.
3795 if (cfqq->new_cfqq)
3796 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3799 cfqq->allocated[rw]++;
3801 cfqq->ref++;
3802 rq->elevator_private[0] = cic;
3803 rq->elevator_private[1] = cfqq;
3804 rq->elevator_private[2] = cfq_ref_get_cfqg(cfqq->cfqg);
3805 spin_unlock_irqrestore(q->queue_lock, flags);
3806 return 0;
3808 queue_fail:
3809 cfq_schedule_dispatch(cfqd);
3810 spin_unlock_irqrestore(q->queue_lock, flags);
3811 cfq_log(cfqd, "set_request fail");
3812 return 1;
3815 static void cfq_kick_queue(struct work_struct *work)
3817 struct cfq_data *cfqd =
3818 container_of(work, struct cfq_data, unplug_work);
3819 struct request_queue *q = cfqd->queue;
3821 spin_lock_irq(q->queue_lock);
3822 __blk_run_queue(cfqd->queue);
3823 spin_unlock_irq(q->queue_lock);
3827 * Timer running if the active_queue is currently idling inside its time slice
3829 static void cfq_idle_slice_timer(unsigned long data)
3831 struct cfq_data *cfqd = (struct cfq_data *) data;
3832 struct cfq_queue *cfqq;
3833 unsigned long flags;
3834 int timed_out = 1;
3836 cfq_log(cfqd, "idle timer fired");
3838 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3840 cfqq = cfqd->active_queue;
3841 if (cfqq) {
3842 timed_out = 0;
3845 * We saw a request before the queue expired, let it through
3847 if (cfq_cfqq_must_dispatch(cfqq))
3848 goto out_kick;
3851 * expired
3853 if (cfq_slice_used(cfqq))
3854 goto expire;
3857 * only expire and reinvoke request handler, if there are
3858 * other queues with pending requests
3860 if (!cfqd->busy_queues)
3861 goto out_cont;
3864 * not expired and it has a request pending, let it dispatch
3866 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3867 goto out_kick;
3870 * Queue depth flag is reset only when the idle didn't succeed
3872 cfq_clear_cfqq_deep(cfqq);
3874 expire:
3875 cfq_slice_expired(cfqd, timed_out);
3876 out_kick:
3877 cfq_schedule_dispatch(cfqd);
3878 out_cont:
3879 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3882 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3884 del_timer_sync(&cfqd->idle_slice_timer);
3885 cancel_work_sync(&cfqd->unplug_work);
3888 static void cfq_put_async_queues(struct cfq_data *cfqd)
3890 int i;
3892 for (i = 0; i < IOPRIO_BE_NR; i++) {
3893 if (cfqd->async_cfqq[0][i])
3894 cfq_put_queue(cfqd->async_cfqq[0][i]);
3895 if (cfqd->async_cfqq[1][i])
3896 cfq_put_queue(cfqd->async_cfqq[1][i]);
3899 if (cfqd->async_idle_cfqq)
3900 cfq_put_queue(cfqd->async_idle_cfqq);
3903 static void cfq_exit_queue(struct elevator_queue *e)
3905 struct cfq_data *cfqd = e->elevator_data;
3906 struct request_queue *q = cfqd->queue;
3907 bool wait = false;
3909 cfq_shutdown_timer_wq(cfqd);
3911 spin_lock_irq(q->queue_lock);
3913 if (cfqd->active_queue)
3914 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3916 while (!list_empty(&cfqd->cic_list)) {
3917 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3918 struct cfq_io_context,
3919 queue_list);
3921 cfq_exit_cic(cic);
3924 cfq_put_async_queues(cfqd);
3925 cfq_release_cfq_groups(cfqd);
3928 * If there are groups which we could not unlink from blkcg list,
3929 * wait for a rcu period for them to be freed.
3931 if (cfqd->nr_blkcg_linked_grps)
3932 wait = true;
3934 spin_unlock_irq(q->queue_lock);
3936 cfq_shutdown_timer_wq(cfqd);
3939 * Wait for cfqg->blkg->key accessors to exit their grace periods.
3940 * Do this wait only if there are other unlinked groups out
3941 * there. This can happen if cgroup deletion path claimed the
3942 * responsibility of cleaning up a group before queue cleanup code
3943 * get to the group.
3945 * Do not call synchronize_rcu() unconditionally as there are drivers
3946 * which create/delete request queue hundreds of times during scan/boot
3947 * and synchronize_rcu() can take significant time and slow down boot.
3949 if (wait)
3950 synchronize_rcu();
3952 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3953 /* Free up per cpu stats for root group */
3954 free_percpu(cfqd->root_group.blkg.stats_cpu);
3955 #endif
3956 kfree(cfqd);
3959 static void *cfq_init_queue(struct request_queue *q)
3961 struct cfq_data *cfqd;
3962 int i, j;
3963 struct cfq_group *cfqg;
3964 struct cfq_rb_root *st;
3966 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3967 if (!cfqd)
3968 return NULL;
3970 /* Init root service tree */
3971 cfqd->grp_service_tree = CFQ_RB_ROOT;
3973 /* Init root group */
3974 cfqg = &cfqd->root_group;
3975 for_each_cfqg_st(cfqg, i, j, st)
3976 *st = CFQ_RB_ROOT;
3977 RB_CLEAR_NODE(&cfqg->rb_node);
3979 /* Give preference to root group over other groups */
3980 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3982 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3984 * Set root group reference to 2. One reference will be dropped when
3985 * all groups on cfqd->cfqg_list are being deleted during queue exit.
3986 * Other reference will remain there as we don't want to delete this
3987 * group as it is statically allocated and gets destroyed when
3988 * throtl_data goes away.
3990 cfqg->ref = 2;
3992 if (blkio_alloc_blkg_stats(&cfqg->blkg)) {
3993 kfree(cfqg);
3994 kfree(cfqd);
3995 return NULL;
3998 rcu_read_lock();
4000 cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
4001 (void *)cfqd, 0);
4002 rcu_read_unlock();
4003 cfqd->nr_blkcg_linked_grps++;
4005 /* Add group on cfqd->cfqg_list */
4006 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
4007 #endif
4009 * Not strictly needed (since RB_ROOT just clears the node and we
4010 * zeroed cfqd on alloc), but better be safe in case someone decides
4011 * to add magic to the rb code
4013 for (i = 0; i < CFQ_PRIO_LISTS; i++)
4014 cfqd->prio_trees[i] = RB_ROOT;
4017 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
4018 * Grab a permanent reference to it, so that the normal code flow
4019 * will not attempt to free it.
4021 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
4022 cfqd->oom_cfqq.ref++;
4023 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
4025 INIT_LIST_HEAD(&cfqd->cic_list);
4027 cfqd->queue = q;
4029 init_timer(&cfqd->idle_slice_timer);
4030 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4031 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
4033 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
4035 cfqd->cfq_quantum = cfq_quantum;
4036 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4037 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
4038 cfqd->cfq_back_max = cfq_back_max;
4039 cfqd->cfq_back_penalty = cfq_back_penalty;
4040 cfqd->cfq_slice[0] = cfq_slice_async;
4041 cfqd->cfq_slice[1] = cfq_slice_sync;
4042 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4043 cfqd->cfq_slice_idle = cfq_slice_idle;
4044 cfqd->cfq_group_idle = cfq_group_idle;
4045 cfqd->cfq_latency = 1;
4046 cfqd->hw_tag = -1;
4048 * we optimistically start assuming sync ops weren't delayed in last
4049 * second, in order to have larger depth for async operations.
4051 cfqd->last_delayed_sync = jiffies - HZ;
4052 return cfqd;
4055 static void cfq_slab_kill(void)
4058 * Caller already ensured that pending RCU callbacks are completed,
4059 * so we should have no busy allocations at this point.
4061 if (cfq_pool)
4062 kmem_cache_destroy(cfq_pool);
4063 if (cfq_ioc_pool)
4064 kmem_cache_destroy(cfq_ioc_pool);
4067 static int __init cfq_slab_setup(void)
4069 cfq_pool = KMEM_CACHE(cfq_queue, 0);
4070 if (!cfq_pool)
4071 goto fail;
4073 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
4074 if (!cfq_ioc_pool)
4075 goto fail;
4077 return 0;
4078 fail:
4079 cfq_slab_kill();
4080 return -ENOMEM;
4084 * sysfs parts below -->
4086 static ssize_t
4087 cfq_var_show(unsigned int var, char *page)
4089 return sprintf(page, "%d\n", var);
4092 static ssize_t
4093 cfq_var_store(unsigned int *var, const char *page, size_t count)
4095 char *p = (char *) page;
4097 *var = simple_strtoul(p, &p, 10);
4098 return count;
4101 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
4102 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4104 struct cfq_data *cfqd = e->elevator_data; \
4105 unsigned int __data = __VAR; \
4106 if (__CONV) \
4107 __data = jiffies_to_msecs(__data); \
4108 return cfq_var_show(__data, (page)); \
4110 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4111 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4112 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4113 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4114 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4115 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4116 SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4117 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4118 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4119 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4120 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4121 #undef SHOW_FUNCTION
4123 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4124 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4126 struct cfq_data *cfqd = e->elevator_data; \
4127 unsigned int __data; \
4128 int ret = cfq_var_store(&__data, (page), count); \
4129 if (__data < (MIN)) \
4130 __data = (MIN); \
4131 else if (__data > (MAX)) \
4132 __data = (MAX); \
4133 if (__CONV) \
4134 *(__PTR) = msecs_to_jiffies(__data); \
4135 else \
4136 *(__PTR) = __data; \
4137 return ret; \
4139 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4140 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4141 UINT_MAX, 1);
4142 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4143 UINT_MAX, 1);
4144 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4145 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4146 UINT_MAX, 0);
4147 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4148 STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4149 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4150 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4151 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4152 UINT_MAX, 0);
4153 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4154 #undef STORE_FUNCTION
4156 #define CFQ_ATTR(name) \
4157 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4159 static struct elv_fs_entry cfq_attrs[] = {
4160 CFQ_ATTR(quantum),
4161 CFQ_ATTR(fifo_expire_sync),
4162 CFQ_ATTR(fifo_expire_async),
4163 CFQ_ATTR(back_seek_max),
4164 CFQ_ATTR(back_seek_penalty),
4165 CFQ_ATTR(slice_sync),
4166 CFQ_ATTR(slice_async),
4167 CFQ_ATTR(slice_async_rq),
4168 CFQ_ATTR(slice_idle),
4169 CFQ_ATTR(group_idle),
4170 CFQ_ATTR(low_latency),
4171 __ATTR_NULL
4174 static struct elevator_type iosched_cfq = {
4175 .ops = {
4176 .elevator_merge_fn = cfq_merge,
4177 .elevator_merged_fn = cfq_merged_request,
4178 .elevator_merge_req_fn = cfq_merged_requests,
4179 .elevator_allow_merge_fn = cfq_allow_merge,
4180 .elevator_bio_merged_fn = cfq_bio_merged,
4181 .elevator_dispatch_fn = cfq_dispatch_requests,
4182 .elevator_add_req_fn = cfq_insert_request,
4183 .elevator_activate_req_fn = cfq_activate_request,
4184 .elevator_deactivate_req_fn = cfq_deactivate_request,
4185 .elevator_completed_req_fn = cfq_completed_request,
4186 .elevator_former_req_fn = elv_rb_former_request,
4187 .elevator_latter_req_fn = elv_rb_latter_request,
4188 .elevator_set_req_fn = cfq_set_request,
4189 .elevator_put_req_fn = cfq_put_request,
4190 .elevator_may_queue_fn = cfq_may_queue,
4191 .elevator_init_fn = cfq_init_queue,
4192 .elevator_exit_fn = cfq_exit_queue,
4193 .trim = cfq_free_io_context,
4195 .elevator_attrs = cfq_attrs,
4196 .elevator_name = "cfq",
4197 .elevator_owner = THIS_MODULE,
4200 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4201 static struct blkio_policy_type blkio_policy_cfq = {
4202 .ops = {
4203 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
4204 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
4206 .plid = BLKIO_POLICY_PROP,
4208 #else
4209 static struct blkio_policy_type blkio_policy_cfq;
4210 #endif
4212 static int __init cfq_init(void)
4215 * could be 0 on HZ < 1000 setups
4217 if (!cfq_slice_async)
4218 cfq_slice_async = 1;
4219 if (!cfq_slice_idle)
4220 cfq_slice_idle = 1;
4222 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4223 if (!cfq_group_idle)
4224 cfq_group_idle = 1;
4225 #else
4226 cfq_group_idle = 0;
4227 #endif
4228 if (cfq_slab_setup())
4229 return -ENOMEM;
4231 elv_register(&iosched_cfq);
4232 blkio_policy_register(&blkio_policy_cfq);
4234 return 0;
4237 static void __exit cfq_exit(void)
4239 DECLARE_COMPLETION_ONSTACK(all_gone);
4240 blkio_policy_unregister(&blkio_policy_cfq);
4241 elv_unregister(&iosched_cfq);
4242 ioc_gone = &all_gone;
4243 /* ioc_gone's update must be visible before reading ioc_count */
4244 smp_wmb();
4247 * this also protects us from entering cfq_slab_kill() with
4248 * pending RCU callbacks
4250 if (elv_ioc_count_read(cfq_ioc_count))
4251 wait_for_completion(&all_gone);
4252 cfq_slab_kill();
4255 module_init(cfq_init);
4256 module_exit(cfq_exit);
4258 MODULE_AUTHOR("Jens Axboe");
4259 MODULE_LICENSE("GPL");
4260 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");