drm/tegra: Support the XBGR8888 pixelformat
[linux-2.6.git] / kernel / time.c
blobf8342a41efa60de3badbcbd2f48fa1950d0d7f99
1 /*
2 * linux/kernel/time.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * This file contains the interface functions for the various
7 * time related system calls: time, stime, gettimeofday, settimeofday,
8 * adjtime
9 */
11 * Modification history kernel/time.c
13 * 1993-09-02 Philip Gladstone
14 * Created file with time related functions from sched.c and adjtimex()
15 * 1993-10-08 Torsten Duwe
16 * adjtime interface update and CMOS clock write code
17 * 1995-08-13 Torsten Duwe
18 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16 Ulrich Windl
20 * Introduced error checking for many cases in adjtimex().
21 * Updated NTP code according to technical memorandum Jan '96
22 * "A Kernel Model for Precision Timekeeping" by Dave Mills
23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 * (Even though the technical memorandum forbids it)
25 * 2004-07-14 Christoph Lameter
26 * Added getnstimeofday to allow the posix timer functions to return
27 * with nanosecond accuracy
30 #include <linux/export.h>
31 #include <linux/timex.h>
32 #include <linux/capability.h>
33 #include <linux/timekeeper_internal.h>
34 #include <linux/errno.h>
35 #include <linux/syscalls.h>
36 #include <linux/security.h>
37 #include <linux/fs.h>
38 #include <linux/math64.h>
39 #include <linux/ptrace.h>
41 #include <asm/uaccess.h>
42 #include <asm/unistd.h>
44 #include "timeconst.h"
47 * The timezone where the local system is located. Used as a default by some
48 * programs who obtain this value by using gettimeofday.
50 struct timezone sys_tz;
52 EXPORT_SYMBOL(sys_tz);
54 #ifdef __ARCH_WANT_SYS_TIME
57 * sys_time() can be implemented in user-level using
58 * sys_gettimeofday(). Is this for backwards compatibility? If so,
59 * why not move it into the appropriate arch directory (for those
60 * architectures that need it).
62 SYSCALL_DEFINE1(time, time_t __user *, tloc)
64 time_t i = get_seconds();
66 if (tloc) {
67 if (put_user(i,tloc))
68 return -EFAULT;
70 force_successful_syscall_return();
71 return i;
75 * sys_stime() can be implemented in user-level using
76 * sys_settimeofday(). Is this for backwards compatibility? If so,
77 * why not move it into the appropriate arch directory (for those
78 * architectures that need it).
81 SYSCALL_DEFINE1(stime, time_t __user *, tptr)
83 struct timespec tv;
84 int err;
86 if (get_user(tv.tv_sec, tptr))
87 return -EFAULT;
89 tv.tv_nsec = 0;
91 err = security_settime(&tv, NULL);
92 if (err)
93 return err;
95 do_settimeofday(&tv);
96 return 0;
99 #endif /* __ARCH_WANT_SYS_TIME */
101 SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
102 struct timezone __user *, tz)
104 if (likely(tv != NULL)) {
105 struct timeval ktv;
106 do_gettimeofday(&ktv);
107 if (copy_to_user(tv, &ktv, sizeof(ktv)))
108 return -EFAULT;
110 if (unlikely(tz != NULL)) {
111 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
112 return -EFAULT;
114 return 0;
118 * Indicates if there is an offset between the system clock and the hardware
119 * clock/persistent clock/rtc.
121 int persistent_clock_is_local;
124 * Adjust the time obtained from the CMOS to be UTC time instead of
125 * local time.
127 * This is ugly, but preferable to the alternatives. Otherwise we
128 * would either need to write a program to do it in /etc/rc (and risk
129 * confusion if the program gets run more than once; it would also be
130 * hard to make the program warp the clock precisely n hours) or
131 * compile in the timezone information into the kernel. Bad, bad....
133 * - TYT, 1992-01-01
135 * The best thing to do is to keep the CMOS clock in universal time (UTC)
136 * as real UNIX machines always do it. This avoids all headaches about
137 * daylight saving times and warping kernel clocks.
139 static inline void warp_clock(void)
141 struct timespec adjust;
143 adjust = current_kernel_time();
144 if (sys_tz.tz_minuteswest != 0)
145 persistent_clock_is_local = 1;
146 adjust.tv_sec += sys_tz.tz_minuteswest * 60;
147 do_settimeofday(&adjust);
151 * In case for some reason the CMOS clock has not already been running
152 * in UTC, but in some local time: The first time we set the timezone,
153 * we will warp the clock so that it is ticking UTC time instead of
154 * local time. Presumably, if someone is setting the timezone then we
155 * are running in an environment where the programs understand about
156 * timezones. This should be done at boot time in the /etc/rc script,
157 * as soon as possible, so that the clock can be set right. Otherwise,
158 * various programs will get confused when the clock gets warped.
161 int do_sys_settimeofday(const struct timespec *tv, const struct timezone *tz)
163 static int firsttime = 1;
164 int error = 0;
166 if (tv && !timespec_valid(tv))
167 return -EINVAL;
169 error = security_settime(tv, tz);
170 if (error)
171 return error;
173 if (tz) {
174 sys_tz = *tz;
175 update_vsyscall_tz();
176 if (firsttime) {
177 firsttime = 0;
178 if (!tv)
179 warp_clock();
182 if (tv)
183 return do_settimeofday(tv);
184 return 0;
187 SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
188 struct timezone __user *, tz)
190 struct timeval user_tv;
191 struct timespec new_ts;
192 struct timezone new_tz;
194 if (tv) {
195 if (copy_from_user(&user_tv, tv, sizeof(*tv)))
196 return -EFAULT;
197 new_ts.tv_sec = user_tv.tv_sec;
198 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
200 if (tz) {
201 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
202 return -EFAULT;
205 return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
208 SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
210 struct timex txc; /* Local copy of parameter */
211 int ret;
213 /* Copy the user data space into the kernel copy
214 * structure. But bear in mind that the structures
215 * may change
217 if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
218 return -EFAULT;
219 ret = do_adjtimex(&txc);
220 return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
224 * current_fs_time - Return FS time
225 * @sb: Superblock.
227 * Return the current time truncated to the time granularity supported by
228 * the fs.
230 struct timespec current_fs_time(struct super_block *sb)
232 struct timespec now = current_kernel_time();
233 return timespec_trunc(now, sb->s_time_gran);
235 EXPORT_SYMBOL(current_fs_time);
238 * Convert jiffies to milliseconds and back.
240 * Avoid unnecessary multiplications/divisions in the
241 * two most common HZ cases:
243 unsigned int jiffies_to_msecs(const unsigned long j)
245 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
246 return (MSEC_PER_SEC / HZ) * j;
247 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
248 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
249 #else
250 # if BITS_PER_LONG == 32
251 return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
252 # else
253 return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
254 # endif
255 #endif
257 EXPORT_SYMBOL(jiffies_to_msecs);
259 unsigned int jiffies_to_usecs(const unsigned long j)
261 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
262 return (USEC_PER_SEC / HZ) * j;
263 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
264 return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
265 #else
266 # if BITS_PER_LONG == 32
267 return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
268 # else
269 return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
270 # endif
271 #endif
273 EXPORT_SYMBOL(jiffies_to_usecs);
276 * timespec_trunc - Truncate timespec to a granularity
277 * @t: Timespec
278 * @gran: Granularity in ns.
280 * Truncate a timespec to a granularity. gran must be smaller than a second.
281 * Always rounds down.
283 * This function should be only used for timestamps returned by
284 * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
285 * it doesn't handle the better resolution of the latter.
287 struct timespec timespec_trunc(struct timespec t, unsigned gran)
290 * Division is pretty slow so avoid it for common cases.
291 * Currently current_kernel_time() never returns better than
292 * jiffies resolution. Exploit that.
294 if (gran <= jiffies_to_usecs(1) * 1000) {
295 /* nothing */
296 } else if (gran == 1000000000) {
297 t.tv_nsec = 0;
298 } else {
299 t.tv_nsec -= t.tv_nsec % gran;
301 return t;
303 EXPORT_SYMBOL(timespec_trunc);
305 /* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
306 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
307 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
309 * [For the Julian calendar (which was used in Russia before 1917,
310 * Britain & colonies before 1752, anywhere else before 1582,
311 * and is still in use by some communities) leave out the
312 * -year/100+year/400 terms, and add 10.]
314 * This algorithm was first published by Gauss (I think).
316 * WARNING: this function will overflow on 2106-02-07 06:28:16 on
317 * machines where long is 32-bit! (However, as time_t is signed, we
318 * will already get problems at other places on 2038-01-19 03:14:08)
320 unsigned long
321 mktime(const unsigned int year0, const unsigned int mon0,
322 const unsigned int day, const unsigned int hour,
323 const unsigned int min, const unsigned int sec)
325 unsigned int mon = mon0, year = year0;
327 /* 1..12 -> 11,12,1..10 */
328 if (0 >= (int) (mon -= 2)) {
329 mon += 12; /* Puts Feb last since it has leap day */
330 year -= 1;
333 return ((((unsigned long)
334 (year/4 - year/100 + year/400 + 367*mon/12 + day) +
335 year*365 - 719499
336 )*24 + hour /* now have hours */
337 )*60 + min /* now have minutes */
338 )*60 + sec; /* finally seconds */
341 EXPORT_SYMBOL(mktime);
344 * set_normalized_timespec - set timespec sec and nsec parts and normalize
346 * @ts: pointer to timespec variable to be set
347 * @sec: seconds to set
348 * @nsec: nanoseconds to set
350 * Set seconds and nanoseconds field of a timespec variable and
351 * normalize to the timespec storage format
353 * Note: The tv_nsec part is always in the range of
354 * 0 <= tv_nsec < NSEC_PER_SEC
355 * For negative values only the tv_sec field is negative !
357 void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
359 while (nsec >= NSEC_PER_SEC) {
361 * The following asm() prevents the compiler from
362 * optimising this loop into a modulo operation. See
363 * also __iter_div_u64_rem() in include/linux/time.h
365 asm("" : "+rm"(nsec));
366 nsec -= NSEC_PER_SEC;
367 ++sec;
369 while (nsec < 0) {
370 asm("" : "+rm"(nsec));
371 nsec += NSEC_PER_SEC;
372 --sec;
374 ts->tv_sec = sec;
375 ts->tv_nsec = nsec;
377 EXPORT_SYMBOL(set_normalized_timespec);
380 * ns_to_timespec - Convert nanoseconds to timespec
381 * @nsec: the nanoseconds value to be converted
383 * Returns the timespec representation of the nsec parameter.
385 struct timespec ns_to_timespec(const s64 nsec)
387 struct timespec ts;
388 s32 rem;
390 if (!nsec)
391 return (struct timespec) {0, 0};
393 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
394 if (unlikely(rem < 0)) {
395 ts.tv_sec--;
396 rem += NSEC_PER_SEC;
398 ts.tv_nsec = rem;
400 return ts;
402 EXPORT_SYMBOL(ns_to_timespec);
405 * ns_to_timeval - Convert nanoseconds to timeval
406 * @nsec: the nanoseconds value to be converted
408 * Returns the timeval representation of the nsec parameter.
410 struct timeval ns_to_timeval(const s64 nsec)
412 struct timespec ts = ns_to_timespec(nsec);
413 struct timeval tv;
415 tv.tv_sec = ts.tv_sec;
416 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
418 return tv;
420 EXPORT_SYMBOL(ns_to_timeval);
423 * When we convert to jiffies then we interpret incoming values
424 * the following way:
426 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
428 * - 'too large' values [that would result in larger than
429 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
431 * - all other values are converted to jiffies by either multiplying
432 * the input value by a factor or dividing it with a factor
434 * We must also be careful about 32-bit overflows.
436 unsigned long msecs_to_jiffies(const unsigned int m)
439 * Negative value, means infinite timeout:
441 if ((int)m < 0)
442 return MAX_JIFFY_OFFSET;
444 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
446 * HZ is equal to or smaller than 1000, and 1000 is a nice
447 * round multiple of HZ, divide with the factor between them,
448 * but round upwards:
450 return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
451 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
453 * HZ is larger than 1000, and HZ is a nice round multiple of
454 * 1000 - simply multiply with the factor between them.
456 * But first make sure the multiplication result cannot
457 * overflow:
459 if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
460 return MAX_JIFFY_OFFSET;
462 return m * (HZ / MSEC_PER_SEC);
463 #else
465 * Generic case - multiply, round and divide. But first
466 * check that if we are doing a net multiplication, that
467 * we wouldn't overflow:
469 if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
470 return MAX_JIFFY_OFFSET;
472 return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32)
473 >> MSEC_TO_HZ_SHR32;
474 #endif
476 EXPORT_SYMBOL(msecs_to_jiffies);
478 unsigned long usecs_to_jiffies(const unsigned int u)
480 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
481 return MAX_JIFFY_OFFSET;
482 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
483 return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
484 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
485 return u * (HZ / USEC_PER_SEC);
486 #else
487 return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
488 >> USEC_TO_HZ_SHR32;
489 #endif
491 EXPORT_SYMBOL(usecs_to_jiffies);
494 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
495 * that a remainder subtract here would not do the right thing as the
496 * resolution values don't fall on second boundries. I.e. the line:
497 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
499 * Rather, we just shift the bits off the right.
501 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
502 * value to a scaled second value.
504 unsigned long
505 timespec_to_jiffies(const struct timespec *value)
507 unsigned long sec = value->tv_sec;
508 long nsec = value->tv_nsec + TICK_NSEC - 1;
510 if (sec >= MAX_SEC_IN_JIFFIES){
511 sec = MAX_SEC_IN_JIFFIES;
512 nsec = 0;
514 return (((u64)sec * SEC_CONVERSION) +
515 (((u64)nsec * NSEC_CONVERSION) >>
516 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
519 EXPORT_SYMBOL(timespec_to_jiffies);
521 void
522 jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
525 * Convert jiffies to nanoseconds and separate with
526 * one divide.
528 u32 rem;
529 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
530 NSEC_PER_SEC, &rem);
531 value->tv_nsec = rem;
533 EXPORT_SYMBOL(jiffies_to_timespec);
535 /* Same for "timeval"
537 * Well, almost. The problem here is that the real system resolution is
538 * in nanoseconds and the value being converted is in micro seconds.
539 * Also for some machines (those that use HZ = 1024, in-particular),
540 * there is a LARGE error in the tick size in microseconds.
542 * The solution we use is to do the rounding AFTER we convert the
543 * microsecond part. Thus the USEC_ROUND, the bits to be shifted off.
544 * Instruction wise, this should cost only an additional add with carry
545 * instruction above the way it was done above.
547 unsigned long
548 timeval_to_jiffies(const struct timeval *value)
550 unsigned long sec = value->tv_sec;
551 long usec = value->tv_usec;
553 if (sec >= MAX_SEC_IN_JIFFIES){
554 sec = MAX_SEC_IN_JIFFIES;
555 usec = 0;
557 return (((u64)sec * SEC_CONVERSION) +
558 (((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
559 (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
561 EXPORT_SYMBOL(timeval_to_jiffies);
563 void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
566 * Convert jiffies to nanoseconds and separate with
567 * one divide.
569 u32 rem;
571 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
572 NSEC_PER_SEC, &rem);
573 value->tv_usec = rem / NSEC_PER_USEC;
575 EXPORT_SYMBOL(jiffies_to_timeval);
578 * Convert jiffies/jiffies_64 to clock_t and back.
580 clock_t jiffies_to_clock_t(unsigned long x)
582 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
583 # if HZ < USER_HZ
584 return x * (USER_HZ / HZ);
585 # else
586 return x / (HZ / USER_HZ);
587 # endif
588 #else
589 return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
590 #endif
592 EXPORT_SYMBOL(jiffies_to_clock_t);
594 unsigned long clock_t_to_jiffies(unsigned long x)
596 #if (HZ % USER_HZ)==0
597 if (x >= ~0UL / (HZ / USER_HZ))
598 return ~0UL;
599 return x * (HZ / USER_HZ);
600 #else
601 /* Don't worry about loss of precision here .. */
602 if (x >= ~0UL / HZ * USER_HZ)
603 return ~0UL;
605 /* .. but do try to contain it here */
606 return div_u64((u64)x * HZ, USER_HZ);
607 #endif
609 EXPORT_SYMBOL(clock_t_to_jiffies);
611 u64 jiffies_64_to_clock_t(u64 x)
613 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
614 # if HZ < USER_HZ
615 x = div_u64(x * USER_HZ, HZ);
616 # elif HZ > USER_HZ
617 x = div_u64(x, HZ / USER_HZ);
618 # else
619 /* Nothing to do */
620 # endif
621 #else
623 * There are better ways that don't overflow early,
624 * but even this doesn't overflow in hundreds of years
625 * in 64 bits, so..
627 x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
628 #endif
629 return x;
631 EXPORT_SYMBOL(jiffies_64_to_clock_t);
633 u64 nsec_to_clock_t(u64 x)
635 #if (NSEC_PER_SEC % USER_HZ) == 0
636 return div_u64(x, NSEC_PER_SEC / USER_HZ);
637 #elif (USER_HZ % 512) == 0
638 return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
639 #else
641 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
642 * overflow after 64.99 years.
643 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
645 return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
646 #endif
650 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
652 * @n: nsecs in u64
654 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
655 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
656 * for scheduler, not for use in device drivers to calculate timeout value.
658 * note:
659 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
660 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
662 u64 nsecs_to_jiffies64(u64 n)
664 #if (NSEC_PER_SEC % HZ) == 0
665 /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
666 return div_u64(n, NSEC_PER_SEC / HZ);
667 #elif (HZ % 512) == 0
668 /* overflow after 292 years if HZ = 1024 */
669 return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
670 #else
672 * Generic case - optimized for cases where HZ is a multiple of 3.
673 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
675 return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
676 #endif
680 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
682 * @n: nsecs in u64
684 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
685 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
686 * for scheduler, not for use in device drivers to calculate timeout value.
688 * note:
689 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
690 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
692 unsigned long nsecs_to_jiffies(u64 n)
694 return (unsigned long)nsecs_to_jiffies64(n);
698 * Add two timespec values and do a safety check for overflow.
699 * It's assumed that both values are valid (>= 0)
701 struct timespec timespec_add_safe(const struct timespec lhs,
702 const struct timespec rhs)
704 struct timespec res;
706 set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
707 lhs.tv_nsec + rhs.tv_nsec);
709 if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
710 res.tv_sec = TIME_T_MAX;
712 return res;