2 * raid10.c : Multiple Devices driver for Linux
4 * Copyright (C) 2000-2004 Neil Brown
6 * RAID-10 support for md.
8 * Base on code in raid1.c. See raid1.c for further copyright information.
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
34 * RAID10 provides a combination of RAID0 and RAID1 functionality.
35 * The layout of data is defined by
38 * near_copies (stored in low byte of layout)
39 * far_copies (stored in second byte of layout)
40 * far_offset (stored in bit 16 of layout )
41 * use_far_sets (stored in bit 17 of layout )
43 * The data to be stored is divided into chunks using chunksize. Each device
44 * is divided into far_copies sections. In each section, chunks are laid out
45 * in a style similar to raid0, but near_copies copies of each chunk is stored
46 * (each on a different drive). The starting device for each section is offset
47 * near_copies from the starting device of the previous section. Thus there
48 * are (near_copies * far_copies) of each chunk, and each is on a different
49 * drive. near_copies and far_copies must be at least one, and their product
50 * is at most raid_disks.
52 * If far_offset is true, then the far_copies are handled a bit differently.
53 * The copies are still in different stripes, but instead of being very far
54 * apart on disk, there are adjacent stripes.
56 * The far and offset algorithms are handled slightly differently if
57 * 'use_far_sets' is true. In this case, the array's devices are grouped into
58 * sets that are (near_copies * far_copies) in size. The far copied stripes
59 * are still shifted by 'near_copies' devices, but this shifting stays confined
60 * to the set rather than the entire array. This is done to improve the number
61 * of device combinations that can fail without causing the array to fail.
62 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
67 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
68 * [A B] [C D] [A B] [C D E]
69 * |...| |...| |...| | ... |
70 * [B A] [D C] [B A] [E C D]
74 * Number of guaranteed r10bios in case of extreme VM load:
76 #define NR_RAID10_BIOS 256
78 /* when we get a read error on a read-only array, we redirect to another
79 * device without failing the first device, or trying to over-write to
80 * correct the read error. To keep track of bad blocks on a per-bio
81 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
83 #define IO_BLOCKED ((struct bio *)1)
84 /* When we successfully write to a known bad-block, we need to remove the
85 * bad-block marking which must be done from process context. So we record
86 * the success by setting devs[n].bio to IO_MADE_GOOD
88 #define IO_MADE_GOOD ((struct bio *)2)
90 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
92 /* When there are this many requests queued to be written by
93 * the raid10 thread, we become 'congested' to provide back-pressure
96 static int max_queued_requests
= 1024;
98 static void allow_barrier(struct r10conf
*conf
);
99 static void lower_barrier(struct r10conf
*conf
);
100 static int enough(struct r10conf
*conf
, int ignore
);
101 static sector_t
reshape_request(struct mddev
*mddev
, sector_t sector_nr
,
103 static void reshape_request_write(struct mddev
*mddev
, struct r10bio
*r10_bio
);
104 static void end_reshape_write(struct bio
*bio
, int error
);
105 static void end_reshape(struct r10conf
*conf
);
107 static void * r10bio_pool_alloc(gfp_t gfp_flags
, void *data
)
109 struct r10conf
*conf
= data
;
110 int size
= offsetof(struct r10bio
, devs
[conf
->copies
]);
112 /* allocate a r10bio with room for raid_disks entries in the
114 return kzalloc(size
, gfp_flags
);
117 static void r10bio_pool_free(void *r10_bio
, void *data
)
122 /* Maximum size of each resync request */
123 #define RESYNC_BLOCK_SIZE (64*1024)
124 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
125 /* amount of memory to reserve for resync requests */
126 #define RESYNC_WINDOW (1024*1024)
127 /* maximum number of concurrent requests, memory permitting */
128 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
131 * When performing a resync, we need to read and compare, so
132 * we need as many pages are there are copies.
133 * When performing a recovery, we need 2 bios, one for read,
134 * one for write (we recover only one drive per r10buf)
137 static void * r10buf_pool_alloc(gfp_t gfp_flags
, void *data
)
139 struct r10conf
*conf
= data
;
141 struct r10bio
*r10_bio
;
146 r10_bio
= r10bio_pool_alloc(gfp_flags
, conf
);
150 if (test_bit(MD_RECOVERY_SYNC
, &conf
->mddev
->recovery
) ||
151 test_bit(MD_RECOVERY_RESHAPE
, &conf
->mddev
->recovery
))
152 nalloc
= conf
->copies
; /* resync */
154 nalloc
= 2; /* recovery */
159 for (j
= nalloc
; j
-- ; ) {
160 bio
= bio_kmalloc(gfp_flags
, RESYNC_PAGES
);
163 r10_bio
->devs
[j
].bio
= bio
;
164 if (!conf
->have_replacement
)
166 bio
= bio_kmalloc(gfp_flags
, RESYNC_PAGES
);
169 r10_bio
->devs
[j
].repl_bio
= bio
;
172 * Allocate RESYNC_PAGES data pages and attach them
175 for (j
= 0 ; j
< nalloc
; j
++) {
176 struct bio
*rbio
= r10_bio
->devs
[j
].repl_bio
;
177 bio
= r10_bio
->devs
[j
].bio
;
178 for (i
= 0; i
< RESYNC_PAGES
; i
++) {
179 if (j
> 0 && !test_bit(MD_RECOVERY_SYNC
,
180 &conf
->mddev
->recovery
)) {
181 /* we can share bv_page's during recovery
183 struct bio
*rbio
= r10_bio
->devs
[0].bio
;
184 page
= rbio
->bi_io_vec
[i
].bv_page
;
187 page
= alloc_page(gfp_flags
);
191 bio
->bi_io_vec
[i
].bv_page
= page
;
193 rbio
->bi_io_vec
[i
].bv_page
= page
;
201 safe_put_page(bio
->bi_io_vec
[i
-1].bv_page
);
203 for (i
= 0; i
< RESYNC_PAGES
; i
++)
204 safe_put_page(r10_bio
->devs
[j
].bio
->bi_io_vec
[i
].bv_page
);
207 for ( ; j
< nalloc
; j
++) {
208 if (r10_bio
->devs
[j
].bio
)
209 bio_put(r10_bio
->devs
[j
].bio
);
210 if (r10_bio
->devs
[j
].repl_bio
)
211 bio_put(r10_bio
->devs
[j
].repl_bio
);
213 r10bio_pool_free(r10_bio
, conf
);
217 static void r10buf_pool_free(void *__r10_bio
, void *data
)
220 struct r10conf
*conf
= data
;
221 struct r10bio
*r10bio
= __r10_bio
;
224 for (j
=0; j
< conf
->copies
; j
++) {
225 struct bio
*bio
= r10bio
->devs
[j
].bio
;
227 for (i
= 0; i
< RESYNC_PAGES
; i
++) {
228 safe_put_page(bio
->bi_io_vec
[i
].bv_page
);
229 bio
->bi_io_vec
[i
].bv_page
= NULL
;
233 bio
= r10bio
->devs
[j
].repl_bio
;
237 r10bio_pool_free(r10bio
, conf
);
240 static void put_all_bios(struct r10conf
*conf
, struct r10bio
*r10_bio
)
244 for (i
= 0; i
< conf
->copies
; i
++) {
245 struct bio
**bio
= & r10_bio
->devs
[i
].bio
;
246 if (!BIO_SPECIAL(*bio
))
249 bio
= &r10_bio
->devs
[i
].repl_bio
;
250 if (r10_bio
->read_slot
< 0 && !BIO_SPECIAL(*bio
))
256 static void free_r10bio(struct r10bio
*r10_bio
)
258 struct r10conf
*conf
= r10_bio
->mddev
->private;
260 put_all_bios(conf
, r10_bio
);
261 mempool_free(r10_bio
, conf
->r10bio_pool
);
264 static void put_buf(struct r10bio
*r10_bio
)
266 struct r10conf
*conf
= r10_bio
->mddev
->private;
268 mempool_free(r10_bio
, conf
->r10buf_pool
);
273 static void reschedule_retry(struct r10bio
*r10_bio
)
276 struct mddev
*mddev
= r10_bio
->mddev
;
277 struct r10conf
*conf
= mddev
->private;
279 spin_lock_irqsave(&conf
->device_lock
, flags
);
280 list_add(&r10_bio
->retry_list
, &conf
->retry_list
);
282 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
284 /* wake up frozen array... */
285 wake_up(&conf
->wait_barrier
);
287 md_wakeup_thread(mddev
->thread
);
291 * raid_end_bio_io() is called when we have finished servicing a mirrored
292 * operation and are ready to return a success/failure code to the buffer
295 static void raid_end_bio_io(struct r10bio
*r10_bio
)
297 struct bio
*bio
= r10_bio
->master_bio
;
299 struct r10conf
*conf
= r10_bio
->mddev
->private;
301 if (bio
->bi_phys_segments
) {
303 spin_lock_irqsave(&conf
->device_lock
, flags
);
304 bio
->bi_phys_segments
--;
305 done
= (bio
->bi_phys_segments
== 0);
306 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
309 if (!test_bit(R10BIO_Uptodate
, &r10_bio
->state
))
310 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
314 * Wake up any possible resync thread that waits for the device
319 free_r10bio(r10_bio
);
323 * Update disk head position estimator based on IRQ completion info.
325 static inline void update_head_pos(int slot
, struct r10bio
*r10_bio
)
327 struct r10conf
*conf
= r10_bio
->mddev
->private;
329 conf
->mirrors
[r10_bio
->devs
[slot
].devnum
].head_position
=
330 r10_bio
->devs
[slot
].addr
+ (r10_bio
->sectors
);
334 * Find the disk number which triggered given bio
336 static int find_bio_disk(struct r10conf
*conf
, struct r10bio
*r10_bio
,
337 struct bio
*bio
, int *slotp
, int *replp
)
342 for (slot
= 0; slot
< conf
->copies
; slot
++) {
343 if (r10_bio
->devs
[slot
].bio
== bio
)
345 if (r10_bio
->devs
[slot
].repl_bio
== bio
) {
351 BUG_ON(slot
== conf
->copies
);
352 update_head_pos(slot
, r10_bio
);
358 return r10_bio
->devs
[slot
].devnum
;
361 static void raid10_end_read_request(struct bio
*bio
, int error
)
363 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
364 struct r10bio
*r10_bio
= bio
->bi_private
;
366 struct md_rdev
*rdev
;
367 struct r10conf
*conf
= r10_bio
->mddev
->private;
370 slot
= r10_bio
->read_slot
;
371 dev
= r10_bio
->devs
[slot
].devnum
;
372 rdev
= r10_bio
->devs
[slot
].rdev
;
374 * this branch is our 'one mirror IO has finished' event handler:
376 update_head_pos(slot
, r10_bio
);
380 * Set R10BIO_Uptodate in our master bio, so that
381 * we will return a good error code to the higher
382 * levels even if IO on some other mirrored buffer fails.
384 * The 'master' represents the composite IO operation to
385 * user-side. So if something waits for IO, then it will
386 * wait for the 'master' bio.
388 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
390 /* If all other devices that store this block have
391 * failed, we want to return the error upwards rather
392 * than fail the last device. Here we redefine
393 * "uptodate" to mean "Don't want to retry"
396 spin_lock_irqsave(&conf
->device_lock
, flags
);
397 if (!enough(conf
, rdev
->raid_disk
))
399 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
402 raid_end_bio_io(r10_bio
);
403 rdev_dec_pending(rdev
, conf
->mddev
);
406 * oops, read error - keep the refcount on the rdev
408 char b
[BDEVNAME_SIZE
];
409 printk_ratelimited(KERN_ERR
410 "md/raid10:%s: %s: rescheduling sector %llu\n",
412 bdevname(rdev
->bdev
, b
),
413 (unsigned long long)r10_bio
->sector
);
414 set_bit(R10BIO_ReadError
, &r10_bio
->state
);
415 reschedule_retry(r10_bio
);
419 static void close_write(struct r10bio
*r10_bio
)
421 /* clear the bitmap if all writes complete successfully */
422 bitmap_endwrite(r10_bio
->mddev
->bitmap
, r10_bio
->sector
,
424 !test_bit(R10BIO_Degraded
, &r10_bio
->state
),
426 md_write_end(r10_bio
->mddev
);
429 static void one_write_done(struct r10bio
*r10_bio
)
431 if (atomic_dec_and_test(&r10_bio
->remaining
)) {
432 if (test_bit(R10BIO_WriteError
, &r10_bio
->state
))
433 reschedule_retry(r10_bio
);
435 close_write(r10_bio
);
436 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
))
437 reschedule_retry(r10_bio
);
439 raid_end_bio_io(r10_bio
);
444 static void raid10_end_write_request(struct bio
*bio
, int error
)
446 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
447 struct r10bio
*r10_bio
= bio
->bi_private
;
450 struct r10conf
*conf
= r10_bio
->mddev
->private;
452 struct md_rdev
*rdev
= NULL
;
454 dev
= find_bio_disk(conf
, r10_bio
, bio
, &slot
, &repl
);
457 rdev
= conf
->mirrors
[dev
].replacement
;
461 rdev
= conf
->mirrors
[dev
].rdev
;
464 * this branch is our 'one mirror IO has finished' event handler:
468 /* Never record new bad blocks to replacement,
471 md_error(rdev
->mddev
, rdev
);
473 set_bit(WriteErrorSeen
, &rdev
->flags
);
474 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
475 set_bit(MD_RECOVERY_NEEDED
,
476 &rdev
->mddev
->recovery
);
477 set_bit(R10BIO_WriteError
, &r10_bio
->state
);
482 * Set R10BIO_Uptodate in our master bio, so that
483 * we will return a good error code for to the higher
484 * levels even if IO on some other mirrored buffer fails.
486 * The 'master' represents the composite IO operation to
487 * user-side. So if something waits for IO, then it will
488 * wait for the 'master' bio.
493 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
495 /* Maybe we can clear some bad blocks. */
496 if (is_badblock(rdev
,
497 r10_bio
->devs
[slot
].addr
,
499 &first_bad
, &bad_sectors
)) {
502 r10_bio
->devs
[slot
].repl_bio
= IO_MADE_GOOD
;
504 r10_bio
->devs
[slot
].bio
= IO_MADE_GOOD
;
506 set_bit(R10BIO_MadeGood
, &r10_bio
->state
);
512 * Let's see if all mirrored write operations have finished
515 one_write_done(r10_bio
);
517 rdev_dec_pending(rdev
, conf
->mddev
);
521 * RAID10 layout manager
522 * As well as the chunksize and raid_disks count, there are two
523 * parameters: near_copies and far_copies.
524 * near_copies * far_copies must be <= raid_disks.
525 * Normally one of these will be 1.
526 * If both are 1, we get raid0.
527 * If near_copies == raid_disks, we get raid1.
529 * Chunks are laid out in raid0 style with near_copies copies of the
530 * first chunk, followed by near_copies copies of the next chunk and
532 * If far_copies > 1, then after 1/far_copies of the array has been assigned
533 * as described above, we start again with a device offset of near_copies.
534 * So we effectively have another copy of the whole array further down all
535 * the drives, but with blocks on different drives.
536 * With this layout, and block is never stored twice on the one device.
538 * raid10_find_phys finds the sector offset of a given virtual sector
539 * on each device that it is on.
541 * raid10_find_virt does the reverse mapping, from a device and a
542 * sector offset to a virtual address
545 static void __raid10_find_phys(struct geom
*geo
, struct r10bio
*r10bio
)
553 int last_far_set_start
, last_far_set_size
;
555 last_far_set_start
= (geo
->raid_disks
/ geo
->far_set_size
) - 1;
556 last_far_set_start
*= geo
->far_set_size
;
558 last_far_set_size
= geo
->far_set_size
;
559 last_far_set_size
+= (geo
->raid_disks
% geo
->far_set_size
);
561 /* now calculate first sector/dev */
562 chunk
= r10bio
->sector
>> geo
->chunk_shift
;
563 sector
= r10bio
->sector
& geo
->chunk_mask
;
565 chunk
*= geo
->near_copies
;
567 dev
= sector_div(stripe
, geo
->raid_disks
);
569 stripe
*= geo
->far_copies
;
571 sector
+= stripe
<< geo
->chunk_shift
;
573 /* and calculate all the others */
574 for (n
= 0; n
< geo
->near_copies
; n
++) {
578 r10bio
->devs
[slot
].devnum
= d
;
579 r10bio
->devs
[slot
].addr
= s
;
582 for (f
= 1; f
< geo
->far_copies
; f
++) {
583 set
= d
/ geo
->far_set_size
;
584 d
+= geo
->near_copies
;
586 if ((geo
->raid_disks
% geo
->far_set_size
) &&
587 (d
> last_far_set_start
)) {
588 d
-= last_far_set_start
;
589 d
%= last_far_set_size
;
590 d
+= last_far_set_start
;
592 d
%= geo
->far_set_size
;
593 d
+= geo
->far_set_size
* set
;
596 r10bio
->devs
[slot
].devnum
= d
;
597 r10bio
->devs
[slot
].addr
= s
;
601 if (dev
>= geo
->raid_disks
) {
603 sector
+= (geo
->chunk_mask
+ 1);
608 static void raid10_find_phys(struct r10conf
*conf
, struct r10bio
*r10bio
)
610 struct geom
*geo
= &conf
->geo
;
612 if (conf
->reshape_progress
!= MaxSector
&&
613 ((r10bio
->sector
>= conf
->reshape_progress
) !=
614 conf
->mddev
->reshape_backwards
)) {
615 set_bit(R10BIO_Previous
, &r10bio
->state
);
618 clear_bit(R10BIO_Previous
, &r10bio
->state
);
620 __raid10_find_phys(geo
, r10bio
);
623 static sector_t
raid10_find_virt(struct r10conf
*conf
, sector_t sector
, int dev
)
625 sector_t offset
, chunk
, vchunk
;
626 /* Never use conf->prev as this is only called during resync
627 * or recovery, so reshape isn't happening
629 struct geom
*geo
= &conf
->geo
;
630 int far_set_start
= (dev
/ geo
->far_set_size
) * geo
->far_set_size
;
631 int far_set_size
= geo
->far_set_size
;
632 int last_far_set_start
;
634 if (geo
->raid_disks
% geo
->far_set_size
) {
635 last_far_set_start
= (geo
->raid_disks
/ geo
->far_set_size
) - 1;
636 last_far_set_start
*= geo
->far_set_size
;
638 if (dev
>= last_far_set_start
) {
639 far_set_size
= geo
->far_set_size
;
640 far_set_size
+= (geo
->raid_disks
% geo
->far_set_size
);
641 far_set_start
= last_far_set_start
;
645 offset
= sector
& geo
->chunk_mask
;
646 if (geo
->far_offset
) {
648 chunk
= sector
>> geo
->chunk_shift
;
649 fc
= sector_div(chunk
, geo
->far_copies
);
650 dev
-= fc
* geo
->near_copies
;
651 if (dev
< far_set_start
)
654 while (sector
>= geo
->stride
) {
655 sector
-= geo
->stride
;
656 if (dev
< (geo
->near_copies
+ far_set_start
))
657 dev
+= far_set_size
- geo
->near_copies
;
659 dev
-= geo
->near_copies
;
661 chunk
= sector
>> geo
->chunk_shift
;
663 vchunk
= chunk
* geo
->raid_disks
+ dev
;
664 sector_div(vchunk
, geo
->near_copies
);
665 return (vchunk
<< geo
->chunk_shift
) + offset
;
669 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
671 * @bvm: properties of new bio
672 * @biovec: the request that could be merged to it.
674 * Return amount of bytes we can accept at this offset
675 * This requires checking for end-of-chunk if near_copies != raid_disks,
676 * and for subordinate merge_bvec_fns if merge_check_needed.
678 static int raid10_mergeable_bvec(struct request_queue
*q
,
679 struct bvec_merge_data
*bvm
,
680 struct bio_vec
*biovec
)
682 struct mddev
*mddev
= q
->queuedata
;
683 struct r10conf
*conf
= mddev
->private;
684 sector_t sector
= bvm
->bi_sector
+ get_start_sect(bvm
->bi_bdev
);
686 unsigned int chunk_sectors
;
687 unsigned int bio_sectors
= bvm
->bi_size
>> 9;
688 struct geom
*geo
= &conf
->geo
;
690 chunk_sectors
= (conf
->geo
.chunk_mask
& conf
->prev
.chunk_mask
) + 1;
691 if (conf
->reshape_progress
!= MaxSector
&&
692 ((sector
>= conf
->reshape_progress
) !=
693 conf
->mddev
->reshape_backwards
))
696 if (geo
->near_copies
< geo
->raid_disks
) {
697 max
= (chunk_sectors
- ((sector
& (chunk_sectors
- 1))
698 + bio_sectors
)) << 9;
700 /* bio_add cannot handle a negative return */
702 if (max
<= biovec
->bv_len
&& bio_sectors
== 0)
703 return biovec
->bv_len
;
705 max
= biovec
->bv_len
;
707 if (mddev
->merge_check_needed
) {
709 struct r10bio r10_bio
;
710 struct r10dev devs
[conf
->copies
];
712 struct r10bio
*r10_bio
= &on_stack
.r10_bio
;
714 if (conf
->reshape_progress
!= MaxSector
) {
715 /* Cannot give any guidance during reshape */
716 if (max
<= biovec
->bv_len
&& bio_sectors
== 0)
717 return biovec
->bv_len
;
720 r10_bio
->sector
= sector
;
721 raid10_find_phys(conf
, r10_bio
);
723 for (s
= 0; s
< conf
->copies
; s
++) {
724 int disk
= r10_bio
->devs
[s
].devnum
;
725 struct md_rdev
*rdev
= rcu_dereference(
726 conf
->mirrors
[disk
].rdev
);
727 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
728 struct request_queue
*q
=
729 bdev_get_queue(rdev
->bdev
);
730 if (q
->merge_bvec_fn
) {
731 bvm
->bi_sector
= r10_bio
->devs
[s
].addr
733 bvm
->bi_bdev
= rdev
->bdev
;
734 max
= min(max
, q
->merge_bvec_fn(
738 rdev
= rcu_dereference(conf
->mirrors
[disk
].replacement
);
739 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
740 struct request_queue
*q
=
741 bdev_get_queue(rdev
->bdev
);
742 if (q
->merge_bvec_fn
) {
743 bvm
->bi_sector
= r10_bio
->devs
[s
].addr
745 bvm
->bi_bdev
= rdev
->bdev
;
746 max
= min(max
, q
->merge_bvec_fn(
757 * This routine returns the disk from which the requested read should
758 * be done. There is a per-array 'next expected sequential IO' sector
759 * number - if this matches on the next IO then we use the last disk.
760 * There is also a per-disk 'last know head position' sector that is
761 * maintained from IRQ contexts, both the normal and the resync IO
762 * completion handlers update this position correctly. If there is no
763 * perfect sequential match then we pick the disk whose head is closest.
765 * If there are 2 mirrors in the same 2 devices, performance degrades
766 * because position is mirror, not device based.
768 * The rdev for the device selected will have nr_pending incremented.
772 * FIXME: possibly should rethink readbalancing and do it differently
773 * depending on near_copies / far_copies geometry.
775 static struct md_rdev
*read_balance(struct r10conf
*conf
,
776 struct r10bio
*r10_bio
,
779 const sector_t this_sector
= r10_bio
->sector
;
781 int sectors
= r10_bio
->sectors
;
782 int best_good_sectors
;
783 sector_t new_distance
, best_dist
;
784 struct md_rdev
*best_rdev
, *rdev
= NULL
;
787 struct geom
*geo
= &conf
->geo
;
789 raid10_find_phys(conf
, r10_bio
);
792 sectors
= r10_bio
->sectors
;
795 best_dist
= MaxSector
;
796 best_good_sectors
= 0;
799 * Check if we can balance. We can balance on the whole
800 * device if no resync is going on (recovery is ok), or below
801 * the resync window. We take the first readable disk when
802 * above the resync window.
804 if (conf
->mddev
->recovery_cp
< MaxSector
805 && (this_sector
+ sectors
>= conf
->next_resync
))
808 for (slot
= 0; slot
< conf
->copies
; slot
++) {
813 if (r10_bio
->devs
[slot
].bio
== IO_BLOCKED
)
815 disk
= r10_bio
->devs
[slot
].devnum
;
816 rdev
= rcu_dereference(conf
->mirrors
[disk
].replacement
);
817 if (rdev
== NULL
|| test_bit(Faulty
, &rdev
->flags
) ||
818 test_bit(Unmerged
, &rdev
->flags
) ||
819 r10_bio
->devs
[slot
].addr
+ sectors
> rdev
->recovery_offset
)
820 rdev
= rcu_dereference(conf
->mirrors
[disk
].rdev
);
822 test_bit(Faulty
, &rdev
->flags
) ||
823 test_bit(Unmerged
, &rdev
->flags
))
825 if (!test_bit(In_sync
, &rdev
->flags
) &&
826 r10_bio
->devs
[slot
].addr
+ sectors
> rdev
->recovery_offset
)
829 dev_sector
= r10_bio
->devs
[slot
].addr
;
830 if (is_badblock(rdev
, dev_sector
, sectors
,
831 &first_bad
, &bad_sectors
)) {
832 if (best_dist
< MaxSector
)
833 /* Already have a better slot */
835 if (first_bad
<= dev_sector
) {
836 /* Cannot read here. If this is the
837 * 'primary' device, then we must not read
838 * beyond 'bad_sectors' from another device.
840 bad_sectors
-= (dev_sector
- first_bad
);
841 if (!do_balance
&& sectors
> bad_sectors
)
842 sectors
= bad_sectors
;
843 if (best_good_sectors
> sectors
)
844 best_good_sectors
= sectors
;
846 sector_t good_sectors
=
847 first_bad
- dev_sector
;
848 if (good_sectors
> best_good_sectors
) {
849 best_good_sectors
= good_sectors
;
854 /* Must read from here */
859 best_good_sectors
= sectors
;
864 /* This optimisation is debatable, and completely destroys
865 * sequential read speed for 'far copies' arrays. So only
866 * keep it for 'near' arrays, and review those later.
868 if (geo
->near_copies
> 1 && !atomic_read(&rdev
->nr_pending
))
871 /* for far > 1 always use the lowest address */
872 if (geo
->far_copies
> 1)
873 new_distance
= r10_bio
->devs
[slot
].addr
;
875 new_distance
= abs(r10_bio
->devs
[slot
].addr
-
876 conf
->mirrors
[disk
].head_position
);
877 if (new_distance
< best_dist
) {
878 best_dist
= new_distance
;
883 if (slot
>= conf
->copies
) {
889 atomic_inc(&rdev
->nr_pending
);
890 if (test_bit(Faulty
, &rdev
->flags
)) {
891 /* Cannot risk returning a device that failed
892 * before we inc'ed nr_pending
894 rdev_dec_pending(rdev
, conf
->mddev
);
897 r10_bio
->read_slot
= slot
;
901 *max_sectors
= best_good_sectors
;
906 int md_raid10_congested(struct mddev
*mddev
, int bits
)
908 struct r10conf
*conf
= mddev
->private;
911 if ((bits
& (1 << BDI_async_congested
)) &&
912 conf
->pending_count
>= max_queued_requests
)
917 (i
< conf
->geo
.raid_disks
|| i
< conf
->prev
.raid_disks
)
920 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
921 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
922 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
924 ret
|= bdi_congested(&q
->backing_dev_info
, bits
);
930 EXPORT_SYMBOL_GPL(md_raid10_congested
);
932 static int raid10_congested(void *data
, int bits
)
934 struct mddev
*mddev
= data
;
936 return mddev_congested(mddev
, bits
) ||
937 md_raid10_congested(mddev
, bits
);
940 static void flush_pending_writes(struct r10conf
*conf
)
942 /* Any writes that have been queued but are awaiting
943 * bitmap updates get flushed here.
945 spin_lock_irq(&conf
->device_lock
);
947 if (conf
->pending_bio_list
.head
) {
949 bio
= bio_list_get(&conf
->pending_bio_list
);
950 conf
->pending_count
= 0;
951 spin_unlock_irq(&conf
->device_lock
);
952 /* flush any pending bitmap writes to disk
953 * before proceeding w/ I/O */
954 bitmap_unplug(conf
->mddev
->bitmap
);
955 wake_up(&conf
->wait_barrier
);
957 while (bio
) { /* submit pending writes */
958 struct bio
*next
= bio
->bi_next
;
960 if (unlikely((bio
->bi_rw
& REQ_DISCARD
) &&
961 !blk_queue_discard(bdev_get_queue(bio
->bi_bdev
))))
965 generic_make_request(bio
);
969 spin_unlock_irq(&conf
->device_lock
);
973 * Sometimes we need to suspend IO while we do something else,
974 * either some resync/recovery, or reconfigure the array.
975 * To do this we raise a 'barrier'.
976 * The 'barrier' is a counter that can be raised multiple times
977 * to count how many activities are happening which preclude
979 * We can only raise the barrier if there is no pending IO.
980 * i.e. if nr_pending == 0.
981 * We choose only to raise the barrier if no-one is waiting for the
982 * barrier to go down. This means that as soon as an IO request
983 * is ready, no other operations which require a barrier will start
984 * until the IO request has had a chance.
986 * So: regular IO calls 'wait_barrier'. When that returns there
987 * is no backgroup IO happening, It must arrange to call
988 * allow_barrier when it has finished its IO.
989 * backgroup IO calls must call raise_barrier. Once that returns
990 * there is no normal IO happeing. It must arrange to call
991 * lower_barrier when the particular background IO completes.
994 static void raise_barrier(struct r10conf
*conf
, int force
)
996 BUG_ON(force
&& !conf
->barrier
);
997 spin_lock_irq(&conf
->resync_lock
);
999 /* Wait until no block IO is waiting (unless 'force') */
1000 wait_event_lock_irq(conf
->wait_barrier
, force
|| !conf
->nr_waiting
,
1003 /* block any new IO from starting */
1006 /* Now wait for all pending IO to complete */
1007 wait_event_lock_irq(conf
->wait_barrier
,
1008 !conf
->nr_pending
&& conf
->barrier
< RESYNC_DEPTH
,
1011 spin_unlock_irq(&conf
->resync_lock
);
1014 static void lower_barrier(struct r10conf
*conf
)
1016 unsigned long flags
;
1017 spin_lock_irqsave(&conf
->resync_lock
, flags
);
1019 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
1020 wake_up(&conf
->wait_barrier
);
1023 static void wait_barrier(struct r10conf
*conf
)
1025 spin_lock_irq(&conf
->resync_lock
);
1026 if (conf
->barrier
) {
1028 /* Wait for the barrier to drop.
1029 * However if there are already pending
1030 * requests (preventing the barrier from
1031 * rising completely), and the
1032 * pre-process bio queue isn't empty,
1033 * then don't wait, as we need to empty
1034 * that queue to get the nr_pending
1037 wait_event_lock_irq(conf
->wait_barrier
,
1039 (conf
->nr_pending
&&
1040 current
->bio_list
&&
1041 !bio_list_empty(current
->bio_list
)),
1046 spin_unlock_irq(&conf
->resync_lock
);
1049 static void allow_barrier(struct r10conf
*conf
)
1051 unsigned long flags
;
1052 spin_lock_irqsave(&conf
->resync_lock
, flags
);
1054 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
1055 wake_up(&conf
->wait_barrier
);
1058 static void freeze_array(struct r10conf
*conf
)
1060 /* stop syncio and normal IO and wait for everything to
1062 * We increment barrier and nr_waiting, and then
1063 * wait until nr_pending match nr_queued+1
1064 * This is called in the context of one normal IO request
1065 * that has failed. Thus any sync request that might be pending
1066 * will be blocked by nr_pending, and we need to wait for
1067 * pending IO requests to complete or be queued for re-try.
1068 * Thus the number queued (nr_queued) plus this request (1)
1069 * must match the number of pending IOs (nr_pending) before
1072 spin_lock_irq(&conf
->resync_lock
);
1075 wait_event_lock_irq_cmd(conf
->wait_barrier
,
1076 conf
->nr_pending
== conf
->nr_queued
+1,
1078 flush_pending_writes(conf
));
1080 spin_unlock_irq(&conf
->resync_lock
);
1083 static void unfreeze_array(struct r10conf
*conf
)
1085 /* reverse the effect of the freeze */
1086 spin_lock_irq(&conf
->resync_lock
);
1089 wake_up(&conf
->wait_barrier
);
1090 spin_unlock_irq(&conf
->resync_lock
);
1093 static sector_t
choose_data_offset(struct r10bio
*r10_bio
,
1094 struct md_rdev
*rdev
)
1096 if (!test_bit(MD_RECOVERY_RESHAPE
, &rdev
->mddev
->recovery
) ||
1097 test_bit(R10BIO_Previous
, &r10_bio
->state
))
1098 return rdev
->data_offset
;
1100 return rdev
->new_data_offset
;
1103 struct raid10_plug_cb
{
1104 struct blk_plug_cb cb
;
1105 struct bio_list pending
;
1109 static void raid10_unplug(struct blk_plug_cb
*cb
, bool from_schedule
)
1111 struct raid10_plug_cb
*plug
= container_of(cb
, struct raid10_plug_cb
,
1113 struct mddev
*mddev
= plug
->cb
.data
;
1114 struct r10conf
*conf
= mddev
->private;
1117 if (from_schedule
|| current
->bio_list
) {
1118 spin_lock_irq(&conf
->device_lock
);
1119 bio_list_merge(&conf
->pending_bio_list
, &plug
->pending
);
1120 conf
->pending_count
+= plug
->pending_cnt
;
1121 spin_unlock_irq(&conf
->device_lock
);
1122 wake_up(&conf
->wait_barrier
);
1123 md_wakeup_thread(mddev
->thread
);
1128 /* we aren't scheduling, so we can do the write-out directly. */
1129 bio
= bio_list_get(&plug
->pending
);
1130 bitmap_unplug(mddev
->bitmap
);
1131 wake_up(&conf
->wait_barrier
);
1133 while (bio
) { /* submit pending writes */
1134 struct bio
*next
= bio
->bi_next
;
1135 bio
->bi_next
= NULL
;
1136 if (unlikely((bio
->bi_rw
& REQ_DISCARD
) &&
1137 !blk_queue_discard(bdev_get_queue(bio
->bi_bdev
))))
1138 /* Just ignore it */
1141 generic_make_request(bio
);
1147 static void make_request(struct mddev
*mddev
, struct bio
* bio
)
1149 struct r10conf
*conf
= mddev
->private;
1150 struct r10bio
*r10_bio
;
1151 struct bio
*read_bio
;
1153 sector_t chunk_mask
= (conf
->geo
.chunk_mask
& conf
->prev
.chunk_mask
);
1154 int chunk_sects
= chunk_mask
+ 1;
1155 const int rw
= bio_data_dir(bio
);
1156 const unsigned long do_sync
= (bio
->bi_rw
& REQ_SYNC
);
1157 const unsigned long do_fua
= (bio
->bi_rw
& REQ_FUA
);
1158 const unsigned long do_discard
= (bio
->bi_rw
1159 & (REQ_DISCARD
| REQ_SECURE
));
1160 const unsigned long do_same
= (bio
->bi_rw
& REQ_WRITE_SAME
);
1161 unsigned long flags
;
1162 struct md_rdev
*blocked_rdev
;
1163 struct blk_plug_cb
*cb
;
1164 struct raid10_plug_cb
*plug
= NULL
;
1165 int sectors_handled
;
1169 if (unlikely(bio
->bi_rw
& REQ_FLUSH
)) {
1170 md_flush_request(mddev
, bio
);
1174 /* If this request crosses a chunk boundary, we need to
1175 * split it. This will only happen for 1 PAGE (or less) requests.
1177 if (unlikely((bio
->bi_sector
& chunk_mask
) + bio_sectors(bio
)
1179 && (conf
->geo
.near_copies
< conf
->geo
.raid_disks
1180 || conf
->prev
.near_copies
< conf
->prev
.raid_disks
))) {
1181 struct bio_pair
*bp
;
1182 /* Sanity check -- queue functions should prevent this happening */
1183 if (bio_segments(bio
) > 1)
1185 /* This is a one page bio that upper layers
1186 * refuse to split for us, so we need to split it.
1189 chunk_sects
- (bio
->bi_sector
& (chunk_sects
- 1)) );
1191 /* Each of these 'make_request' calls will call 'wait_barrier'.
1192 * If the first succeeds but the second blocks due to the resync
1193 * thread raising the barrier, we will deadlock because the
1194 * IO to the underlying device will be queued in generic_make_request
1195 * and will never complete, so will never reduce nr_pending.
1196 * So increment nr_waiting here so no new raise_barriers will
1197 * succeed, and so the second wait_barrier cannot block.
1199 spin_lock_irq(&conf
->resync_lock
);
1201 spin_unlock_irq(&conf
->resync_lock
);
1203 make_request(mddev
, &bp
->bio1
);
1204 make_request(mddev
, &bp
->bio2
);
1206 spin_lock_irq(&conf
->resync_lock
);
1208 wake_up(&conf
->wait_barrier
);
1209 spin_unlock_irq(&conf
->resync_lock
);
1211 bio_pair_release(bp
);
1214 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
1215 " or bigger than %dk %llu %d\n", mdname(mddev
), chunk_sects
/2,
1216 (unsigned long long)bio
->bi_sector
, bio_sectors(bio
) / 2);
1222 md_write_start(mddev
, bio
);
1225 * Register the new request and wait if the reconstruction
1226 * thread has put up a bar for new requests.
1227 * Continue immediately if no resync is active currently.
1231 sectors
= bio_sectors(bio
);
1232 while (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
) &&
1233 bio
->bi_sector
< conf
->reshape_progress
&&
1234 bio
->bi_sector
+ sectors
> conf
->reshape_progress
) {
1235 /* IO spans the reshape position. Need to wait for
1238 allow_barrier(conf
);
1239 wait_event(conf
->wait_barrier
,
1240 conf
->reshape_progress
<= bio
->bi_sector
||
1241 conf
->reshape_progress
>= bio
->bi_sector
+ sectors
);
1244 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
) &&
1245 bio_data_dir(bio
) == WRITE
&&
1246 (mddev
->reshape_backwards
1247 ? (bio
->bi_sector
< conf
->reshape_safe
&&
1248 bio
->bi_sector
+ sectors
> conf
->reshape_progress
)
1249 : (bio
->bi_sector
+ sectors
> conf
->reshape_safe
&&
1250 bio
->bi_sector
< conf
->reshape_progress
))) {
1251 /* Need to update reshape_position in metadata */
1252 mddev
->reshape_position
= conf
->reshape_progress
;
1253 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
1254 set_bit(MD_CHANGE_PENDING
, &mddev
->flags
);
1255 md_wakeup_thread(mddev
->thread
);
1256 wait_event(mddev
->sb_wait
,
1257 !test_bit(MD_CHANGE_PENDING
, &mddev
->flags
));
1259 conf
->reshape_safe
= mddev
->reshape_position
;
1262 r10_bio
= mempool_alloc(conf
->r10bio_pool
, GFP_NOIO
);
1264 r10_bio
->master_bio
= bio
;
1265 r10_bio
->sectors
= sectors
;
1267 r10_bio
->mddev
= mddev
;
1268 r10_bio
->sector
= bio
->bi_sector
;
1271 /* We might need to issue multiple reads to different
1272 * devices if there are bad blocks around, so we keep
1273 * track of the number of reads in bio->bi_phys_segments.
1274 * If this is 0, there is only one r10_bio and no locking
1275 * will be needed when the request completes. If it is
1276 * non-zero, then it is the number of not-completed requests.
1278 bio
->bi_phys_segments
= 0;
1279 clear_bit(BIO_SEG_VALID
, &bio
->bi_flags
);
1283 * read balancing logic:
1285 struct md_rdev
*rdev
;
1289 rdev
= read_balance(conf
, r10_bio
, &max_sectors
);
1291 raid_end_bio_io(r10_bio
);
1294 slot
= r10_bio
->read_slot
;
1296 read_bio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
1297 md_trim_bio(read_bio
, r10_bio
->sector
- bio
->bi_sector
,
1300 r10_bio
->devs
[slot
].bio
= read_bio
;
1301 r10_bio
->devs
[slot
].rdev
= rdev
;
1303 read_bio
->bi_sector
= r10_bio
->devs
[slot
].addr
+
1304 choose_data_offset(r10_bio
, rdev
);
1305 read_bio
->bi_bdev
= rdev
->bdev
;
1306 read_bio
->bi_end_io
= raid10_end_read_request
;
1307 read_bio
->bi_rw
= READ
| do_sync
;
1308 read_bio
->bi_private
= r10_bio
;
1310 if (max_sectors
< r10_bio
->sectors
) {
1311 /* Could not read all from this device, so we will
1312 * need another r10_bio.
1314 sectors_handled
= (r10_bio
->sectors
+ max_sectors
1316 r10_bio
->sectors
= max_sectors
;
1317 spin_lock_irq(&conf
->device_lock
);
1318 if (bio
->bi_phys_segments
== 0)
1319 bio
->bi_phys_segments
= 2;
1321 bio
->bi_phys_segments
++;
1322 spin_unlock(&conf
->device_lock
);
1323 /* Cannot call generic_make_request directly
1324 * as that will be queued in __generic_make_request
1325 * and subsequent mempool_alloc might block
1326 * waiting for it. so hand bio over to raid10d.
1328 reschedule_retry(r10_bio
);
1330 r10_bio
= mempool_alloc(conf
->r10bio_pool
, GFP_NOIO
);
1332 r10_bio
->master_bio
= bio
;
1333 r10_bio
->sectors
= bio_sectors(bio
) - sectors_handled
;
1335 r10_bio
->mddev
= mddev
;
1336 r10_bio
->sector
= bio
->bi_sector
+ sectors_handled
;
1339 generic_make_request(read_bio
);
1346 if (conf
->pending_count
>= max_queued_requests
) {
1347 md_wakeup_thread(mddev
->thread
);
1348 wait_event(conf
->wait_barrier
,
1349 conf
->pending_count
< max_queued_requests
);
1351 /* first select target devices under rcu_lock and
1352 * inc refcount on their rdev. Record them by setting
1354 * If there are known/acknowledged bad blocks on any device
1355 * on which we have seen a write error, we want to avoid
1356 * writing to those blocks. This potentially requires several
1357 * writes to write around the bad blocks. Each set of writes
1358 * gets its own r10_bio with a set of bios attached. The number
1359 * of r10_bios is recored in bio->bi_phys_segments just as with
1363 r10_bio
->read_slot
= -1; /* make sure repl_bio gets freed */
1364 raid10_find_phys(conf
, r10_bio
);
1366 blocked_rdev
= NULL
;
1368 max_sectors
= r10_bio
->sectors
;
1370 for (i
= 0; i
< conf
->copies
; i
++) {
1371 int d
= r10_bio
->devs
[i
].devnum
;
1372 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
1373 struct md_rdev
*rrdev
= rcu_dereference(
1374 conf
->mirrors
[d
].replacement
);
1377 if (rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
1378 atomic_inc(&rdev
->nr_pending
);
1379 blocked_rdev
= rdev
;
1382 if (rrdev
&& unlikely(test_bit(Blocked
, &rrdev
->flags
))) {
1383 atomic_inc(&rrdev
->nr_pending
);
1384 blocked_rdev
= rrdev
;
1387 if (rdev
&& (test_bit(Faulty
, &rdev
->flags
)
1388 || test_bit(Unmerged
, &rdev
->flags
)))
1390 if (rrdev
&& (test_bit(Faulty
, &rrdev
->flags
)
1391 || test_bit(Unmerged
, &rrdev
->flags
)))
1394 r10_bio
->devs
[i
].bio
= NULL
;
1395 r10_bio
->devs
[i
].repl_bio
= NULL
;
1397 if (!rdev
&& !rrdev
) {
1398 set_bit(R10BIO_Degraded
, &r10_bio
->state
);
1401 if (rdev
&& test_bit(WriteErrorSeen
, &rdev
->flags
)) {
1403 sector_t dev_sector
= r10_bio
->devs
[i
].addr
;
1407 is_bad
= is_badblock(rdev
, dev_sector
,
1409 &first_bad
, &bad_sectors
);
1411 /* Mustn't write here until the bad block
1414 atomic_inc(&rdev
->nr_pending
);
1415 set_bit(BlockedBadBlocks
, &rdev
->flags
);
1416 blocked_rdev
= rdev
;
1419 if (is_bad
&& first_bad
<= dev_sector
) {
1420 /* Cannot write here at all */
1421 bad_sectors
-= (dev_sector
- first_bad
);
1422 if (bad_sectors
< max_sectors
)
1423 /* Mustn't write more than bad_sectors
1424 * to other devices yet
1426 max_sectors
= bad_sectors
;
1427 /* We don't set R10BIO_Degraded as that
1428 * only applies if the disk is missing,
1429 * so it might be re-added, and we want to
1430 * know to recover this chunk.
1431 * In this case the device is here, and the
1432 * fact that this chunk is not in-sync is
1433 * recorded in the bad block log.
1438 int good_sectors
= first_bad
- dev_sector
;
1439 if (good_sectors
< max_sectors
)
1440 max_sectors
= good_sectors
;
1444 r10_bio
->devs
[i
].bio
= bio
;
1445 atomic_inc(&rdev
->nr_pending
);
1448 r10_bio
->devs
[i
].repl_bio
= bio
;
1449 atomic_inc(&rrdev
->nr_pending
);
1454 if (unlikely(blocked_rdev
)) {
1455 /* Have to wait for this device to get unblocked, then retry */
1459 for (j
= 0; j
< i
; j
++) {
1460 if (r10_bio
->devs
[j
].bio
) {
1461 d
= r10_bio
->devs
[j
].devnum
;
1462 rdev_dec_pending(conf
->mirrors
[d
].rdev
, mddev
);
1464 if (r10_bio
->devs
[j
].repl_bio
) {
1465 struct md_rdev
*rdev
;
1466 d
= r10_bio
->devs
[j
].devnum
;
1467 rdev
= conf
->mirrors
[d
].replacement
;
1469 /* Race with remove_disk */
1471 rdev
= conf
->mirrors
[d
].rdev
;
1473 rdev_dec_pending(rdev
, mddev
);
1476 allow_barrier(conf
);
1477 md_wait_for_blocked_rdev(blocked_rdev
, mddev
);
1482 if (max_sectors
< r10_bio
->sectors
) {
1483 /* We are splitting this into multiple parts, so
1484 * we need to prepare for allocating another r10_bio.
1486 r10_bio
->sectors
= max_sectors
;
1487 spin_lock_irq(&conf
->device_lock
);
1488 if (bio
->bi_phys_segments
== 0)
1489 bio
->bi_phys_segments
= 2;
1491 bio
->bi_phys_segments
++;
1492 spin_unlock_irq(&conf
->device_lock
);
1494 sectors_handled
= r10_bio
->sector
+ max_sectors
- bio
->bi_sector
;
1496 atomic_set(&r10_bio
->remaining
, 1);
1497 bitmap_startwrite(mddev
->bitmap
, r10_bio
->sector
, r10_bio
->sectors
, 0);
1499 for (i
= 0; i
< conf
->copies
; i
++) {
1501 int d
= r10_bio
->devs
[i
].devnum
;
1502 if (r10_bio
->devs
[i
].bio
) {
1503 struct md_rdev
*rdev
= conf
->mirrors
[d
].rdev
;
1504 mbio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
1505 md_trim_bio(mbio
, r10_bio
->sector
- bio
->bi_sector
,
1507 r10_bio
->devs
[i
].bio
= mbio
;
1509 mbio
->bi_sector
= (r10_bio
->devs
[i
].addr
+
1510 choose_data_offset(r10_bio
,
1512 mbio
->bi_bdev
= rdev
->bdev
;
1513 mbio
->bi_end_io
= raid10_end_write_request
;
1515 WRITE
| do_sync
| do_fua
| do_discard
| do_same
;
1516 mbio
->bi_private
= r10_bio
;
1518 atomic_inc(&r10_bio
->remaining
);
1520 cb
= blk_check_plugged(raid10_unplug
, mddev
,
1523 plug
= container_of(cb
, struct raid10_plug_cb
,
1527 spin_lock_irqsave(&conf
->device_lock
, flags
);
1529 bio_list_add(&plug
->pending
, mbio
);
1530 plug
->pending_cnt
++;
1532 bio_list_add(&conf
->pending_bio_list
, mbio
);
1533 conf
->pending_count
++;
1535 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1537 md_wakeup_thread(mddev
->thread
);
1540 if (r10_bio
->devs
[i
].repl_bio
) {
1541 struct md_rdev
*rdev
= conf
->mirrors
[d
].replacement
;
1543 /* Replacement just got moved to main 'rdev' */
1545 rdev
= conf
->mirrors
[d
].rdev
;
1547 mbio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
1548 md_trim_bio(mbio
, r10_bio
->sector
- bio
->bi_sector
,
1550 r10_bio
->devs
[i
].repl_bio
= mbio
;
1552 mbio
->bi_sector
= (r10_bio
->devs
[i
].addr
+
1555 mbio
->bi_bdev
= rdev
->bdev
;
1556 mbio
->bi_end_io
= raid10_end_write_request
;
1558 WRITE
| do_sync
| do_fua
| do_discard
| do_same
;
1559 mbio
->bi_private
= r10_bio
;
1561 atomic_inc(&r10_bio
->remaining
);
1562 spin_lock_irqsave(&conf
->device_lock
, flags
);
1563 bio_list_add(&conf
->pending_bio_list
, mbio
);
1564 conf
->pending_count
++;
1565 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1566 if (!mddev_check_plugged(mddev
))
1567 md_wakeup_thread(mddev
->thread
);
1571 /* Don't remove the bias on 'remaining' (one_write_done) until
1572 * after checking if we need to go around again.
1575 if (sectors_handled
< bio_sectors(bio
)) {
1576 one_write_done(r10_bio
);
1577 /* We need another r10_bio. It has already been counted
1578 * in bio->bi_phys_segments.
1580 r10_bio
= mempool_alloc(conf
->r10bio_pool
, GFP_NOIO
);
1582 r10_bio
->master_bio
= bio
;
1583 r10_bio
->sectors
= bio_sectors(bio
) - sectors_handled
;
1585 r10_bio
->mddev
= mddev
;
1586 r10_bio
->sector
= bio
->bi_sector
+ sectors_handled
;
1590 one_write_done(r10_bio
);
1592 /* In case raid10d snuck in to freeze_array */
1593 wake_up(&conf
->wait_barrier
);
1596 static void status(struct seq_file
*seq
, struct mddev
*mddev
)
1598 struct r10conf
*conf
= mddev
->private;
1601 if (conf
->geo
.near_copies
< conf
->geo
.raid_disks
)
1602 seq_printf(seq
, " %dK chunks", mddev
->chunk_sectors
/ 2);
1603 if (conf
->geo
.near_copies
> 1)
1604 seq_printf(seq
, " %d near-copies", conf
->geo
.near_copies
);
1605 if (conf
->geo
.far_copies
> 1) {
1606 if (conf
->geo
.far_offset
)
1607 seq_printf(seq
, " %d offset-copies", conf
->geo
.far_copies
);
1609 seq_printf(seq
, " %d far-copies", conf
->geo
.far_copies
);
1611 seq_printf(seq
, " [%d/%d] [", conf
->geo
.raid_disks
,
1612 conf
->geo
.raid_disks
- mddev
->degraded
);
1613 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++)
1614 seq_printf(seq
, "%s",
1615 conf
->mirrors
[i
].rdev
&&
1616 test_bit(In_sync
, &conf
->mirrors
[i
].rdev
->flags
) ? "U" : "_");
1617 seq_printf(seq
, "]");
1620 /* check if there are enough drives for
1621 * every block to appear on atleast one.
1622 * Don't consider the device numbered 'ignore'
1623 * as we might be about to remove it.
1625 static int _enough(struct r10conf
*conf
, struct geom
*geo
, int ignore
)
1630 int n
= conf
->copies
;
1634 if (conf
->mirrors
[this].rdev
&&
1637 this = (this+1) % geo
->raid_disks
;
1641 first
= (first
+ geo
->near_copies
) % geo
->raid_disks
;
1642 } while (first
!= 0);
1646 static int enough(struct r10conf
*conf
, int ignore
)
1648 return _enough(conf
, &conf
->geo
, ignore
) &&
1649 _enough(conf
, &conf
->prev
, ignore
);
1652 static void error(struct mddev
*mddev
, struct md_rdev
*rdev
)
1654 char b
[BDEVNAME_SIZE
];
1655 struct r10conf
*conf
= mddev
->private;
1658 * If it is not operational, then we have already marked it as dead
1659 * else if it is the last working disks, ignore the error, let the
1660 * next level up know.
1661 * else mark the drive as failed
1663 if (test_bit(In_sync
, &rdev
->flags
)
1664 && !enough(conf
, rdev
->raid_disk
))
1666 * Don't fail the drive, just return an IO error.
1669 if (test_and_clear_bit(In_sync
, &rdev
->flags
)) {
1670 unsigned long flags
;
1671 spin_lock_irqsave(&conf
->device_lock
, flags
);
1673 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1675 * if recovery is running, make sure it aborts.
1677 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1679 set_bit(Blocked
, &rdev
->flags
);
1680 set_bit(Faulty
, &rdev
->flags
);
1681 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
1683 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1684 "md/raid10:%s: Operation continuing on %d devices.\n",
1685 mdname(mddev
), bdevname(rdev
->bdev
, b
),
1686 mdname(mddev
), conf
->geo
.raid_disks
- mddev
->degraded
);
1689 static void print_conf(struct r10conf
*conf
)
1692 struct raid10_info
*tmp
;
1694 printk(KERN_DEBUG
"RAID10 conf printout:\n");
1696 printk(KERN_DEBUG
"(!conf)\n");
1699 printk(KERN_DEBUG
" --- wd:%d rd:%d\n", conf
->geo
.raid_disks
- conf
->mddev
->degraded
,
1700 conf
->geo
.raid_disks
);
1702 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
1703 char b
[BDEVNAME_SIZE
];
1704 tmp
= conf
->mirrors
+ i
;
1706 printk(KERN_DEBUG
" disk %d, wo:%d, o:%d, dev:%s\n",
1707 i
, !test_bit(In_sync
, &tmp
->rdev
->flags
),
1708 !test_bit(Faulty
, &tmp
->rdev
->flags
),
1709 bdevname(tmp
->rdev
->bdev
,b
));
1713 static void close_sync(struct r10conf
*conf
)
1716 allow_barrier(conf
);
1718 mempool_destroy(conf
->r10buf_pool
);
1719 conf
->r10buf_pool
= NULL
;
1722 static int raid10_spare_active(struct mddev
*mddev
)
1725 struct r10conf
*conf
= mddev
->private;
1726 struct raid10_info
*tmp
;
1728 unsigned long flags
;
1731 * Find all non-in_sync disks within the RAID10 configuration
1732 * and mark them in_sync
1734 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
1735 tmp
= conf
->mirrors
+ i
;
1736 if (tmp
->replacement
1737 && tmp
->replacement
->recovery_offset
== MaxSector
1738 && !test_bit(Faulty
, &tmp
->replacement
->flags
)
1739 && !test_and_set_bit(In_sync
, &tmp
->replacement
->flags
)) {
1740 /* Replacement has just become active */
1742 || !test_and_clear_bit(In_sync
, &tmp
->rdev
->flags
))
1745 /* Replaced device not technically faulty,
1746 * but we need to be sure it gets removed
1747 * and never re-added.
1749 set_bit(Faulty
, &tmp
->rdev
->flags
);
1750 sysfs_notify_dirent_safe(
1751 tmp
->rdev
->sysfs_state
);
1753 sysfs_notify_dirent_safe(tmp
->replacement
->sysfs_state
);
1754 } else if (tmp
->rdev
1755 && !test_bit(Faulty
, &tmp
->rdev
->flags
)
1756 && !test_and_set_bit(In_sync
, &tmp
->rdev
->flags
)) {
1758 sysfs_notify_dirent_safe(tmp
->rdev
->sysfs_state
);
1761 spin_lock_irqsave(&conf
->device_lock
, flags
);
1762 mddev
->degraded
-= count
;
1763 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1770 static int raid10_add_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1772 struct r10conf
*conf
= mddev
->private;
1776 int last
= conf
->geo
.raid_disks
- 1;
1777 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
1779 if (mddev
->recovery_cp
< MaxSector
)
1780 /* only hot-add to in-sync arrays, as recovery is
1781 * very different from resync
1784 if (rdev
->saved_raid_disk
< 0 && !_enough(conf
, &conf
->prev
, -1))
1787 if (rdev
->raid_disk
>= 0)
1788 first
= last
= rdev
->raid_disk
;
1790 if (q
->merge_bvec_fn
) {
1791 set_bit(Unmerged
, &rdev
->flags
);
1792 mddev
->merge_check_needed
= 1;
1795 if (rdev
->saved_raid_disk
>= first
&&
1796 conf
->mirrors
[rdev
->saved_raid_disk
].rdev
== NULL
)
1797 mirror
= rdev
->saved_raid_disk
;
1800 for ( ; mirror
<= last
; mirror
++) {
1801 struct raid10_info
*p
= &conf
->mirrors
[mirror
];
1802 if (p
->recovery_disabled
== mddev
->recovery_disabled
)
1805 if (!test_bit(WantReplacement
, &p
->rdev
->flags
) ||
1806 p
->replacement
!= NULL
)
1808 clear_bit(In_sync
, &rdev
->flags
);
1809 set_bit(Replacement
, &rdev
->flags
);
1810 rdev
->raid_disk
= mirror
;
1812 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1813 rdev
->data_offset
<< 9);
1815 rcu_assign_pointer(p
->replacement
, rdev
);
1819 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1820 rdev
->data_offset
<< 9);
1822 p
->head_position
= 0;
1823 p
->recovery_disabled
= mddev
->recovery_disabled
- 1;
1824 rdev
->raid_disk
= mirror
;
1826 if (rdev
->saved_raid_disk
!= mirror
)
1828 rcu_assign_pointer(p
->rdev
, rdev
);
1831 if (err
== 0 && test_bit(Unmerged
, &rdev
->flags
)) {
1832 /* Some requests might not have seen this new
1833 * merge_bvec_fn. We must wait for them to complete
1834 * before merging the device fully.
1835 * First we make sure any code which has tested
1836 * our function has submitted the request, then
1837 * we wait for all outstanding requests to complete.
1839 synchronize_sched();
1840 raise_barrier(conf
, 0);
1841 lower_barrier(conf
);
1842 clear_bit(Unmerged
, &rdev
->flags
);
1844 md_integrity_add_rdev(rdev
, mddev
);
1845 if (mddev
->queue
&& blk_queue_discard(bdev_get_queue(rdev
->bdev
)))
1846 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
, mddev
->queue
);
1852 static int raid10_remove_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1854 struct r10conf
*conf
= mddev
->private;
1856 int number
= rdev
->raid_disk
;
1857 struct md_rdev
**rdevp
;
1858 struct raid10_info
*p
= conf
->mirrors
+ number
;
1861 if (rdev
== p
->rdev
)
1863 else if (rdev
== p
->replacement
)
1864 rdevp
= &p
->replacement
;
1868 if (test_bit(In_sync
, &rdev
->flags
) ||
1869 atomic_read(&rdev
->nr_pending
)) {
1873 /* Only remove faulty devices if recovery
1876 if (!test_bit(Faulty
, &rdev
->flags
) &&
1877 mddev
->recovery_disabled
!= p
->recovery_disabled
&&
1878 (!p
->replacement
|| p
->replacement
== rdev
) &&
1879 number
< conf
->geo
.raid_disks
&&
1886 if (atomic_read(&rdev
->nr_pending
)) {
1887 /* lost the race, try later */
1891 } else if (p
->replacement
) {
1892 /* We must have just cleared 'rdev' */
1893 p
->rdev
= p
->replacement
;
1894 clear_bit(Replacement
, &p
->replacement
->flags
);
1895 smp_mb(); /* Make sure other CPUs may see both as identical
1896 * but will never see neither -- if they are careful.
1898 p
->replacement
= NULL
;
1899 clear_bit(WantReplacement
, &rdev
->flags
);
1901 /* We might have just remove the Replacement as faulty
1902 * Clear the flag just in case
1904 clear_bit(WantReplacement
, &rdev
->flags
);
1906 err
= md_integrity_register(mddev
);
1915 static void end_sync_read(struct bio
*bio
, int error
)
1917 struct r10bio
*r10_bio
= bio
->bi_private
;
1918 struct r10conf
*conf
= r10_bio
->mddev
->private;
1921 if (bio
== r10_bio
->master_bio
) {
1922 /* this is a reshape read */
1923 d
= r10_bio
->read_slot
; /* really the read dev */
1925 d
= find_bio_disk(conf
, r10_bio
, bio
, NULL
, NULL
);
1927 if (test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
1928 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
1930 /* The write handler will notice the lack of
1931 * R10BIO_Uptodate and record any errors etc
1933 atomic_add(r10_bio
->sectors
,
1934 &conf
->mirrors
[d
].rdev
->corrected_errors
);
1936 /* for reconstruct, we always reschedule after a read.
1937 * for resync, only after all reads
1939 rdev_dec_pending(conf
->mirrors
[d
].rdev
, conf
->mddev
);
1940 if (test_bit(R10BIO_IsRecover
, &r10_bio
->state
) ||
1941 atomic_dec_and_test(&r10_bio
->remaining
)) {
1942 /* we have read all the blocks,
1943 * do the comparison in process context in raid10d
1945 reschedule_retry(r10_bio
);
1949 static void end_sync_request(struct r10bio
*r10_bio
)
1951 struct mddev
*mddev
= r10_bio
->mddev
;
1953 while (atomic_dec_and_test(&r10_bio
->remaining
)) {
1954 if (r10_bio
->master_bio
== NULL
) {
1955 /* the primary of several recovery bios */
1956 sector_t s
= r10_bio
->sectors
;
1957 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
) ||
1958 test_bit(R10BIO_WriteError
, &r10_bio
->state
))
1959 reschedule_retry(r10_bio
);
1962 md_done_sync(mddev
, s
, 1);
1965 struct r10bio
*r10_bio2
= (struct r10bio
*)r10_bio
->master_bio
;
1966 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
) ||
1967 test_bit(R10BIO_WriteError
, &r10_bio
->state
))
1968 reschedule_retry(r10_bio
);
1976 static void end_sync_write(struct bio
*bio
, int error
)
1978 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1979 struct r10bio
*r10_bio
= bio
->bi_private
;
1980 struct mddev
*mddev
= r10_bio
->mddev
;
1981 struct r10conf
*conf
= mddev
->private;
1987 struct md_rdev
*rdev
= NULL
;
1989 d
= find_bio_disk(conf
, r10_bio
, bio
, &slot
, &repl
);
1991 rdev
= conf
->mirrors
[d
].replacement
;
1993 rdev
= conf
->mirrors
[d
].rdev
;
1997 md_error(mddev
, rdev
);
1999 set_bit(WriteErrorSeen
, &rdev
->flags
);
2000 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
2001 set_bit(MD_RECOVERY_NEEDED
,
2002 &rdev
->mddev
->recovery
);
2003 set_bit(R10BIO_WriteError
, &r10_bio
->state
);
2005 } else if (is_badblock(rdev
,
2006 r10_bio
->devs
[slot
].addr
,
2008 &first_bad
, &bad_sectors
))
2009 set_bit(R10BIO_MadeGood
, &r10_bio
->state
);
2011 rdev_dec_pending(rdev
, mddev
);
2013 end_sync_request(r10_bio
);
2017 * Note: sync and recover and handled very differently for raid10
2018 * This code is for resync.
2019 * For resync, we read through virtual addresses and read all blocks.
2020 * If there is any error, we schedule a write. The lowest numbered
2021 * drive is authoritative.
2022 * However requests come for physical address, so we need to map.
2023 * For every physical address there are raid_disks/copies virtual addresses,
2024 * which is always are least one, but is not necessarly an integer.
2025 * This means that a physical address can span multiple chunks, so we may
2026 * have to submit multiple io requests for a single sync request.
2029 * We check if all blocks are in-sync and only write to blocks that
2032 static void sync_request_write(struct mddev
*mddev
, struct r10bio
*r10_bio
)
2034 struct r10conf
*conf
= mddev
->private;
2036 struct bio
*tbio
, *fbio
;
2039 atomic_set(&r10_bio
->remaining
, 1);
2041 /* find the first device with a block */
2042 for (i
=0; i
<conf
->copies
; i
++)
2043 if (test_bit(BIO_UPTODATE
, &r10_bio
->devs
[i
].bio
->bi_flags
))
2046 if (i
== conf
->copies
)
2050 fbio
= r10_bio
->devs
[i
].bio
;
2052 vcnt
= (r10_bio
->sectors
+ (PAGE_SIZE
>> 9) - 1) >> (PAGE_SHIFT
- 9);
2053 /* now find blocks with errors */
2054 for (i
=0 ; i
< conf
->copies
; i
++) {
2057 tbio
= r10_bio
->devs
[i
].bio
;
2059 if (tbio
->bi_end_io
!= end_sync_read
)
2063 if (test_bit(BIO_UPTODATE
, &r10_bio
->devs
[i
].bio
->bi_flags
)) {
2064 /* We know that the bi_io_vec layout is the same for
2065 * both 'first' and 'i', so we just compare them.
2066 * All vec entries are PAGE_SIZE;
2068 for (j
= 0; j
< vcnt
; j
++)
2069 if (memcmp(page_address(fbio
->bi_io_vec
[j
].bv_page
),
2070 page_address(tbio
->bi_io_vec
[j
].bv_page
),
2071 fbio
->bi_io_vec
[j
].bv_len
))
2075 atomic64_add(r10_bio
->sectors
, &mddev
->resync_mismatches
);
2076 if (test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
))
2077 /* Don't fix anything. */
2080 /* Ok, we need to write this bio, either to correct an
2081 * inconsistency or to correct an unreadable block.
2082 * First we need to fixup bv_offset, bv_len and
2083 * bi_vecs, as the read request might have corrupted these
2087 tbio
->bi_vcnt
= vcnt
;
2088 tbio
->bi_size
= r10_bio
->sectors
<< 9;
2089 tbio
->bi_rw
= WRITE
;
2090 tbio
->bi_private
= r10_bio
;
2091 tbio
->bi_sector
= r10_bio
->devs
[i
].addr
;
2093 for (j
=0; j
< vcnt
; j
++) {
2094 tbio
->bi_io_vec
[j
].bv_offset
= 0;
2095 tbio
->bi_io_vec
[j
].bv_len
= PAGE_SIZE
;
2097 memcpy(page_address(tbio
->bi_io_vec
[j
].bv_page
),
2098 page_address(fbio
->bi_io_vec
[j
].bv_page
),
2101 tbio
->bi_end_io
= end_sync_write
;
2103 d
= r10_bio
->devs
[i
].devnum
;
2104 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
2105 atomic_inc(&r10_bio
->remaining
);
2106 md_sync_acct(conf
->mirrors
[d
].rdev
->bdev
, bio_sectors(tbio
));
2108 tbio
->bi_sector
+= conf
->mirrors
[d
].rdev
->data_offset
;
2109 tbio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
2110 generic_make_request(tbio
);
2113 /* Now write out to any replacement devices
2116 for (i
= 0; i
< conf
->copies
; i
++) {
2119 tbio
= r10_bio
->devs
[i
].repl_bio
;
2120 if (!tbio
|| !tbio
->bi_end_io
)
2122 if (r10_bio
->devs
[i
].bio
->bi_end_io
!= end_sync_write
2123 && r10_bio
->devs
[i
].bio
!= fbio
)
2124 for (j
= 0; j
< vcnt
; j
++)
2125 memcpy(page_address(tbio
->bi_io_vec
[j
].bv_page
),
2126 page_address(fbio
->bi_io_vec
[j
].bv_page
),
2128 d
= r10_bio
->devs
[i
].devnum
;
2129 atomic_inc(&r10_bio
->remaining
);
2130 md_sync_acct(conf
->mirrors
[d
].replacement
->bdev
,
2132 generic_make_request(tbio
);
2136 if (atomic_dec_and_test(&r10_bio
->remaining
)) {
2137 md_done_sync(mddev
, r10_bio
->sectors
, 1);
2143 * Now for the recovery code.
2144 * Recovery happens across physical sectors.
2145 * We recover all non-is_sync drives by finding the virtual address of
2146 * each, and then choose a working drive that also has that virt address.
2147 * There is a separate r10_bio for each non-in_sync drive.
2148 * Only the first two slots are in use. The first for reading,
2149 * The second for writing.
2152 static void fix_recovery_read_error(struct r10bio
*r10_bio
)
2154 /* We got a read error during recovery.
2155 * We repeat the read in smaller page-sized sections.
2156 * If a read succeeds, write it to the new device or record
2157 * a bad block if we cannot.
2158 * If a read fails, record a bad block on both old and
2161 struct mddev
*mddev
= r10_bio
->mddev
;
2162 struct r10conf
*conf
= mddev
->private;
2163 struct bio
*bio
= r10_bio
->devs
[0].bio
;
2165 int sectors
= r10_bio
->sectors
;
2167 int dr
= r10_bio
->devs
[0].devnum
;
2168 int dw
= r10_bio
->devs
[1].devnum
;
2172 struct md_rdev
*rdev
;
2176 if (s
> (PAGE_SIZE
>>9))
2179 rdev
= conf
->mirrors
[dr
].rdev
;
2180 addr
= r10_bio
->devs
[0].addr
+ sect
,
2181 ok
= sync_page_io(rdev
,
2184 bio
->bi_io_vec
[idx
].bv_page
,
2187 rdev
= conf
->mirrors
[dw
].rdev
;
2188 addr
= r10_bio
->devs
[1].addr
+ sect
;
2189 ok
= sync_page_io(rdev
,
2192 bio
->bi_io_vec
[idx
].bv_page
,
2195 set_bit(WriteErrorSeen
, &rdev
->flags
);
2196 if (!test_and_set_bit(WantReplacement
,
2198 set_bit(MD_RECOVERY_NEEDED
,
2199 &rdev
->mddev
->recovery
);
2203 /* We don't worry if we cannot set a bad block -
2204 * it really is bad so there is no loss in not
2207 rdev_set_badblocks(rdev
, addr
, s
, 0);
2209 if (rdev
!= conf
->mirrors
[dw
].rdev
) {
2210 /* need bad block on destination too */
2211 struct md_rdev
*rdev2
= conf
->mirrors
[dw
].rdev
;
2212 addr
= r10_bio
->devs
[1].addr
+ sect
;
2213 ok
= rdev_set_badblocks(rdev2
, addr
, s
, 0);
2215 /* just abort the recovery */
2217 "md/raid10:%s: recovery aborted"
2218 " due to read error\n",
2221 conf
->mirrors
[dw
].recovery_disabled
2222 = mddev
->recovery_disabled
;
2223 set_bit(MD_RECOVERY_INTR
,
2236 static void recovery_request_write(struct mddev
*mddev
, struct r10bio
*r10_bio
)
2238 struct r10conf
*conf
= mddev
->private;
2240 struct bio
*wbio
, *wbio2
;
2242 if (!test_bit(R10BIO_Uptodate
, &r10_bio
->state
)) {
2243 fix_recovery_read_error(r10_bio
);
2244 end_sync_request(r10_bio
);
2249 * share the pages with the first bio
2250 * and submit the write request
2252 d
= r10_bio
->devs
[1].devnum
;
2253 wbio
= r10_bio
->devs
[1].bio
;
2254 wbio2
= r10_bio
->devs
[1].repl_bio
;
2255 if (wbio
->bi_end_io
) {
2256 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
2257 md_sync_acct(conf
->mirrors
[d
].rdev
->bdev
, bio_sectors(wbio
));
2258 generic_make_request(wbio
);
2260 if (wbio2
&& wbio2
->bi_end_io
) {
2261 atomic_inc(&conf
->mirrors
[d
].replacement
->nr_pending
);
2262 md_sync_acct(conf
->mirrors
[d
].replacement
->bdev
,
2263 bio_sectors(wbio2
));
2264 generic_make_request(wbio2
);
2270 * Used by fix_read_error() to decay the per rdev read_errors.
2271 * We halve the read error count for every hour that has elapsed
2272 * since the last recorded read error.
2275 static void check_decay_read_errors(struct mddev
*mddev
, struct md_rdev
*rdev
)
2277 struct timespec cur_time_mon
;
2278 unsigned long hours_since_last
;
2279 unsigned int read_errors
= atomic_read(&rdev
->read_errors
);
2281 ktime_get_ts(&cur_time_mon
);
2283 if (rdev
->last_read_error
.tv_sec
== 0 &&
2284 rdev
->last_read_error
.tv_nsec
== 0) {
2285 /* first time we've seen a read error */
2286 rdev
->last_read_error
= cur_time_mon
;
2290 hours_since_last
= (cur_time_mon
.tv_sec
-
2291 rdev
->last_read_error
.tv_sec
) / 3600;
2293 rdev
->last_read_error
= cur_time_mon
;
2296 * if hours_since_last is > the number of bits in read_errors
2297 * just set read errors to 0. We do this to avoid
2298 * overflowing the shift of read_errors by hours_since_last.
2300 if (hours_since_last
>= 8 * sizeof(read_errors
))
2301 atomic_set(&rdev
->read_errors
, 0);
2303 atomic_set(&rdev
->read_errors
, read_errors
>> hours_since_last
);
2306 static int r10_sync_page_io(struct md_rdev
*rdev
, sector_t sector
,
2307 int sectors
, struct page
*page
, int rw
)
2312 if (is_badblock(rdev
, sector
, sectors
, &first_bad
, &bad_sectors
)
2313 && (rw
== READ
|| test_bit(WriteErrorSeen
, &rdev
->flags
)))
2315 if (sync_page_io(rdev
, sector
, sectors
<< 9, page
, rw
, false))
2319 set_bit(WriteErrorSeen
, &rdev
->flags
);
2320 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
2321 set_bit(MD_RECOVERY_NEEDED
,
2322 &rdev
->mddev
->recovery
);
2324 /* need to record an error - either for the block or the device */
2325 if (!rdev_set_badblocks(rdev
, sector
, sectors
, 0))
2326 md_error(rdev
->mddev
, rdev
);
2331 * This is a kernel thread which:
2333 * 1. Retries failed read operations on working mirrors.
2334 * 2. Updates the raid superblock when problems encounter.
2335 * 3. Performs writes following reads for array synchronising.
2338 static void fix_read_error(struct r10conf
*conf
, struct mddev
*mddev
, struct r10bio
*r10_bio
)
2340 int sect
= 0; /* Offset from r10_bio->sector */
2341 int sectors
= r10_bio
->sectors
;
2342 struct md_rdev
*rdev
;
2343 int max_read_errors
= atomic_read(&mddev
->max_corr_read_errors
);
2344 int d
= r10_bio
->devs
[r10_bio
->read_slot
].devnum
;
2346 /* still own a reference to this rdev, so it cannot
2347 * have been cleared recently.
2349 rdev
= conf
->mirrors
[d
].rdev
;
2351 if (test_bit(Faulty
, &rdev
->flags
))
2352 /* drive has already been failed, just ignore any
2353 more fix_read_error() attempts */
2356 check_decay_read_errors(mddev
, rdev
);
2357 atomic_inc(&rdev
->read_errors
);
2358 if (atomic_read(&rdev
->read_errors
) > max_read_errors
) {
2359 char b
[BDEVNAME_SIZE
];
2360 bdevname(rdev
->bdev
, b
);
2363 "md/raid10:%s: %s: Raid device exceeded "
2364 "read_error threshold [cur %d:max %d]\n",
2366 atomic_read(&rdev
->read_errors
), max_read_errors
);
2368 "md/raid10:%s: %s: Failing raid device\n",
2370 md_error(mddev
, conf
->mirrors
[d
].rdev
);
2371 r10_bio
->devs
[r10_bio
->read_slot
].bio
= IO_BLOCKED
;
2377 int sl
= r10_bio
->read_slot
;
2381 if (s
> (PAGE_SIZE
>>9))
2389 d
= r10_bio
->devs
[sl
].devnum
;
2390 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2392 !test_bit(Unmerged
, &rdev
->flags
) &&
2393 test_bit(In_sync
, &rdev
->flags
) &&
2394 is_badblock(rdev
, r10_bio
->devs
[sl
].addr
+ sect
, s
,
2395 &first_bad
, &bad_sectors
) == 0) {
2396 atomic_inc(&rdev
->nr_pending
);
2398 success
= sync_page_io(rdev
,
2399 r10_bio
->devs
[sl
].addr
+
2402 conf
->tmppage
, READ
, false);
2403 rdev_dec_pending(rdev
, mddev
);
2409 if (sl
== conf
->copies
)
2411 } while (!success
&& sl
!= r10_bio
->read_slot
);
2415 /* Cannot read from anywhere, just mark the block
2416 * as bad on the first device to discourage future
2419 int dn
= r10_bio
->devs
[r10_bio
->read_slot
].devnum
;
2420 rdev
= conf
->mirrors
[dn
].rdev
;
2422 if (!rdev_set_badblocks(
2424 r10_bio
->devs
[r10_bio
->read_slot
].addr
2427 md_error(mddev
, rdev
);
2428 r10_bio
->devs
[r10_bio
->read_slot
].bio
2435 /* write it back and re-read */
2437 while (sl
!= r10_bio
->read_slot
) {
2438 char b
[BDEVNAME_SIZE
];
2443 d
= r10_bio
->devs
[sl
].devnum
;
2444 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2446 test_bit(Unmerged
, &rdev
->flags
) ||
2447 !test_bit(In_sync
, &rdev
->flags
))
2450 atomic_inc(&rdev
->nr_pending
);
2452 if (r10_sync_page_io(rdev
,
2453 r10_bio
->devs
[sl
].addr
+
2455 s
, conf
->tmppage
, WRITE
)
2457 /* Well, this device is dead */
2459 "md/raid10:%s: read correction "
2461 " (%d sectors at %llu on %s)\n",
2463 (unsigned long long)(
2465 choose_data_offset(r10_bio
,
2467 bdevname(rdev
->bdev
, b
));
2468 printk(KERN_NOTICE
"md/raid10:%s: %s: failing "
2471 bdevname(rdev
->bdev
, b
));
2473 rdev_dec_pending(rdev
, mddev
);
2477 while (sl
!= r10_bio
->read_slot
) {
2478 char b
[BDEVNAME_SIZE
];
2483 d
= r10_bio
->devs
[sl
].devnum
;
2484 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2486 !test_bit(In_sync
, &rdev
->flags
))
2489 atomic_inc(&rdev
->nr_pending
);
2491 switch (r10_sync_page_io(rdev
,
2492 r10_bio
->devs
[sl
].addr
+
2497 /* Well, this device is dead */
2499 "md/raid10:%s: unable to read back "
2501 " (%d sectors at %llu on %s)\n",
2503 (unsigned long long)(
2505 choose_data_offset(r10_bio
, rdev
)),
2506 bdevname(rdev
->bdev
, b
));
2507 printk(KERN_NOTICE
"md/raid10:%s: %s: failing "
2510 bdevname(rdev
->bdev
, b
));
2514 "md/raid10:%s: read error corrected"
2515 " (%d sectors at %llu on %s)\n",
2517 (unsigned long long)(
2519 choose_data_offset(r10_bio
, rdev
)),
2520 bdevname(rdev
->bdev
, b
));
2521 atomic_add(s
, &rdev
->corrected_errors
);
2524 rdev_dec_pending(rdev
, mddev
);
2534 static int narrow_write_error(struct r10bio
*r10_bio
, int i
)
2536 struct bio
*bio
= r10_bio
->master_bio
;
2537 struct mddev
*mddev
= r10_bio
->mddev
;
2538 struct r10conf
*conf
= mddev
->private;
2539 struct md_rdev
*rdev
= conf
->mirrors
[r10_bio
->devs
[i
].devnum
].rdev
;
2540 /* bio has the data to be written to slot 'i' where
2541 * we just recently had a write error.
2542 * We repeatedly clone the bio and trim down to one block,
2543 * then try the write. Where the write fails we record
2545 * It is conceivable that the bio doesn't exactly align with
2546 * blocks. We must handle this.
2548 * We currently own a reference to the rdev.
2554 int sect_to_write
= r10_bio
->sectors
;
2557 if (rdev
->badblocks
.shift
< 0)
2560 block_sectors
= 1 << rdev
->badblocks
.shift
;
2561 sector
= r10_bio
->sector
;
2562 sectors
= ((r10_bio
->sector
+ block_sectors
)
2563 & ~(sector_t
)(block_sectors
- 1))
2566 while (sect_to_write
) {
2568 if (sectors
> sect_to_write
)
2569 sectors
= sect_to_write
;
2570 /* Write at 'sector' for 'sectors' */
2571 wbio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
2572 md_trim_bio(wbio
, sector
- bio
->bi_sector
, sectors
);
2573 wbio
->bi_sector
= (r10_bio
->devs
[i
].addr
+
2574 choose_data_offset(r10_bio
, rdev
) +
2575 (sector
- r10_bio
->sector
));
2576 wbio
->bi_bdev
= rdev
->bdev
;
2577 if (submit_bio_wait(WRITE
, wbio
) == 0)
2579 ok
= rdev_set_badblocks(rdev
, sector
,
2584 sect_to_write
-= sectors
;
2586 sectors
= block_sectors
;
2591 static void handle_read_error(struct mddev
*mddev
, struct r10bio
*r10_bio
)
2593 int slot
= r10_bio
->read_slot
;
2595 struct r10conf
*conf
= mddev
->private;
2596 struct md_rdev
*rdev
= r10_bio
->devs
[slot
].rdev
;
2597 char b
[BDEVNAME_SIZE
];
2598 unsigned long do_sync
;
2601 /* we got a read error. Maybe the drive is bad. Maybe just
2602 * the block and we can fix it.
2603 * We freeze all other IO, and try reading the block from
2604 * other devices. When we find one, we re-write
2605 * and check it that fixes the read error.
2606 * This is all done synchronously while the array is
2609 bio
= r10_bio
->devs
[slot
].bio
;
2610 bdevname(bio
->bi_bdev
, b
);
2612 r10_bio
->devs
[slot
].bio
= NULL
;
2614 if (mddev
->ro
== 0) {
2616 fix_read_error(conf
, mddev
, r10_bio
);
2617 unfreeze_array(conf
);
2619 r10_bio
->devs
[slot
].bio
= IO_BLOCKED
;
2621 rdev_dec_pending(rdev
, mddev
);
2624 rdev
= read_balance(conf
, r10_bio
, &max_sectors
);
2626 printk(KERN_ALERT
"md/raid10:%s: %s: unrecoverable I/O"
2627 " read error for block %llu\n",
2629 (unsigned long long)r10_bio
->sector
);
2630 raid_end_bio_io(r10_bio
);
2634 do_sync
= (r10_bio
->master_bio
->bi_rw
& REQ_SYNC
);
2635 slot
= r10_bio
->read_slot
;
2638 "md/raid10:%s: %s: redirecting "
2639 "sector %llu to another mirror\n",
2641 bdevname(rdev
->bdev
, b
),
2642 (unsigned long long)r10_bio
->sector
);
2643 bio
= bio_clone_mddev(r10_bio
->master_bio
,
2646 r10_bio
->sector
- bio
->bi_sector
,
2648 r10_bio
->devs
[slot
].bio
= bio
;
2649 r10_bio
->devs
[slot
].rdev
= rdev
;
2650 bio
->bi_sector
= r10_bio
->devs
[slot
].addr
2651 + choose_data_offset(r10_bio
, rdev
);
2652 bio
->bi_bdev
= rdev
->bdev
;
2653 bio
->bi_rw
= READ
| do_sync
;
2654 bio
->bi_private
= r10_bio
;
2655 bio
->bi_end_io
= raid10_end_read_request
;
2656 if (max_sectors
< r10_bio
->sectors
) {
2657 /* Drat - have to split this up more */
2658 struct bio
*mbio
= r10_bio
->master_bio
;
2659 int sectors_handled
=
2660 r10_bio
->sector
+ max_sectors
2662 r10_bio
->sectors
= max_sectors
;
2663 spin_lock_irq(&conf
->device_lock
);
2664 if (mbio
->bi_phys_segments
== 0)
2665 mbio
->bi_phys_segments
= 2;
2667 mbio
->bi_phys_segments
++;
2668 spin_unlock_irq(&conf
->device_lock
);
2669 generic_make_request(bio
);
2671 r10_bio
= mempool_alloc(conf
->r10bio_pool
,
2673 r10_bio
->master_bio
= mbio
;
2674 r10_bio
->sectors
= bio_sectors(mbio
) - sectors_handled
;
2676 set_bit(R10BIO_ReadError
,
2678 r10_bio
->mddev
= mddev
;
2679 r10_bio
->sector
= mbio
->bi_sector
2684 generic_make_request(bio
);
2687 static void handle_write_completed(struct r10conf
*conf
, struct r10bio
*r10_bio
)
2689 /* Some sort of write request has finished and it
2690 * succeeded in writing where we thought there was a
2691 * bad block. So forget the bad block.
2692 * Or possibly if failed and we need to record
2696 struct md_rdev
*rdev
;
2698 if (test_bit(R10BIO_IsSync
, &r10_bio
->state
) ||
2699 test_bit(R10BIO_IsRecover
, &r10_bio
->state
)) {
2700 for (m
= 0; m
< conf
->copies
; m
++) {
2701 int dev
= r10_bio
->devs
[m
].devnum
;
2702 rdev
= conf
->mirrors
[dev
].rdev
;
2703 if (r10_bio
->devs
[m
].bio
== NULL
)
2705 if (test_bit(BIO_UPTODATE
,
2706 &r10_bio
->devs
[m
].bio
->bi_flags
)) {
2707 rdev_clear_badblocks(
2709 r10_bio
->devs
[m
].addr
,
2710 r10_bio
->sectors
, 0);
2712 if (!rdev_set_badblocks(
2714 r10_bio
->devs
[m
].addr
,
2715 r10_bio
->sectors
, 0))
2716 md_error(conf
->mddev
, rdev
);
2718 rdev
= conf
->mirrors
[dev
].replacement
;
2719 if (r10_bio
->devs
[m
].repl_bio
== NULL
)
2721 if (test_bit(BIO_UPTODATE
,
2722 &r10_bio
->devs
[m
].repl_bio
->bi_flags
)) {
2723 rdev_clear_badblocks(
2725 r10_bio
->devs
[m
].addr
,
2726 r10_bio
->sectors
, 0);
2728 if (!rdev_set_badblocks(
2730 r10_bio
->devs
[m
].addr
,
2731 r10_bio
->sectors
, 0))
2732 md_error(conf
->mddev
, rdev
);
2737 for (m
= 0; m
< conf
->copies
; m
++) {
2738 int dev
= r10_bio
->devs
[m
].devnum
;
2739 struct bio
*bio
= r10_bio
->devs
[m
].bio
;
2740 rdev
= conf
->mirrors
[dev
].rdev
;
2741 if (bio
== IO_MADE_GOOD
) {
2742 rdev_clear_badblocks(
2744 r10_bio
->devs
[m
].addr
,
2745 r10_bio
->sectors
, 0);
2746 rdev_dec_pending(rdev
, conf
->mddev
);
2747 } else if (bio
!= NULL
&&
2748 !test_bit(BIO_UPTODATE
, &bio
->bi_flags
)) {
2749 if (!narrow_write_error(r10_bio
, m
)) {
2750 md_error(conf
->mddev
, rdev
);
2751 set_bit(R10BIO_Degraded
,
2754 rdev_dec_pending(rdev
, conf
->mddev
);
2756 bio
= r10_bio
->devs
[m
].repl_bio
;
2757 rdev
= conf
->mirrors
[dev
].replacement
;
2758 if (rdev
&& bio
== IO_MADE_GOOD
) {
2759 rdev_clear_badblocks(
2761 r10_bio
->devs
[m
].addr
,
2762 r10_bio
->sectors
, 0);
2763 rdev_dec_pending(rdev
, conf
->mddev
);
2766 if (test_bit(R10BIO_WriteError
,
2768 close_write(r10_bio
);
2769 raid_end_bio_io(r10_bio
);
2773 static void raid10d(struct md_thread
*thread
)
2775 struct mddev
*mddev
= thread
->mddev
;
2776 struct r10bio
*r10_bio
;
2777 unsigned long flags
;
2778 struct r10conf
*conf
= mddev
->private;
2779 struct list_head
*head
= &conf
->retry_list
;
2780 struct blk_plug plug
;
2782 md_check_recovery(mddev
);
2784 blk_start_plug(&plug
);
2787 flush_pending_writes(conf
);
2789 spin_lock_irqsave(&conf
->device_lock
, flags
);
2790 if (list_empty(head
)) {
2791 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2794 r10_bio
= list_entry(head
->prev
, struct r10bio
, retry_list
);
2795 list_del(head
->prev
);
2797 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2799 mddev
= r10_bio
->mddev
;
2800 conf
= mddev
->private;
2801 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
) ||
2802 test_bit(R10BIO_WriteError
, &r10_bio
->state
))
2803 handle_write_completed(conf
, r10_bio
);
2804 else if (test_bit(R10BIO_IsReshape
, &r10_bio
->state
))
2805 reshape_request_write(mddev
, r10_bio
);
2806 else if (test_bit(R10BIO_IsSync
, &r10_bio
->state
))
2807 sync_request_write(mddev
, r10_bio
);
2808 else if (test_bit(R10BIO_IsRecover
, &r10_bio
->state
))
2809 recovery_request_write(mddev
, r10_bio
);
2810 else if (test_bit(R10BIO_ReadError
, &r10_bio
->state
))
2811 handle_read_error(mddev
, r10_bio
);
2813 /* just a partial read to be scheduled from a
2816 int slot
= r10_bio
->read_slot
;
2817 generic_make_request(r10_bio
->devs
[slot
].bio
);
2821 if (mddev
->flags
& ~(1<<MD_CHANGE_PENDING
))
2822 md_check_recovery(mddev
);
2824 blk_finish_plug(&plug
);
2828 static int init_resync(struct r10conf
*conf
)
2833 buffs
= RESYNC_WINDOW
/ RESYNC_BLOCK_SIZE
;
2834 BUG_ON(conf
->r10buf_pool
);
2835 conf
->have_replacement
= 0;
2836 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++)
2837 if (conf
->mirrors
[i
].replacement
)
2838 conf
->have_replacement
= 1;
2839 conf
->r10buf_pool
= mempool_create(buffs
, r10buf_pool_alloc
, r10buf_pool_free
, conf
);
2840 if (!conf
->r10buf_pool
)
2842 conf
->next_resync
= 0;
2847 * perform a "sync" on one "block"
2849 * We need to make sure that no normal I/O request - particularly write
2850 * requests - conflict with active sync requests.
2852 * This is achieved by tracking pending requests and a 'barrier' concept
2853 * that can be installed to exclude normal IO requests.
2855 * Resync and recovery are handled very differently.
2856 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2858 * For resync, we iterate over virtual addresses, read all copies,
2859 * and update if there are differences. If only one copy is live,
2861 * For recovery, we iterate over physical addresses, read a good
2862 * value for each non-in_sync drive, and over-write.
2864 * So, for recovery we may have several outstanding complex requests for a
2865 * given address, one for each out-of-sync device. We model this by allocating
2866 * a number of r10_bio structures, one for each out-of-sync device.
2867 * As we setup these structures, we collect all bio's together into a list
2868 * which we then process collectively to add pages, and then process again
2869 * to pass to generic_make_request.
2871 * The r10_bio structures are linked using a borrowed master_bio pointer.
2872 * This link is counted in ->remaining. When the r10_bio that points to NULL
2873 * has its remaining count decremented to 0, the whole complex operation
2878 static sector_t
sync_request(struct mddev
*mddev
, sector_t sector_nr
,
2879 int *skipped
, int go_faster
)
2881 struct r10conf
*conf
= mddev
->private;
2882 struct r10bio
*r10_bio
;
2883 struct bio
*biolist
= NULL
, *bio
;
2884 sector_t max_sector
, nr_sectors
;
2887 sector_t sync_blocks
;
2888 sector_t sectors_skipped
= 0;
2889 int chunks_skipped
= 0;
2890 sector_t chunk_mask
= conf
->geo
.chunk_mask
;
2892 if (!conf
->r10buf_pool
)
2893 if (init_resync(conf
))
2897 * Allow skipping a full rebuild for incremental assembly
2898 * of a clean array, like RAID1 does.
2900 if (mddev
->bitmap
== NULL
&&
2901 mddev
->recovery_cp
== MaxSector
&&
2902 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
2903 conf
->fullsync
== 0) {
2905 max_sector
= mddev
->dev_sectors
;
2906 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) ||
2907 test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
2908 max_sector
= mddev
->resync_max_sectors
;
2909 return max_sector
- sector_nr
;
2913 max_sector
= mddev
->dev_sectors
;
2914 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) ||
2915 test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
2916 max_sector
= mddev
->resync_max_sectors
;
2917 if (sector_nr
>= max_sector
) {
2918 /* If we aborted, we need to abort the
2919 * sync on the 'current' bitmap chucks (there can
2920 * be several when recovering multiple devices).
2921 * as we may have started syncing it but not finished.
2922 * We can find the current address in
2923 * mddev->curr_resync, but for recovery,
2924 * we need to convert that to several
2925 * virtual addresses.
2927 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
)) {
2932 if (mddev
->curr_resync
< max_sector
) { /* aborted */
2933 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))
2934 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
2936 else for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
2938 raid10_find_virt(conf
, mddev
->curr_resync
, i
);
2939 bitmap_end_sync(mddev
->bitmap
, sect
,
2943 /* completed sync */
2944 if ((!mddev
->bitmap
|| conf
->fullsync
)
2945 && conf
->have_replacement
2946 && test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
2947 /* Completed a full sync so the replacements
2948 * are now fully recovered.
2950 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++)
2951 if (conf
->mirrors
[i
].replacement
)
2952 conf
->mirrors
[i
].replacement
2958 bitmap_close_sync(mddev
->bitmap
);
2961 return sectors_skipped
;
2964 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
2965 return reshape_request(mddev
, sector_nr
, skipped
);
2967 if (chunks_skipped
>= conf
->geo
.raid_disks
) {
2968 /* if there has been nothing to do on any drive,
2969 * then there is nothing to do at all..
2972 return (max_sector
- sector_nr
) + sectors_skipped
;
2975 if (max_sector
> mddev
->resync_max
)
2976 max_sector
= mddev
->resync_max
; /* Don't do IO beyond here */
2978 /* make sure whole request will fit in a chunk - if chunks
2981 if (conf
->geo
.near_copies
< conf
->geo
.raid_disks
&&
2982 max_sector
> (sector_nr
| chunk_mask
))
2983 max_sector
= (sector_nr
| chunk_mask
) + 1;
2985 * If there is non-resync activity waiting for us then
2986 * put in a delay to throttle resync.
2988 if (!go_faster
&& conf
->nr_waiting
)
2989 msleep_interruptible(1000);
2991 /* Again, very different code for resync and recovery.
2992 * Both must result in an r10bio with a list of bios that
2993 * have bi_end_io, bi_sector, bi_bdev set,
2994 * and bi_private set to the r10bio.
2995 * For recovery, we may actually create several r10bios
2996 * with 2 bios in each, that correspond to the bios in the main one.
2997 * In this case, the subordinate r10bios link back through a
2998 * borrowed master_bio pointer, and the counter in the master
2999 * includes a ref from each subordinate.
3001 /* First, we decide what to do and set ->bi_end_io
3002 * To end_sync_read if we want to read, and
3003 * end_sync_write if we will want to write.
3006 max_sync
= RESYNC_PAGES
<< (PAGE_SHIFT
-9);
3007 if (!test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
3008 /* recovery... the complicated one */
3012 for (i
= 0 ; i
< conf
->geo
.raid_disks
; i
++) {
3018 struct raid10_info
*mirror
= &conf
->mirrors
[i
];
3020 if ((mirror
->rdev
== NULL
||
3021 test_bit(In_sync
, &mirror
->rdev
->flags
))
3023 (mirror
->replacement
== NULL
||
3025 &mirror
->replacement
->flags
)))
3029 /* want to reconstruct this device */
3031 sect
= raid10_find_virt(conf
, sector_nr
, i
);
3032 if (sect
>= mddev
->resync_max_sectors
) {
3033 /* last stripe is not complete - don't
3034 * try to recover this sector.
3038 /* Unless we are doing a full sync, or a replacement
3039 * we only need to recover the block if it is set in
3042 must_sync
= bitmap_start_sync(mddev
->bitmap
, sect
,
3044 if (sync_blocks
< max_sync
)
3045 max_sync
= sync_blocks
;
3047 mirror
->replacement
== NULL
&&
3049 /* yep, skip the sync_blocks here, but don't assume
3050 * that there will never be anything to do here
3052 chunks_skipped
= -1;
3056 r10_bio
= mempool_alloc(conf
->r10buf_pool
, GFP_NOIO
);
3057 raise_barrier(conf
, rb2
!= NULL
);
3058 atomic_set(&r10_bio
->remaining
, 0);
3060 r10_bio
->master_bio
= (struct bio
*)rb2
;
3062 atomic_inc(&rb2
->remaining
);
3063 r10_bio
->mddev
= mddev
;
3064 set_bit(R10BIO_IsRecover
, &r10_bio
->state
);
3065 r10_bio
->sector
= sect
;
3067 raid10_find_phys(conf
, r10_bio
);
3069 /* Need to check if the array will still be
3072 for (j
= 0; j
< conf
->geo
.raid_disks
; j
++)
3073 if (conf
->mirrors
[j
].rdev
== NULL
||
3074 test_bit(Faulty
, &conf
->mirrors
[j
].rdev
->flags
)) {
3079 must_sync
= bitmap_start_sync(mddev
->bitmap
, sect
,
3080 &sync_blocks
, still_degraded
);
3083 for (j
=0; j
<conf
->copies
;j
++) {
3085 int d
= r10_bio
->devs
[j
].devnum
;
3086 sector_t from_addr
, to_addr
;
3087 struct md_rdev
*rdev
;
3088 sector_t sector
, first_bad
;
3090 if (!conf
->mirrors
[d
].rdev
||
3091 !test_bit(In_sync
, &conf
->mirrors
[d
].rdev
->flags
))
3093 /* This is where we read from */
3095 rdev
= conf
->mirrors
[d
].rdev
;
3096 sector
= r10_bio
->devs
[j
].addr
;
3098 if (is_badblock(rdev
, sector
, max_sync
,
3099 &first_bad
, &bad_sectors
)) {
3100 if (first_bad
> sector
)
3101 max_sync
= first_bad
- sector
;
3103 bad_sectors
-= (sector
3105 if (max_sync
> bad_sectors
)
3106 max_sync
= bad_sectors
;
3110 bio
= r10_bio
->devs
[0].bio
;
3112 bio
->bi_next
= biolist
;
3114 bio
->bi_private
= r10_bio
;
3115 bio
->bi_end_io
= end_sync_read
;
3117 from_addr
= r10_bio
->devs
[j
].addr
;
3118 bio
->bi_sector
= from_addr
+ rdev
->data_offset
;
3119 bio
->bi_bdev
= rdev
->bdev
;
3120 atomic_inc(&rdev
->nr_pending
);
3121 /* and we write to 'i' (if not in_sync) */
3123 for (k
=0; k
<conf
->copies
; k
++)
3124 if (r10_bio
->devs
[k
].devnum
== i
)
3126 BUG_ON(k
== conf
->copies
);
3127 to_addr
= r10_bio
->devs
[k
].addr
;
3128 r10_bio
->devs
[0].devnum
= d
;
3129 r10_bio
->devs
[0].addr
= from_addr
;
3130 r10_bio
->devs
[1].devnum
= i
;
3131 r10_bio
->devs
[1].addr
= to_addr
;
3133 rdev
= mirror
->rdev
;
3134 if (!test_bit(In_sync
, &rdev
->flags
)) {
3135 bio
= r10_bio
->devs
[1].bio
;
3137 bio
->bi_next
= biolist
;
3139 bio
->bi_private
= r10_bio
;
3140 bio
->bi_end_io
= end_sync_write
;
3142 bio
->bi_sector
= to_addr
3143 + rdev
->data_offset
;
3144 bio
->bi_bdev
= rdev
->bdev
;
3145 atomic_inc(&r10_bio
->remaining
);
3147 r10_bio
->devs
[1].bio
->bi_end_io
= NULL
;
3149 /* and maybe write to replacement */
3150 bio
= r10_bio
->devs
[1].repl_bio
;
3152 bio
->bi_end_io
= NULL
;
3153 rdev
= mirror
->replacement
;
3154 /* Note: if rdev != NULL, then bio
3155 * cannot be NULL as r10buf_pool_alloc will
3156 * have allocated it.
3157 * So the second test here is pointless.
3158 * But it keeps semantic-checkers happy, and
3159 * this comment keeps human reviewers
3162 if (rdev
== NULL
|| bio
== NULL
||
3163 test_bit(Faulty
, &rdev
->flags
))
3166 bio
->bi_next
= biolist
;
3168 bio
->bi_private
= r10_bio
;
3169 bio
->bi_end_io
= end_sync_write
;
3171 bio
->bi_sector
= to_addr
+ rdev
->data_offset
;
3172 bio
->bi_bdev
= rdev
->bdev
;
3173 atomic_inc(&r10_bio
->remaining
);
3176 if (j
== conf
->copies
) {
3177 /* Cannot recover, so abort the recovery or
3178 * record a bad block */
3181 atomic_dec(&rb2
->remaining
);
3184 /* problem is that there are bad blocks
3185 * on other device(s)
3188 for (k
= 0; k
< conf
->copies
; k
++)
3189 if (r10_bio
->devs
[k
].devnum
== i
)
3191 if (!test_bit(In_sync
,
3192 &mirror
->rdev
->flags
)
3193 && !rdev_set_badblocks(
3195 r10_bio
->devs
[k
].addr
,
3198 if (mirror
->replacement
&&
3199 !rdev_set_badblocks(
3200 mirror
->replacement
,
3201 r10_bio
->devs
[k
].addr
,
3206 if (!test_and_set_bit(MD_RECOVERY_INTR
,
3208 printk(KERN_INFO
"md/raid10:%s: insufficient "
3209 "working devices for recovery.\n",
3211 mirror
->recovery_disabled
3212 = mddev
->recovery_disabled
;
3217 if (biolist
== NULL
) {
3219 struct r10bio
*rb2
= r10_bio
;
3220 r10_bio
= (struct r10bio
*) rb2
->master_bio
;
3221 rb2
->master_bio
= NULL
;
3227 /* resync. Schedule a read for every block at this virt offset */
3230 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
);
3232 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
,
3233 &sync_blocks
, mddev
->degraded
) &&
3234 !conf
->fullsync
&& !test_bit(MD_RECOVERY_REQUESTED
,
3235 &mddev
->recovery
)) {
3236 /* We can skip this block */
3238 return sync_blocks
+ sectors_skipped
;
3240 if (sync_blocks
< max_sync
)
3241 max_sync
= sync_blocks
;
3242 r10_bio
= mempool_alloc(conf
->r10buf_pool
, GFP_NOIO
);
3244 r10_bio
->mddev
= mddev
;
3245 atomic_set(&r10_bio
->remaining
, 0);
3246 raise_barrier(conf
, 0);
3247 conf
->next_resync
= sector_nr
;
3249 r10_bio
->master_bio
= NULL
;
3250 r10_bio
->sector
= sector_nr
;
3251 set_bit(R10BIO_IsSync
, &r10_bio
->state
);
3252 raid10_find_phys(conf
, r10_bio
);
3253 r10_bio
->sectors
= (sector_nr
| chunk_mask
) - sector_nr
+ 1;
3255 for (i
= 0; i
< conf
->copies
; i
++) {
3256 int d
= r10_bio
->devs
[i
].devnum
;
3257 sector_t first_bad
, sector
;
3260 if (r10_bio
->devs
[i
].repl_bio
)
3261 r10_bio
->devs
[i
].repl_bio
->bi_end_io
= NULL
;
3263 bio
= r10_bio
->devs
[i
].bio
;
3265 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
3266 if (conf
->mirrors
[d
].rdev
== NULL
||
3267 test_bit(Faulty
, &conf
->mirrors
[d
].rdev
->flags
))
3269 sector
= r10_bio
->devs
[i
].addr
;
3270 if (is_badblock(conf
->mirrors
[d
].rdev
,
3272 &first_bad
, &bad_sectors
)) {
3273 if (first_bad
> sector
)
3274 max_sync
= first_bad
- sector
;
3276 bad_sectors
-= (sector
- first_bad
);
3277 if (max_sync
> bad_sectors
)
3278 max_sync
= bad_sectors
;
3282 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
3283 atomic_inc(&r10_bio
->remaining
);
3284 bio
->bi_next
= biolist
;
3286 bio
->bi_private
= r10_bio
;
3287 bio
->bi_end_io
= end_sync_read
;
3289 bio
->bi_sector
= sector
+
3290 conf
->mirrors
[d
].rdev
->data_offset
;
3291 bio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
3294 if (conf
->mirrors
[d
].replacement
== NULL
||
3296 &conf
->mirrors
[d
].replacement
->flags
))
3299 /* Need to set up for writing to the replacement */
3300 bio
= r10_bio
->devs
[i
].repl_bio
;
3302 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
3304 sector
= r10_bio
->devs
[i
].addr
;
3305 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
3306 bio
->bi_next
= biolist
;
3308 bio
->bi_private
= r10_bio
;
3309 bio
->bi_end_io
= end_sync_write
;
3311 bio
->bi_sector
= sector
+
3312 conf
->mirrors
[d
].replacement
->data_offset
;
3313 bio
->bi_bdev
= conf
->mirrors
[d
].replacement
->bdev
;
3318 for (i
=0; i
<conf
->copies
; i
++) {
3319 int d
= r10_bio
->devs
[i
].devnum
;
3320 if (r10_bio
->devs
[i
].bio
->bi_end_io
)
3321 rdev_dec_pending(conf
->mirrors
[d
].rdev
,
3323 if (r10_bio
->devs
[i
].repl_bio
&&
3324 r10_bio
->devs
[i
].repl_bio
->bi_end_io
)
3326 conf
->mirrors
[d
].replacement
,
3336 if (sector_nr
+ max_sync
< max_sector
)
3337 max_sector
= sector_nr
+ max_sync
;
3340 int len
= PAGE_SIZE
;
3341 if (sector_nr
+ (len
>>9) > max_sector
)
3342 len
= (max_sector
- sector_nr
) << 9;
3345 for (bio
= biolist
; bio
; bio
=bio
->bi_next
) {
3347 page
= bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
;
3348 if (bio_add_page(bio
, page
, len
, 0))
3352 bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
= page
;
3353 for (bio2
= biolist
;
3354 bio2
&& bio2
!= bio
;
3355 bio2
= bio2
->bi_next
) {
3356 /* remove last page from this bio */
3358 bio2
->bi_size
-= len
;
3359 bio2
->bi_flags
&= ~(1<< BIO_SEG_VALID
);
3363 nr_sectors
+= len
>>9;
3364 sector_nr
+= len
>>9;
3365 } while (biolist
->bi_vcnt
< RESYNC_PAGES
);
3367 r10_bio
->sectors
= nr_sectors
;
3371 biolist
= biolist
->bi_next
;
3373 bio
->bi_next
= NULL
;
3374 r10_bio
= bio
->bi_private
;
3375 r10_bio
->sectors
= nr_sectors
;
3377 if (bio
->bi_end_io
== end_sync_read
) {
3378 md_sync_acct(bio
->bi_bdev
, nr_sectors
);
3379 generic_make_request(bio
);
3383 if (sectors_skipped
)
3384 /* pretend they weren't skipped, it makes
3385 * no important difference in this case
3387 md_done_sync(mddev
, sectors_skipped
, 1);
3389 return sectors_skipped
+ nr_sectors
;
3391 /* There is nowhere to write, so all non-sync
3392 * drives must be failed or in resync, all drives
3393 * have a bad block, so try the next chunk...
3395 if (sector_nr
+ max_sync
< max_sector
)
3396 max_sector
= sector_nr
+ max_sync
;
3398 sectors_skipped
+= (max_sector
- sector_nr
);
3400 sector_nr
= max_sector
;
3405 raid10_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
)
3408 struct r10conf
*conf
= mddev
->private;
3411 raid_disks
= min(conf
->geo
.raid_disks
,
3412 conf
->prev
.raid_disks
);
3414 sectors
= conf
->dev_sectors
;
3416 size
= sectors
>> conf
->geo
.chunk_shift
;
3417 sector_div(size
, conf
->geo
.far_copies
);
3418 size
= size
* raid_disks
;
3419 sector_div(size
, conf
->geo
.near_copies
);
3421 return size
<< conf
->geo
.chunk_shift
;
3424 static void calc_sectors(struct r10conf
*conf
, sector_t size
)
3426 /* Calculate the number of sectors-per-device that will
3427 * actually be used, and set conf->dev_sectors and
3431 size
= size
>> conf
->geo
.chunk_shift
;
3432 sector_div(size
, conf
->geo
.far_copies
);
3433 size
= size
* conf
->geo
.raid_disks
;
3434 sector_div(size
, conf
->geo
.near_copies
);
3435 /* 'size' is now the number of chunks in the array */
3436 /* calculate "used chunks per device" */
3437 size
= size
* conf
->copies
;
3439 /* We need to round up when dividing by raid_disks to
3440 * get the stride size.
3442 size
= DIV_ROUND_UP_SECTOR_T(size
, conf
->geo
.raid_disks
);
3444 conf
->dev_sectors
= size
<< conf
->geo
.chunk_shift
;
3446 if (conf
->geo
.far_offset
)
3447 conf
->geo
.stride
= 1 << conf
->geo
.chunk_shift
;
3449 sector_div(size
, conf
->geo
.far_copies
);
3450 conf
->geo
.stride
= size
<< conf
->geo
.chunk_shift
;
3454 enum geo_type
{geo_new
, geo_old
, geo_start
};
3455 static int setup_geo(struct geom
*geo
, struct mddev
*mddev
, enum geo_type
new)
3458 int layout
, chunk
, disks
;
3461 layout
= mddev
->layout
;
3462 chunk
= mddev
->chunk_sectors
;
3463 disks
= mddev
->raid_disks
- mddev
->delta_disks
;
3466 layout
= mddev
->new_layout
;
3467 chunk
= mddev
->new_chunk_sectors
;
3468 disks
= mddev
->raid_disks
;
3470 default: /* avoid 'may be unused' warnings */
3471 case geo_start
: /* new when starting reshape - raid_disks not
3473 layout
= mddev
->new_layout
;
3474 chunk
= mddev
->new_chunk_sectors
;
3475 disks
= mddev
->raid_disks
+ mddev
->delta_disks
;
3480 if (chunk
< (PAGE_SIZE
>> 9) ||
3481 !is_power_of_2(chunk
))
3484 fc
= (layout
>> 8) & 255;
3485 fo
= layout
& (1<<16);
3486 geo
->raid_disks
= disks
;
3487 geo
->near_copies
= nc
;
3488 geo
->far_copies
= fc
;
3489 geo
->far_offset
= fo
;
3490 geo
->far_set_size
= (layout
& (1<<17)) ? disks
/ fc
: disks
;
3491 geo
->chunk_mask
= chunk
- 1;
3492 geo
->chunk_shift
= ffz(~chunk
);
3496 static struct r10conf
*setup_conf(struct mddev
*mddev
)
3498 struct r10conf
*conf
= NULL
;
3503 copies
= setup_geo(&geo
, mddev
, geo_new
);
3506 printk(KERN_ERR
"md/raid10:%s: chunk size must be "
3507 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3508 mdname(mddev
), PAGE_SIZE
);
3512 if (copies
< 2 || copies
> mddev
->raid_disks
) {
3513 printk(KERN_ERR
"md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3514 mdname(mddev
), mddev
->new_layout
);
3519 conf
= kzalloc(sizeof(struct r10conf
), GFP_KERNEL
);
3523 /* FIXME calc properly */
3524 conf
->mirrors
= kzalloc(sizeof(struct raid10_info
)*(mddev
->raid_disks
+
3525 max(0,mddev
->delta_disks
)),
3530 conf
->tmppage
= alloc_page(GFP_KERNEL
);
3535 conf
->copies
= copies
;
3536 conf
->r10bio_pool
= mempool_create(NR_RAID10_BIOS
, r10bio_pool_alloc
,
3537 r10bio_pool_free
, conf
);
3538 if (!conf
->r10bio_pool
)
3541 calc_sectors(conf
, mddev
->dev_sectors
);
3542 if (mddev
->reshape_position
== MaxSector
) {
3543 conf
->prev
= conf
->geo
;
3544 conf
->reshape_progress
= MaxSector
;
3546 if (setup_geo(&conf
->prev
, mddev
, geo_old
) != conf
->copies
) {
3550 conf
->reshape_progress
= mddev
->reshape_position
;
3551 if (conf
->prev
.far_offset
)
3552 conf
->prev
.stride
= 1 << conf
->prev
.chunk_shift
;
3554 /* far_copies must be 1 */
3555 conf
->prev
.stride
= conf
->dev_sectors
;
3557 spin_lock_init(&conf
->device_lock
);
3558 INIT_LIST_HEAD(&conf
->retry_list
);
3560 spin_lock_init(&conf
->resync_lock
);
3561 init_waitqueue_head(&conf
->wait_barrier
);
3563 conf
->thread
= md_register_thread(raid10d
, mddev
, "raid10");
3567 conf
->mddev
= mddev
;
3572 printk(KERN_ERR
"md/raid10:%s: couldn't allocate memory.\n",
3575 if (conf
->r10bio_pool
)
3576 mempool_destroy(conf
->r10bio_pool
);
3577 kfree(conf
->mirrors
);
3578 safe_put_page(conf
->tmppage
);
3581 return ERR_PTR(err
);
3584 static int run(struct mddev
*mddev
)
3586 struct r10conf
*conf
;
3587 int i
, disk_idx
, chunk_size
;
3588 struct raid10_info
*disk
;
3589 struct md_rdev
*rdev
;
3591 sector_t min_offset_diff
= 0;
3593 bool discard_supported
= false;
3595 if (mddev
->private == NULL
) {
3596 conf
= setup_conf(mddev
);
3598 return PTR_ERR(conf
);
3599 mddev
->private = conf
;
3601 conf
= mddev
->private;
3605 mddev
->thread
= conf
->thread
;
3606 conf
->thread
= NULL
;
3608 chunk_size
= mddev
->chunk_sectors
<< 9;
3610 blk_queue_max_discard_sectors(mddev
->queue
,
3611 mddev
->chunk_sectors
);
3612 blk_queue_max_write_same_sectors(mddev
->queue
,
3613 mddev
->chunk_sectors
);
3614 blk_queue_io_min(mddev
->queue
, chunk_size
);
3615 if (conf
->geo
.raid_disks
% conf
->geo
.near_copies
)
3616 blk_queue_io_opt(mddev
->queue
, chunk_size
* conf
->geo
.raid_disks
);
3618 blk_queue_io_opt(mddev
->queue
, chunk_size
*
3619 (conf
->geo
.raid_disks
/ conf
->geo
.near_copies
));
3622 rdev_for_each(rdev
, mddev
) {
3624 struct request_queue
*q
;
3626 disk_idx
= rdev
->raid_disk
;
3629 if (disk_idx
>= conf
->geo
.raid_disks
&&
3630 disk_idx
>= conf
->prev
.raid_disks
)
3632 disk
= conf
->mirrors
+ disk_idx
;
3634 if (test_bit(Replacement
, &rdev
->flags
)) {
3635 if (disk
->replacement
)
3637 disk
->replacement
= rdev
;
3643 q
= bdev_get_queue(rdev
->bdev
);
3644 if (q
->merge_bvec_fn
)
3645 mddev
->merge_check_needed
= 1;
3646 diff
= (rdev
->new_data_offset
- rdev
->data_offset
);
3647 if (!mddev
->reshape_backwards
)
3651 if (first
|| diff
< min_offset_diff
)
3652 min_offset_diff
= diff
;
3655 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
3656 rdev
->data_offset
<< 9);
3658 disk
->head_position
= 0;
3660 if (blk_queue_discard(bdev_get_queue(rdev
->bdev
)))
3661 discard_supported
= true;
3665 if (discard_supported
)
3666 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
,
3669 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD
,
3672 /* need to check that every block has at least one working mirror */
3673 if (!enough(conf
, -1)) {
3674 printk(KERN_ERR
"md/raid10:%s: not enough operational mirrors.\n",
3679 if (conf
->reshape_progress
!= MaxSector
) {
3680 /* must ensure that shape change is supported */
3681 if (conf
->geo
.far_copies
!= 1 &&
3682 conf
->geo
.far_offset
== 0)
3684 if (conf
->prev
.far_copies
!= 1 &&
3685 conf
->geo
.far_offset
== 0)
3689 mddev
->degraded
= 0;
3691 i
< conf
->geo
.raid_disks
3692 || i
< conf
->prev
.raid_disks
;
3695 disk
= conf
->mirrors
+ i
;
3697 if (!disk
->rdev
&& disk
->replacement
) {
3698 /* The replacement is all we have - use it */
3699 disk
->rdev
= disk
->replacement
;
3700 disk
->replacement
= NULL
;
3701 clear_bit(Replacement
, &disk
->rdev
->flags
);
3705 !test_bit(In_sync
, &disk
->rdev
->flags
)) {
3706 disk
->head_position
= 0;
3711 disk
->recovery_disabled
= mddev
->recovery_disabled
- 1;
3714 if (mddev
->recovery_cp
!= MaxSector
)
3715 printk(KERN_NOTICE
"md/raid10:%s: not clean"
3716 " -- starting background reconstruction\n",
3719 "md/raid10:%s: active with %d out of %d devices\n",
3720 mdname(mddev
), conf
->geo
.raid_disks
- mddev
->degraded
,
3721 conf
->geo
.raid_disks
);
3723 * Ok, everything is just fine now
3725 mddev
->dev_sectors
= conf
->dev_sectors
;
3726 size
= raid10_size(mddev
, 0, 0);
3727 md_set_array_sectors(mddev
, size
);
3728 mddev
->resync_max_sectors
= size
;
3731 int stripe
= conf
->geo
.raid_disks
*
3732 ((mddev
->chunk_sectors
<< 9) / PAGE_SIZE
);
3733 mddev
->queue
->backing_dev_info
.congested_fn
= raid10_congested
;
3734 mddev
->queue
->backing_dev_info
.congested_data
= mddev
;
3736 /* Calculate max read-ahead size.
3737 * We need to readahead at least twice a whole stripe....
3740 stripe
/= conf
->geo
.near_copies
;
3741 if (mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
3742 mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
3743 blk_queue_merge_bvec(mddev
->queue
, raid10_mergeable_bvec
);
3747 if (md_integrity_register(mddev
))
3750 if (conf
->reshape_progress
!= MaxSector
) {
3751 unsigned long before_length
, after_length
;
3753 before_length
= ((1 << conf
->prev
.chunk_shift
) *
3754 conf
->prev
.far_copies
);
3755 after_length
= ((1 << conf
->geo
.chunk_shift
) *
3756 conf
->geo
.far_copies
);
3758 if (max(before_length
, after_length
) > min_offset_diff
) {
3759 /* This cannot work */
3760 printk("md/raid10: offset difference not enough to continue reshape\n");
3763 conf
->offset_diff
= min_offset_diff
;
3765 conf
->reshape_safe
= conf
->reshape_progress
;
3766 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
3767 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
3768 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
3769 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
3770 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
3777 md_unregister_thread(&mddev
->thread
);
3778 if (conf
->r10bio_pool
)
3779 mempool_destroy(conf
->r10bio_pool
);
3780 safe_put_page(conf
->tmppage
);
3781 kfree(conf
->mirrors
);
3783 mddev
->private = NULL
;
3788 static int stop(struct mddev
*mddev
)
3790 struct r10conf
*conf
= mddev
->private;
3792 raise_barrier(conf
, 0);
3793 lower_barrier(conf
);
3795 md_unregister_thread(&mddev
->thread
);
3797 /* the unplug fn references 'conf'*/
3798 blk_sync_queue(mddev
->queue
);
3800 if (conf
->r10bio_pool
)
3801 mempool_destroy(conf
->r10bio_pool
);
3802 safe_put_page(conf
->tmppage
);
3803 kfree(conf
->mirrors
);
3805 mddev
->private = NULL
;
3809 static void raid10_quiesce(struct mddev
*mddev
, int state
)
3811 struct r10conf
*conf
= mddev
->private;
3815 raise_barrier(conf
, 0);
3818 lower_barrier(conf
);
3823 static int raid10_resize(struct mddev
*mddev
, sector_t sectors
)
3825 /* Resize of 'far' arrays is not supported.
3826 * For 'near' and 'offset' arrays we can set the
3827 * number of sectors used to be an appropriate multiple
3828 * of the chunk size.
3829 * For 'offset', this is far_copies*chunksize.
3830 * For 'near' the multiplier is the LCM of
3831 * near_copies and raid_disks.
3832 * So if far_copies > 1 && !far_offset, fail.
3833 * Else find LCM(raid_disks, near_copy)*far_copies and
3834 * multiply by chunk_size. Then round to this number.
3835 * This is mostly done by raid10_size()
3837 struct r10conf
*conf
= mddev
->private;
3838 sector_t oldsize
, size
;
3840 if (mddev
->reshape_position
!= MaxSector
)
3843 if (conf
->geo
.far_copies
> 1 && !conf
->geo
.far_offset
)
3846 oldsize
= raid10_size(mddev
, 0, 0);
3847 size
= raid10_size(mddev
, sectors
, 0);
3848 if (mddev
->external_size
&&
3849 mddev
->array_sectors
> size
)
3851 if (mddev
->bitmap
) {
3852 int ret
= bitmap_resize(mddev
->bitmap
, size
, 0, 0);
3856 md_set_array_sectors(mddev
, size
);
3857 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
3858 revalidate_disk(mddev
->gendisk
);
3859 if (sectors
> mddev
->dev_sectors
&&
3860 mddev
->recovery_cp
> oldsize
) {
3861 mddev
->recovery_cp
= oldsize
;
3862 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
3864 calc_sectors(conf
, sectors
);
3865 mddev
->dev_sectors
= conf
->dev_sectors
;
3866 mddev
->resync_max_sectors
= size
;
3870 static void *raid10_takeover_raid0(struct mddev
*mddev
)
3872 struct md_rdev
*rdev
;
3873 struct r10conf
*conf
;
3875 if (mddev
->degraded
> 0) {
3876 printk(KERN_ERR
"md/raid10:%s: Error: degraded raid0!\n",
3878 return ERR_PTR(-EINVAL
);
3881 /* Set new parameters */
3882 mddev
->new_level
= 10;
3883 /* new layout: far_copies = 1, near_copies = 2 */
3884 mddev
->new_layout
= (1<<8) + 2;
3885 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
3886 mddev
->delta_disks
= mddev
->raid_disks
;
3887 mddev
->raid_disks
*= 2;
3888 /* make sure it will be not marked as dirty */
3889 mddev
->recovery_cp
= MaxSector
;
3891 conf
= setup_conf(mddev
);
3892 if (!IS_ERR(conf
)) {
3893 rdev_for_each(rdev
, mddev
)
3894 if (rdev
->raid_disk
>= 0)
3895 rdev
->new_raid_disk
= rdev
->raid_disk
* 2;
3902 static void *raid10_takeover(struct mddev
*mddev
)
3904 struct r0conf
*raid0_conf
;
3906 /* raid10 can take over:
3907 * raid0 - providing it has only two drives
3909 if (mddev
->level
== 0) {
3910 /* for raid0 takeover only one zone is supported */
3911 raid0_conf
= mddev
->private;
3912 if (raid0_conf
->nr_strip_zones
> 1) {
3913 printk(KERN_ERR
"md/raid10:%s: cannot takeover raid 0"
3914 " with more than one zone.\n",
3916 return ERR_PTR(-EINVAL
);
3918 return raid10_takeover_raid0(mddev
);
3920 return ERR_PTR(-EINVAL
);
3923 static int raid10_check_reshape(struct mddev
*mddev
)
3925 /* Called when there is a request to change
3926 * - layout (to ->new_layout)
3927 * - chunk size (to ->new_chunk_sectors)
3928 * - raid_disks (by delta_disks)
3929 * or when trying to restart a reshape that was ongoing.
3931 * We need to validate the request and possibly allocate
3932 * space if that might be an issue later.
3934 * Currently we reject any reshape of a 'far' mode array,
3935 * allow chunk size to change if new is generally acceptable,
3936 * allow raid_disks to increase, and allow
3937 * a switch between 'near' mode and 'offset' mode.
3939 struct r10conf
*conf
= mddev
->private;
3942 if (conf
->geo
.far_copies
!= 1 && !conf
->geo
.far_offset
)
3945 if (setup_geo(&geo
, mddev
, geo_start
) != conf
->copies
)
3946 /* mustn't change number of copies */
3948 if (geo
.far_copies
> 1 && !geo
.far_offset
)
3949 /* Cannot switch to 'far' mode */
3952 if (mddev
->array_sectors
& geo
.chunk_mask
)
3953 /* not factor of array size */
3956 if (!enough(conf
, -1))
3959 kfree(conf
->mirrors_new
);
3960 conf
->mirrors_new
= NULL
;
3961 if (mddev
->delta_disks
> 0) {
3962 /* allocate new 'mirrors' list */
3963 conf
->mirrors_new
= kzalloc(
3964 sizeof(struct raid10_info
)
3965 *(mddev
->raid_disks
+
3966 mddev
->delta_disks
),
3968 if (!conf
->mirrors_new
)
3975 * Need to check if array has failed when deciding whether to:
3977 * - remove non-faulty devices
3980 * This determination is simple when no reshape is happening.
3981 * However if there is a reshape, we need to carefully check
3982 * both the before and after sections.
3983 * This is because some failed devices may only affect one
3984 * of the two sections, and some non-in_sync devices may
3985 * be insync in the section most affected by failed devices.
3987 static int calc_degraded(struct r10conf
*conf
)
3989 int degraded
, degraded2
;
3994 /* 'prev' section first */
3995 for (i
= 0; i
< conf
->prev
.raid_disks
; i
++) {
3996 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
3997 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
3999 else if (!test_bit(In_sync
, &rdev
->flags
))
4000 /* When we can reduce the number of devices in
4001 * an array, this might not contribute to
4002 * 'degraded'. It does now.
4007 if (conf
->geo
.raid_disks
== conf
->prev
.raid_disks
)
4011 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
4012 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
4013 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
4015 else if (!test_bit(In_sync
, &rdev
->flags
)) {
4016 /* If reshape is increasing the number of devices,
4017 * this section has already been recovered, so
4018 * it doesn't contribute to degraded.
4021 if (conf
->geo
.raid_disks
<= conf
->prev
.raid_disks
)
4026 if (degraded2
> degraded
)
4031 static int raid10_start_reshape(struct mddev
*mddev
)
4033 /* A 'reshape' has been requested. This commits
4034 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4035 * This also checks if there are enough spares and adds them
4037 * We currently require enough spares to make the final
4038 * array non-degraded. We also require that the difference
4039 * between old and new data_offset - on each device - is
4040 * enough that we never risk over-writing.
4043 unsigned long before_length
, after_length
;
4044 sector_t min_offset_diff
= 0;
4047 struct r10conf
*conf
= mddev
->private;
4048 struct md_rdev
*rdev
;
4052 if (test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
))
4055 if (setup_geo(&new, mddev
, geo_start
) != conf
->copies
)
4058 before_length
= ((1 << conf
->prev
.chunk_shift
) *
4059 conf
->prev
.far_copies
);
4060 after_length
= ((1 << conf
->geo
.chunk_shift
) *
4061 conf
->geo
.far_copies
);
4063 rdev_for_each(rdev
, mddev
) {
4064 if (!test_bit(In_sync
, &rdev
->flags
)
4065 && !test_bit(Faulty
, &rdev
->flags
))
4067 if (rdev
->raid_disk
>= 0) {
4068 long long diff
= (rdev
->new_data_offset
4069 - rdev
->data_offset
);
4070 if (!mddev
->reshape_backwards
)
4074 if (first
|| diff
< min_offset_diff
)
4075 min_offset_diff
= diff
;
4079 if (max(before_length
, after_length
) > min_offset_diff
)
4082 if (spares
< mddev
->delta_disks
)
4085 conf
->offset_diff
= min_offset_diff
;
4086 spin_lock_irq(&conf
->device_lock
);
4087 if (conf
->mirrors_new
) {
4088 memcpy(conf
->mirrors_new
, conf
->mirrors
,
4089 sizeof(struct raid10_info
)*conf
->prev
.raid_disks
);
4091 kfree(conf
->mirrors_old
); /* FIXME and elsewhere */
4092 conf
->mirrors_old
= conf
->mirrors
;
4093 conf
->mirrors
= conf
->mirrors_new
;
4094 conf
->mirrors_new
= NULL
;
4096 setup_geo(&conf
->geo
, mddev
, geo_start
);
4098 if (mddev
->reshape_backwards
) {
4099 sector_t size
= raid10_size(mddev
, 0, 0);
4100 if (size
< mddev
->array_sectors
) {
4101 spin_unlock_irq(&conf
->device_lock
);
4102 printk(KERN_ERR
"md/raid10:%s: array size must be reduce before number of disks\n",
4106 mddev
->resync_max_sectors
= size
;
4107 conf
->reshape_progress
= size
;
4109 conf
->reshape_progress
= 0;
4110 spin_unlock_irq(&conf
->device_lock
);
4112 if (mddev
->delta_disks
&& mddev
->bitmap
) {
4113 ret
= bitmap_resize(mddev
->bitmap
,
4114 raid10_size(mddev
, 0,
4115 conf
->geo
.raid_disks
),
4120 if (mddev
->delta_disks
> 0) {
4121 rdev_for_each(rdev
, mddev
)
4122 if (rdev
->raid_disk
< 0 &&
4123 !test_bit(Faulty
, &rdev
->flags
)) {
4124 if (raid10_add_disk(mddev
, rdev
) == 0) {
4125 if (rdev
->raid_disk
>=
4126 conf
->prev
.raid_disks
)
4127 set_bit(In_sync
, &rdev
->flags
);
4129 rdev
->recovery_offset
= 0;
4131 if (sysfs_link_rdev(mddev
, rdev
))
4132 /* Failure here is OK */;
4134 } else if (rdev
->raid_disk
>= conf
->prev
.raid_disks
4135 && !test_bit(Faulty
, &rdev
->flags
)) {
4136 /* This is a spare that was manually added */
4137 set_bit(In_sync
, &rdev
->flags
);
4140 /* When a reshape changes the number of devices,
4141 * ->degraded is measured against the larger of the
4142 * pre and post numbers.
4144 spin_lock_irq(&conf
->device_lock
);
4145 mddev
->degraded
= calc_degraded(conf
);
4146 spin_unlock_irq(&conf
->device_lock
);
4147 mddev
->raid_disks
= conf
->geo
.raid_disks
;
4148 mddev
->reshape_position
= conf
->reshape_progress
;
4149 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
4151 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
4152 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
4153 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
4154 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
4156 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
4158 if (!mddev
->sync_thread
) {
4162 conf
->reshape_checkpoint
= jiffies
;
4163 md_wakeup_thread(mddev
->sync_thread
);
4164 md_new_event(mddev
);
4168 mddev
->recovery
= 0;
4169 spin_lock_irq(&conf
->device_lock
);
4170 conf
->geo
= conf
->prev
;
4171 mddev
->raid_disks
= conf
->geo
.raid_disks
;
4172 rdev_for_each(rdev
, mddev
)
4173 rdev
->new_data_offset
= rdev
->data_offset
;
4175 conf
->reshape_progress
= MaxSector
;
4176 mddev
->reshape_position
= MaxSector
;
4177 spin_unlock_irq(&conf
->device_lock
);
4181 /* Calculate the last device-address that could contain
4182 * any block from the chunk that includes the array-address 's'
4183 * and report the next address.
4184 * i.e. the address returned will be chunk-aligned and after
4185 * any data that is in the chunk containing 's'.
4187 static sector_t
last_dev_address(sector_t s
, struct geom
*geo
)
4189 s
= (s
| geo
->chunk_mask
) + 1;
4190 s
>>= geo
->chunk_shift
;
4191 s
*= geo
->near_copies
;
4192 s
= DIV_ROUND_UP_SECTOR_T(s
, geo
->raid_disks
);
4193 s
*= geo
->far_copies
;
4194 s
<<= geo
->chunk_shift
;
4198 /* Calculate the first device-address that could contain
4199 * any block from the chunk that includes the array-address 's'.
4200 * This too will be the start of a chunk
4202 static sector_t
first_dev_address(sector_t s
, struct geom
*geo
)
4204 s
>>= geo
->chunk_shift
;
4205 s
*= geo
->near_copies
;
4206 sector_div(s
, geo
->raid_disks
);
4207 s
*= geo
->far_copies
;
4208 s
<<= geo
->chunk_shift
;
4212 static sector_t
reshape_request(struct mddev
*mddev
, sector_t sector_nr
,
4215 /* We simply copy at most one chunk (smallest of old and new)
4216 * at a time, possibly less if that exceeds RESYNC_PAGES,
4217 * or we hit a bad block or something.
4218 * This might mean we pause for normal IO in the middle of
4219 * a chunk, but that is not a problem was mddev->reshape_position
4220 * can record any location.
4222 * If we will want to write to a location that isn't
4223 * yet recorded as 'safe' (i.e. in metadata on disk) then
4224 * we need to flush all reshape requests and update the metadata.
4226 * When reshaping forwards (e.g. to more devices), we interpret
4227 * 'safe' as the earliest block which might not have been copied
4228 * down yet. We divide this by previous stripe size and multiply
4229 * by previous stripe length to get lowest device offset that we
4230 * cannot write to yet.
4231 * We interpret 'sector_nr' as an address that we want to write to.
4232 * From this we use last_device_address() to find where we might
4233 * write to, and first_device_address on the 'safe' position.
4234 * If this 'next' write position is after the 'safe' position,
4235 * we must update the metadata to increase the 'safe' position.
4237 * When reshaping backwards, we round in the opposite direction
4238 * and perform the reverse test: next write position must not be
4239 * less than current safe position.
4241 * In all this the minimum difference in data offsets
4242 * (conf->offset_diff - always positive) allows a bit of slack,
4243 * so next can be after 'safe', but not by more than offset_disk
4245 * We need to prepare all the bios here before we start any IO
4246 * to ensure the size we choose is acceptable to all devices.
4247 * The means one for each copy for write-out and an extra one for
4249 * We store the read-in bio in ->master_bio and the others in
4250 * ->devs[x].bio and ->devs[x].repl_bio.
4252 struct r10conf
*conf
= mddev
->private;
4253 struct r10bio
*r10_bio
;
4254 sector_t next
, safe
, last
;
4258 struct md_rdev
*rdev
;
4261 struct bio
*bio
, *read_bio
;
4262 int sectors_done
= 0;
4264 if (sector_nr
== 0) {
4265 /* If restarting in the middle, skip the initial sectors */
4266 if (mddev
->reshape_backwards
&&
4267 conf
->reshape_progress
< raid10_size(mddev
, 0, 0)) {
4268 sector_nr
= (raid10_size(mddev
, 0, 0)
4269 - conf
->reshape_progress
);
4270 } else if (!mddev
->reshape_backwards
&&
4271 conf
->reshape_progress
> 0)
4272 sector_nr
= conf
->reshape_progress
;
4274 mddev
->curr_resync_completed
= sector_nr
;
4275 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
4281 /* We don't use sector_nr to track where we are up to
4282 * as that doesn't work well for ->reshape_backwards.
4283 * So just use ->reshape_progress.
4285 if (mddev
->reshape_backwards
) {
4286 /* 'next' is the earliest device address that we might
4287 * write to for this chunk in the new layout
4289 next
= first_dev_address(conf
->reshape_progress
- 1,
4292 /* 'safe' is the last device address that we might read from
4293 * in the old layout after a restart
4295 safe
= last_dev_address(conf
->reshape_safe
- 1,
4298 if (next
+ conf
->offset_diff
< safe
)
4301 last
= conf
->reshape_progress
- 1;
4302 sector_nr
= last
& ~(sector_t
)(conf
->geo
.chunk_mask
4303 & conf
->prev
.chunk_mask
);
4304 if (sector_nr
+ RESYNC_BLOCK_SIZE
/512 < last
)
4305 sector_nr
= last
+ 1 - RESYNC_BLOCK_SIZE
/512;
4307 /* 'next' is after the last device address that we
4308 * might write to for this chunk in the new layout
4310 next
= last_dev_address(conf
->reshape_progress
, &conf
->geo
);
4312 /* 'safe' is the earliest device address that we might
4313 * read from in the old layout after a restart
4315 safe
= first_dev_address(conf
->reshape_safe
, &conf
->prev
);
4317 /* Need to update metadata if 'next' might be beyond 'safe'
4318 * as that would possibly corrupt data
4320 if (next
> safe
+ conf
->offset_diff
)
4323 sector_nr
= conf
->reshape_progress
;
4324 last
= sector_nr
| (conf
->geo
.chunk_mask
4325 & conf
->prev
.chunk_mask
);
4327 if (sector_nr
+ RESYNC_BLOCK_SIZE
/512 <= last
)
4328 last
= sector_nr
+ RESYNC_BLOCK_SIZE
/512 - 1;
4332 time_after(jiffies
, conf
->reshape_checkpoint
+ 10*HZ
)) {
4333 /* Need to update reshape_position in metadata */
4335 mddev
->reshape_position
= conf
->reshape_progress
;
4336 if (mddev
->reshape_backwards
)
4337 mddev
->curr_resync_completed
= raid10_size(mddev
, 0, 0)
4338 - conf
->reshape_progress
;
4340 mddev
->curr_resync_completed
= conf
->reshape_progress
;
4341 conf
->reshape_checkpoint
= jiffies
;
4342 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
4343 md_wakeup_thread(mddev
->thread
);
4344 wait_event(mddev
->sb_wait
, mddev
->flags
== 0 ||
4345 kthread_should_stop());
4346 conf
->reshape_safe
= mddev
->reshape_position
;
4347 allow_barrier(conf
);
4351 /* Now schedule reads for blocks from sector_nr to last */
4352 r10_bio
= mempool_alloc(conf
->r10buf_pool
, GFP_NOIO
);
4353 raise_barrier(conf
, sectors_done
!= 0);
4354 atomic_set(&r10_bio
->remaining
, 0);
4355 r10_bio
->mddev
= mddev
;
4356 r10_bio
->sector
= sector_nr
;
4357 set_bit(R10BIO_IsReshape
, &r10_bio
->state
);
4358 r10_bio
->sectors
= last
- sector_nr
+ 1;
4359 rdev
= read_balance(conf
, r10_bio
, &max_sectors
);
4360 BUG_ON(!test_bit(R10BIO_Previous
, &r10_bio
->state
));
4363 /* Cannot read from here, so need to record bad blocks
4364 * on all the target devices.
4367 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
4368 return sectors_done
;
4371 read_bio
= bio_alloc_mddev(GFP_KERNEL
, RESYNC_PAGES
, mddev
);
4373 read_bio
->bi_bdev
= rdev
->bdev
;
4374 read_bio
->bi_sector
= (r10_bio
->devs
[r10_bio
->read_slot
].addr
4375 + rdev
->data_offset
);
4376 read_bio
->bi_private
= r10_bio
;
4377 read_bio
->bi_end_io
= end_sync_read
;
4378 read_bio
->bi_rw
= READ
;
4379 read_bio
->bi_flags
&= ~(BIO_POOL_MASK
- 1);
4380 read_bio
->bi_flags
|= 1 << BIO_UPTODATE
;
4381 read_bio
->bi_vcnt
= 0;
4382 read_bio
->bi_size
= 0;
4383 r10_bio
->master_bio
= read_bio
;
4384 r10_bio
->read_slot
= r10_bio
->devs
[r10_bio
->read_slot
].devnum
;
4386 /* Now find the locations in the new layout */
4387 __raid10_find_phys(&conf
->geo
, r10_bio
);
4390 read_bio
->bi_next
= NULL
;
4392 for (s
= 0; s
< conf
->copies
*2; s
++) {
4394 int d
= r10_bio
->devs
[s
/2].devnum
;
4395 struct md_rdev
*rdev2
;
4397 rdev2
= conf
->mirrors
[d
].replacement
;
4398 b
= r10_bio
->devs
[s
/2].repl_bio
;
4400 rdev2
= conf
->mirrors
[d
].rdev
;
4401 b
= r10_bio
->devs
[s
/2].bio
;
4403 if (!rdev2
|| test_bit(Faulty
, &rdev2
->flags
))
4407 b
->bi_bdev
= rdev2
->bdev
;
4408 b
->bi_sector
= r10_bio
->devs
[s
/2].addr
+ rdev2
->new_data_offset
;
4409 b
->bi_private
= r10_bio
;
4410 b
->bi_end_io
= end_reshape_write
;
4416 /* Now add as many pages as possible to all of these bios. */
4419 for (s
= 0 ; s
< max_sectors
; s
+= PAGE_SIZE
>> 9) {
4420 struct page
*page
= r10_bio
->devs
[0].bio
->bi_io_vec
[s
/(PAGE_SIZE
>>9)].bv_page
;
4421 int len
= (max_sectors
- s
) << 9;
4422 if (len
> PAGE_SIZE
)
4424 for (bio
= blist
; bio
; bio
= bio
->bi_next
) {
4426 if (bio_add_page(bio
, page
, len
, 0))
4429 /* Didn't fit, must stop */
4431 bio2
&& bio2
!= bio
;
4432 bio2
= bio2
->bi_next
) {
4433 /* Remove last page from this bio */
4435 bio2
->bi_size
-= len
;
4436 bio2
->bi_flags
&= ~(1<<BIO_SEG_VALID
);
4440 sector_nr
+= len
>> 9;
4441 nr_sectors
+= len
>> 9;
4444 r10_bio
->sectors
= nr_sectors
;
4446 /* Now submit the read */
4447 md_sync_acct(read_bio
->bi_bdev
, r10_bio
->sectors
);
4448 atomic_inc(&r10_bio
->remaining
);
4449 read_bio
->bi_next
= NULL
;
4450 generic_make_request(read_bio
);
4451 sector_nr
+= nr_sectors
;
4452 sectors_done
+= nr_sectors
;
4453 if (sector_nr
<= last
)
4456 /* Now that we have done the whole section we can
4457 * update reshape_progress
4459 if (mddev
->reshape_backwards
)
4460 conf
->reshape_progress
-= sectors_done
;
4462 conf
->reshape_progress
+= sectors_done
;
4464 return sectors_done
;
4467 static void end_reshape_request(struct r10bio
*r10_bio
);
4468 static int handle_reshape_read_error(struct mddev
*mddev
,
4469 struct r10bio
*r10_bio
);
4470 static void reshape_request_write(struct mddev
*mddev
, struct r10bio
*r10_bio
)
4472 /* Reshape read completed. Hopefully we have a block
4474 * If we got a read error then we do sync 1-page reads from
4475 * elsewhere until we find the data - or give up.
4477 struct r10conf
*conf
= mddev
->private;
4480 if (!test_bit(R10BIO_Uptodate
, &r10_bio
->state
))
4481 if (handle_reshape_read_error(mddev
, r10_bio
) < 0) {
4482 /* Reshape has been aborted */
4483 md_done_sync(mddev
, r10_bio
->sectors
, 0);
4487 /* We definitely have the data in the pages, schedule the
4490 atomic_set(&r10_bio
->remaining
, 1);
4491 for (s
= 0; s
< conf
->copies
*2; s
++) {
4493 int d
= r10_bio
->devs
[s
/2].devnum
;
4494 struct md_rdev
*rdev
;
4496 rdev
= conf
->mirrors
[d
].replacement
;
4497 b
= r10_bio
->devs
[s
/2].repl_bio
;
4499 rdev
= conf
->mirrors
[d
].rdev
;
4500 b
= r10_bio
->devs
[s
/2].bio
;
4502 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
4504 atomic_inc(&rdev
->nr_pending
);
4505 md_sync_acct(b
->bi_bdev
, r10_bio
->sectors
);
4506 atomic_inc(&r10_bio
->remaining
);
4508 generic_make_request(b
);
4510 end_reshape_request(r10_bio
);
4513 static void end_reshape(struct r10conf
*conf
)
4515 if (test_bit(MD_RECOVERY_INTR
, &conf
->mddev
->recovery
))
4518 spin_lock_irq(&conf
->device_lock
);
4519 conf
->prev
= conf
->geo
;
4520 md_finish_reshape(conf
->mddev
);
4522 conf
->reshape_progress
= MaxSector
;
4523 spin_unlock_irq(&conf
->device_lock
);
4525 /* read-ahead size must cover two whole stripes, which is
4526 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4528 if (conf
->mddev
->queue
) {
4529 int stripe
= conf
->geo
.raid_disks
*
4530 ((conf
->mddev
->chunk_sectors
<< 9) / PAGE_SIZE
);
4531 stripe
/= conf
->geo
.near_copies
;
4532 if (conf
->mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
4533 conf
->mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
4539 static int handle_reshape_read_error(struct mddev
*mddev
,
4540 struct r10bio
*r10_bio
)
4542 /* Use sync reads to get the blocks from somewhere else */
4543 int sectors
= r10_bio
->sectors
;
4544 struct r10conf
*conf
= mddev
->private;
4546 struct r10bio r10_bio
;
4547 struct r10dev devs
[conf
->copies
];
4549 struct r10bio
*r10b
= &on_stack
.r10_bio
;
4552 struct bio_vec
*bvec
= r10_bio
->master_bio
->bi_io_vec
;
4554 r10b
->sector
= r10_bio
->sector
;
4555 __raid10_find_phys(&conf
->prev
, r10b
);
4560 int first_slot
= slot
;
4562 if (s
> (PAGE_SIZE
>> 9))
4566 int d
= r10b
->devs
[slot
].devnum
;
4567 struct md_rdev
*rdev
= conf
->mirrors
[d
].rdev
;
4570 test_bit(Faulty
, &rdev
->flags
) ||
4571 !test_bit(In_sync
, &rdev
->flags
))
4574 addr
= r10b
->devs
[slot
].addr
+ idx
* PAGE_SIZE
;
4575 success
= sync_page_io(rdev
,
4584 if (slot
>= conf
->copies
)
4586 if (slot
== first_slot
)
4590 /* couldn't read this block, must give up */
4591 set_bit(MD_RECOVERY_INTR
,
4601 static void end_reshape_write(struct bio
*bio
, int error
)
4603 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
4604 struct r10bio
*r10_bio
= bio
->bi_private
;
4605 struct mddev
*mddev
= r10_bio
->mddev
;
4606 struct r10conf
*conf
= mddev
->private;
4610 struct md_rdev
*rdev
= NULL
;
4612 d
= find_bio_disk(conf
, r10_bio
, bio
, &slot
, &repl
);
4614 rdev
= conf
->mirrors
[d
].replacement
;
4617 rdev
= conf
->mirrors
[d
].rdev
;
4621 /* FIXME should record badblock */
4622 md_error(mddev
, rdev
);
4625 rdev_dec_pending(rdev
, mddev
);
4626 end_reshape_request(r10_bio
);
4629 static void end_reshape_request(struct r10bio
*r10_bio
)
4631 if (!atomic_dec_and_test(&r10_bio
->remaining
))
4633 md_done_sync(r10_bio
->mddev
, r10_bio
->sectors
, 1);
4634 bio_put(r10_bio
->master_bio
);
4638 static void raid10_finish_reshape(struct mddev
*mddev
)
4640 struct r10conf
*conf
= mddev
->private;
4642 if (test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
))
4645 if (mddev
->delta_disks
> 0) {
4646 sector_t size
= raid10_size(mddev
, 0, 0);
4647 md_set_array_sectors(mddev
, size
);
4648 if (mddev
->recovery_cp
> mddev
->resync_max_sectors
) {
4649 mddev
->recovery_cp
= mddev
->resync_max_sectors
;
4650 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
4652 mddev
->resync_max_sectors
= size
;
4653 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
4654 revalidate_disk(mddev
->gendisk
);
4657 for (d
= conf
->geo
.raid_disks
;
4658 d
< conf
->geo
.raid_disks
- mddev
->delta_disks
;
4660 struct md_rdev
*rdev
= conf
->mirrors
[d
].rdev
;
4662 clear_bit(In_sync
, &rdev
->flags
);
4663 rdev
= conf
->mirrors
[d
].replacement
;
4665 clear_bit(In_sync
, &rdev
->flags
);
4668 mddev
->layout
= mddev
->new_layout
;
4669 mddev
->chunk_sectors
= 1 << conf
->geo
.chunk_shift
;
4670 mddev
->reshape_position
= MaxSector
;
4671 mddev
->delta_disks
= 0;
4672 mddev
->reshape_backwards
= 0;
4675 static struct md_personality raid10_personality
=
4679 .owner
= THIS_MODULE
,
4680 .make_request
= make_request
,
4684 .error_handler
= error
,
4685 .hot_add_disk
= raid10_add_disk
,
4686 .hot_remove_disk
= raid10_remove_disk
,
4687 .spare_active
= raid10_spare_active
,
4688 .sync_request
= sync_request
,
4689 .quiesce
= raid10_quiesce
,
4690 .size
= raid10_size
,
4691 .resize
= raid10_resize
,
4692 .takeover
= raid10_takeover
,
4693 .check_reshape
= raid10_check_reshape
,
4694 .start_reshape
= raid10_start_reshape
,
4695 .finish_reshape
= raid10_finish_reshape
,
4698 static int __init
raid_init(void)
4700 return register_md_personality(&raid10_personality
);
4703 static void raid_exit(void)
4705 unregister_md_personality(&raid10_personality
);
4708 module_init(raid_init
);
4709 module_exit(raid_exit
);
4710 MODULE_LICENSE("GPL");
4711 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4712 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4713 MODULE_ALIAS("md-raid10");
4714 MODULE_ALIAS("md-level-10");
4716 module_param(max_queued_requests
, int, S_IRUGO
|S_IWUSR
);