drm/tegra: Support the XBGR8888 pixelformat
[linux-2.6.git] / net / core / dev.c
blob13e6447f03987b49b32695bec2f4e50684e78115
1 /*
2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <linux/ipv6.h>
122 #include <linux/in.h>
123 #include <linux/jhash.h>
124 #include <linux/random.h>
125 #include <trace/events/napi.h>
126 #include <trace/events/net.h>
127 #include <trace/events/skb.h>
128 #include <linux/pci.h>
129 #include <linux/inetdevice.h>
130 #include <linux/cpu_rmap.h>
131 #include <linux/static_key.h>
133 #include "net-sysfs.h"
135 /* Instead of increasing this, you should create a hash table. */
136 #define MAX_GRO_SKBS 8
138 /* This should be increased if a protocol with a bigger head is added. */
139 #define GRO_MAX_HEAD (MAX_HEADER + 128)
141 static DEFINE_SPINLOCK(ptype_lock);
142 static DEFINE_SPINLOCK(offload_lock);
143 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
144 struct list_head ptype_all __read_mostly; /* Taps */
145 static struct list_head offload_base __read_mostly;
148 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
149 * semaphore.
151 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
153 * Writers must hold the rtnl semaphore while they loop through the
154 * dev_base_head list, and hold dev_base_lock for writing when they do the
155 * actual updates. This allows pure readers to access the list even
156 * while a writer is preparing to update it.
158 * To put it another way, dev_base_lock is held for writing only to
159 * protect against pure readers; the rtnl semaphore provides the
160 * protection against other writers.
162 * See, for example usages, register_netdevice() and
163 * unregister_netdevice(), which must be called with the rtnl
164 * semaphore held.
166 DEFINE_RWLOCK(dev_base_lock);
167 EXPORT_SYMBOL(dev_base_lock);
169 seqcount_t devnet_rename_seq;
171 static inline void dev_base_seq_inc(struct net *net)
173 while (++net->dev_base_seq == 0);
176 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
178 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
180 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
183 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
185 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
188 static inline void rps_lock(struct softnet_data *sd)
190 #ifdef CONFIG_RPS
191 spin_lock(&sd->input_pkt_queue.lock);
192 #endif
195 static inline void rps_unlock(struct softnet_data *sd)
197 #ifdef CONFIG_RPS
198 spin_unlock(&sd->input_pkt_queue.lock);
199 #endif
202 /* Device list insertion */
203 static int list_netdevice(struct net_device *dev)
205 struct net *net = dev_net(dev);
207 ASSERT_RTNL();
209 write_lock_bh(&dev_base_lock);
210 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
211 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
212 hlist_add_head_rcu(&dev->index_hlist,
213 dev_index_hash(net, dev->ifindex));
214 write_unlock_bh(&dev_base_lock);
216 dev_base_seq_inc(net);
218 return 0;
221 /* Device list removal
222 * caller must respect a RCU grace period before freeing/reusing dev
224 static void unlist_netdevice(struct net_device *dev)
226 ASSERT_RTNL();
228 /* Unlink dev from the device chain */
229 write_lock_bh(&dev_base_lock);
230 list_del_rcu(&dev->dev_list);
231 hlist_del_rcu(&dev->name_hlist);
232 hlist_del_rcu(&dev->index_hlist);
233 write_unlock_bh(&dev_base_lock);
235 dev_base_seq_inc(dev_net(dev));
239 * Our notifier list
242 static RAW_NOTIFIER_HEAD(netdev_chain);
245 * Device drivers call our routines to queue packets here. We empty the
246 * queue in the local softnet handler.
249 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
250 EXPORT_PER_CPU_SYMBOL(softnet_data);
252 #ifdef CONFIG_LOCKDEP
254 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
255 * according to dev->type
257 static const unsigned short netdev_lock_type[] =
258 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
259 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
260 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
261 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
262 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
263 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
264 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
265 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
266 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
267 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
268 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
269 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
270 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
271 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
272 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
274 static const char *const netdev_lock_name[] =
275 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
276 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
277 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
278 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
279 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
280 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
281 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
282 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
283 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
284 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
285 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
286 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
287 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
288 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
289 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
291 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
292 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
294 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
296 int i;
298 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
299 if (netdev_lock_type[i] == dev_type)
300 return i;
301 /* the last key is used by default */
302 return ARRAY_SIZE(netdev_lock_type) - 1;
305 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
306 unsigned short dev_type)
308 int i;
310 i = netdev_lock_pos(dev_type);
311 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
312 netdev_lock_name[i]);
315 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
317 int i;
319 i = netdev_lock_pos(dev->type);
320 lockdep_set_class_and_name(&dev->addr_list_lock,
321 &netdev_addr_lock_key[i],
322 netdev_lock_name[i]);
324 #else
325 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326 unsigned short dev_type)
329 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
332 #endif
334 /*******************************************************************************
336 Protocol management and registration routines
338 *******************************************************************************/
341 * Add a protocol ID to the list. Now that the input handler is
342 * smarter we can dispense with all the messy stuff that used to be
343 * here.
345 * BEWARE!!! Protocol handlers, mangling input packets,
346 * MUST BE last in hash buckets and checking protocol handlers
347 * MUST start from promiscuous ptype_all chain in net_bh.
348 * It is true now, do not change it.
349 * Explanation follows: if protocol handler, mangling packet, will
350 * be the first on list, it is not able to sense, that packet
351 * is cloned and should be copied-on-write, so that it will
352 * change it and subsequent readers will get broken packet.
353 * --ANK (980803)
356 static inline struct list_head *ptype_head(const struct packet_type *pt)
358 if (pt->type == htons(ETH_P_ALL))
359 return &ptype_all;
360 else
361 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
365 * dev_add_pack - add packet handler
366 * @pt: packet type declaration
368 * Add a protocol handler to the networking stack. The passed &packet_type
369 * is linked into kernel lists and may not be freed until it has been
370 * removed from the kernel lists.
372 * This call does not sleep therefore it can not
373 * guarantee all CPU's that are in middle of receiving packets
374 * will see the new packet type (until the next received packet).
377 void dev_add_pack(struct packet_type *pt)
379 struct list_head *head = ptype_head(pt);
381 spin_lock(&ptype_lock);
382 list_add_rcu(&pt->list, head);
383 spin_unlock(&ptype_lock);
385 EXPORT_SYMBOL(dev_add_pack);
388 * __dev_remove_pack - remove packet handler
389 * @pt: packet type declaration
391 * Remove a protocol handler that was previously added to the kernel
392 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
393 * from the kernel lists and can be freed or reused once this function
394 * returns.
396 * The packet type might still be in use by receivers
397 * and must not be freed until after all the CPU's have gone
398 * through a quiescent state.
400 void __dev_remove_pack(struct packet_type *pt)
402 struct list_head *head = ptype_head(pt);
403 struct packet_type *pt1;
405 spin_lock(&ptype_lock);
407 list_for_each_entry(pt1, head, list) {
408 if (pt == pt1) {
409 list_del_rcu(&pt->list);
410 goto out;
414 pr_warn("dev_remove_pack: %p not found\n", pt);
415 out:
416 spin_unlock(&ptype_lock);
418 EXPORT_SYMBOL(__dev_remove_pack);
421 * dev_remove_pack - remove packet handler
422 * @pt: packet type declaration
424 * Remove a protocol handler that was previously added to the kernel
425 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
426 * from the kernel lists and can be freed or reused once this function
427 * returns.
429 * This call sleeps to guarantee that no CPU is looking at the packet
430 * type after return.
432 void dev_remove_pack(struct packet_type *pt)
434 __dev_remove_pack(pt);
436 synchronize_net();
438 EXPORT_SYMBOL(dev_remove_pack);
442 * dev_add_offload - register offload handlers
443 * @po: protocol offload declaration
445 * Add protocol offload handlers to the networking stack. The passed
446 * &proto_offload is linked into kernel lists and may not be freed until
447 * it has been removed from the kernel lists.
449 * This call does not sleep therefore it can not
450 * guarantee all CPU's that are in middle of receiving packets
451 * will see the new offload handlers (until the next received packet).
453 void dev_add_offload(struct packet_offload *po)
455 struct list_head *head = &offload_base;
457 spin_lock(&offload_lock);
458 list_add_rcu(&po->list, head);
459 spin_unlock(&offload_lock);
461 EXPORT_SYMBOL(dev_add_offload);
464 * __dev_remove_offload - remove offload handler
465 * @po: packet offload declaration
467 * Remove a protocol offload handler that was previously added to the
468 * kernel offload handlers by dev_add_offload(). The passed &offload_type
469 * is removed from the kernel lists and can be freed or reused once this
470 * function returns.
472 * The packet type might still be in use by receivers
473 * and must not be freed until after all the CPU's have gone
474 * through a quiescent state.
476 void __dev_remove_offload(struct packet_offload *po)
478 struct list_head *head = &offload_base;
479 struct packet_offload *po1;
481 spin_lock(&offload_lock);
483 list_for_each_entry(po1, head, list) {
484 if (po == po1) {
485 list_del_rcu(&po->list);
486 goto out;
490 pr_warn("dev_remove_offload: %p not found\n", po);
491 out:
492 spin_unlock(&offload_lock);
494 EXPORT_SYMBOL(__dev_remove_offload);
497 * dev_remove_offload - remove packet offload handler
498 * @po: packet offload declaration
500 * Remove a packet offload handler that was previously added to the kernel
501 * offload handlers by dev_add_offload(). The passed &offload_type is
502 * removed from the kernel lists and can be freed or reused once this
503 * function returns.
505 * This call sleeps to guarantee that no CPU is looking at the packet
506 * type after return.
508 void dev_remove_offload(struct packet_offload *po)
510 __dev_remove_offload(po);
512 synchronize_net();
514 EXPORT_SYMBOL(dev_remove_offload);
516 /******************************************************************************
518 Device Boot-time Settings Routines
520 *******************************************************************************/
522 /* Boot time configuration table */
523 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
526 * netdev_boot_setup_add - add new setup entry
527 * @name: name of the device
528 * @map: configured settings for the device
530 * Adds new setup entry to the dev_boot_setup list. The function
531 * returns 0 on error and 1 on success. This is a generic routine to
532 * all netdevices.
534 static int netdev_boot_setup_add(char *name, struct ifmap *map)
536 struct netdev_boot_setup *s;
537 int i;
539 s = dev_boot_setup;
540 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
541 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
542 memset(s[i].name, 0, sizeof(s[i].name));
543 strlcpy(s[i].name, name, IFNAMSIZ);
544 memcpy(&s[i].map, map, sizeof(s[i].map));
545 break;
549 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
553 * netdev_boot_setup_check - check boot time settings
554 * @dev: the netdevice
556 * Check boot time settings for the device.
557 * The found settings are set for the device to be used
558 * later in the device probing.
559 * Returns 0 if no settings found, 1 if they are.
561 int netdev_boot_setup_check(struct net_device *dev)
563 struct netdev_boot_setup *s = dev_boot_setup;
564 int i;
566 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
567 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
568 !strcmp(dev->name, s[i].name)) {
569 dev->irq = s[i].map.irq;
570 dev->base_addr = s[i].map.base_addr;
571 dev->mem_start = s[i].map.mem_start;
572 dev->mem_end = s[i].map.mem_end;
573 return 1;
576 return 0;
578 EXPORT_SYMBOL(netdev_boot_setup_check);
582 * netdev_boot_base - get address from boot time settings
583 * @prefix: prefix for network device
584 * @unit: id for network device
586 * Check boot time settings for the base address of device.
587 * The found settings are set for the device to be used
588 * later in the device probing.
589 * Returns 0 if no settings found.
591 unsigned long netdev_boot_base(const char *prefix, int unit)
593 const struct netdev_boot_setup *s = dev_boot_setup;
594 char name[IFNAMSIZ];
595 int i;
597 sprintf(name, "%s%d", prefix, unit);
600 * If device already registered then return base of 1
601 * to indicate not to probe for this interface
603 if (__dev_get_by_name(&init_net, name))
604 return 1;
606 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
607 if (!strcmp(name, s[i].name))
608 return s[i].map.base_addr;
609 return 0;
613 * Saves at boot time configured settings for any netdevice.
615 int __init netdev_boot_setup(char *str)
617 int ints[5];
618 struct ifmap map;
620 str = get_options(str, ARRAY_SIZE(ints), ints);
621 if (!str || !*str)
622 return 0;
624 /* Save settings */
625 memset(&map, 0, sizeof(map));
626 if (ints[0] > 0)
627 map.irq = ints[1];
628 if (ints[0] > 1)
629 map.base_addr = ints[2];
630 if (ints[0] > 2)
631 map.mem_start = ints[3];
632 if (ints[0] > 3)
633 map.mem_end = ints[4];
635 /* Add new entry to the list */
636 return netdev_boot_setup_add(str, &map);
639 __setup("netdev=", netdev_boot_setup);
641 /*******************************************************************************
643 Device Interface Subroutines
645 *******************************************************************************/
648 * __dev_get_by_name - find a device by its name
649 * @net: the applicable net namespace
650 * @name: name to find
652 * Find an interface by name. Must be called under RTNL semaphore
653 * or @dev_base_lock. If the name is found a pointer to the device
654 * is returned. If the name is not found then %NULL is returned. The
655 * reference counters are not incremented so the caller must be
656 * careful with locks.
659 struct net_device *__dev_get_by_name(struct net *net, const char *name)
661 struct net_device *dev;
662 struct hlist_head *head = dev_name_hash(net, name);
664 hlist_for_each_entry(dev, head, name_hlist)
665 if (!strncmp(dev->name, name, IFNAMSIZ))
666 return dev;
668 return NULL;
670 EXPORT_SYMBOL(__dev_get_by_name);
673 * dev_get_by_name_rcu - find a device by its name
674 * @net: the applicable net namespace
675 * @name: name to find
677 * Find an interface by name.
678 * If the name is found a pointer to the device is returned.
679 * If the name is not found then %NULL is returned.
680 * The reference counters are not incremented so the caller must be
681 * careful with locks. The caller must hold RCU lock.
684 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
686 struct net_device *dev;
687 struct hlist_head *head = dev_name_hash(net, name);
689 hlist_for_each_entry_rcu(dev, head, name_hlist)
690 if (!strncmp(dev->name, name, IFNAMSIZ))
691 return dev;
693 return NULL;
695 EXPORT_SYMBOL(dev_get_by_name_rcu);
698 * dev_get_by_name - find a device by its name
699 * @net: the applicable net namespace
700 * @name: name to find
702 * Find an interface by name. This can be called from any
703 * context and does its own locking. The returned handle has
704 * the usage count incremented and the caller must use dev_put() to
705 * release it when it is no longer needed. %NULL is returned if no
706 * matching device is found.
709 struct net_device *dev_get_by_name(struct net *net, const char *name)
711 struct net_device *dev;
713 rcu_read_lock();
714 dev = dev_get_by_name_rcu(net, name);
715 if (dev)
716 dev_hold(dev);
717 rcu_read_unlock();
718 return dev;
720 EXPORT_SYMBOL(dev_get_by_name);
723 * __dev_get_by_index - find a device by its ifindex
724 * @net: the applicable net namespace
725 * @ifindex: index of device
727 * Search for an interface by index. Returns %NULL if the device
728 * is not found or a pointer to the device. The device has not
729 * had its reference counter increased so the caller must be careful
730 * about locking. The caller must hold either the RTNL semaphore
731 * or @dev_base_lock.
734 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
736 struct net_device *dev;
737 struct hlist_head *head = dev_index_hash(net, ifindex);
739 hlist_for_each_entry(dev, head, index_hlist)
740 if (dev->ifindex == ifindex)
741 return dev;
743 return NULL;
745 EXPORT_SYMBOL(__dev_get_by_index);
748 * dev_get_by_index_rcu - find a device by its ifindex
749 * @net: the applicable net namespace
750 * @ifindex: index of device
752 * Search for an interface by index. Returns %NULL if the device
753 * is not found or a pointer to the device. The device has not
754 * had its reference counter increased so the caller must be careful
755 * about locking. The caller must hold RCU lock.
758 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
760 struct net_device *dev;
761 struct hlist_head *head = dev_index_hash(net, ifindex);
763 hlist_for_each_entry_rcu(dev, head, index_hlist)
764 if (dev->ifindex == ifindex)
765 return dev;
767 return NULL;
769 EXPORT_SYMBOL(dev_get_by_index_rcu);
773 * dev_get_by_index - find a device by its ifindex
774 * @net: the applicable net namespace
775 * @ifindex: index of device
777 * Search for an interface by index. Returns NULL if the device
778 * is not found or a pointer to the device. The device returned has
779 * had a reference added and the pointer is safe until the user calls
780 * dev_put to indicate they have finished with it.
783 struct net_device *dev_get_by_index(struct net *net, int ifindex)
785 struct net_device *dev;
787 rcu_read_lock();
788 dev = dev_get_by_index_rcu(net, ifindex);
789 if (dev)
790 dev_hold(dev);
791 rcu_read_unlock();
792 return dev;
794 EXPORT_SYMBOL(dev_get_by_index);
797 * dev_getbyhwaddr_rcu - find a device by its hardware address
798 * @net: the applicable net namespace
799 * @type: media type of device
800 * @ha: hardware address
802 * Search for an interface by MAC address. Returns NULL if the device
803 * is not found or a pointer to the device.
804 * The caller must hold RCU or RTNL.
805 * The returned device has not had its ref count increased
806 * and the caller must therefore be careful about locking
810 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
811 const char *ha)
813 struct net_device *dev;
815 for_each_netdev_rcu(net, dev)
816 if (dev->type == type &&
817 !memcmp(dev->dev_addr, ha, dev->addr_len))
818 return dev;
820 return NULL;
822 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
824 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
826 struct net_device *dev;
828 ASSERT_RTNL();
829 for_each_netdev(net, dev)
830 if (dev->type == type)
831 return dev;
833 return NULL;
835 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
837 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
839 struct net_device *dev, *ret = NULL;
841 rcu_read_lock();
842 for_each_netdev_rcu(net, dev)
843 if (dev->type == type) {
844 dev_hold(dev);
845 ret = dev;
846 break;
848 rcu_read_unlock();
849 return ret;
851 EXPORT_SYMBOL(dev_getfirstbyhwtype);
854 * dev_get_by_flags_rcu - find any device with given flags
855 * @net: the applicable net namespace
856 * @if_flags: IFF_* values
857 * @mask: bitmask of bits in if_flags to check
859 * Search for any interface with the given flags. Returns NULL if a device
860 * is not found or a pointer to the device. Must be called inside
861 * rcu_read_lock(), and result refcount is unchanged.
864 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
865 unsigned short mask)
867 struct net_device *dev, *ret;
869 ret = NULL;
870 for_each_netdev_rcu(net, dev) {
871 if (((dev->flags ^ if_flags) & mask) == 0) {
872 ret = dev;
873 break;
876 return ret;
878 EXPORT_SYMBOL(dev_get_by_flags_rcu);
881 * dev_valid_name - check if name is okay for network device
882 * @name: name string
884 * Network device names need to be valid file names to
885 * to allow sysfs to work. We also disallow any kind of
886 * whitespace.
888 bool dev_valid_name(const char *name)
890 if (*name == '\0')
891 return false;
892 if (strlen(name) >= IFNAMSIZ)
893 return false;
894 if (!strcmp(name, ".") || !strcmp(name, ".."))
895 return false;
897 while (*name) {
898 if (*name == '/' || isspace(*name))
899 return false;
900 name++;
902 return true;
904 EXPORT_SYMBOL(dev_valid_name);
907 * __dev_alloc_name - allocate a name for a device
908 * @net: network namespace to allocate the device name in
909 * @name: name format string
910 * @buf: scratch buffer and result name string
912 * Passed a format string - eg "lt%d" it will try and find a suitable
913 * id. It scans list of devices to build up a free map, then chooses
914 * the first empty slot. The caller must hold the dev_base or rtnl lock
915 * while allocating the name and adding the device in order to avoid
916 * duplicates.
917 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
918 * Returns the number of the unit assigned or a negative errno code.
921 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
923 int i = 0;
924 const char *p;
925 const int max_netdevices = 8*PAGE_SIZE;
926 unsigned long *inuse;
927 struct net_device *d;
929 p = strnchr(name, IFNAMSIZ-1, '%');
930 if (p) {
932 * Verify the string as this thing may have come from
933 * the user. There must be either one "%d" and no other "%"
934 * characters.
936 if (p[1] != 'd' || strchr(p + 2, '%'))
937 return -EINVAL;
939 /* Use one page as a bit array of possible slots */
940 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
941 if (!inuse)
942 return -ENOMEM;
944 for_each_netdev(net, d) {
945 if (!sscanf(d->name, name, &i))
946 continue;
947 if (i < 0 || i >= max_netdevices)
948 continue;
950 /* avoid cases where sscanf is not exact inverse of printf */
951 snprintf(buf, IFNAMSIZ, name, i);
952 if (!strncmp(buf, d->name, IFNAMSIZ))
953 set_bit(i, inuse);
956 i = find_first_zero_bit(inuse, max_netdevices);
957 free_page((unsigned long) inuse);
960 if (buf != name)
961 snprintf(buf, IFNAMSIZ, name, i);
962 if (!__dev_get_by_name(net, buf))
963 return i;
965 /* It is possible to run out of possible slots
966 * when the name is long and there isn't enough space left
967 * for the digits, or if all bits are used.
969 return -ENFILE;
973 * dev_alloc_name - allocate a name for a device
974 * @dev: device
975 * @name: name format string
977 * Passed a format string - eg "lt%d" it will try and find a suitable
978 * id. It scans list of devices to build up a free map, then chooses
979 * the first empty slot. The caller must hold the dev_base or rtnl lock
980 * while allocating the name and adding the device in order to avoid
981 * duplicates.
982 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
983 * Returns the number of the unit assigned or a negative errno code.
986 int dev_alloc_name(struct net_device *dev, const char *name)
988 char buf[IFNAMSIZ];
989 struct net *net;
990 int ret;
992 BUG_ON(!dev_net(dev));
993 net = dev_net(dev);
994 ret = __dev_alloc_name(net, name, buf);
995 if (ret >= 0)
996 strlcpy(dev->name, buf, IFNAMSIZ);
997 return ret;
999 EXPORT_SYMBOL(dev_alloc_name);
1001 static int dev_alloc_name_ns(struct net *net,
1002 struct net_device *dev,
1003 const char *name)
1005 char buf[IFNAMSIZ];
1006 int ret;
1008 ret = __dev_alloc_name(net, name, buf);
1009 if (ret >= 0)
1010 strlcpy(dev->name, buf, IFNAMSIZ);
1011 return ret;
1014 static int dev_get_valid_name(struct net *net,
1015 struct net_device *dev,
1016 const char *name)
1018 BUG_ON(!net);
1020 if (!dev_valid_name(name))
1021 return -EINVAL;
1023 if (strchr(name, '%'))
1024 return dev_alloc_name_ns(net, dev, name);
1025 else if (__dev_get_by_name(net, name))
1026 return -EEXIST;
1027 else if (dev->name != name)
1028 strlcpy(dev->name, name, IFNAMSIZ);
1030 return 0;
1034 * dev_change_name - change name of a device
1035 * @dev: device
1036 * @newname: name (or format string) must be at least IFNAMSIZ
1038 * Change name of a device, can pass format strings "eth%d".
1039 * for wildcarding.
1041 int dev_change_name(struct net_device *dev, const char *newname)
1043 char oldname[IFNAMSIZ];
1044 int err = 0;
1045 int ret;
1046 struct net *net;
1048 ASSERT_RTNL();
1049 BUG_ON(!dev_net(dev));
1051 net = dev_net(dev);
1052 if (dev->flags & IFF_UP)
1053 return -EBUSY;
1055 write_seqcount_begin(&devnet_rename_seq);
1057 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1058 write_seqcount_end(&devnet_rename_seq);
1059 return 0;
1062 memcpy(oldname, dev->name, IFNAMSIZ);
1064 err = dev_get_valid_name(net, dev, newname);
1065 if (err < 0) {
1066 write_seqcount_end(&devnet_rename_seq);
1067 return err;
1070 rollback:
1071 ret = device_rename(&dev->dev, dev->name);
1072 if (ret) {
1073 memcpy(dev->name, oldname, IFNAMSIZ);
1074 write_seqcount_end(&devnet_rename_seq);
1075 return ret;
1078 write_seqcount_end(&devnet_rename_seq);
1080 write_lock_bh(&dev_base_lock);
1081 hlist_del_rcu(&dev->name_hlist);
1082 write_unlock_bh(&dev_base_lock);
1084 synchronize_rcu();
1086 write_lock_bh(&dev_base_lock);
1087 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1088 write_unlock_bh(&dev_base_lock);
1090 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1091 ret = notifier_to_errno(ret);
1093 if (ret) {
1094 /* err >= 0 after dev_alloc_name() or stores the first errno */
1095 if (err >= 0) {
1096 err = ret;
1097 write_seqcount_begin(&devnet_rename_seq);
1098 memcpy(dev->name, oldname, IFNAMSIZ);
1099 goto rollback;
1100 } else {
1101 pr_err("%s: name change rollback failed: %d\n",
1102 dev->name, ret);
1106 return err;
1110 * dev_set_alias - change ifalias of a device
1111 * @dev: device
1112 * @alias: name up to IFALIASZ
1113 * @len: limit of bytes to copy from info
1115 * Set ifalias for a device,
1117 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1119 char *new_ifalias;
1121 ASSERT_RTNL();
1123 if (len >= IFALIASZ)
1124 return -EINVAL;
1126 if (!len) {
1127 kfree(dev->ifalias);
1128 dev->ifalias = NULL;
1129 return 0;
1132 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1133 if (!new_ifalias)
1134 return -ENOMEM;
1135 dev->ifalias = new_ifalias;
1137 strlcpy(dev->ifalias, alias, len+1);
1138 return len;
1143 * netdev_features_change - device changes features
1144 * @dev: device to cause notification
1146 * Called to indicate a device has changed features.
1148 void netdev_features_change(struct net_device *dev)
1150 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1152 EXPORT_SYMBOL(netdev_features_change);
1155 * netdev_state_change - device changes state
1156 * @dev: device to cause notification
1158 * Called to indicate a device has changed state. This function calls
1159 * the notifier chains for netdev_chain and sends a NEWLINK message
1160 * to the routing socket.
1162 void netdev_state_change(struct net_device *dev)
1164 if (dev->flags & IFF_UP) {
1165 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1166 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1169 EXPORT_SYMBOL(netdev_state_change);
1172 * netdev_notify_peers - notify network peers about existence of @dev
1173 * @dev: network device
1175 * Generate traffic such that interested network peers are aware of
1176 * @dev, such as by generating a gratuitous ARP. This may be used when
1177 * a device wants to inform the rest of the network about some sort of
1178 * reconfiguration such as a failover event or virtual machine
1179 * migration.
1181 void netdev_notify_peers(struct net_device *dev)
1183 rtnl_lock();
1184 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1185 rtnl_unlock();
1187 EXPORT_SYMBOL(netdev_notify_peers);
1189 static int __dev_open(struct net_device *dev)
1191 const struct net_device_ops *ops = dev->netdev_ops;
1192 int ret;
1194 ASSERT_RTNL();
1196 if (!netif_device_present(dev))
1197 return -ENODEV;
1199 /* Block netpoll from trying to do any rx path servicing.
1200 * If we don't do this there is a chance ndo_poll_controller
1201 * or ndo_poll may be running while we open the device
1203 ret = netpoll_rx_disable(dev);
1204 if (ret)
1205 return ret;
1207 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1208 ret = notifier_to_errno(ret);
1209 if (ret)
1210 return ret;
1212 set_bit(__LINK_STATE_START, &dev->state);
1214 if (ops->ndo_validate_addr)
1215 ret = ops->ndo_validate_addr(dev);
1217 if (!ret && ops->ndo_open)
1218 ret = ops->ndo_open(dev);
1220 netpoll_rx_enable(dev);
1222 if (ret)
1223 clear_bit(__LINK_STATE_START, &dev->state);
1224 else {
1225 dev->flags |= IFF_UP;
1226 net_dmaengine_get();
1227 dev_set_rx_mode(dev);
1228 dev_activate(dev);
1229 add_device_randomness(dev->dev_addr, dev->addr_len);
1232 return ret;
1236 * dev_open - prepare an interface for use.
1237 * @dev: device to open
1239 * Takes a device from down to up state. The device's private open
1240 * function is invoked and then the multicast lists are loaded. Finally
1241 * the device is moved into the up state and a %NETDEV_UP message is
1242 * sent to the netdev notifier chain.
1244 * Calling this function on an active interface is a nop. On a failure
1245 * a negative errno code is returned.
1247 int dev_open(struct net_device *dev)
1249 int ret;
1251 if (dev->flags & IFF_UP)
1252 return 0;
1254 ret = __dev_open(dev);
1255 if (ret < 0)
1256 return ret;
1258 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1259 call_netdevice_notifiers(NETDEV_UP, dev);
1261 return ret;
1263 EXPORT_SYMBOL(dev_open);
1265 static int __dev_close_many(struct list_head *head)
1267 struct net_device *dev;
1269 ASSERT_RTNL();
1270 might_sleep();
1272 list_for_each_entry(dev, head, unreg_list) {
1273 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1275 clear_bit(__LINK_STATE_START, &dev->state);
1277 /* Synchronize to scheduled poll. We cannot touch poll list, it
1278 * can be even on different cpu. So just clear netif_running().
1280 * dev->stop() will invoke napi_disable() on all of it's
1281 * napi_struct instances on this device.
1283 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1286 dev_deactivate_many(head);
1288 list_for_each_entry(dev, head, unreg_list) {
1289 const struct net_device_ops *ops = dev->netdev_ops;
1292 * Call the device specific close. This cannot fail.
1293 * Only if device is UP
1295 * We allow it to be called even after a DETACH hot-plug
1296 * event.
1298 if (ops->ndo_stop)
1299 ops->ndo_stop(dev);
1301 dev->flags &= ~IFF_UP;
1302 net_dmaengine_put();
1305 return 0;
1308 static int __dev_close(struct net_device *dev)
1310 int retval;
1311 LIST_HEAD(single);
1313 /* Temporarily disable netpoll until the interface is down */
1314 retval = netpoll_rx_disable(dev);
1315 if (retval)
1316 return retval;
1318 list_add(&dev->unreg_list, &single);
1319 retval = __dev_close_many(&single);
1320 list_del(&single);
1322 netpoll_rx_enable(dev);
1323 return retval;
1326 static int dev_close_many(struct list_head *head)
1328 struct net_device *dev, *tmp;
1329 LIST_HEAD(tmp_list);
1331 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1332 if (!(dev->flags & IFF_UP))
1333 list_move(&dev->unreg_list, &tmp_list);
1335 __dev_close_many(head);
1337 list_for_each_entry(dev, head, unreg_list) {
1338 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1339 call_netdevice_notifiers(NETDEV_DOWN, dev);
1342 /* rollback_registered_many needs the complete original list */
1343 list_splice(&tmp_list, head);
1344 return 0;
1348 * dev_close - shutdown an interface.
1349 * @dev: device to shutdown
1351 * This function moves an active device into down state. A
1352 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1353 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1354 * chain.
1356 int dev_close(struct net_device *dev)
1358 int ret = 0;
1359 if (dev->flags & IFF_UP) {
1360 LIST_HEAD(single);
1362 /* Block netpoll rx while the interface is going down */
1363 ret = netpoll_rx_disable(dev);
1364 if (ret)
1365 return ret;
1367 list_add(&dev->unreg_list, &single);
1368 dev_close_many(&single);
1369 list_del(&single);
1371 netpoll_rx_enable(dev);
1373 return ret;
1375 EXPORT_SYMBOL(dev_close);
1379 * dev_disable_lro - disable Large Receive Offload on a device
1380 * @dev: device
1382 * Disable Large Receive Offload (LRO) on a net device. Must be
1383 * called under RTNL. This is needed if received packets may be
1384 * forwarded to another interface.
1386 void dev_disable_lro(struct net_device *dev)
1389 * If we're trying to disable lro on a vlan device
1390 * use the underlying physical device instead
1392 if (is_vlan_dev(dev))
1393 dev = vlan_dev_real_dev(dev);
1395 dev->wanted_features &= ~NETIF_F_LRO;
1396 netdev_update_features(dev);
1398 if (unlikely(dev->features & NETIF_F_LRO))
1399 netdev_WARN(dev, "failed to disable LRO!\n");
1401 EXPORT_SYMBOL(dev_disable_lro);
1404 static int dev_boot_phase = 1;
1407 * register_netdevice_notifier - register a network notifier block
1408 * @nb: notifier
1410 * Register a notifier to be called when network device events occur.
1411 * The notifier passed is linked into the kernel structures and must
1412 * not be reused until it has been unregistered. A negative errno code
1413 * is returned on a failure.
1415 * When registered all registration and up events are replayed
1416 * to the new notifier to allow device to have a race free
1417 * view of the network device list.
1420 int register_netdevice_notifier(struct notifier_block *nb)
1422 struct net_device *dev;
1423 struct net_device *last;
1424 struct net *net;
1425 int err;
1427 rtnl_lock();
1428 err = raw_notifier_chain_register(&netdev_chain, nb);
1429 if (err)
1430 goto unlock;
1431 if (dev_boot_phase)
1432 goto unlock;
1433 for_each_net(net) {
1434 for_each_netdev(net, dev) {
1435 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1436 err = notifier_to_errno(err);
1437 if (err)
1438 goto rollback;
1440 if (!(dev->flags & IFF_UP))
1441 continue;
1443 nb->notifier_call(nb, NETDEV_UP, dev);
1447 unlock:
1448 rtnl_unlock();
1449 return err;
1451 rollback:
1452 last = dev;
1453 for_each_net(net) {
1454 for_each_netdev(net, dev) {
1455 if (dev == last)
1456 goto outroll;
1458 if (dev->flags & IFF_UP) {
1459 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1460 nb->notifier_call(nb, NETDEV_DOWN, dev);
1462 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1466 outroll:
1467 raw_notifier_chain_unregister(&netdev_chain, nb);
1468 goto unlock;
1470 EXPORT_SYMBOL(register_netdevice_notifier);
1473 * unregister_netdevice_notifier - unregister a network notifier block
1474 * @nb: notifier
1476 * Unregister a notifier previously registered by
1477 * register_netdevice_notifier(). The notifier is unlinked into the
1478 * kernel structures and may then be reused. A negative errno code
1479 * is returned on a failure.
1481 * After unregistering unregister and down device events are synthesized
1482 * for all devices on the device list to the removed notifier to remove
1483 * the need for special case cleanup code.
1486 int unregister_netdevice_notifier(struct notifier_block *nb)
1488 struct net_device *dev;
1489 struct net *net;
1490 int err;
1492 rtnl_lock();
1493 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1494 if (err)
1495 goto unlock;
1497 for_each_net(net) {
1498 for_each_netdev(net, dev) {
1499 if (dev->flags & IFF_UP) {
1500 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1501 nb->notifier_call(nb, NETDEV_DOWN, dev);
1503 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1506 unlock:
1507 rtnl_unlock();
1508 return err;
1510 EXPORT_SYMBOL(unregister_netdevice_notifier);
1513 * call_netdevice_notifiers - call all network notifier blocks
1514 * @val: value passed unmodified to notifier function
1515 * @dev: net_device pointer passed unmodified to notifier function
1517 * Call all network notifier blocks. Parameters and return value
1518 * are as for raw_notifier_call_chain().
1521 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1523 ASSERT_RTNL();
1524 return raw_notifier_call_chain(&netdev_chain, val, dev);
1526 EXPORT_SYMBOL(call_netdevice_notifiers);
1528 static struct static_key netstamp_needed __read_mostly;
1529 #ifdef HAVE_JUMP_LABEL
1530 /* We are not allowed to call static_key_slow_dec() from irq context
1531 * If net_disable_timestamp() is called from irq context, defer the
1532 * static_key_slow_dec() calls.
1534 static atomic_t netstamp_needed_deferred;
1535 #endif
1537 void net_enable_timestamp(void)
1539 #ifdef HAVE_JUMP_LABEL
1540 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1542 if (deferred) {
1543 while (--deferred)
1544 static_key_slow_dec(&netstamp_needed);
1545 return;
1547 #endif
1548 static_key_slow_inc(&netstamp_needed);
1550 EXPORT_SYMBOL(net_enable_timestamp);
1552 void net_disable_timestamp(void)
1554 #ifdef HAVE_JUMP_LABEL
1555 if (in_interrupt()) {
1556 atomic_inc(&netstamp_needed_deferred);
1557 return;
1559 #endif
1560 static_key_slow_dec(&netstamp_needed);
1562 EXPORT_SYMBOL(net_disable_timestamp);
1564 static inline void net_timestamp_set(struct sk_buff *skb)
1566 skb->tstamp.tv64 = 0;
1567 if (static_key_false(&netstamp_needed))
1568 __net_timestamp(skb);
1571 #define net_timestamp_check(COND, SKB) \
1572 if (static_key_false(&netstamp_needed)) { \
1573 if ((COND) && !(SKB)->tstamp.tv64) \
1574 __net_timestamp(SKB); \
1577 static inline bool is_skb_forwardable(struct net_device *dev,
1578 struct sk_buff *skb)
1580 unsigned int len;
1582 if (!(dev->flags & IFF_UP))
1583 return false;
1585 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1586 if (skb->len <= len)
1587 return true;
1589 /* if TSO is enabled, we don't care about the length as the packet
1590 * could be forwarded without being segmented before
1592 if (skb_is_gso(skb))
1593 return true;
1595 return false;
1599 * dev_forward_skb - loopback an skb to another netif
1601 * @dev: destination network device
1602 * @skb: buffer to forward
1604 * return values:
1605 * NET_RX_SUCCESS (no congestion)
1606 * NET_RX_DROP (packet was dropped, but freed)
1608 * dev_forward_skb can be used for injecting an skb from the
1609 * start_xmit function of one device into the receive queue
1610 * of another device.
1612 * The receiving device may be in another namespace, so
1613 * we have to clear all information in the skb that could
1614 * impact namespace isolation.
1616 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1618 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1619 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1620 atomic_long_inc(&dev->rx_dropped);
1621 kfree_skb(skb);
1622 return NET_RX_DROP;
1626 skb_orphan(skb);
1628 if (unlikely(!is_skb_forwardable(dev, skb))) {
1629 atomic_long_inc(&dev->rx_dropped);
1630 kfree_skb(skb);
1631 return NET_RX_DROP;
1633 skb->skb_iif = 0;
1634 skb->dev = dev;
1635 skb_dst_drop(skb);
1636 skb->tstamp.tv64 = 0;
1637 skb->pkt_type = PACKET_HOST;
1638 skb->protocol = eth_type_trans(skb, dev);
1639 skb->mark = 0;
1640 secpath_reset(skb);
1641 nf_reset(skb);
1642 return netif_rx(skb);
1644 EXPORT_SYMBOL_GPL(dev_forward_skb);
1646 static inline int deliver_skb(struct sk_buff *skb,
1647 struct packet_type *pt_prev,
1648 struct net_device *orig_dev)
1650 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1651 return -ENOMEM;
1652 atomic_inc(&skb->users);
1653 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1656 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1658 if (!ptype->af_packet_priv || !skb->sk)
1659 return false;
1661 if (ptype->id_match)
1662 return ptype->id_match(ptype, skb->sk);
1663 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1664 return true;
1666 return false;
1670 * Support routine. Sends outgoing frames to any network
1671 * taps currently in use.
1674 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1676 struct packet_type *ptype;
1677 struct sk_buff *skb2 = NULL;
1678 struct packet_type *pt_prev = NULL;
1680 rcu_read_lock();
1681 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1682 /* Never send packets back to the socket
1683 * they originated from - MvS (miquels@drinkel.ow.org)
1685 if ((ptype->dev == dev || !ptype->dev) &&
1686 (!skb_loop_sk(ptype, skb))) {
1687 if (pt_prev) {
1688 deliver_skb(skb2, pt_prev, skb->dev);
1689 pt_prev = ptype;
1690 continue;
1693 skb2 = skb_clone(skb, GFP_ATOMIC);
1694 if (!skb2)
1695 break;
1697 net_timestamp_set(skb2);
1699 /* skb->nh should be correctly
1700 set by sender, so that the second statement is
1701 just protection against buggy protocols.
1703 skb_reset_mac_header(skb2);
1705 if (skb_network_header(skb2) < skb2->data ||
1706 skb2->network_header > skb2->tail) {
1707 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1708 ntohs(skb2->protocol),
1709 dev->name);
1710 skb_reset_network_header(skb2);
1713 skb2->transport_header = skb2->network_header;
1714 skb2->pkt_type = PACKET_OUTGOING;
1715 pt_prev = ptype;
1718 if (pt_prev)
1719 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1720 rcu_read_unlock();
1724 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1725 * @dev: Network device
1726 * @txq: number of queues available
1728 * If real_num_tx_queues is changed the tc mappings may no longer be
1729 * valid. To resolve this verify the tc mapping remains valid and if
1730 * not NULL the mapping. With no priorities mapping to this
1731 * offset/count pair it will no longer be used. In the worst case TC0
1732 * is invalid nothing can be done so disable priority mappings. If is
1733 * expected that drivers will fix this mapping if they can before
1734 * calling netif_set_real_num_tx_queues.
1736 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1738 int i;
1739 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1741 /* If TC0 is invalidated disable TC mapping */
1742 if (tc->offset + tc->count > txq) {
1743 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1744 dev->num_tc = 0;
1745 return;
1748 /* Invalidated prio to tc mappings set to TC0 */
1749 for (i = 1; i < TC_BITMASK + 1; i++) {
1750 int q = netdev_get_prio_tc_map(dev, i);
1752 tc = &dev->tc_to_txq[q];
1753 if (tc->offset + tc->count > txq) {
1754 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1755 i, q);
1756 netdev_set_prio_tc_map(dev, i, 0);
1761 #ifdef CONFIG_XPS
1762 static DEFINE_MUTEX(xps_map_mutex);
1763 #define xmap_dereference(P) \
1764 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1766 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1767 int cpu, u16 index)
1769 struct xps_map *map = NULL;
1770 int pos;
1772 if (dev_maps)
1773 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1775 for (pos = 0; map && pos < map->len; pos++) {
1776 if (map->queues[pos] == index) {
1777 if (map->len > 1) {
1778 map->queues[pos] = map->queues[--map->len];
1779 } else {
1780 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1781 kfree_rcu(map, rcu);
1782 map = NULL;
1784 break;
1788 return map;
1791 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1793 struct xps_dev_maps *dev_maps;
1794 int cpu, i;
1795 bool active = false;
1797 mutex_lock(&xps_map_mutex);
1798 dev_maps = xmap_dereference(dev->xps_maps);
1800 if (!dev_maps)
1801 goto out_no_maps;
1803 for_each_possible_cpu(cpu) {
1804 for (i = index; i < dev->num_tx_queues; i++) {
1805 if (!remove_xps_queue(dev_maps, cpu, i))
1806 break;
1808 if (i == dev->num_tx_queues)
1809 active = true;
1812 if (!active) {
1813 RCU_INIT_POINTER(dev->xps_maps, NULL);
1814 kfree_rcu(dev_maps, rcu);
1817 for (i = index; i < dev->num_tx_queues; i++)
1818 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1819 NUMA_NO_NODE);
1821 out_no_maps:
1822 mutex_unlock(&xps_map_mutex);
1825 static struct xps_map *expand_xps_map(struct xps_map *map,
1826 int cpu, u16 index)
1828 struct xps_map *new_map;
1829 int alloc_len = XPS_MIN_MAP_ALLOC;
1830 int i, pos;
1832 for (pos = 0; map && pos < map->len; pos++) {
1833 if (map->queues[pos] != index)
1834 continue;
1835 return map;
1838 /* Need to add queue to this CPU's existing map */
1839 if (map) {
1840 if (pos < map->alloc_len)
1841 return map;
1843 alloc_len = map->alloc_len * 2;
1846 /* Need to allocate new map to store queue on this CPU's map */
1847 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1848 cpu_to_node(cpu));
1849 if (!new_map)
1850 return NULL;
1852 for (i = 0; i < pos; i++)
1853 new_map->queues[i] = map->queues[i];
1854 new_map->alloc_len = alloc_len;
1855 new_map->len = pos;
1857 return new_map;
1860 int netif_set_xps_queue(struct net_device *dev, struct cpumask *mask, u16 index)
1862 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1863 struct xps_map *map, *new_map;
1864 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1865 int cpu, numa_node_id = -2;
1866 bool active = false;
1868 mutex_lock(&xps_map_mutex);
1870 dev_maps = xmap_dereference(dev->xps_maps);
1872 /* allocate memory for queue storage */
1873 for_each_online_cpu(cpu) {
1874 if (!cpumask_test_cpu(cpu, mask))
1875 continue;
1877 if (!new_dev_maps)
1878 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1879 if (!new_dev_maps) {
1880 mutex_unlock(&xps_map_mutex);
1881 return -ENOMEM;
1884 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1885 NULL;
1887 map = expand_xps_map(map, cpu, index);
1888 if (!map)
1889 goto error;
1891 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1894 if (!new_dev_maps)
1895 goto out_no_new_maps;
1897 for_each_possible_cpu(cpu) {
1898 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1899 /* add queue to CPU maps */
1900 int pos = 0;
1902 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1903 while ((pos < map->len) && (map->queues[pos] != index))
1904 pos++;
1906 if (pos == map->len)
1907 map->queues[map->len++] = index;
1908 #ifdef CONFIG_NUMA
1909 if (numa_node_id == -2)
1910 numa_node_id = cpu_to_node(cpu);
1911 else if (numa_node_id != cpu_to_node(cpu))
1912 numa_node_id = -1;
1913 #endif
1914 } else if (dev_maps) {
1915 /* fill in the new device map from the old device map */
1916 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1917 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1922 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
1924 /* Cleanup old maps */
1925 if (dev_maps) {
1926 for_each_possible_cpu(cpu) {
1927 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1928 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1929 if (map && map != new_map)
1930 kfree_rcu(map, rcu);
1933 kfree_rcu(dev_maps, rcu);
1936 dev_maps = new_dev_maps;
1937 active = true;
1939 out_no_new_maps:
1940 /* update Tx queue numa node */
1941 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
1942 (numa_node_id >= 0) ? numa_node_id :
1943 NUMA_NO_NODE);
1945 if (!dev_maps)
1946 goto out_no_maps;
1948 /* removes queue from unused CPUs */
1949 for_each_possible_cpu(cpu) {
1950 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
1951 continue;
1953 if (remove_xps_queue(dev_maps, cpu, index))
1954 active = true;
1957 /* free map if not active */
1958 if (!active) {
1959 RCU_INIT_POINTER(dev->xps_maps, NULL);
1960 kfree_rcu(dev_maps, rcu);
1963 out_no_maps:
1964 mutex_unlock(&xps_map_mutex);
1966 return 0;
1967 error:
1968 /* remove any maps that we added */
1969 for_each_possible_cpu(cpu) {
1970 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1971 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1972 NULL;
1973 if (new_map && new_map != map)
1974 kfree(new_map);
1977 mutex_unlock(&xps_map_mutex);
1979 kfree(new_dev_maps);
1980 return -ENOMEM;
1982 EXPORT_SYMBOL(netif_set_xps_queue);
1984 #endif
1986 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1987 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1989 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1991 int rc;
1993 if (txq < 1 || txq > dev->num_tx_queues)
1994 return -EINVAL;
1996 if (dev->reg_state == NETREG_REGISTERED ||
1997 dev->reg_state == NETREG_UNREGISTERING) {
1998 ASSERT_RTNL();
2000 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2001 txq);
2002 if (rc)
2003 return rc;
2005 if (dev->num_tc)
2006 netif_setup_tc(dev, txq);
2008 if (txq < dev->real_num_tx_queues) {
2009 qdisc_reset_all_tx_gt(dev, txq);
2010 #ifdef CONFIG_XPS
2011 netif_reset_xps_queues_gt(dev, txq);
2012 #endif
2016 dev->real_num_tx_queues = txq;
2017 return 0;
2019 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2021 #ifdef CONFIG_RPS
2023 * netif_set_real_num_rx_queues - set actual number of RX queues used
2024 * @dev: Network device
2025 * @rxq: Actual number of RX queues
2027 * This must be called either with the rtnl_lock held or before
2028 * registration of the net device. Returns 0 on success, or a
2029 * negative error code. If called before registration, it always
2030 * succeeds.
2032 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2034 int rc;
2036 if (rxq < 1 || rxq > dev->num_rx_queues)
2037 return -EINVAL;
2039 if (dev->reg_state == NETREG_REGISTERED) {
2040 ASSERT_RTNL();
2042 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2043 rxq);
2044 if (rc)
2045 return rc;
2048 dev->real_num_rx_queues = rxq;
2049 return 0;
2051 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2052 #endif
2055 * netif_get_num_default_rss_queues - default number of RSS queues
2057 * This routine should set an upper limit on the number of RSS queues
2058 * used by default by multiqueue devices.
2060 int netif_get_num_default_rss_queues(void)
2062 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2064 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2066 static inline void __netif_reschedule(struct Qdisc *q)
2068 struct softnet_data *sd;
2069 unsigned long flags;
2071 local_irq_save(flags);
2072 sd = &__get_cpu_var(softnet_data);
2073 q->next_sched = NULL;
2074 *sd->output_queue_tailp = q;
2075 sd->output_queue_tailp = &q->next_sched;
2076 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2077 local_irq_restore(flags);
2080 void __netif_schedule(struct Qdisc *q)
2082 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2083 __netif_reschedule(q);
2085 EXPORT_SYMBOL(__netif_schedule);
2087 void dev_kfree_skb_irq(struct sk_buff *skb)
2089 if (atomic_dec_and_test(&skb->users)) {
2090 struct softnet_data *sd;
2091 unsigned long flags;
2093 local_irq_save(flags);
2094 sd = &__get_cpu_var(softnet_data);
2095 skb->next = sd->completion_queue;
2096 sd->completion_queue = skb;
2097 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2098 local_irq_restore(flags);
2101 EXPORT_SYMBOL(dev_kfree_skb_irq);
2103 void dev_kfree_skb_any(struct sk_buff *skb)
2105 if (in_irq() || irqs_disabled())
2106 dev_kfree_skb_irq(skb);
2107 else
2108 dev_kfree_skb(skb);
2110 EXPORT_SYMBOL(dev_kfree_skb_any);
2114 * netif_device_detach - mark device as removed
2115 * @dev: network device
2117 * Mark device as removed from system and therefore no longer available.
2119 void netif_device_detach(struct net_device *dev)
2121 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2122 netif_running(dev)) {
2123 netif_tx_stop_all_queues(dev);
2126 EXPORT_SYMBOL(netif_device_detach);
2129 * netif_device_attach - mark device as attached
2130 * @dev: network device
2132 * Mark device as attached from system and restart if needed.
2134 void netif_device_attach(struct net_device *dev)
2136 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2137 netif_running(dev)) {
2138 netif_tx_wake_all_queues(dev);
2139 __netdev_watchdog_up(dev);
2142 EXPORT_SYMBOL(netif_device_attach);
2144 static void skb_warn_bad_offload(const struct sk_buff *skb)
2146 static const netdev_features_t null_features = 0;
2147 struct net_device *dev = skb->dev;
2148 const char *driver = "";
2150 if (dev && dev->dev.parent)
2151 driver = dev_driver_string(dev->dev.parent);
2153 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2154 "gso_type=%d ip_summed=%d\n",
2155 driver, dev ? &dev->features : &null_features,
2156 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2157 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2158 skb_shinfo(skb)->gso_type, skb->ip_summed);
2162 * Invalidate hardware checksum when packet is to be mangled, and
2163 * complete checksum manually on outgoing path.
2165 int skb_checksum_help(struct sk_buff *skb)
2167 __wsum csum;
2168 int ret = 0, offset;
2170 if (skb->ip_summed == CHECKSUM_COMPLETE)
2171 goto out_set_summed;
2173 if (unlikely(skb_shinfo(skb)->gso_size)) {
2174 skb_warn_bad_offload(skb);
2175 return -EINVAL;
2178 /* Before computing a checksum, we should make sure no frag could
2179 * be modified by an external entity : checksum could be wrong.
2181 if (skb_has_shared_frag(skb)) {
2182 ret = __skb_linearize(skb);
2183 if (ret)
2184 goto out;
2187 offset = skb_checksum_start_offset(skb);
2188 BUG_ON(offset >= skb_headlen(skb));
2189 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2191 offset += skb->csum_offset;
2192 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2194 if (skb_cloned(skb) &&
2195 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2196 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2197 if (ret)
2198 goto out;
2201 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2202 out_set_summed:
2203 skb->ip_summed = CHECKSUM_NONE;
2204 out:
2205 return ret;
2207 EXPORT_SYMBOL(skb_checksum_help);
2210 * skb_mac_gso_segment - mac layer segmentation handler.
2211 * @skb: buffer to segment
2212 * @features: features for the output path (see dev->features)
2214 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2215 netdev_features_t features)
2217 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2218 struct packet_offload *ptype;
2219 __be16 type = skb->protocol;
2220 int vlan_depth = ETH_HLEN;
2222 while (type == htons(ETH_P_8021Q)) {
2223 struct vlan_hdr *vh;
2225 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
2226 return ERR_PTR(-EINVAL);
2228 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2229 type = vh->h_vlan_encapsulated_proto;
2230 vlan_depth += VLAN_HLEN;
2233 __skb_pull(skb, skb->mac_len);
2235 rcu_read_lock();
2236 list_for_each_entry_rcu(ptype, &offload_base, list) {
2237 if (ptype->type == type && ptype->callbacks.gso_segment) {
2238 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2239 int err;
2241 err = ptype->callbacks.gso_send_check(skb);
2242 segs = ERR_PTR(err);
2243 if (err || skb_gso_ok(skb, features))
2244 break;
2245 __skb_push(skb, (skb->data -
2246 skb_network_header(skb)));
2248 segs = ptype->callbacks.gso_segment(skb, features);
2249 break;
2252 rcu_read_unlock();
2254 __skb_push(skb, skb->data - skb_mac_header(skb));
2256 return segs;
2258 EXPORT_SYMBOL(skb_mac_gso_segment);
2261 /* openvswitch calls this on rx path, so we need a different check.
2263 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2265 if (tx_path)
2266 return skb->ip_summed != CHECKSUM_PARTIAL;
2267 else
2268 return skb->ip_summed == CHECKSUM_NONE;
2272 * __skb_gso_segment - Perform segmentation on skb.
2273 * @skb: buffer to segment
2274 * @features: features for the output path (see dev->features)
2275 * @tx_path: whether it is called in TX path
2277 * This function segments the given skb and returns a list of segments.
2279 * It may return NULL if the skb requires no segmentation. This is
2280 * only possible when GSO is used for verifying header integrity.
2282 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2283 netdev_features_t features, bool tx_path)
2285 if (unlikely(skb_needs_check(skb, tx_path))) {
2286 int err;
2288 skb_warn_bad_offload(skb);
2290 if (skb_header_cloned(skb) &&
2291 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2292 return ERR_PTR(err);
2295 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2296 skb_reset_mac_header(skb);
2297 skb_reset_mac_len(skb);
2299 return skb_mac_gso_segment(skb, features);
2301 EXPORT_SYMBOL(__skb_gso_segment);
2303 /* Take action when hardware reception checksum errors are detected. */
2304 #ifdef CONFIG_BUG
2305 void netdev_rx_csum_fault(struct net_device *dev)
2307 if (net_ratelimit()) {
2308 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2309 dump_stack();
2312 EXPORT_SYMBOL(netdev_rx_csum_fault);
2313 #endif
2315 /* Actually, we should eliminate this check as soon as we know, that:
2316 * 1. IOMMU is present and allows to map all the memory.
2317 * 2. No high memory really exists on this machine.
2320 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2322 #ifdef CONFIG_HIGHMEM
2323 int i;
2324 if (!(dev->features & NETIF_F_HIGHDMA)) {
2325 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2326 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2327 if (PageHighMem(skb_frag_page(frag)))
2328 return 1;
2332 if (PCI_DMA_BUS_IS_PHYS) {
2333 struct device *pdev = dev->dev.parent;
2335 if (!pdev)
2336 return 0;
2337 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2338 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2339 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2340 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2341 return 1;
2344 #endif
2345 return 0;
2348 struct dev_gso_cb {
2349 void (*destructor)(struct sk_buff *skb);
2352 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2354 static void dev_gso_skb_destructor(struct sk_buff *skb)
2356 struct dev_gso_cb *cb;
2358 do {
2359 struct sk_buff *nskb = skb->next;
2361 skb->next = nskb->next;
2362 nskb->next = NULL;
2363 kfree_skb(nskb);
2364 } while (skb->next);
2366 cb = DEV_GSO_CB(skb);
2367 if (cb->destructor)
2368 cb->destructor(skb);
2372 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2373 * @skb: buffer to segment
2374 * @features: device features as applicable to this skb
2376 * This function segments the given skb and stores the list of segments
2377 * in skb->next.
2379 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2381 struct sk_buff *segs;
2383 segs = skb_gso_segment(skb, features);
2385 /* Verifying header integrity only. */
2386 if (!segs)
2387 return 0;
2389 if (IS_ERR(segs))
2390 return PTR_ERR(segs);
2392 skb->next = segs;
2393 DEV_GSO_CB(skb)->destructor = skb->destructor;
2394 skb->destructor = dev_gso_skb_destructor;
2396 return 0;
2399 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol)
2401 return ((features & NETIF_F_GEN_CSUM) ||
2402 ((features & NETIF_F_V4_CSUM) &&
2403 protocol == htons(ETH_P_IP)) ||
2404 ((features & NETIF_F_V6_CSUM) &&
2405 protocol == htons(ETH_P_IPV6)) ||
2406 ((features & NETIF_F_FCOE_CRC) &&
2407 protocol == htons(ETH_P_FCOE)));
2410 static netdev_features_t harmonize_features(struct sk_buff *skb,
2411 __be16 protocol, netdev_features_t features)
2413 if (skb->ip_summed != CHECKSUM_NONE &&
2414 !can_checksum_protocol(features, protocol)) {
2415 features &= ~NETIF_F_ALL_CSUM;
2416 features &= ~NETIF_F_SG;
2417 } else if (illegal_highdma(skb->dev, skb)) {
2418 features &= ~NETIF_F_SG;
2421 return features;
2424 netdev_features_t netif_skb_features(struct sk_buff *skb)
2426 __be16 protocol = skb->protocol;
2427 netdev_features_t features = skb->dev->features;
2429 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2430 features &= ~NETIF_F_GSO_MASK;
2432 if (protocol == htons(ETH_P_8021Q)) {
2433 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2434 protocol = veh->h_vlan_encapsulated_proto;
2435 } else if (!vlan_tx_tag_present(skb)) {
2436 return harmonize_features(skb, protocol, features);
2439 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2441 if (protocol != htons(ETH_P_8021Q)) {
2442 return harmonize_features(skb, protocol, features);
2443 } else {
2444 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2445 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2446 return harmonize_features(skb, protocol, features);
2449 EXPORT_SYMBOL(netif_skb_features);
2452 * Returns true if either:
2453 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2454 * 2. skb is fragmented and the device does not support SG.
2456 static inline int skb_needs_linearize(struct sk_buff *skb,
2457 int features)
2459 return skb_is_nonlinear(skb) &&
2460 ((skb_has_frag_list(skb) &&
2461 !(features & NETIF_F_FRAGLIST)) ||
2462 (skb_shinfo(skb)->nr_frags &&
2463 !(features & NETIF_F_SG)));
2466 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2467 struct netdev_queue *txq)
2469 const struct net_device_ops *ops = dev->netdev_ops;
2470 int rc = NETDEV_TX_OK;
2471 unsigned int skb_len;
2473 if (likely(!skb->next)) {
2474 netdev_features_t features;
2477 * If device doesn't need skb->dst, release it right now while
2478 * its hot in this cpu cache
2480 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2481 skb_dst_drop(skb);
2483 features = netif_skb_features(skb);
2485 if (vlan_tx_tag_present(skb) &&
2486 !(features & NETIF_F_HW_VLAN_TX)) {
2487 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2488 if (unlikely(!skb))
2489 goto out;
2491 skb->vlan_tci = 0;
2494 /* If encapsulation offload request, verify we are testing
2495 * hardware encapsulation features instead of standard
2496 * features for the netdev
2498 if (skb->encapsulation)
2499 features &= dev->hw_enc_features;
2501 if (netif_needs_gso(skb, features)) {
2502 if (unlikely(dev_gso_segment(skb, features)))
2503 goto out_kfree_skb;
2504 if (skb->next)
2505 goto gso;
2506 } else {
2507 if (skb_needs_linearize(skb, features) &&
2508 __skb_linearize(skb))
2509 goto out_kfree_skb;
2511 /* If packet is not checksummed and device does not
2512 * support checksumming for this protocol, complete
2513 * checksumming here.
2515 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2516 if (skb->encapsulation)
2517 skb_set_inner_transport_header(skb,
2518 skb_checksum_start_offset(skb));
2519 else
2520 skb_set_transport_header(skb,
2521 skb_checksum_start_offset(skb));
2522 if (!(features & NETIF_F_ALL_CSUM) &&
2523 skb_checksum_help(skb))
2524 goto out_kfree_skb;
2528 if (!list_empty(&ptype_all))
2529 dev_queue_xmit_nit(skb, dev);
2531 skb_len = skb->len;
2532 rc = ops->ndo_start_xmit(skb, dev);
2533 trace_net_dev_xmit(skb, rc, dev, skb_len);
2534 if (rc == NETDEV_TX_OK)
2535 txq_trans_update(txq);
2536 return rc;
2539 gso:
2540 do {
2541 struct sk_buff *nskb = skb->next;
2543 skb->next = nskb->next;
2544 nskb->next = NULL;
2547 * If device doesn't need nskb->dst, release it right now while
2548 * its hot in this cpu cache
2550 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2551 skb_dst_drop(nskb);
2553 if (!list_empty(&ptype_all))
2554 dev_queue_xmit_nit(nskb, dev);
2556 skb_len = nskb->len;
2557 rc = ops->ndo_start_xmit(nskb, dev);
2558 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2559 if (unlikely(rc != NETDEV_TX_OK)) {
2560 if (rc & ~NETDEV_TX_MASK)
2561 goto out_kfree_gso_skb;
2562 nskb->next = skb->next;
2563 skb->next = nskb;
2564 return rc;
2566 txq_trans_update(txq);
2567 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2568 return NETDEV_TX_BUSY;
2569 } while (skb->next);
2571 out_kfree_gso_skb:
2572 if (likely(skb->next == NULL))
2573 skb->destructor = DEV_GSO_CB(skb)->destructor;
2574 out_kfree_skb:
2575 kfree_skb(skb);
2576 out:
2577 return rc;
2580 static void qdisc_pkt_len_init(struct sk_buff *skb)
2582 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2584 qdisc_skb_cb(skb)->pkt_len = skb->len;
2586 /* To get more precise estimation of bytes sent on wire,
2587 * we add to pkt_len the headers size of all segments
2589 if (shinfo->gso_size) {
2590 unsigned int hdr_len;
2592 /* mac layer + network layer */
2593 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2595 /* + transport layer */
2596 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2597 hdr_len += tcp_hdrlen(skb);
2598 else
2599 hdr_len += sizeof(struct udphdr);
2600 qdisc_skb_cb(skb)->pkt_len += (shinfo->gso_segs - 1) * hdr_len;
2604 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2605 struct net_device *dev,
2606 struct netdev_queue *txq)
2608 spinlock_t *root_lock = qdisc_lock(q);
2609 bool contended;
2610 int rc;
2612 qdisc_pkt_len_init(skb);
2613 qdisc_calculate_pkt_len(skb, q);
2615 * Heuristic to force contended enqueues to serialize on a
2616 * separate lock before trying to get qdisc main lock.
2617 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2618 * and dequeue packets faster.
2620 contended = qdisc_is_running(q);
2621 if (unlikely(contended))
2622 spin_lock(&q->busylock);
2624 spin_lock(root_lock);
2625 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2626 kfree_skb(skb);
2627 rc = NET_XMIT_DROP;
2628 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2629 qdisc_run_begin(q)) {
2631 * This is a work-conserving queue; there are no old skbs
2632 * waiting to be sent out; and the qdisc is not running -
2633 * xmit the skb directly.
2635 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2636 skb_dst_force(skb);
2638 qdisc_bstats_update(q, skb);
2640 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2641 if (unlikely(contended)) {
2642 spin_unlock(&q->busylock);
2643 contended = false;
2645 __qdisc_run(q);
2646 } else
2647 qdisc_run_end(q);
2649 rc = NET_XMIT_SUCCESS;
2650 } else {
2651 skb_dst_force(skb);
2652 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2653 if (qdisc_run_begin(q)) {
2654 if (unlikely(contended)) {
2655 spin_unlock(&q->busylock);
2656 contended = false;
2658 __qdisc_run(q);
2661 spin_unlock(root_lock);
2662 if (unlikely(contended))
2663 spin_unlock(&q->busylock);
2664 return rc;
2667 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2668 static void skb_update_prio(struct sk_buff *skb)
2670 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2672 if (!skb->priority && skb->sk && map) {
2673 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2675 if (prioidx < map->priomap_len)
2676 skb->priority = map->priomap[prioidx];
2679 #else
2680 #define skb_update_prio(skb)
2681 #endif
2683 static DEFINE_PER_CPU(int, xmit_recursion);
2684 #define RECURSION_LIMIT 10
2687 * dev_loopback_xmit - loop back @skb
2688 * @skb: buffer to transmit
2690 int dev_loopback_xmit(struct sk_buff *skb)
2692 skb_reset_mac_header(skb);
2693 __skb_pull(skb, skb_network_offset(skb));
2694 skb->pkt_type = PACKET_LOOPBACK;
2695 skb->ip_summed = CHECKSUM_UNNECESSARY;
2696 WARN_ON(!skb_dst(skb));
2697 skb_dst_force(skb);
2698 netif_rx_ni(skb);
2699 return 0;
2701 EXPORT_SYMBOL(dev_loopback_xmit);
2704 * dev_queue_xmit - transmit a buffer
2705 * @skb: buffer to transmit
2707 * Queue a buffer for transmission to a network device. The caller must
2708 * have set the device and priority and built the buffer before calling
2709 * this function. The function can be called from an interrupt.
2711 * A negative errno code is returned on a failure. A success does not
2712 * guarantee the frame will be transmitted as it may be dropped due
2713 * to congestion or traffic shaping.
2715 * -----------------------------------------------------------------------------------
2716 * I notice this method can also return errors from the queue disciplines,
2717 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2718 * be positive.
2720 * Regardless of the return value, the skb is consumed, so it is currently
2721 * difficult to retry a send to this method. (You can bump the ref count
2722 * before sending to hold a reference for retry if you are careful.)
2724 * When calling this method, interrupts MUST be enabled. This is because
2725 * the BH enable code must have IRQs enabled so that it will not deadlock.
2726 * --BLG
2728 int dev_queue_xmit(struct sk_buff *skb)
2730 struct net_device *dev = skb->dev;
2731 struct netdev_queue *txq;
2732 struct Qdisc *q;
2733 int rc = -ENOMEM;
2735 skb_reset_mac_header(skb);
2737 /* Disable soft irqs for various locks below. Also
2738 * stops preemption for RCU.
2740 rcu_read_lock_bh();
2742 skb_update_prio(skb);
2744 txq = netdev_pick_tx(dev, skb);
2745 q = rcu_dereference_bh(txq->qdisc);
2747 #ifdef CONFIG_NET_CLS_ACT
2748 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2749 #endif
2750 trace_net_dev_queue(skb);
2751 if (q->enqueue) {
2752 rc = __dev_xmit_skb(skb, q, dev, txq);
2753 goto out;
2756 /* The device has no queue. Common case for software devices:
2757 loopback, all the sorts of tunnels...
2759 Really, it is unlikely that netif_tx_lock protection is necessary
2760 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2761 counters.)
2762 However, it is possible, that they rely on protection
2763 made by us here.
2765 Check this and shot the lock. It is not prone from deadlocks.
2766 Either shot noqueue qdisc, it is even simpler 8)
2768 if (dev->flags & IFF_UP) {
2769 int cpu = smp_processor_id(); /* ok because BHs are off */
2771 if (txq->xmit_lock_owner != cpu) {
2773 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2774 goto recursion_alert;
2776 HARD_TX_LOCK(dev, txq, cpu);
2778 if (!netif_xmit_stopped(txq)) {
2779 __this_cpu_inc(xmit_recursion);
2780 rc = dev_hard_start_xmit(skb, dev, txq);
2781 __this_cpu_dec(xmit_recursion);
2782 if (dev_xmit_complete(rc)) {
2783 HARD_TX_UNLOCK(dev, txq);
2784 goto out;
2787 HARD_TX_UNLOCK(dev, txq);
2788 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2789 dev->name);
2790 } else {
2791 /* Recursion is detected! It is possible,
2792 * unfortunately
2794 recursion_alert:
2795 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2796 dev->name);
2800 rc = -ENETDOWN;
2801 rcu_read_unlock_bh();
2803 kfree_skb(skb);
2804 return rc;
2805 out:
2806 rcu_read_unlock_bh();
2807 return rc;
2809 EXPORT_SYMBOL(dev_queue_xmit);
2812 /*=======================================================================
2813 Receiver routines
2814 =======================================================================*/
2816 int netdev_max_backlog __read_mostly = 1000;
2817 EXPORT_SYMBOL(netdev_max_backlog);
2819 int netdev_tstamp_prequeue __read_mostly = 1;
2820 int netdev_budget __read_mostly = 300;
2821 int weight_p __read_mostly = 64; /* old backlog weight */
2823 /* Called with irq disabled */
2824 static inline void ____napi_schedule(struct softnet_data *sd,
2825 struct napi_struct *napi)
2827 list_add_tail(&napi->poll_list, &sd->poll_list);
2828 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2831 #ifdef CONFIG_RPS
2833 /* One global table that all flow-based protocols share. */
2834 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2835 EXPORT_SYMBOL(rps_sock_flow_table);
2837 struct static_key rps_needed __read_mostly;
2839 static struct rps_dev_flow *
2840 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2841 struct rps_dev_flow *rflow, u16 next_cpu)
2843 if (next_cpu != RPS_NO_CPU) {
2844 #ifdef CONFIG_RFS_ACCEL
2845 struct netdev_rx_queue *rxqueue;
2846 struct rps_dev_flow_table *flow_table;
2847 struct rps_dev_flow *old_rflow;
2848 u32 flow_id;
2849 u16 rxq_index;
2850 int rc;
2852 /* Should we steer this flow to a different hardware queue? */
2853 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2854 !(dev->features & NETIF_F_NTUPLE))
2855 goto out;
2856 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2857 if (rxq_index == skb_get_rx_queue(skb))
2858 goto out;
2860 rxqueue = dev->_rx + rxq_index;
2861 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2862 if (!flow_table)
2863 goto out;
2864 flow_id = skb->rxhash & flow_table->mask;
2865 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2866 rxq_index, flow_id);
2867 if (rc < 0)
2868 goto out;
2869 old_rflow = rflow;
2870 rflow = &flow_table->flows[flow_id];
2871 rflow->filter = rc;
2872 if (old_rflow->filter == rflow->filter)
2873 old_rflow->filter = RPS_NO_FILTER;
2874 out:
2875 #endif
2876 rflow->last_qtail =
2877 per_cpu(softnet_data, next_cpu).input_queue_head;
2880 rflow->cpu = next_cpu;
2881 return rflow;
2885 * get_rps_cpu is called from netif_receive_skb and returns the target
2886 * CPU from the RPS map of the receiving queue for a given skb.
2887 * rcu_read_lock must be held on entry.
2889 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2890 struct rps_dev_flow **rflowp)
2892 struct netdev_rx_queue *rxqueue;
2893 struct rps_map *map;
2894 struct rps_dev_flow_table *flow_table;
2895 struct rps_sock_flow_table *sock_flow_table;
2896 int cpu = -1;
2897 u16 tcpu;
2899 if (skb_rx_queue_recorded(skb)) {
2900 u16 index = skb_get_rx_queue(skb);
2901 if (unlikely(index >= dev->real_num_rx_queues)) {
2902 WARN_ONCE(dev->real_num_rx_queues > 1,
2903 "%s received packet on queue %u, but number "
2904 "of RX queues is %u\n",
2905 dev->name, index, dev->real_num_rx_queues);
2906 goto done;
2908 rxqueue = dev->_rx + index;
2909 } else
2910 rxqueue = dev->_rx;
2912 map = rcu_dereference(rxqueue->rps_map);
2913 if (map) {
2914 if (map->len == 1 &&
2915 !rcu_access_pointer(rxqueue->rps_flow_table)) {
2916 tcpu = map->cpus[0];
2917 if (cpu_online(tcpu))
2918 cpu = tcpu;
2919 goto done;
2921 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2922 goto done;
2925 skb_reset_network_header(skb);
2926 if (!skb_get_rxhash(skb))
2927 goto done;
2929 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2930 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2931 if (flow_table && sock_flow_table) {
2932 u16 next_cpu;
2933 struct rps_dev_flow *rflow;
2935 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2936 tcpu = rflow->cpu;
2938 next_cpu = sock_flow_table->ents[skb->rxhash &
2939 sock_flow_table->mask];
2942 * If the desired CPU (where last recvmsg was done) is
2943 * different from current CPU (one in the rx-queue flow
2944 * table entry), switch if one of the following holds:
2945 * - Current CPU is unset (equal to RPS_NO_CPU).
2946 * - Current CPU is offline.
2947 * - The current CPU's queue tail has advanced beyond the
2948 * last packet that was enqueued using this table entry.
2949 * This guarantees that all previous packets for the flow
2950 * have been dequeued, thus preserving in order delivery.
2952 if (unlikely(tcpu != next_cpu) &&
2953 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2954 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2955 rflow->last_qtail)) >= 0)) {
2956 tcpu = next_cpu;
2957 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2960 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2961 *rflowp = rflow;
2962 cpu = tcpu;
2963 goto done;
2967 if (map) {
2968 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2970 if (cpu_online(tcpu)) {
2971 cpu = tcpu;
2972 goto done;
2976 done:
2977 return cpu;
2980 #ifdef CONFIG_RFS_ACCEL
2983 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2984 * @dev: Device on which the filter was set
2985 * @rxq_index: RX queue index
2986 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2987 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2989 * Drivers that implement ndo_rx_flow_steer() should periodically call
2990 * this function for each installed filter and remove the filters for
2991 * which it returns %true.
2993 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2994 u32 flow_id, u16 filter_id)
2996 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2997 struct rps_dev_flow_table *flow_table;
2998 struct rps_dev_flow *rflow;
2999 bool expire = true;
3000 int cpu;
3002 rcu_read_lock();
3003 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3004 if (flow_table && flow_id <= flow_table->mask) {
3005 rflow = &flow_table->flows[flow_id];
3006 cpu = ACCESS_ONCE(rflow->cpu);
3007 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3008 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3009 rflow->last_qtail) <
3010 (int)(10 * flow_table->mask)))
3011 expire = false;
3013 rcu_read_unlock();
3014 return expire;
3016 EXPORT_SYMBOL(rps_may_expire_flow);
3018 #endif /* CONFIG_RFS_ACCEL */
3020 /* Called from hardirq (IPI) context */
3021 static void rps_trigger_softirq(void *data)
3023 struct softnet_data *sd = data;
3025 ____napi_schedule(sd, &sd->backlog);
3026 sd->received_rps++;
3029 #endif /* CONFIG_RPS */
3032 * Check if this softnet_data structure is another cpu one
3033 * If yes, queue it to our IPI list and return 1
3034 * If no, return 0
3036 static int rps_ipi_queued(struct softnet_data *sd)
3038 #ifdef CONFIG_RPS
3039 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3041 if (sd != mysd) {
3042 sd->rps_ipi_next = mysd->rps_ipi_list;
3043 mysd->rps_ipi_list = sd;
3045 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3046 return 1;
3048 #endif /* CONFIG_RPS */
3049 return 0;
3053 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3054 * queue (may be a remote CPU queue).
3056 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3057 unsigned int *qtail)
3059 struct softnet_data *sd;
3060 unsigned long flags;
3062 sd = &per_cpu(softnet_data, cpu);
3064 local_irq_save(flags);
3066 rps_lock(sd);
3067 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
3068 if (skb_queue_len(&sd->input_pkt_queue)) {
3069 enqueue:
3070 __skb_queue_tail(&sd->input_pkt_queue, skb);
3071 input_queue_tail_incr_save(sd, qtail);
3072 rps_unlock(sd);
3073 local_irq_restore(flags);
3074 return NET_RX_SUCCESS;
3077 /* Schedule NAPI for backlog device
3078 * We can use non atomic operation since we own the queue lock
3080 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3081 if (!rps_ipi_queued(sd))
3082 ____napi_schedule(sd, &sd->backlog);
3084 goto enqueue;
3087 sd->dropped++;
3088 rps_unlock(sd);
3090 local_irq_restore(flags);
3092 atomic_long_inc(&skb->dev->rx_dropped);
3093 kfree_skb(skb);
3094 return NET_RX_DROP;
3098 * netif_rx - post buffer to the network code
3099 * @skb: buffer to post
3101 * This function receives a packet from a device driver and queues it for
3102 * the upper (protocol) levels to process. It always succeeds. The buffer
3103 * may be dropped during processing for congestion control or by the
3104 * protocol layers.
3106 * return values:
3107 * NET_RX_SUCCESS (no congestion)
3108 * NET_RX_DROP (packet was dropped)
3112 int netif_rx(struct sk_buff *skb)
3114 int ret;
3116 /* if netpoll wants it, pretend we never saw it */
3117 if (netpoll_rx(skb))
3118 return NET_RX_DROP;
3120 net_timestamp_check(netdev_tstamp_prequeue, skb);
3122 trace_netif_rx(skb);
3123 #ifdef CONFIG_RPS
3124 if (static_key_false(&rps_needed)) {
3125 struct rps_dev_flow voidflow, *rflow = &voidflow;
3126 int cpu;
3128 preempt_disable();
3129 rcu_read_lock();
3131 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3132 if (cpu < 0)
3133 cpu = smp_processor_id();
3135 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3137 rcu_read_unlock();
3138 preempt_enable();
3139 } else
3140 #endif
3142 unsigned int qtail;
3143 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3144 put_cpu();
3146 return ret;
3148 EXPORT_SYMBOL(netif_rx);
3150 int netif_rx_ni(struct sk_buff *skb)
3152 int err;
3154 preempt_disable();
3155 err = netif_rx(skb);
3156 if (local_softirq_pending())
3157 do_softirq();
3158 preempt_enable();
3160 return err;
3162 EXPORT_SYMBOL(netif_rx_ni);
3164 static void net_tx_action(struct softirq_action *h)
3166 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3168 if (sd->completion_queue) {
3169 struct sk_buff *clist;
3171 local_irq_disable();
3172 clist = sd->completion_queue;
3173 sd->completion_queue = NULL;
3174 local_irq_enable();
3176 while (clist) {
3177 struct sk_buff *skb = clist;
3178 clist = clist->next;
3180 WARN_ON(atomic_read(&skb->users));
3181 trace_kfree_skb(skb, net_tx_action);
3182 __kfree_skb(skb);
3186 if (sd->output_queue) {
3187 struct Qdisc *head;
3189 local_irq_disable();
3190 head = sd->output_queue;
3191 sd->output_queue = NULL;
3192 sd->output_queue_tailp = &sd->output_queue;
3193 local_irq_enable();
3195 while (head) {
3196 struct Qdisc *q = head;
3197 spinlock_t *root_lock;
3199 head = head->next_sched;
3201 root_lock = qdisc_lock(q);
3202 if (spin_trylock(root_lock)) {
3203 smp_mb__before_clear_bit();
3204 clear_bit(__QDISC_STATE_SCHED,
3205 &q->state);
3206 qdisc_run(q);
3207 spin_unlock(root_lock);
3208 } else {
3209 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3210 &q->state)) {
3211 __netif_reschedule(q);
3212 } else {
3213 smp_mb__before_clear_bit();
3214 clear_bit(__QDISC_STATE_SCHED,
3215 &q->state);
3222 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3223 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3224 /* This hook is defined here for ATM LANE */
3225 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3226 unsigned char *addr) __read_mostly;
3227 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3228 #endif
3230 #ifdef CONFIG_NET_CLS_ACT
3231 /* TODO: Maybe we should just force sch_ingress to be compiled in
3232 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3233 * a compare and 2 stores extra right now if we dont have it on
3234 * but have CONFIG_NET_CLS_ACT
3235 * NOTE: This doesn't stop any functionality; if you dont have
3236 * the ingress scheduler, you just can't add policies on ingress.
3239 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3241 struct net_device *dev = skb->dev;
3242 u32 ttl = G_TC_RTTL(skb->tc_verd);
3243 int result = TC_ACT_OK;
3244 struct Qdisc *q;
3246 if (unlikely(MAX_RED_LOOP < ttl++)) {
3247 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3248 skb->skb_iif, dev->ifindex);
3249 return TC_ACT_SHOT;
3252 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3253 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3255 q = rxq->qdisc;
3256 if (q != &noop_qdisc) {
3257 spin_lock(qdisc_lock(q));
3258 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3259 result = qdisc_enqueue_root(skb, q);
3260 spin_unlock(qdisc_lock(q));
3263 return result;
3266 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3267 struct packet_type **pt_prev,
3268 int *ret, struct net_device *orig_dev)
3270 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3272 if (!rxq || rxq->qdisc == &noop_qdisc)
3273 goto out;
3275 if (*pt_prev) {
3276 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3277 *pt_prev = NULL;
3280 switch (ing_filter(skb, rxq)) {
3281 case TC_ACT_SHOT:
3282 case TC_ACT_STOLEN:
3283 kfree_skb(skb);
3284 return NULL;
3287 out:
3288 skb->tc_verd = 0;
3289 return skb;
3291 #endif
3294 * netdev_rx_handler_register - register receive handler
3295 * @dev: device to register a handler for
3296 * @rx_handler: receive handler to register
3297 * @rx_handler_data: data pointer that is used by rx handler
3299 * Register a receive hander for a device. This handler will then be
3300 * called from __netif_receive_skb. A negative errno code is returned
3301 * on a failure.
3303 * The caller must hold the rtnl_mutex.
3305 * For a general description of rx_handler, see enum rx_handler_result.
3307 int netdev_rx_handler_register(struct net_device *dev,
3308 rx_handler_func_t *rx_handler,
3309 void *rx_handler_data)
3311 ASSERT_RTNL();
3313 if (dev->rx_handler)
3314 return -EBUSY;
3316 /* Note: rx_handler_data must be set before rx_handler */
3317 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3318 rcu_assign_pointer(dev->rx_handler, rx_handler);
3320 return 0;
3322 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3325 * netdev_rx_handler_unregister - unregister receive handler
3326 * @dev: device to unregister a handler from
3328 * Unregister a receive hander from a device.
3330 * The caller must hold the rtnl_mutex.
3332 void netdev_rx_handler_unregister(struct net_device *dev)
3335 ASSERT_RTNL();
3336 RCU_INIT_POINTER(dev->rx_handler, NULL);
3337 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3338 * section has a guarantee to see a non NULL rx_handler_data
3339 * as well.
3341 synchronize_net();
3342 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3344 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3347 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3348 * the special handling of PFMEMALLOC skbs.
3350 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3352 switch (skb->protocol) {
3353 case __constant_htons(ETH_P_ARP):
3354 case __constant_htons(ETH_P_IP):
3355 case __constant_htons(ETH_P_IPV6):
3356 case __constant_htons(ETH_P_8021Q):
3357 return true;
3358 default:
3359 return false;
3363 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3365 struct packet_type *ptype, *pt_prev;
3366 rx_handler_func_t *rx_handler;
3367 struct net_device *orig_dev;
3368 struct net_device *null_or_dev;
3369 bool deliver_exact = false;
3370 int ret = NET_RX_DROP;
3371 __be16 type;
3373 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3375 trace_netif_receive_skb(skb);
3377 /* if we've gotten here through NAPI, check netpoll */
3378 if (netpoll_receive_skb(skb))
3379 goto out;
3381 orig_dev = skb->dev;
3383 skb_reset_network_header(skb);
3384 if (!skb_transport_header_was_set(skb))
3385 skb_reset_transport_header(skb);
3386 skb_reset_mac_len(skb);
3388 pt_prev = NULL;
3390 rcu_read_lock();
3392 another_round:
3393 skb->skb_iif = skb->dev->ifindex;
3395 __this_cpu_inc(softnet_data.processed);
3397 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3398 skb = vlan_untag(skb);
3399 if (unlikely(!skb))
3400 goto unlock;
3403 #ifdef CONFIG_NET_CLS_ACT
3404 if (skb->tc_verd & TC_NCLS) {
3405 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3406 goto ncls;
3408 #endif
3410 if (pfmemalloc)
3411 goto skip_taps;
3413 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3414 if (!ptype->dev || ptype->dev == skb->dev) {
3415 if (pt_prev)
3416 ret = deliver_skb(skb, pt_prev, orig_dev);
3417 pt_prev = ptype;
3421 skip_taps:
3422 #ifdef CONFIG_NET_CLS_ACT
3423 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3424 if (!skb)
3425 goto unlock;
3426 ncls:
3427 #endif
3429 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3430 goto drop;
3432 if (vlan_tx_tag_present(skb)) {
3433 if (pt_prev) {
3434 ret = deliver_skb(skb, pt_prev, orig_dev);
3435 pt_prev = NULL;
3437 if (vlan_do_receive(&skb))
3438 goto another_round;
3439 else if (unlikely(!skb))
3440 goto unlock;
3443 rx_handler = rcu_dereference(skb->dev->rx_handler);
3444 if (rx_handler) {
3445 if (pt_prev) {
3446 ret = deliver_skb(skb, pt_prev, orig_dev);
3447 pt_prev = NULL;
3449 switch (rx_handler(&skb)) {
3450 case RX_HANDLER_CONSUMED:
3451 ret = NET_RX_SUCCESS;
3452 goto unlock;
3453 case RX_HANDLER_ANOTHER:
3454 goto another_round;
3455 case RX_HANDLER_EXACT:
3456 deliver_exact = true;
3457 case RX_HANDLER_PASS:
3458 break;
3459 default:
3460 BUG();
3464 if (vlan_tx_nonzero_tag_present(skb))
3465 skb->pkt_type = PACKET_OTHERHOST;
3467 /* deliver only exact match when indicated */
3468 null_or_dev = deliver_exact ? skb->dev : NULL;
3470 type = skb->protocol;
3471 list_for_each_entry_rcu(ptype,
3472 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3473 if (ptype->type == type &&
3474 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3475 ptype->dev == orig_dev)) {
3476 if (pt_prev)
3477 ret = deliver_skb(skb, pt_prev, orig_dev);
3478 pt_prev = ptype;
3482 if (pt_prev) {
3483 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3484 goto drop;
3485 else
3486 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3487 } else {
3488 drop:
3489 atomic_long_inc(&skb->dev->rx_dropped);
3490 kfree_skb(skb);
3491 /* Jamal, now you will not able to escape explaining
3492 * me how you were going to use this. :-)
3494 ret = NET_RX_DROP;
3497 unlock:
3498 rcu_read_unlock();
3499 out:
3500 return ret;
3503 static int __netif_receive_skb(struct sk_buff *skb)
3505 int ret;
3507 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3508 unsigned long pflags = current->flags;
3511 * PFMEMALLOC skbs are special, they should
3512 * - be delivered to SOCK_MEMALLOC sockets only
3513 * - stay away from userspace
3514 * - have bounded memory usage
3516 * Use PF_MEMALLOC as this saves us from propagating the allocation
3517 * context down to all allocation sites.
3519 current->flags |= PF_MEMALLOC;
3520 ret = __netif_receive_skb_core(skb, true);
3521 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3522 } else
3523 ret = __netif_receive_skb_core(skb, false);
3525 return ret;
3529 * netif_receive_skb - process receive buffer from network
3530 * @skb: buffer to process
3532 * netif_receive_skb() is the main receive data processing function.
3533 * It always succeeds. The buffer may be dropped during processing
3534 * for congestion control or by the protocol layers.
3536 * This function may only be called from softirq context and interrupts
3537 * should be enabled.
3539 * Return values (usually ignored):
3540 * NET_RX_SUCCESS: no congestion
3541 * NET_RX_DROP: packet was dropped
3543 int netif_receive_skb(struct sk_buff *skb)
3545 net_timestamp_check(netdev_tstamp_prequeue, skb);
3547 if (skb_defer_rx_timestamp(skb))
3548 return NET_RX_SUCCESS;
3550 #ifdef CONFIG_RPS
3551 if (static_key_false(&rps_needed)) {
3552 struct rps_dev_flow voidflow, *rflow = &voidflow;
3553 int cpu, ret;
3555 rcu_read_lock();
3557 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3559 if (cpu >= 0) {
3560 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3561 rcu_read_unlock();
3562 return ret;
3564 rcu_read_unlock();
3566 #endif
3567 return __netif_receive_skb(skb);
3569 EXPORT_SYMBOL(netif_receive_skb);
3571 /* Network device is going away, flush any packets still pending
3572 * Called with irqs disabled.
3574 static void flush_backlog(void *arg)
3576 struct net_device *dev = arg;
3577 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3578 struct sk_buff *skb, *tmp;
3580 rps_lock(sd);
3581 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3582 if (skb->dev == dev) {
3583 __skb_unlink(skb, &sd->input_pkt_queue);
3584 kfree_skb(skb);
3585 input_queue_head_incr(sd);
3588 rps_unlock(sd);
3590 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3591 if (skb->dev == dev) {
3592 __skb_unlink(skb, &sd->process_queue);
3593 kfree_skb(skb);
3594 input_queue_head_incr(sd);
3599 static int napi_gro_complete(struct sk_buff *skb)
3601 struct packet_offload *ptype;
3602 __be16 type = skb->protocol;
3603 struct list_head *head = &offload_base;
3604 int err = -ENOENT;
3606 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3608 if (NAPI_GRO_CB(skb)->count == 1) {
3609 skb_shinfo(skb)->gso_size = 0;
3610 goto out;
3613 rcu_read_lock();
3614 list_for_each_entry_rcu(ptype, head, list) {
3615 if (ptype->type != type || !ptype->callbacks.gro_complete)
3616 continue;
3618 err = ptype->callbacks.gro_complete(skb);
3619 break;
3621 rcu_read_unlock();
3623 if (err) {
3624 WARN_ON(&ptype->list == head);
3625 kfree_skb(skb);
3626 return NET_RX_SUCCESS;
3629 out:
3630 return netif_receive_skb(skb);
3633 /* napi->gro_list contains packets ordered by age.
3634 * youngest packets at the head of it.
3635 * Complete skbs in reverse order to reduce latencies.
3637 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3639 struct sk_buff *skb, *prev = NULL;
3641 /* scan list and build reverse chain */
3642 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3643 skb->prev = prev;
3644 prev = skb;
3647 for (skb = prev; skb; skb = prev) {
3648 skb->next = NULL;
3650 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3651 return;
3653 prev = skb->prev;
3654 napi_gro_complete(skb);
3655 napi->gro_count--;
3658 napi->gro_list = NULL;
3660 EXPORT_SYMBOL(napi_gro_flush);
3662 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3664 struct sk_buff *p;
3665 unsigned int maclen = skb->dev->hard_header_len;
3667 for (p = napi->gro_list; p; p = p->next) {
3668 unsigned long diffs;
3670 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3671 diffs |= p->vlan_tci ^ skb->vlan_tci;
3672 if (maclen == ETH_HLEN)
3673 diffs |= compare_ether_header(skb_mac_header(p),
3674 skb_gro_mac_header(skb));
3675 else if (!diffs)
3676 diffs = memcmp(skb_mac_header(p),
3677 skb_gro_mac_header(skb),
3678 maclen);
3679 NAPI_GRO_CB(p)->same_flow = !diffs;
3680 NAPI_GRO_CB(p)->flush = 0;
3684 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3686 struct sk_buff **pp = NULL;
3687 struct packet_offload *ptype;
3688 __be16 type = skb->protocol;
3689 struct list_head *head = &offload_base;
3690 int same_flow;
3691 enum gro_result ret;
3693 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3694 goto normal;
3696 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3697 goto normal;
3699 gro_list_prepare(napi, skb);
3701 rcu_read_lock();
3702 list_for_each_entry_rcu(ptype, head, list) {
3703 if (ptype->type != type || !ptype->callbacks.gro_receive)
3704 continue;
3706 skb_set_network_header(skb, skb_gro_offset(skb));
3707 skb_reset_mac_len(skb);
3708 NAPI_GRO_CB(skb)->same_flow = 0;
3709 NAPI_GRO_CB(skb)->flush = 0;
3710 NAPI_GRO_CB(skb)->free = 0;
3712 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
3713 break;
3715 rcu_read_unlock();
3717 if (&ptype->list == head)
3718 goto normal;
3720 same_flow = NAPI_GRO_CB(skb)->same_flow;
3721 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3723 if (pp) {
3724 struct sk_buff *nskb = *pp;
3726 *pp = nskb->next;
3727 nskb->next = NULL;
3728 napi_gro_complete(nskb);
3729 napi->gro_count--;
3732 if (same_flow)
3733 goto ok;
3735 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3736 goto normal;
3738 napi->gro_count++;
3739 NAPI_GRO_CB(skb)->count = 1;
3740 NAPI_GRO_CB(skb)->age = jiffies;
3741 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3742 skb->next = napi->gro_list;
3743 napi->gro_list = skb;
3744 ret = GRO_HELD;
3746 pull:
3747 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3748 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3750 BUG_ON(skb->end - skb->tail < grow);
3752 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3754 skb->tail += grow;
3755 skb->data_len -= grow;
3757 skb_shinfo(skb)->frags[0].page_offset += grow;
3758 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3760 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3761 skb_frag_unref(skb, 0);
3762 memmove(skb_shinfo(skb)->frags,
3763 skb_shinfo(skb)->frags + 1,
3764 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3769 return ret;
3771 normal:
3772 ret = GRO_NORMAL;
3773 goto pull;
3777 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3779 switch (ret) {
3780 case GRO_NORMAL:
3781 if (netif_receive_skb(skb))
3782 ret = GRO_DROP;
3783 break;
3785 case GRO_DROP:
3786 kfree_skb(skb);
3787 break;
3789 case GRO_MERGED_FREE:
3790 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
3791 kmem_cache_free(skbuff_head_cache, skb);
3792 else
3793 __kfree_skb(skb);
3794 break;
3796 case GRO_HELD:
3797 case GRO_MERGED:
3798 break;
3801 return ret;
3804 static void skb_gro_reset_offset(struct sk_buff *skb)
3806 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3807 const skb_frag_t *frag0 = &pinfo->frags[0];
3809 NAPI_GRO_CB(skb)->data_offset = 0;
3810 NAPI_GRO_CB(skb)->frag0 = NULL;
3811 NAPI_GRO_CB(skb)->frag0_len = 0;
3813 if (skb->mac_header == skb->tail &&
3814 pinfo->nr_frags &&
3815 !PageHighMem(skb_frag_page(frag0))) {
3816 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3817 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3821 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3823 skb_gro_reset_offset(skb);
3825 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
3827 EXPORT_SYMBOL(napi_gro_receive);
3829 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3831 __skb_pull(skb, skb_headlen(skb));
3832 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
3833 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3834 skb->vlan_tci = 0;
3835 skb->dev = napi->dev;
3836 skb->skb_iif = 0;
3838 napi->skb = skb;
3841 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3843 struct sk_buff *skb = napi->skb;
3845 if (!skb) {
3846 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3847 if (skb)
3848 napi->skb = skb;
3850 return skb;
3852 EXPORT_SYMBOL(napi_get_frags);
3854 static gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3855 gro_result_t ret)
3857 switch (ret) {
3858 case GRO_NORMAL:
3859 case GRO_HELD:
3860 skb->protocol = eth_type_trans(skb, skb->dev);
3862 if (ret == GRO_HELD)
3863 skb_gro_pull(skb, -ETH_HLEN);
3864 else if (netif_receive_skb(skb))
3865 ret = GRO_DROP;
3866 break;
3868 case GRO_DROP:
3869 case GRO_MERGED_FREE:
3870 napi_reuse_skb(napi, skb);
3871 break;
3873 case GRO_MERGED:
3874 break;
3877 return ret;
3880 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3882 struct sk_buff *skb = napi->skb;
3883 struct ethhdr *eth;
3884 unsigned int hlen;
3885 unsigned int off;
3887 napi->skb = NULL;
3889 skb_reset_mac_header(skb);
3890 skb_gro_reset_offset(skb);
3892 off = skb_gro_offset(skb);
3893 hlen = off + sizeof(*eth);
3894 eth = skb_gro_header_fast(skb, off);
3895 if (skb_gro_header_hard(skb, hlen)) {
3896 eth = skb_gro_header_slow(skb, hlen, off);
3897 if (unlikely(!eth)) {
3898 napi_reuse_skb(napi, skb);
3899 skb = NULL;
3900 goto out;
3904 skb_gro_pull(skb, sizeof(*eth));
3907 * This works because the only protocols we care about don't require
3908 * special handling. We'll fix it up properly at the end.
3910 skb->protocol = eth->h_proto;
3912 out:
3913 return skb;
3916 gro_result_t napi_gro_frags(struct napi_struct *napi)
3918 struct sk_buff *skb = napi_frags_skb(napi);
3920 if (!skb)
3921 return GRO_DROP;
3923 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
3925 EXPORT_SYMBOL(napi_gro_frags);
3928 * net_rps_action sends any pending IPI's for rps.
3929 * Note: called with local irq disabled, but exits with local irq enabled.
3931 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3933 #ifdef CONFIG_RPS
3934 struct softnet_data *remsd = sd->rps_ipi_list;
3936 if (remsd) {
3937 sd->rps_ipi_list = NULL;
3939 local_irq_enable();
3941 /* Send pending IPI's to kick RPS processing on remote cpus. */
3942 while (remsd) {
3943 struct softnet_data *next = remsd->rps_ipi_next;
3945 if (cpu_online(remsd->cpu))
3946 __smp_call_function_single(remsd->cpu,
3947 &remsd->csd, 0);
3948 remsd = next;
3950 } else
3951 #endif
3952 local_irq_enable();
3955 static int process_backlog(struct napi_struct *napi, int quota)
3957 int work = 0;
3958 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3960 #ifdef CONFIG_RPS
3961 /* Check if we have pending ipi, its better to send them now,
3962 * not waiting net_rx_action() end.
3964 if (sd->rps_ipi_list) {
3965 local_irq_disable();
3966 net_rps_action_and_irq_enable(sd);
3968 #endif
3969 napi->weight = weight_p;
3970 local_irq_disable();
3971 while (work < quota) {
3972 struct sk_buff *skb;
3973 unsigned int qlen;
3975 while ((skb = __skb_dequeue(&sd->process_queue))) {
3976 local_irq_enable();
3977 __netif_receive_skb(skb);
3978 local_irq_disable();
3979 input_queue_head_incr(sd);
3980 if (++work >= quota) {
3981 local_irq_enable();
3982 return work;
3986 rps_lock(sd);
3987 qlen = skb_queue_len(&sd->input_pkt_queue);
3988 if (qlen)
3989 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3990 &sd->process_queue);
3992 if (qlen < quota - work) {
3994 * Inline a custom version of __napi_complete().
3995 * only current cpu owns and manipulates this napi,
3996 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3997 * we can use a plain write instead of clear_bit(),
3998 * and we dont need an smp_mb() memory barrier.
4000 list_del(&napi->poll_list);
4001 napi->state = 0;
4003 quota = work + qlen;
4005 rps_unlock(sd);
4007 local_irq_enable();
4009 return work;
4013 * __napi_schedule - schedule for receive
4014 * @n: entry to schedule
4016 * The entry's receive function will be scheduled to run
4018 void __napi_schedule(struct napi_struct *n)
4020 unsigned long flags;
4022 local_irq_save(flags);
4023 ____napi_schedule(&__get_cpu_var(softnet_data), n);
4024 local_irq_restore(flags);
4026 EXPORT_SYMBOL(__napi_schedule);
4028 void __napi_complete(struct napi_struct *n)
4030 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4031 BUG_ON(n->gro_list);
4033 list_del(&n->poll_list);
4034 smp_mb__before_clear_bit();
4035 clear_bit(NAPI_STATE_SCHED, &n->state);
4037 EXPORT_SYMBOL(__napi_complete);
4039 void napi_complete(struct napi_struct *n)
4041 unsigned long flags;
4044 * don't let napi dequeue from the cpu poll list
4045 * just in case its running on a different cpu
4047 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4048 return;
4050 napi_gro_flush(n, false);
4051 local_irq_save(flags);
4052 __napi_complete(n);
4053 local_irq_restore(flags);
4055 EXPORT_SYMBOL(napi_complete);
4057 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4058 int (*poll)(struct napi_struct *, int), int weight)
4060 INIT_LIST_HEAD(&napi->poll_list);
4061 napi->gro_count = 0;
4062 napi->gro_list = NULL;
4063 napi->skb = NULL;
4064 napi->poll = poll;
4065 napi->weight = weight;
4066 list_add(&napi->dev_list, &dev->napi_list);
4067 napi->dev = dev;
4068 #ifdef CONFIG_NETPOLL
4069 spin_lock_init(&napi->poll_lock);
4070 napi->poll_owner = -1;
4071 #endif
4072 set_bit(NAPI_STATE_SCHED, &napi->state);
4074 EXPORT_SYMBOL(netif_napi_add);
4076 void netif_napi_del(struct napi_struct *napi)
4078 struct sk_buff *skb, *next;
4080 list_del_init(&napi->dev_list);
4081 napi_free_frags(napi);
4083 for (skb = napi->gro_list; skb; skb = next) {
4084 next = skb->next;
4085 skb->next = NULL;
4086 kfree_skb(skb);
4089 napi->gro_list = NULL;
4090 napi->gro_count = 0;
4092 EXPORT_SYMBOL(netif_napi_del);
4094 static void net_rx_action(struct softirq_action *h)
4096 struct softnet_data *sd = &__get_cpu_var(softnet_data);
4097 unsigned long time_limit = jiffies + 2;
4098 int budget = netdev_budget;
4099 void *have;
4101 local_irq_disable();
4103 while (!list_empty(&sd->poll_list)) {
4104 struct napi_struct *n;
4105 int work, weight;
4107 /* If softirq window is exhuasted then punt.
4108 * Allow this to run for 2 jiffies since which will allow
4109 * an average latency of 1.5/HZ.
4111 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4112 goto softnet_break;
4114 local_irq_enable();
4116 /* Even though interrupts have been re-enabled, this
4117 * access is safe because interrupts can only add new
4118 * entries to the tail of this list, and only ->poll()
4119 * calls can remove this head entry from the list.
4121 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4123 have = netpoll_poll_lock(n);
4125 weight = n->weight;
4127 /* This NAPI_STATE_SCHED test is for avoiding a race
4128 * with netpoll's poll_napi(). Only the entity which
4129 * obtains the lock and sees NAPI_STATE_SCHED set will
4130 * actually make the ->poll() call. Therefore we avoid
4131 * accidentally calling ->poll() when NAPI is not scheduled.
4133 work = 0;
4134 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4135 work = n->poll(n, weight);
4136 trace_napi_poll(n);
4139 WARN_ON_ONCE(work > weight);
4141 budget -= work;
4143 local_irq_disable();
4145 /* Drivers must not modify the NAPI state if they
4146 * consume the entire weight. In such cases this code
4147 * still "owns" the NAPI instance and therefore can
4148 * move the instance around on the list at-will.
4150 if (unlikely(work == weight)) {
4151 if (unlikely(napi_disable_pending(n))) {
4152 local_irq_enable();
4153 napi_complete(n);
4154 local_irq_disable();
4155 } else {
4156 if (n->gro_list) {
4157 /* flush too old packets
4158 * If HZ < 1000, flush all packets.
4160 local_irq_enable();
4161 napi_gro_flush(n, HZ >= 1000);
4162 local_irq_disable();
4164 list_move_tail(&n->poll_list, &sd->poll_list);
4168 netpoll_poll_unlock(have);
4170 out:
4171 net_rps_action_and_irq_enable(sd);
4173 #ifdef CONFIG_NET_DMA
4175 * There may not be any more sk_buffs coming right now, so push
4176 * any pending DMA copies to hardware
4178 dma_issue_pending_all();
4179 #endif
4181 return;
4183 softnet_break:
4184 sd->time_squeeze++;
4185 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4186 goto out;
4189 struct netdev_upper {
4190 struct net_device *dev;
4191 bool master;
4192 struct list_head list;
4193 struct rcu_head rcu;
4194 struct list_head search_list;
4197 static void __append_search_uppers(struct list_head *search_list,
4198 struct net_device *dev)
4200 struct netdev_upper *upper;
4202 list_for_each_entry(upper, &dev->upper_dev_list, list) {
4203 /* check if this upper is not already in search list */
4204 if (list_empty(&upper->search_list))
4205 list_add_tail(&upper->search_list, search_list);
4209 static bool __netdev_search_upper_dev(struct net_device *dev,
4210 struct net_device *upper_dev)
4212 LIST_HEAD(search_list);
4213 struct netdev_upper *upper;
4214 struct netdev_upper *tmp;
4215 bool ret = false;
4217 __append_search_uppers(&search_list, dev);
4218 list_for_each_entry(upper, &search_list, search_list) {
4219 if (upper->dev == upper_dev) {
4220 ret = true;
4221 break;
4223 __append_search_uppers(&search_list, upper->dev);
4225 list_for_each_entry_safe(upper, tmp, &search_list, search_list)
4226 INIT_LIST_HEAD(&upper->search_list);
4227 return ret;
4230 static struct netdev_upper *__netdev_find_upper(struct net_device *dev,
4231 struct net_device *upper_dev)
4233 struct netdev_upper *upper;
4235 list_for_each_entry(upper, &dev->upper_dev_list, list) {
4236 if (upper->dev == upper_dev)
4237 return upper;
4239 return NULL;
4243 * netdev_has_upper_dev - Check if device is linked to an upper device
4244 * @dev: device
4245 * @upper_dev: upper device to check
4247 * Find out if a device is linked to specified upper device and return true
4248 * in case it is. Note that this checks only immediate upper device,
4249 * not through a complete stack of devices. The caller must hold the RTNL lock.
4251 bool netdev_has_upper_dev(struct net_device *dev,
4252 struct net_device *upper_dev)
4254 ASSERT_RTNL();
4256 return __netdev_find_upper(dev, upper_dev);
4258 EXPORT_SYMBOL(netdev_has_upper_dev);
4261 * netdev_has_any_upper_dev - Check if device is linked to some device
4262 * @dev: device
4264 * Find out if a device is linked to an upper device and return true in case
4265 * it is. The caller must hold the RTNL lock.
4267 bool netdev_has_any_upper_dev(struct net_device *dev)
4269 ASSERT_RTNL();
4271 return !list_empty(&dev->upper_dev_list);
4273 EXPORT_SYMBOL(netdev_has_any_upper_dev);
4276 * netdev_master_upper_dev_get - Get master upper device
4277 * @dev: device
4279 * Find a master upper device and return pointer to it or NULL in case
4280 * it's not there. The caller must hold the RTNL lock.
4282 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4284 struct netdev_upper *upper;
4286 ASSERT_RTNL();
4288 if (list_empty(&dev->upper_dev_list))
4289 return NULL;
4291 upper = list_first_entry(&dev->upper_dev_list,
4292 struct netdev_upper, list);
4293 if (likely(upper->master))
4294 return upper->dev;
4295 return NULL;
4297 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4300 * netdev_master_upper_dev_get_rcu - Get master upper device
4301 * @dev: device
4303 * Find a master upper device and return pointer to it or NULL in case
4304 * it's not there. The caller must hold the RCU read lock.
4306 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4308 struct netdev_upper *upper;
4310 upper = list_first_or_null_rcu(&dev->upper_dev_list,
4311 struct netdev_upper, list);
4312 if (upper && likely(upper->master))
4313 return upper->dev;
4314 return NULL;
4316 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4318 static int __netdev_upper_dev_link(struct net_device *dev,
4319 struct net_device *upper_dev, bool master)
4321 struct netdev_upper *upper;
4323 ASSERT_RTNL();
4325 if (dev == upper_dev)
4326 return -EBUSY;
4328 /* To prevent loops, check if dev is not upper device to upper_dev. */
4329 if (__netdev_search_upper_dev(upper_dev, dev))
4330 return -EBUSY;
4332 if (__netdev_find_upper(dev, upper_dev))
4333 return -EEXIST;
4335 if (master && netdev_master_upper_dev_get(dev))
4336 return -EBUSY;
4338 upper = kmalloc(sizeof(*upper), GFP_KERNEL);
4339 if (!upper)
4340 return -ENOMEM;
4342 upper->dev = upper_dev;
4343 upper->master = master;
4344 INIT_LIST_HEAD(&upper->search_list);
4346 /* Ensure that master upper link is always the first item in list. */
4347 if (master)
4348 list_add_rcu(&upper->list, &dev->upper_dev_list);
4349 else
4350 list_add_tail_rcu(&upper->list, &dev->upper_dev_list);
4351 dev_hold(upper_dev);
4353 return 0;
4357 * netdev_upper_dev_link - Add a link to the upper device
4358 * @dev: device
4359 * @upper_dev: new upper device
4361 * Adds a link to device which is upper to this one. The caller must hold
4362 * the RTNL lock. On a failure a negative errno code is returned.
4363 * On success the reference counts are adjusted and the function
4364 * returns zero.
4366 int netdev_upper_dev_link(struct net_device *dev,
4367 struct net_device *upper_dev)
4369 return __netdev_upper_dev_link(dev, upper_dev, false);
4371 EXPORT_SYMBOL(netdev_upper_dev_link);
4374 * netdev_master_upper_dev_link - Add a master link to the upper device
4375 * @dev: device
4376 * @upper_dev: new upper device
4378 * Adds a link to device which is upper to this one. In this case, only
4379 * one master upper device can be linked, although other non-master devices
4380 * might be linked as well. The caller must hold the RTNL lock.
4381 * On a failure a negative errno code is returned. On success the reference
4382 * counts are adjusted and the function returns zero.
4384 int netdev_master_upper_dev_link(struct net_device *dev,
4385 struct net_device *upper_dev)
4387 return __netdev_upper_dev_link(dev, upper_dev, true);
4389 EXPORT_SYMBOL(netdev_master_upper_dev_link);
4392 * netdev_upper_dev_unlink - Removes a link to upper device
4393 * @dev: device
4394 * @upper_dev: new upper device
4396 * Removes a link to device which is upper to this one. The caller must hold
4397 * the RTNL lock.
4399 void netdev_upper_dev_unlink(struct net_device *dev,
4400 struct net_device *upper_dev)
4402 struct netdev_upper *upper;
4404 ASSERT_RTNL();
4406 upper = __netdev_find_upper(dev, upper_dev);
4407 if (!upper)
4408 return;
4409 list_del_rcu(&upper->list);
4410 dev_put(upper_dev);
4411 kfree_rcu(upper, rcu);
4413 EXPORT_SYMBOL(netdev_upper_dev_unlink);
4415 static void dev_change_rx_flags(struct net_device *dev, int flags)
4417 const struct net_device_ops *ops = dev->netdev_ops;
4419 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4420 ops->ndo_change_rx_flags(dev, flags);
4423 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4425 unsigned int old_flags = dev->flags;
4426 kuid_t uid;
4427 kgid_t gid;
4429 ASSERT_RTNL();
4431 dev->flags |= IFF_PROMISC;
4432 dev->promiscuity += inc;
4433 if (dev->promiscuity == 0) {
4435 * Avoid overflow.
4436 * If inc causes overflow, untouch promisc and return error.
4438 if (inc < 0)
4439 dev->flags &= ~IFF_PROMISC;
4440 else {
4441 dev->promiscuity -= inc;
4442 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
4443 dev->name);
4444 return -EOVERFLOW;
4447 if (dev->flags != old_flags) {
4448 pr_info("device %s %s promiscuous mode\n",
4449 dev->name,
4450 dev->flags & IFF_PROMISC ? "entered" : "left");
4451 if (audit_enabled) {
4452 current_uid_gid(&uid, &gid);
4453 audit_log(current->audit_context, GFP_ATOMIC,
4454 AUDIT_ANOM_PROMISCUOUS,
4455 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4456 dev->name, (dev->flags & IFF_PROMISC),
4457 (old_flags & IFF_PROMISC),
4458 from_kuid(&init_user_ns, audit_get_loginuid(current)),
4459 from_kuid(&init_user_ns, uid),
4460 from_kgid(&init_user_ns, gid),
4461 audit_get_sessionid(current));
4464 dev_change_rx_flags(dev, IFF_PROMISC);
4466 return 0;
4470 * dev_set_promiscuity - update promiscuity count on a device
4471 * @dev: device
4472 * @inc: modifier
4474 * Add or remove promiscuity from a device. While the count in the device
4475 * remains above zero the interface remains promiscuous. Once it hits zero
4476 * the device reverts back to normal filtering operation. A negative inc
4477 * value is used to drop promiscuity on the device.
4478 * Return 0 if successful or a negative errno code on error.
4480 int dev_set_promiscuity(struct net_device *dev, int inc)
4482 unsigned int old_flags = dev->flags;
4483 int err;
4485 err = __dev_set_promiscuity(dev, inc);
4486 if (err < 0)
4487 return err;
4488 if (dev->flags != old_flags)
4489 dev_set_rx_mode(dev);
4490 return err;
4492 EXPORT_SYMBOL(dev_set_promiscuity);
4495 * dev_set_allmulti - update allmulti count on a device
4496 * @dev: device
4497 * @inc: modifier
4499 * Add or remove reception of all multicast frames to a device. While the
4500 * count in the device remains above zero the interface remains listening
4501 * to all interfaces. Once it hits zero the device reverts back to normal
4502 * filtering operation. A negative @inc value is used to drop the counter
4503 * when releasing a resource needing all multicasts.
4504 * Return 0 if successful or a negative errno code on error.
4507 int dev_set_allmulti(struct net_device *dev, int inc)
4509 unsigned int old_flags = dev->flags;
4511 ASSERT_RTNL();
4513 dev->flags |= IFF_ALLMULTI;
4514 dev->allmulti += inc;
4515 if (dev->allmulti == 0) {
4517 * Avoid overflow.
4518 * If inc causes overflow, untouch allmulti and return error.
4520 if (inc < 0)
4521 dev->flags &= ~IFF_ALLMULTI;
4522 else {
4523 dev->allmulti -= inc;
4524 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
4525 dev->name);
4526 return -EOVERFLOW;
4529 if (dev->flags ^ old_flags) {
4530 dev_change_rx_flags(dev, IFF_ALLMULTI);
4531 dev_set_rx_mode(dev);
4533 return 0;
4535 EXPORT_SYMBOL(dev_set_allmulti);
4538 * Upload unicast and multicast address lists to device and
4539 * configure RX filtering. When the device doesn't support unicast
4540 * filtering it is put in promiscuous mode while unicast addresses
4541 * are present.
4543 void __dev_set_rx_mode(struct net_device *dev)
4545 const struct net_device_ops *ops = dev->netdev_ops;
4547 /* dev_open will call this function so the list will stay sane. */
4548 if (!(dev->flags&IFF_UP))
4549 return;
4551 if (!netif_device_present(dev))
4552 return;
4554 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4555 /* Unicast addresses changes may only happen under the rtnl,
4556 * therefore calling __dev_set_promiscuity here is safe.
4558 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4559 __dev_set_promiscuity(dev, 1);
4560 dev->uc_promisc = true;
4561 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4562 __dev_set_promiscuity(dev, -1);
4563 dev->uc_promisc = false;
4567 if (ops->ndo_set_rx_mode)
4568 ops->ndo_set_rx_mode(dev);
4571 void dev_set_rx_mode(struct net_device *dev)
4573 netif_addr_lock_bh(dev);
4574 __dev_set_rx_mode(dev);
4575 netif_addr_unlock_bh(dev);
4579 * dev_get_flags - get flags reported to userspace
4580 * @dev: device
4582 * Get the combination of flag bits exported through APIs to userspace.
4584 unsigned int dev_get_flags(const struct net_device *dev)
4586 unsigned int flags;
4588 flags = (dev->flags & ~(IFF_PROMISC |
4589 IFF_ALLMULTI |
4590 IFF_RUNNING |
4591 IFF_LOWER_UP |
4592 IFF_DORMANT)) |
4593 (dev->gflags & (IFF_PROMISC |
4594 IFF_ALLMULTI));
4596 if (netif_running(dev)) {
4597 if (netif_oper_up(dev))
4598 flags |= IFF_RUNNING;
4599 if (netif_carrier_ok(dev))
4600 flags |= IFF_LOWER_UP;
4601 if (netif_dormant(dev))
4602 flags |= IFF_DORMANT;
4605 return flags;
4607 EXPORT_SYMBOL(dev_get_flags);
4609 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4611 unsigned int old_flags = dev->flags;
4612 int ret;
4614 ASSERT_RTNL();
4617 * Set the flags on our device.
4620 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4621 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4622 IFF_AUTOMEDIA)) |
4623 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4624 IFF_ALLMULTI));
4627 * Load in the correct multicast list now the flags have changed.
4630 if ((old_flags ^ flags) & IFF_MULTICAST)
4631 dev_change_rx_flags(dev, IFF_MULTICAST);
4633 dev_set_rx_mode(dev);
4636 * Have we downed the interface. We handle IFF_UP ourselves
4637 * according to user attempts to set it, rather than blindly
4638 * setting it.
4641 ret = 0;
4642 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4643 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4645 if (!ret)
4646 dev_set_rx_mode(dev);
4649 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4650 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4652 dev->gflags ^= IFF_PROMISC;
4653 dev_set_promiscuity(dev, inc);
4656 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4657 is important. Some (broken) drivers set IFF_PROMISC, when
4658 IFF_ALLMULTI is requested not asking us and not reporting.
4660 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4661 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4663 dev->gflags ^= IFF_ALLMULTI;
4664 dev_set_allmulti(dev, inc);
4667 return ret;
4670 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4672 unsigned int changes = dev->flags ^ old_flags;
4674 if (changes & IFF_UP) {
4675 if (dev->flags & IFF_UP)
4676 call_netdevice_notifiers(NETDEV_UP, dev);
4677 else
4678 call_netdevice_notifiers(NETDEV_DOWN, dev);
4681 if (dev->flags & IFF_UP &&
4682 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4683 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4687 * dev_change_flags - change device settings
4688 * @dev: device
4689 * @flags: device state flags
4691 * Change settings on device based state flags. The flags are
4692 * in the userspace exported format.
4694 int dev_change_flags(struct net_device *dev, unsigned int flags)
4696 int ret;
4697 unsigned int changes, old_flags = dev->flags;
4699 ret = __dev_change_flags(dev, flags);
4700 if (ret < 0)
4701 return ret;
4703 changes = old_flags ^ dev->flags;
4704 if (changes)
4705 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4707 __dev_notify_flags(dev, old_flags);
4708 return ret;
4710 EXPORT_SYMBOL(dev_change_flags);
4713 * dev_set_mtu - Change maximum transfer unit
4714 * @dev: device
4715 * @new_mtu: new transfer unit
4717 * Change the maximum transfer size of the network device.
4719 int dev_set_mtu(struct net_device *dev, int new_mtu)
4721 const struct net_device_ops *ops = dev->netdev_ops;
4722 int err;
4724 if (new_mtu == dev->mtu)
4725 return 0;
4727 /* MTU must be positive. */
4728 if (new_mtu < 0)
4729 return -EINVAL;
4731 if (!netif_device_present(dev))
4732 return -ENODEV;
4734 err = 0;
4735 if (ops->ndo_change_mtu)
4736 err = ops->ndo_change_mtu(dev, new_mtu);
4737 else
4738 dev->mtu = new_mtu;
4740 if (!err)
4741 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4742 return err;
4744 EXPORT_SYMBOL(dev_set_mtu);
4747 * dev_set_group - Change group this device belongs to
4748 * @dev: device
4749 * @new_group: group this device should belong to
4751 void dev_set_group(struct net_device *dev, int new_group)
4753 dev->group = new_group;
4755 EXPORT_SYMBOL(dev_set_group);
4758 * dev_set_mac_address - Change Media Access Control Address
4759 * @dev: device
4760 * @sa: new address
4762 * Change the hardware (MAC) address of the device
4764 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4766 const struct net_device_ops *ops = dev->netdev_ops;
4767 int err;
4769 if (!ops->ndo_set_mac_address)
4770 return -EOPNOTSUPP;
4771 if (sa->sa_family != dev->type)
4772 return -EINVAL;
4773 if (!netif_device_present(dev))
4774 return -ENODEV;
4775 err = ops->ndo_set_mac_address(dev, sa);
4776 if (err)
4777 return err;
4778 dev->addr_assign_type = NET_ADDR_SET;
4779 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4780 add_device_randomness(dev->dev_addr, dev->addr_len);
4781 return 0;
4783 EXPORT_SYMBOL(dev_set_mac_address);
4786 * dev_change_carrier - Change device carrier
4787 * @dev: device
4788 * @new_carrier: new value
4790 * Change device carrier
4792 int dev_change_carrier(struct net_device *dev, bool new_carrier)
4794 const struct net_device_ops *ops = dev->netdev_ops;
4796 if (!ops->ndo_change_carrier)
4797 return -EOPNOTSUPP;
4798 if (!netif_device_present(dev))
4799 return -ENODEV;
4800 return ops->ndo_change_carrier(dev, new_carrier);
4802 EXPORT_SYMBOL(dev_change_carrier);
4805 * dev_new_index - allocate an ifindex
4806 * @net: the applicable net namespace
4808 * Returns a suitable unique value for a new device interface
4809 * number. The caller must hold the rtnl semaphore or the
4810 * dev_base_lock to be sure it remains unique.
4812 static int dev_new_index(struct net *net)
4814 int ifindex = net->ifindex;
4815 for (;;) {
4816 if (++ifindex <= 0)
4817 ifindex = 1;
4818 if (!__dev_get_by_index(net, ifindex))
4819 return net->ifindex = ifindex;
4823 /* Delayed registration/unregisteration */
4824 static LIST_HEAD(net_todo_list);
4826 static void net_set_todo(struct net_device *dev)
4828 list_add_tail(&dev->todo_list, &net_todo_list);
4831 static void rollback_registered_many(struct list_head *head)
4833 struct net_device *dev, *tmp;
4835 BUG_ON(dev_boot_phase);
4836 ASSERT_RTNL();
4838 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4839 /* Some devices call without registering
4840 * for initialization unwind. Remove those
4841 * devices and proceed with the remaining.
4843 if (dev->reg_state == NETREG_UNINITIALIZED) {
4844 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
4845 dev->name, dev);
4847 WARN_ON(1);
4848 list_del(&dev->unreg_list);
4849 continue;
4851 dev->dismantle = true;
4852 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4855 /* If device is running, close it first. */
4856 dev_close_many(head);
4858 list_for_each_entry(dev, head, unreg_list) {
4859 /* And unlink it from device chain. */
4860 unlist_netdevice(dev);
4862 dev->reg_state = NETREG_UNREGISTERING;
4865 synchronize_net();
4867 list_for_each_entry(dev, head, unreg_list) {
4868 /* Shutdown queueing discipline. */
4869 dev_shutdown(dev);
4872 /* Notify protocols, that we are about to destroy
4873 this device. They should clean all the things.
4875 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4877 if (!dev->rtnl_link_ops ||
4878 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4879 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
4882 * Flush the unicast and multicast chains
4884 dev_uc_flush(dev);
4885 dev_mc_flush(dev);
4887 if (dev->netdev_ops->ndo_uninit)
4888 dev->netdev_ops->ndo_uninit(dev);
4890 /* Notifier chain MUST detach us all upper devices. */
4891 WARN_ON(netdev_has_any_upper_dev(dev));
4893 /* Remove entries from kobject tree */
4894 netdev_unregister_kobject(dev);
4895 #ifdef CONFIG_XPS
4896 /* Remove XPS queueing entries */
4897 netif_reset_xps_queues_gt(dev, 0);
4898 #endif
4901 synchronize_net();
4903 list_for_each_entry(dev, head, unreg_list)
4904 dev_put(dev);
4907 static void rollback_registered(struct net_device *dev)
4909 LIST_HEAD(single);
4911 list_add(&dev->unreg_list, &single);
4912 rollback_registered_many(&single);
4913 list_del(&single);
4916 static netdev_features_t netdev_fix_features(struct net_device *dev,
4917 netdev_features_t features)
4919 /* Fix illegal checksum combinations */
4920 if ((features & NETIF_F_HW_CSUM) &&
4921 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4922 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
4923 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4926 /* Fix illegal SG+CSUM combinations. */
4927 if ((features & NETIF_F_SG) &&
4928 !(features & NETIF_F_ALL_CSUM)) {
4929 netdev_dbg(dev,
4930 "Dropping NETIF_F_SG since no checksum feature.\n");
4931 features &= ~NETIF_F_SG;
4934 /* TSO requires that SG is present as well. */
4935 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
4936 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
4937 features &= ~NETIF_F_ALL_TSO;
4940 /* TSO ECN requires that TSO is present as well. */
4941 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
4942 features &= ~NETIF_F_TSO_ECN;
4944 /* Software GSO depends on SG. */
4945 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
4946 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
4947 features &= ~NETIF_F_GSO;
4950 /* UFO needs SG and checksumming */
4951 if (features & NETIF_F_UFO) {
4952 /* maybe split UFO into V4 and V6? */
4953 if (!((features & NETIF_F_GEN_CSUM) ||
4954 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
4955 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4956 netdev_dbg(dev,
4957 "Dropping NETIF_F_UFO since no checksum offload features.\n");
4958 features &= ~NETIF_F_UFO;
4961 if (!(features & NETIF_F_SG)) {
4962 netdev_dbg(dev,
4963 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
4964 features &= ~NETIF_F_UFO;
4968 return features;
4971 int __netdev_update_features(struct net_device *dev)
4973 netdev_features_t features;
4974 int err = 0;
4976 ASSERT_RTNL();
4978 features = netdev_get_wanted_features(dev);
4980 if (dev->netdev_ops->ndo_fix_features)
4981 features = dev->netdev_ops->ndo_fix_features(dev, features);
4983 /* driver might be less strict about feature dependencies */
4984 features = netdev_fix_features(dev, features);
4986 if (dev->features == features)
4987 return 0;
4989 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
4990 &dev->features, &features);
4992 if (dev->netdev_ops->ndo_set_features)
4993 err = dev->netdev_ops->ndo_set_features(dev, features);
4995 if (unlikely(err < 0)) {
4996 netdev_err(dev,
4997 "set_features() failed (%d); wanted %pNF, left %pNF\n",
4998 err, &features, &dev->features);
4999 return -1;
5002 if (!err)
5003 dev->features = features;
5005 return 1;
5009 * netdev_update_features - recalculate device features
5010 * @dev: the device to check
5012 * Recalculate dev->features set and send notifications if it
5013 * has changed. Should be called after driver or hardware dependent
5014 * conditions might have changed that influence the features.
5016 void netdev_update_features(struct net_device *dev)
5018 if (__netdev_update_features(dev))
5019 netdev_features_change(dev);
5021 EXPORT_SYMBOL(netdev_update_features);
5024 * netdev_change_features - recalculate device features
5025 * @dev: the device to check
5027 * Recalculate dev->features set and send notifications even
5028 * if they have not changed. Should be called instead of
5029 * netdev_update_features() if also dev->vlan_features might
5030 * have changed to allow the changes to be propagated to stacked
5031 * VLAN devices.
5033 void netdev_change_features(struct net_device *dev)
5035 __netdev_update_features(dev);
5036 netdev_features_change(dev);
5038 EXPORT_SYMBOL(netdev_change_features);
5041 * netif_stacked_transfer_operstate - transfer operstate
5042 * @rootdev: the root or lower level device to transfer state from
5043 * @dev: the device to transfer operstate to
5045 * Transfer operational state from root to device. This is normally
5046 * called when a stacking relationship exists between the root
5047 * device and the device(a leaf device).
5049 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5050 struct net_device *dev)
5052 if (rootdev->operstate == IF_OPER_DORMANT)
5053 netif_dormant_on(dev);
5054 else
5055 netif_dormant_off(dev);
5057 if (netif_carrier_ok(rootdev)) {
5058 if (!netif_carrier_ok(dev))
5059 netif_carrier_on(dev);
5060 } else {
5061 if (netif_carrier_ok(dev))
5062 netif_carrier_off(dev);
5065 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5067 #ifdef CONFIG_RPS
5068 static int netif_alloc_rx_queues(struct net_device *dev)
5070 unsigned int i, count = dev->num_rx_queues;
5071 struct netdev_rx_queue *rx;
5073 BUG_ON(count < 1);
5075 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5076 if (!rx)
5077 return -ENOMEM;
5079 dev->_rx = rx;
5081 for (i = 0; i < count; i++)
5082 rx[i].dev = dev;
5083 return 0;
5085 #endif
5087 static void netdev_init_one_queue(struct net_device *dev,
5088 struct netdev_queue *queue, void *_unused)
5090 /* Initialize queue lock */
5091 spin_lock_init(&queue->_xmit_lock);
5092 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5093 queue->xmit_lock_owner = -1;
5094 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5095 queue->dev = dev;
5096 #ifdef CONFIG_BQL
5097 dql_init(&queue->dql, HZ);
5098 #endif
5101 static int netif_alloc_netdev_queues(struct net_device *dev)
5103 unsigned int count = dev->num_tx_queues;
5104 struct netdev_queue *tx;
5106 BUG_ON(count < 1);
5108 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5109 if (!tx)
5110 return -ENOMEM;
5112 dev->_tx = tx;
5114 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5115 spin_lock_init(&dev->tx_global_lock);
5117 return 0;
5121 * register_netdevice - register a network device
5122 * @dev: device to register
5124 * Take a completed network device structure and add it to the kernel
5125 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5126 * chain. 0 is returned on success. A negative errno code is returned
5127 * on a failure to set up the device, or if the name is a duplicate.
5129 * Callers must hold the rtnl semaphore. You may want
5130 * register_netdev() instead of this.
5132 * BUGS:
5133 * The locking appears insufficient to guarantee two parallel registers
5134 * will not get the same name.
5137 int register_netdevice(struct net_device *dev)
5139 int ret;
5140 struct net *net = dev_net(dev);
5142 BUG_ON(dev_boot_phase);
5143 ASSERT_RTNL();
5145 might_sleep();
5147 /* When net_device's are persistent, this will be fatal. */
5148 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5149 BUG_ON(!net);
5151 spin_lock_init(&dev->addr_list_lock);
5152 netdev_set_addr_lockdep_class(dev);
5154 dev->iflink = -1;
5156 ret = dev_get_valid_name(net, dev, dev->name);
5157 if (ret < 0)
5158 goto out;
5160 /* Init, if this function is available */
5161 if (dev->netdev_ops->ndo_init) {
5162 ret = dev->netdev_ops->ndo_init(dev);
5163 if (ret) {
5164 if (ret > 0)
5165 ret = -EIO;
5166 goto out;
5170 if (((dev->hw_features | dev->features) & NETIF_F_HW_VLAN_FILTER) &&
5171 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
5172 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
5173 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
5174 ret = -EINVAL;
5175 goto err_uninit;
5178 ret = -EBUSY;
5179 if (!dev->ifindex)
5180 dev->ifindex = dev_new_index(net);
5181 else if (__dev_get_by_index(net, dev->ifindex))
5182 goto err_uninit;
5184 if (dev->iflink == -1)
5185 dev->iflink = dev->ifindex;
5187 /* Transfer changeable features to wanted_features and enable
5188 * software offloads (GSO and GRO).
5190 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5191 dev->features |= NETIF_F_SOFT_FEATURES;
5192 dev->wanted_features = dev->features & dev->hw_features;
5194 /* Turn on no cache copy if HW is doing checksum */
5195 if (!(dev->flags & IFF_LOOPBACK)) {
5196 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5197 if (dev->features & NETIF_F_ALL_CSUM) {
5198 dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5199 dev->features |= NETIF_F_NOCACHE_COPY;
5203 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5205 dev->vlan_features |= NETIF_F_HIGHDMA;
5207 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5208 ret = notifier_to_errno(ret);
5209 if (ret)
5210 goto err_uninit;
5212 ret = netdev_register_kobject(dev);
5213 if (ret)
5214 goto err_uninit;
5215 dev->reg_state = NETREG_REGISTERED;
5217 __netdev_update_features(dev);
5220 * Default initial state at registry is that the
5221 * device is present.
5224 set_bit(__LINK_STATE_PRESENT, &dev->state);
5226 linkwatch_init_dev(dev);
5228 dev_init_scheduler(dev);
5229 dev_hold(dev);
5230 list_netdevice(dev);
5231 add_device_randomness(dev->dev_addr, dev->addr_len);
5233 /* If the device has permanent device address, driver should
5234 * set dev_addr and also addr_assign_type should be set to
5235 * NET_ADDR_PERM (default value).
5237 if (dev->addr_assign_type == NET_ADDR_PERM)
5238 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
5240 /* Notify protocols, that a new device appeared. */
5241 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5242 ret = notifier_to_errno(ret);
5243 if (ret) {
5244 rollback_registered(dev);
5245 dev->reg_state = NETREG_UNREGISTERED;
5248 * Prevent userspace races by waiting until the network
5249 * device is fully setup before sending notifications.
5251 if (!dev->rtnl_link_ops ||
5252 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5253 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5255 out:
5256 return ret;
5258 err_uninit:
5259 if (dev->netdev_ops->ndo_uninit)
5260 dev->netdev_ops->ndo_uninit(dev);
5261 goto out;
5263 EXPORT_SYMBOL(register_netdevice);
5266 * init_dummy_netdev - init a dummy network device for NAPI
5267 * @dev: device to init
5269 * This takes a network device structure and initialize the minimum
5270 * amount of fields so it can be used to schedule NAPI polls without
5271 * registering a full blown interface. This is to be used by drivers
5272 * that need to tie several hardware interfaces to a single NAPI
5273 * poll scheduler due to HW limitations.
5275 int init_dummy_netdev(struct net_device *dev)
5277 /* Clear everything. Note we don't initialize spinlocks
5278 * are they aren't supposed to be taken by any of the
5279 * NAPI code and this dummy netdev is supposed to be
5280 * only ever used for NAPI polls
5282 memset(dev, 0, sizeof(struct net_device));
5284 /* make sure we BUG if trying to hit standard
5285 * register/unregister code path
5287 dev->reg_state = NETREG_DUMMY;
5289 /* NAPI wants this */
5290 INIT_LIST_HEAD(&dev->napi_list);
5292 /* a dummy interface is started by default */
5293 set_bit(__LINK_STATE_PRESENT, &dev->state);
5294 set_bit(__LINK_STATE_START, &dev->state);
5296 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5297 * because users of this 'device' dont need to change
5298 * its refcount.
5301 return 0;
5303 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5307 * register_netdev - register a network device
5308 * @dev: device to register
5310 * Take a completed network device structure and add it to the kernel
5311 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5312 * chain. 0 is returned on success. A negative errno code is returned
5313 * on a failure to set up the device, or if the name is a duplicate.
5315 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5316 * and expands the device name if you passed a format string to
5317 * alloc_netdev.
5319 int register_netdev(struct net_device *dev)
5321 int err;
5323 rtnl_lock();
5324 err = register_netdevice(dev);
5325 rtnl_unlock();
5326 return err;
5328 EXPORT_SYMBOL(register_netdev);
5330 int netdev_refcnt_read(const struct net_device *dev)
5332 int i, refcnt = 0;
5334 for_each_possible_cpu(i)
5335 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5336 return refcnt;
5338 EXPORT_SYMBOL(netdev_refcnt_read);
5341 * netdev_wait_allrefs - wait until all references are gone.
5342 * @dev: target net_device
5344 * This is called when unregistering network devices.
5346 * Any protocol or device that holds a reference should register
5347 * for netdevice notification, and cleanup and put back the
5348 * reference if they receive an UNREGISTER event.
5349 * We can get stuck here if buggy protocols don't correctly
5350 * call dev_put.
5352 static void netdev_wait_allrefs(struct net_device *dev)
5354 unsigned long rebroadcast_time, warning_time;
5355 int refcnt;
5357 linkwatch_forget_dev(dev);
5359 rebroadcast_time = warning_time = jiffies;
5360 refcnt = netdev_refcnt_read(dev);
5362 while (refcnt != 0) {
5363 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5364 rtnl_lock();
5366 /* Rebroadcast unregister notification */
5367 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5369 __rtnl_unlock();
5370 rcu_barrier();
5371 rtnl_lock();
5373 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5374 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5375 &dev->state)) {
5376 /* We must not have linkwatch events
5377 * pending on unregister. If this
5378 * happens, we simply run the queue
5379 * unscheduled, resulting in a noop
5380 * for this device.
5382 linkwatch_run_queue();
5385 __rtnl_unlock();
5387 rebroadcast_time = jiffies;
5390 msleep(250);
5392 refcnt = netdev_refcnt_read(dev);
5394 if (time_after(jiffies, warning_time + 10 * HZ)) {
5395 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
5396 dev->name, refcnt);
5397 warning_time = jiffies;
5402 /* The sequence is:
5404 * rtnl_lock();
5405 * ...
5406 * register_netdevice(x1);
5407 * register_netdevice(x2);
5408 * ...
5409 * unregister_netdevice(y1);
5410 * unregister_netdevice(y2);
5411 * ...
5412 * rtnl_unlock();
5413 * free_netdev(y1);
5414 * free_netdev(y2);
5416 * We are invoked by rtnl_unlock().
5417 * This allows us to deal with problems:
5418 * 1) We can delete sysfs objects which invoke hotplug
5419 * without deadlocking with linkwatch via keventd.
5420 * 2) Since we run with the RTNL semaphore not held, we can sleep
5421 * safely in order to wait for the netdev refcnt to drop to zero.
5423 * We must not return until all unregister events added during
5424 * the interval the lock was held have been completed.
5426 void netdev_run_todo(void)
5428 struct list_head list;
5430 /* Snapshot list, allow later requests */
5431 list_replace_init(&net_todo_list, &list);
5433 __rtnl_unlock();
5436 /* Wait for rcu callbacks to finish before next phase */
5437 if (!list_empty(&list))
5438 rcu_barrier();
5440 while (!list_empty(&list)) {
5441 struct net_device *dev
5442 = list_first_entry(&list, struct net_device, todo_list);
5443 list_del(&dev->todo_list);
5445 rtnl_lock();
5446 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5447 __rtnl_unlock();
5449 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5450 pr_err("network todo '%s' but state %d\n",
5451 dev->name, dev->reg_state);
5452 dump_stack();
5453 continue;
5456 dev->reg_state = NETREG_UNREGISTERED;
5458 on_each_cpu(flush_backlog, dev, 1);
5460 netdev_wait_allrefs(dev);
5462 /* paranoia */
5463 BUG_ON(netdev_refcnt_read(dev));
5464 WARN_ON(rcu_access_pointer(dev->ip_ptr));
5465 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5466 WARN_ON(dev->dn_ptr);
5468 if (dev->destructor)
5469 dev->destructor(dev);
5471 /* Free network device */
5472 kobject_put(&dev->dev.kobj);
5476 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5477 * fields in the same order, with only the type differing.
5479 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5480 const struct net_device_stats *netdev_stats)
5482 #if BITS_PER_LONG == 64
5483 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5484 memcpy(stats64, netdev_stats, sizeof(*stats64));
5485 #else
5486 size_t i, n = sizeof(*stats64) / sizeof(u64);
5487 const unsigned long *src = (const unsigned long *)netdev_stats;
5488 u64 *dst = (u64 *)stats64;
5490 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5491 sizeof(*stats64) / sizeof(u64));
5492 for (i = 0; i < n; i++)
5493 dst[i] = src[i];
5494 #endif
5496 EXPORT_SYMBOL(netdev_stats_to_stats64);
5499 * dev_get_stats - get network device statistics
5500 * @dev: device to get statistics from
5501 * @storage: place to store stats
5503 * Get network statistics from device. Return @storage.
5504 * The device driver may provide its own method by setting
5505 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5506 * otherwise the internal statistics structure is used.
5508 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5509 struct rtnl_link_stats64 *storage)
5511 const struct net_device_ops *ops = dev->netdev_ops;
5513 if (ops->ndo_get_stats64) {
5514 memset(storage, 0, sizeof(*storage));
5515 ops->ndo_get_stats64(dev, storage);
5516 } else if (ops->ndo_get_stats) {
5517 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5518 } else {
5519 netdev_stats_to_stats64(storage, &dev->stats);
5521 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5522 return storage;
5524 EXPORT_SYMBOL(dev_get_stats);
5526 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5528 struct netdev_queue *queue = dev_ingress_queue(dev);
5530 #ifdef CONFIG_NET_CLS_ACT
5531 if (queue)
5532 return queue;
5533 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5534 if (!queue)
5535 return NULL;
5536 netdev_init_one_queue(dev, queue, NULL);
5537 queue->qdisc = &noop_qdisc;
5538 queue->qdisc_sleeping = &noop_qdisc;
5539 rcu_assign_pointer(dev->ingress_queue, queue);
5540 #endif
5541 return queue;
5544 static const struct ethtool_ops default_ethtool_ops;
5546 void netdev_set_default_ethtool_ops(struct net_device *dev,
5547 const struct ethtool_ops *ops)
5549 if (dev->ethtool_ops == &default_ethtool_ops)
5550 dev->ethtool_ops = ops;
5552 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
5555 * alloc_netdev_mqs - allocate network device
5556 * @sizeof_priv: size of private data to allocate space for
5557 * @name: device name format string
5558 * @setup: callback to initialize device
5559 * @txqs: the number of TX subqueues to allocate
5560 * @rxqs: the number of RX subqueues to allocate
5562 * Allocates a struct net_device with private data area for driver use
5563 * and performs basic initialization. Also allocates subquue structs
5564 * for each queue on the device.
5566 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5567 void (*setup)(struct net_device *),
5568 unsigned int txqs, unsigned int rxqs)
5570 struct net_device *dev;
5571 size_t alloc_size;
5572 struct net_device *p;
5574 BUG_ON(strlen(name) >= sizeof(dev->name));
5576 if (txqs < 1) {
5577 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
5578 return NULL;
5581 #ifdef CONFIG_RPS
5582 if (rxqs < 1) {
5583 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
5584 return NULL;
5586 #endif
5588 alloc_size = sizeof(struct net_device);
5589 if (sizeof_priv) {
5590 /* ensure 32-byte alignment of private area */
5591 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5592 alloc_size += sizeof_priv;
5594 /* ensure 32-byte alignment of whole construct */
5595 alloc_size += NETDEV_ALIGN - 1;
5597 p = kzalloc(alloc_size, GFP_KERNEL);
5598 if (!p)
5599 return NULL;
5601 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5602 dev->padded = (char *)dev - (char *)p;
5604 dev->pcpu_refcnt = alloc_percpu(int);
5605 if (!dev->pcpu_refcnt)
5606 goto free_p;
5608 if (dev_addr_init(dev))
5609 goto free_pcpu;
5611 dev_mc_init(dev);
5612 dev_uc_init(dev);
5614 dev_net_set(dev, &init_net);
5616 dev->gso_max_size = GSO_MAX_SIZE;
5617 dev->gso_max_segs = GSO_MAX_SEGS;
5619 INIT_LIST_HEAD(&dev->napi_list);
5620 INIT_LIST_HEAD(&dev->unreg_list);
5621 INIT_LIST_HEAD(&dev->link_watch_list);
5622 INIT_LIST_HEAD(&dev->upper_dev_list);
5623 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5624 setup(dev);
5626 dev->num_tx_queues = txqs;
5627 dev->real_num_tx_queues = txqs;
5628 if (netif_alloc_netdev_queues(dev))
5629 goto free_all;
5631 #ifdef CONFIG_RPS
5632 dev->num_rx_queues = rxqs;
5633 dev->real_num_rx_queues = rxqs;
5634 if (netif_alloc_rx_queues(dev))
5635 goto free_all;
5636 #endif
5638 strcpy(dev->name, name);
5639 dev->group = INIT_NETDEV_GROUP;
5640 if (!dev->ethtool_ops)
5641 dev->ethtool_ops = &default_ethtool_ops;
5642 return dev;
5644 free_all:
5645 free_netdev(dev);
5646 return NULL;
5648 free_pcpu:
5649 free_percpu(dev->pcpu_refcnt);
5650 kfree(dev->_tx);
5651 #ifdef CONFIG_RPS
5652 kfree(dev->_rx);
5653 #endif
5655 free_p:
5656 kfree(p);
5657 return NULL;
5659 EXPORT_SYMBOL(alloc_netdev_mqs);
5662 * free_netdev - free network device
5663 * @dev: device
5665 * This function does the last stage of destroying an allocated device
5666 * interface. The reference to the device object is released.
5667 * If this is the last reference then it will be freed.
5669 void free_netdev(struct net_device *dev)
5671 struct napi_struct *p, *n;
5673 release_net(dev_net(dev));
5675 kfree(dev->_tx);
5676 #ifdef CONFIG_RPS
5677 kfree(dev->_rx);
5678 #endif
5680 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
5682 /* Flush device addresses */
5683 dev_addr_flush(dev);
5685 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5686 netif_napi_del(p);
5688 free_percpu(dev->pcpu_refcnt);
5689 dev->pcpu_refcnt = NULL;
5691 /* Compatibility with error handling in drivers */
5692 if (dev->reg_state == NETREG_UNINITIALIZED) {
5693 kfree((char *)dev - dev->padded);
5694 return;
5697 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5698 dev->reg_state = NETREG_RELEASED;
5700 /* will free via device release */
5701 put_device(&dev->dev);
5703 EXPORT_SYMBOL(free_netdev);
5706 * synchronize_net - Synchronize with packet receive processing
5708 * Wait for packets currently being received to be done.
5709 * Does not block later packets from starting.
5711 void synchronize_net(void)
5713 might_sleep();
5714 if (rtnl_is_locked())
5715 synchronize_rcu_expedited();
5716 else
5717 synchronize_rcu();
5719 EXPORT_SYMBOL(synchronize_net);
5722 * unregister_netdevice_queue - remove device from the kernel
5723 * @dev: device
5724 * @head: list
5726 * This function shuts down a device interface and removes it
5727 * from the kernel tables.
5728 * If head not NULL, device is queued to be unregistered later.
5730 * Callers must hold the rtnl semaphore. You may want
5731 * unregister_netdev() instead of this.
5734 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5736 ASSERT_RTNL();
5738 if (head) {
5739 list_move_tail(&dev->unreg_list, head);
5740 } else {
5741 rollback_registered(dev);
5742 /* Finish processing unregister after unlock */
5743 net_set_todo(dev);
5746 EXPORT_SYMBOL(unregister_netdevice_queue);
5749 * unregister_netdevice_many - unregister many devices
5750 * @head: list of devices
5752 void unregister_netdevice_many(struct list_head *head)
5754 struct net_device *dev;
5756 if (!list_empty(head)) {
5757 rollback_registered_many(head);
5758 list_for_each_entry(dev, head, unreg_list)
5759 net_set_todo(dev);
5762 EXPORT_SYMBOL(unregister_netdevice_many);
5765 * unregister_netdev - remove device from the kernel
5766 * @dev: device
5768 * This function shuts down a device interface and removes it
5769 * from the kernel tables.
5771 * This is just a wrapper for unregister_netdevice that takes
5772 * the rtnl semaphore. In general you want to use this and not
5773 * unregister_netdevice.
5775 void unregister_netdev(struct net_device *dev)
5777 rtnl_lock();
5778 unregister_netdevice(dev);
5779 rtnl_unlock();
5781 EXPORT_SYMBOL(unregister_netdev);
5784 * dev_change_net_namespace - move device to different nethost namespace
5785 * @dev: device
5786 * @net: network namespace
5787 * @pat: If not NULL name pattern to try if the current device name
5788 * is already taken in the destination network namespace.
5790 * This function shuts down a device interface and moves it
5791 * to a new network namespace. On success 0 is returned, on
5792 * a failure a netagive errno code is returned.
5794 * Callers must hold the rtnl semaphore.
5797 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5799 int err;
5801 ASSERT_RTNL();
5803 /* Don't allow namespace local devices to be moved. */
5804 err = -EINVAL;
5805 if (dev->features & NETIF_F_NETNS_LOCAL)
5806 goto out;
5808 /* Ensure the device has been registrered */
5809 if (dev->reg_state != NETREG_REGISTERED)
5810 goto out;
5812 /* Get out if there is nothing todo */
5813 err = 0;
5814 if (net_eq(dev_net(dev), net))
5815 goto out;
5817 /* Pick the destination device name, and ensure
5818 * we can use it in the destination network namespace.
5820 err = -EEXIST;
5821 if (__dev_get_by_name(net, dev->name)) {
5822 /* We get here if we can't use the current device name */
5823 if (!pat)
5824 goto out;
5825 if (dev_get_valid_name(net, dev, pat) < 0)
5826 goto out;
5830 * And now a mini version of register_netdevice unregister_netdevice.
5833 /* If device is running close it first. */
5834 dev_close(dev);
5836 /* And unlink it from device chain */
5837 err = -ENODEV;
5838 unlist_netdevice(dev);
5840 synchronize_net();
5842 /* Shutdown queueing discipline. */
5843 dev_shutdown(dev);
5845 /* Notify protocols, that we are about to destroy
5846 this device. They should clean all the things.
5848 Note that dev->reg_state stays at NETREG_REGISTERED.
5849 This is wanted because this way 8021q and macvlan know
5850 the device is just moving and can keep their slaves up.
5852 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5853 rcu_barrier();
5854 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5855 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5858 * Flush the unicast and multicast chains
5860 dev_uc_flush(dev);
5861 dev_mc_flush(dev);
5863 /* Send a netdev-removed uevent to the old namespace */
5864 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
5866 /* Actually switch the network namespace */
5867 dev_net_set(dev, net);
5869 /* If there is an ifindex conflict assign a new one */
5870 if (__dev_get_by_index(net, dev->ifindex)) {
5871 int iflink = (dev->iflink == dev->ifindex);
5872 dev->ifindex = dev_new_index(net);
5873 if (iflink)
5874 dev->iflink = dev->ifindex;
5877 /* Send a netdev-add uevent to the new namespace */
5878 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
5880 /* Fixup kobjects */
5881 err = device_rename(&dev->dev, dev->name);
5882 WARN_ON(err);
5884 /* Add the device back in the hashes */
5885 list_netdevice(dev);
5887 /* Notify protocols, that a new device appeared. */
5888 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5891 * Prevent userspace races by waiting until the network
5892 * device is fully setup before sending notifications.
5894 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5896 synchronize_net();
5897 err = 0;
5898 out:
5899 return err;
5901 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5903 static int dev_cpu_callback(struct notifier_block *nfb,
5904 unsigned long action,
5905 void *ocpu)
5907 struct sk_buff **list_skb;
5908 struct sk_buff *skb;
5909 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5910 struct softnet_data *sd, *oldsd;
5912 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5913 return NOTIFY_OK;
5915 local_irq_disable();
5916 cpu = smp_processor_id();
5917 sd = &per_cpu(softnet_data, cpu);
5918 oldsd = &per_cpu(softnet_data, oldcpu);
5920 /* Find end of our completion_queue. */
5921 list_skb = &sd->completion_queue;
5922 while (*list_skb)
5923 list_skb = &(*list_skb)->next;
5924 /* Append completion queue from offline CPU. */
5925 *list_skb = oldsd->completion_queue;
5926 oldsd->completion_queue = NULL;
5928 /* Append output queue from offline CPU. */
5929 if (oldsd->output_queue) {
5930 *sd->output_queue_tailp = oldsd->output_queue;
5931 sd->output_queue_tailp = oldsd->output_queue_tailp;
5932 oldsd->output_queue = NULL;
5933 oldsd->output_queue_tailp = &oldsd->output_queue;
5935 /* Append NAPI poll list from offline CPU. */
5936 if (!list_empty(&oldsd->poll_list)) {
5937 list_splice_init(&oldsd->poll_list, &sd->poll_list);
5938 raise_softirq_irqoff(NET_RX_SOFTIRQ);
5941 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5942 local_irq_enable();
5944 /* Process offline CPU's input_pkt_queue */
5945 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
5946 netif_rx(skb);
5947 input_queue_head_incr(oldsd);
5949 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
5950 netif_rx(skb);
5951 input_queue_head_incr(oldsd);
5954 return NOTIFY_OK;
5959 * netdev_increment_features - increment feature set by one
5960 * @all: current feature set
5961 * @one: new feature set
5962 * @mask: mask feature set
5964 * Computes a new feature set after adding a device with feature set
5965 * @one to the master device with current feature set @all. Will not
5966 * enable anything that is off in @mask. Returns the new feature set.
5968 netdev_features_t netdev_increment_features(netdev_features_t all,
5969 netdev_features_t one, netdev_features_t mask)
5971 if (mask & NETIF_F_GEN_CSUM)
5972 mask |= NETIF_F_ALL_CSUM;
5973 mask |= NETIF_F_VLAN_CHALLENGED;
5975 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
5976 all &= one | ~NETIF_F_ALL_FOR_ALL;
5978 /* If one device supports hw checksumming, set for all. */
5979 if (all & NETIF_F_GEN_CSUM)
5980 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
5982 return all;
5984 EXPORT_SYMBOL(netdev_increment_features);
5986 static struct hlist_head *netdev_create_hash(void)
5988 int i;
5989 struct hlist_head *hash;
5991 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5992 if (hash != NULL)
5993 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5994 INIT_HLIST_HEAD(&hash[i]);
5996 return hash;
5999 /* Initialize per network namespace state */
6000 static int __net_init netdev_init(struct net *net)
6002 if (net != &init_net)
6003 INIT_LIST_HEAD(&net->dev_base_head);
6005 net->dev_name_head = netdev_create_hash();
6006 if (net->dev_name_head == NULL)
6007 goto err_name;
6009 net->dev_index_head = netdev_create_hash();
6010 if (net->dev_index_head == NULL)
6011 goto err_idx;
6013 return 0;
6015 err_idx:
6016 kfree(net->dev_name_head);
6017 err_name:
6018 return -ENOMEM;
6022 * netdev_drivername - network driver for the device
6023 * @dev: network device
6025 * Determine network driver for device.
6027 const char *netdev_drivername(const struct net_device *dev)
6029 const struct device_driver *driver;
6030 const struct device *parent;
6031 const char *empty = "";
6033 parent = dev->dev.parent;
6034 if (!parent)
6035 return empty;
6037 driver = parent->driver;
6038 if (driver && driver->name)
6039 return driver->name;
6040 return empty;
6043 static int __netdev_printk(const char *level, const struct net_device *dev,
6044 struct va_format *vaf)
6046 int r;
6048 if (dev && dev->dev.parent) {
6049 r = dev_printk_emit(level[1] - '0',
6050 dev->dev.parent,
6051 "%s %s %s: %pV",
6052 dev_driver_string(dev->dev.parent),
6053 dev_name(dev->dev.parent),
6054 netdev_name(dev), vaf);
6055 } else if (dev) {
6056 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6057 } else {
6058 r = printk("%s(NULL net_device): %pV", level, vaf);
6061 return r;
6064 int netdev_printk(const char *level, const struct net_device *dev,
6065 const char *format, ...)
6067 struct va_format vaf;
6068 va_list args;
6069 int r;
6071 va_start(args, format);
6073 vaf.fmt = format;
6074 vaf.va = &args;
6076 r = __netdev_printk(level, dev, &vaf);
6078 va_end(args);
6080 return r;
6082 EXPORT_SYMBOL(netdev_printk);
6084 #define define_netdev_printk_level(func, level) \
6085 int func(const struct net_device *dev, const char *fmt, ...) \
6087 int r; \
6088 struct va_format vaf; \
6089 va_list args; \
6091 va_start(args, fmt); \
6093 vaf.fmt = fmt; \
6094 vaf.va = &args; \
6096 r = __netdev_printk(level, dev, &vaf); \
6098 va_end(args); \
6100 return r; \
6102 EXPORT_SYMBOL(func);
6104 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6105 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6106 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6107 define_netdev_printk_level(netdev_err, KERN_ERR);
6108 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6109 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6110 define_netdev_printk_level(netdev_info, KERN_INFO);
6112 static void __net_exit netdev_exit(struct net *net)
6114 kfree(net->dev_name_head);
6115 kfree(net->dev_index_head);
6118 static struct pernet_operations __net_initdata netdev_net_ops = {
6119 .init = netdev_init,
6120 .exit = netdev_exit,
6123 static void __net_exit default_device_exit(struct net *net)
6125 struct net_device *dev, *aux;
6127 * Push all migratable network devices back to the
6128 * initial network namespace
6130 rtnl_lock();
6131 for_each_netdev_safe(net, dev, aux) {
6132 int err;
6133 char fb_name[IFNAMSIZ];
6135 /* Ignore unmoveable devices (i.e. loopback) */
6136 if (dev->features & NETIF_F_NETNS_LOCAL)
6137 continue;
6139 /* Leave virtual devices for the generic cleanup */
6140 if (dev->rtnl_link_ops)
6141 continue;
6143 /* Push remaining network devices to init_net */
6144 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6145 err = dev_change_net_namespace(dev, &init_net, fb_name);
6146 if (err) {
6147 pr_emerg("%s: failed to move %s to init_net: %d\n",
6148 __func__, dev->name, err);
6149 BUG();
6152 rtnl_unlock();
6155 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6157 /* At exit all network devices most be removed from a network
6158 * namespace. Do this in the reverse order of registration.
6159 * Do this across as many network namespaces as possible to
6160 * improve batching efficiency.
6162 struct net_device *dev;
6163 struct net *net;
6164 LIST_HEAD(dev_kill_list);
6166 rtnl_lock();
6167 list_for_each_entry(net, net_list, exit_list) {
6168 for_each_netdev_reverse(net, dev) {
6169 if (dev->rtnl_link_ops)
6170 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6171 else
6172 unregister_netdevice_queue(dev, &dev_kill_list);
6175 unregister_netdevice_many(&dev_kill_list);
6176 list_del(&dev_kill_list);
6177 rtnl_unlock();
6180 static struct pernet_operations __net_initdata default_device_ops = {
6181 .exit = default_device_exit,
6182 .exit_batch = default_device_exit_batch,
6186 * Initialize the DEV module. At boot time this walks the device list and
6187 * unhooks any devices that fail to initialise (normally hardware not
6188 * present) and leaves us with a valid list of present and active devices.
6193 * This is called single threaded during boot, so no need
6194 * to take the rtnl semaphore.
6196 static int __init net_dev_init(void)
6198 int i, rc = -ENOMEM;
6200 BUG_ON(!dev_boot_phase);
6202 if (dev_proc_init())
6203 goto out;
6205 if (netdev_kobject_init())
6206 goto out;
6208 INIT_LIST_HEAD(&ptype_all);
6209 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6210 INIT_LIST_HEAD(&ptype_base[i]);
6212 INIT_LIST_HEAD(&offload_base);
6214 if (register_pernet_subsys(&netdev_net_ops))
6215 goto out;
6218 * Initialise the packet receive queues.
6221 for_each_possible_cpu(i) {
6222 struct softnet_data *sd = &per_cpu(softnet_data, i);
6224 memset(sd, 0, sizeof(*sd));
6225 skb_queue_head_init(&sd->input_pkt_queue);
6226 skb_queue_head_init(&sd->process_queue);
6227 sd->completion_queue = NULL;
6228 INIT_LIST_HEAD(&sd->poll_list);
6229 sd->output_queue = NULL;
6230 sd->output_queue_tailp = &sd->output_queue;
6231 #ifdef CONFIG_RPS
6232 sd->csd.func = rps_trigger_softirq;
6233 sd->csd.info = sd;
6234 sd->csd.flags = 0;
6235 sd->cpu = i;
6236 #endif
6238 sd->backlog.poll = process_backlog;
6239 sd->backlog.weight = weight_p;
6240 sd->backlog.gro_list = NULL;
6241 sd->backlog.gro_count = 0;
6244 dev_boot_phase = 0;
6246 /* The loopback device is special if any other network devices
6247 * is present in a network namespace the loopback device must
6248 * be present. Since we now dynamically allocate and free the
6249 * loopback device ensure this invariant is maintained by
6250 * keeping the loopback device as the first device on the
6251 * list of network devices. Ensuring the loopback devices
6252 * is the first device that appears and the last network device
6253 * that disappears.
6255 if (register_pernet_device(&loopback_net_ops))
6256 goto out;
6258 if (register_pernet_device(&default_device_ops))
6259 goto out;
6261 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6262 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6264 hotcpu_notifier(dev_cpu_callback, 0);
6265 dst_init();
6266 rc = 0;
6267 out:
6268 return rc;
6271 subsys_initcall(net_dev_init);