4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * This file contains the interface functions for the various
7 * time related system calls: time, stime, gettimeofday, settimeofday,
11 * Modification history kernel/time.c
13 * 1993-09-02 Philip Gladstone
14 * Created file with time related functions from sched.c and adjtimex()
15 * 1993-10-08 Torsten Duwe
16 * adjtime interface update and CMOS clock write code
17 * 1995-08-13 Torsten Duwe
18 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16 Ulrich Windl
20 * Introduced error checking for many cases in adjtimex().
21 * Updated NTP code according to technical memorandum Jan '96
22 * "A Kernel Model for Precision Timekeeping" by Dave Mills
23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 * (Even though the technical memorandum forbids it)
25 * 2004-07-14 Christoph Lameter
26 * Added getnstimeofday to allow the posix timer functions to return
27 * with nanosecond accuracy
30 #include <linux/export.h>
31 #include <linux/timex.h>
32 #include <linux/capability.h>
33 #include <linux/timekeeper_internal.h>
34 #include <linux/errno.h>
35 #include <linux/syscalls.h>
36 #include <linux/security.h>
38 #include <linux/math64.h>
39 #include <linux/ptrace.h>
41 #include <asm/uaccess.h>
42 #include <asm/unistd.h>
44 #include "timeconst.h"
47 * The timezone where the local system is located. Used as a default by some
48 * programs who obtain this value by using gettimeofday.
50 struct timezone sys_tz
;
52 EXPORT_SYMBOL(sys_tz
);
54 #ifdef __ARCH_WANT_SYS_TIME
57 * sys_time() can be implemented in user-level using
58 * sys_gettimeofday(). Is this for backwards compatibility? If so,
59 * why not move it into the appropriate arch directory (for those
60 * architectures that need it).
62 SYSCALL_DEFINE1(time
, time_t __user
*, tloc
)
64 time_t i
= get_seconds();
70 force_successful_syscall_return();
75 * sys_stime() can be implemented in user-level using
76 * sys_settimeofday(). Is this for backwards compatibility? If so,
77 * why not move it into the appropriate arch directory (for those
78 * architectures that need it).
81 SYSCALL_DEFINE1(stime
, time_t __user
*, tptr
)
86 if (get_user(tv
.tv_sec
, tptr
))
91 err
= security_settime(&tv
, NULL
);
99 #endif /* __ARCH_WANT_SYS_TIME */
101 SYSCALL_DEFINE2(gettimeofday
, struct timeval __user
*, tv
,
102 struct timezone __user
*, tz
)
104 if (likely(tv
!= NULL
)) {
106 do_gettimeofday(&ktv
);
107 if (copy_to_user(tv
, &ktv
, sizeof(ktv
)))
110 if (unlikely(tz
!= NULL
)) {
111 if (copy_to_user(tz
, &sys_tz
, sizeof(sys_tz
)))
118 * Indicates if there is an offset between the system clock and the hardware
119 * clock/persistent clock/rtc.
121 int persistent_clock_is_local
;
124 * Adjust the time obtained from the CMOS to be UTC time instead of
127 * This is ugly, but preferable to the alternatives. Otherwise we
128 * would either need to write a program to do it in /etc/rc (and risk
129 * confusion if the program gets run more than once; it would also be
130 * hard to make the program warp the clock precisely n hours) or
131 * compile in the timezone information into the kernel. Bad, bad....
135 * The best thing to do is to keep the CMOS clock in universal time (UTC)
136 * as real UNIX machines always do it. This avoids all headaches about
137 * daylight saving times and warping kernel clocks.
139 static inline void warp_clock(void)
141 struct timespec adjust
;
143 adjust
= current_kernel_time();
144 if (sys_tz
.tz_minuteswest
!= 0)
145 persistent_clock_is_local
= 1;
146 adjust
.tv_sec
+= sys_tz
.tz_minuteswest
* 60;
147 do_settimeofday(&adjust
);
151 * In case for some reason the CMOS clock has not already been running
152 * in UTC, but in some local time: The first time we set the timezone,
153 * we will warp the clock so that it is ticking UTC time instead of
154 * local time. Presumably, if someone is setting the timezone then we
155 * are running in an environment where the programs understand about
156 * timezones. This should be done at boot time in the /etc/rc script,
157 * as soon as possible, so that the clock can be set right. Otherwise,
158 * various programs will get confused when the clock gets warped.
161 int do_sys_settimeofday(const struct timespec
*tv
, const struct timezone
*tz
)
163 static int firsttime
= 1;
166 if (tv
&& !timespec_valid(tv
))
169 error
= security_settime(tv
, tz
);
175 update_vsyscall_tz();
183 return do_settimeofday(tv
);
187 SYSCALL_DEFINE2(settimeofday
, struct timeval __user
*, tv
,
188 struct timezone __user
*, tz
)
190 struct timeval user_tv
;
191 struct timespec new_ts
;
192 struct timezone new_tz
;
195 if (copy_from_user(&user_tv
, tv
, sizeof(*tv
)))
197 new_ts
.tv_sec
= user_tv
.tv_sec
;
198 new_ts
.tv_nsec
= user_tv
.tv_usec
* NSEC_PER_USEC
;
201 if (copy_from_user(&new_tz
, tz
, sizeof(*tz
)))
205 return do_sys_settimeofday(tv
? &new_ts
: NULL
, tz
? &new_tz
: NULL
);
208 SYSCALL_DEFINE1(adjtimex
, struct timex __user
*, txc_p
)
210 struct timex txc
; /* Local copy of parameter */
213 /* Copy the user data space into the kernel copy
214 * structure. But bear in mind that the structures
217 if(copy_from_user(&txc
, txc_p
, sizeof(struct timex
)))
219 ret
= do_adjtimex(&txc
);
220 return copy_to_user(txc_p
, &txc
, sizeof(struct timex
)) ? -EFAULT
: ret
;
224 * current_fs_time - Return FS time
227 * Return the current time truncated to the time granularity supported by
230 struct timespec
current_fs_time(struct super_block
*sb
)
232 struct timespec now
= current_kernel_time();
233 return timespec_trunc(now
, sb
->s_time_gran
);
235 EXPORT_SYMBOL(current_fs_time
);
238 * Convert jiffies to milliseconds and back.
240 * Avoid unnecessary multiplications/divisions in the
241 * two most common HZ cases:
243 unsigned int jiffies_to_msecs(const unsigned long j
)
245 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
246 return (MSEC_PER_SEC
/ HZ
) * j
;
247 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
248 return (j
+ (HZ
/ MSEC_PER_SEC
) - 1)/(HZ
/ MSEC_PER_SEC
);
250 # if BITS_PER_LONG == 32
251 return (HZ_TO_MSEC_MUL32
* j
) >> HZ_TO_MSEC_SHR32
;
253 return (j
* HZ_TO_MSEC_NUM
) / HZ_TO_MSEC_DEN
;
257 EXPORT_SYMBOL(jiffies_to_msecs
);
259 unsigned int jiffies_to_usecs(const unsigned long j
)
261 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
262 return (USEC_PER_SEC
/ HZ
) * j
;
263 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
264 return (j
+ (HZ
/ USEC_PER_SEC
) - 1)/(HZ
/ USEC_PER_SEC
);
266 # if BITS_PER_LONG == 32
267 return (HZ_TO_USEC_MUL32
* j
) >> HZ_TO_USEC_SHR32
;
269 return (j
* HZ_TO_USEC_NUM
) / HZ_TO_USEC_DEN
;
273 EXPORT_SYMBOL(jiffies_to_usecs
);
276 * timespec_trunc - Truncate timespec to a granularity
278 * @gran: Granularity in ns.
280 * Truncate a timespec to a granularity. gran must be smaller than a second.
281 * Always rounds down.
283 * This function should be only used for timestamps returned by
284 * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
285 * it doesn't handle the better resolution of the latter.
287 struct timespec
timespec_trunc(struct timespec t
, unsigned gran
)
290 * Division is pretty slow so avoid it for common cases.
291 * Currently current_kernel_time() never returns better than
292 * jiffies resolution. Exploit that.
294 if (gran
<= jiffies_to_usecs(1) * 1000) {
296 } else if (gran
== 1000000000) {
299 t
.tv_nsec
-= t
.tv_nsec
% gran
;
303 EXPORT_SYMBOL(timespec_trunc
);
305 /* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
306 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
307 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
309 * [For the Julian calendar (which was used in Russia before 1917,
310 * Britain & colonies before 1752, anywhere else before 1582,
311 * and is still in use by some communities) leave out the
312 * -year/100+year/400 terms, and add 10.]
314 * This algorithm was first published by Gauss (I think).
316 * WARNING: this function will overflow on 2106-02-07 06:28:16 on
317 * machines where long is 32-bit! (However, as time_t is signed, we
318 * will already get problems at other places on 2038-01-19 03:14:08)
321 mktime(const unsigned int year0
, const unsigned int mon0
,
322 const unsigned int day
, const unsigned int hour
,
323 const unsigned int min
, const unsigned int sec
)
325 unsigned int mon
= mon0
, year
= year0
;
327 /* 1..12 -> 11,12,1..10 */
328 if (0 >= (int) (mon
-= 2)) {
329 mon
+= 12; /* Puts Feb last since it has leap day */
333 return ((((unsigned long)
334 (year
/4 - year
/100 + year
/400 + 367*mon
/12 + day
) +
336 )*24 + hour
/* now have hours */
337 )*60 + min
/* now have minutes */
338 )*60 + sec
; /* finally seconds */
341 EXPORT_SYMBOL(mktime
);
344 * set_normalized_timespec - set timespec sec and nsec parts and normalize
346 * @ts: pointer to timespec variable to be set
347 * @sec: seconds to set
348 * @nsec: nanoseconds to set
350 * Set seconds and nanoseconds field of a timespec variable and
351 * normalize to the timespec storage format
353 * Note: The tv_nsec part is always in the range of
354 * 0 <= tv_nsec < NSEC_PER_SEC
355 * For negative values only the tv_sec field is negative !
357 void set_normalized_timespec(struct timespec
*ts
, time_t sec
, s64 nsec
)
359 while (nsec
>= NSEC_PER_SEC
) {
361 * The following asm() prevents the compiler from
362 * optimising this loop into a modulo operation. See
363 * also __iter_div_u64_rem() in include/linux/time.h
365 asm("" : "+rm"(nsec
));
366 nsec
-= NSEC_PER_SEC
;
370 asm("" : "+rm"(nsec
));
371 nsec
+= NSEC_PER_SEC
;
377 EXPORT_SYMBOL(set_normalized_timespec
);
380 * ns_to_timespec - Convert nanoseconds to timespec
381 * @nsec: the nanoseconds value to be converted
383 * Returns the timespec representation of the nsec parameter.
385 struct timespec
ns_to_timespec(const s64 nsec
)
391 return (struct timespec
) {0, 0};
393 ts
.tv_sec
= div_s64_rem(nsec
, NSEC_PER_SEC
, &rem
);
394 if (unlikely(rem
< 0)) {
402 EXPORT_SYMBOL(ns_to_timespec
);
405 * ns_to_timeval - Convert nanoseconds to timeval
406 * @nsec: the nanoseconds value to be converted
408 * Returns the timeval representation of the nsec parameter.
410 struct timeval
ns_to_timeval(const s64 nsec
)
412 struct timespec ts
= ns_to_timespec(nsec
);
415 tv
.tv_sec
= ts
.tv_sec
;
416 tv
.tv_usec
= (suseconds_t
) ts
.tv_nsec
/ 1000;
420 EXPORT_SYMBOL(ns_to_timeval
);
423 * When we convert to jiffies then we interpret incoming values
426 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
428 * - 'too large' values [that would result in larger than
429 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
431 * - all other values are converted to jiffies by either multiplying
432 * the input value by a factor or dividing it with a factor
434 * We must also be careful about 32-bit overflows.
436 unsigned long msecs_to_jiffies(const unsigned int m
)
439 * Negative value, means infinite timeout:
442 return MAX_JIFFY_OFFSET
;
444 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
446 * HZ is equal to or smaller than 1000, and 1000 is a nice
447 * round multiple of HZ, divide with the factor between them,
450 return (m
+ (MSEC_PER_SEC
/ HZ
) - 1) / (MSEC_PER_SEC
/ HZ
);
451 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
453 * HZ is larger than 1000, and HZ is a nice round multiple of
454 * 1000 - simply multiply with the factor between them.
456 * But first make sure the multiplication result cannot
459 if (m
> jiffies_to_msecs(MAX_JIFFY_OFFSET
))
460 return MAX_JIFFY_OFFSET
;
462 return m
* (HZ
/ MSEC_PER_SEC
);
465 * Generic case - multiply, round and divide. But first
466 * check that if we are doing a net multiplication, that
467 * we wouldn't overflow:
469 if (HZ
> MSEC_PER_SEC
&& m
> jiffies_to_msecs(MAX_JIFFY_OFFSET
))
470 return MAX_JIFFY_OFFSET
;
472 return (MSEC_TO_HZ_MUL32
* m
+ MSEC_TO_HZ_ADJ32
)
476 EXPORT_SYMBOL(msecs_to_jiffies
);
478 unsigned long usecs_to_jiffies(const unsigned int u
)
480 if (u
> jiffies_to_usecs(MAX_JIFFY_OFFSET
))
481 return MAX_JIFFY_OFFSET
;
482 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
483 return (u
+ (USEC_PER_SEC
/ HZ
) - 1) / (USEC_PER_SEC
/ HZ
);
484 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
485 return u
* (HZ
/ USEC_PER_SEC
);
487 return (USEC_TO_HZ_MUL32
* u
+ USEC_TO_HZ_ADJ32
)
491 EXPORT_SYMBOL(usecs_to_jiffies
);
494 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
495 * that a remainder subtract here would not do the right thing as the
496 * resolution values don't fall on second boundries. I.e. the line:
497 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
499 * Rather, we just shift the bits off the right.
501 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
502 * value to a scaled second value.
505 timespec_to_jiffies(const struct timespec
*value
)
507 unsigned long sec
= value
->tv_sec
;
508 long nsec
= value
->tv_nsec
+ TICK_NSEC
- 1;
510 if (sec
>= MAX_SEC_IN_JIFFIES
){
511 sec
= MAX_SEC_IN_JIFFIES
;
514 return (((u64
)sec
* SEC_CONVERSION
) +
515 (((u64
)nsec
* NSEC_CONVERSION
) >>
516 (NSEC_JIFFIE_SC
- SEC_JIFFIE_SC
))) >> SEC_JIFFIE_SC
;
519 EXPORT_SYMBOL(timespec_to_jiffies
);
522 jiffies_to_timespec(const unsigned long jiffies
, struct timespec
*value
)
525 * Convert jiffies to nanoseconds and separate with
529 value
->tv_sec
= div_u64_rem((u64
)jiffies
* TICK_NSEC
,
531 value
->tv_nsec
= rem
;
533 EXPORT_SYMBOL(jiffies_to_timespec
);
535 /* Same for "timeval"
537 * Well, almost. The problem here is that the real system resolution is
538 * in nanoseconds and the value being converted is in micro seconds.
539 * Also for some machines (those that use HZ = 1024, in-particular),
540 * there is a LARGE error in the tick size in microseconds.
542 * The solution we use is to do the rounding AFTER we convert the
543 * microsecond part. Thus the USEC_ROUND, the bits to be shifted off.
544 * Instruction wise, this should cost only an additional add with carry
545 * instruction above the way it was done above.
548 timeval_to_jiffies(const struct timeval
*value
)
550 unsigned long sec
= value
->tv_sec
;
551 long usec
= value
->tv_usec
;
553 if (sec
>= MAX_SEC_IN_JIFFIES
){
554 sec
= MAX_SEC_IN_JIFFIES
;
557 return (((u64
)sec
* SEC_CONVERSION
) +
558 (((u64
)usec
* USEC_CONVERSION
+ USEC_ROUND
) >>
559 (USEC_JIFFIE_SC
- SEC_JIFFIE_SC
))) >> SEC_JIFFIE_SC
;
561 EXPORT_SYMBOL(timeval_to_jiffies
);
563 void jiffies_to_timeval(const unsigned long jiffies
, struct timeval
*value
)
566 * Convert jiffies to nanoseconds and separate with
571 value
->tv_sec
= div_u64_rem((u64
)jiffies
* TICK_NSEC
,
573 value
->tv_usec
= rem
/ NSEC_PER_USEC
;
575 EXPORT_SYMBOL(jiffies_to_timeval
);
578 * Convert jiffies/jiffies_64 to clock_t and back.
580 clock_t jiffies_to_clock_t(unsigned long x
)
582 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
584 return x
* (USER_HZ
/ HZ
);
586 return x
/ (HZ
/ USER_HZ
);
589 return div_u64((u64
)x
* TICK_NSEC
, NSEC_PER_SEC
/ USER_HZ
);
592 EXPORT_SYMBOL(jiffies_to_clock_t
);
594 unsigned long clock_t_to_jiffies(unsigned long x
)
596 #if (HZ % USER_HZ)==0
597 if (x
>= ~0UL / (HZ
/ USER_HZ
))
599 return x
* (HZ
/ USER_HZ
);
601 /* Don't worry about loss of precision here .. */
602 if (x
>= ~0UL / HZ
* USER_HZ
)
605 /* .. but do try to contain it here */
606 return div_u64((u64
)x
* HZ
, USER_HZ
);
609 EXPORT_SYMBOL(clock_t_to_jiffies
);
611 u64
jiffies_64_to_clock_t(u64 x
)
613 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
615 x
= div_u64(x
* USER_HZ
, HZ
);
617 x
= div_u64(x
, HZ
/ USER_HZ
);
623 * There are better ways that don't overflow early,
624 * but even this doesn't overflow in hundreds of years
627 x
= div_u64(x
* TICK_NSEC
, (NSEC_PER_SEC
/ USER_HZ
));
631 EXPORT_SYMBOL(jiffies_64_to_clock_t
);
633 u64
nsec_to_clock_t(u64 x
)
635 #if (NSEC_PER_SEC % USER_HZ) == 0
636 return div_u64(x
, NSEC_PER_SEC
/ USER_HZ
);
637 #elif (USER_HZ % 512) == 0
638 return div_u64(x
* USER_HZ
/ 512, NSEC_PER_SEC
/ 512);
641 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
642 * overflow after 64.99 years.
643 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
645 return div_u64(x
* 9, (9ull * NSEC_PER_SEC
+ (USER_HZ
/ 2)) / USER_HZ
);
650 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
654 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
655 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
656 * for scheduler, not for use in device drivers to calculate timeout value.
659 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
660 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
662 u64
nsecs_to_jiffies64(u64 n
)
664 #if (NSEC_PER_SEC % HZ) == 0
665 /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
666 return div_u64(n
, NSEC_PER_SEC
/ HZ
);
667 #elif (HZ % 512) == 0
668 /* overflow after 292 years if HZ = 1024 */
669 return div_u64(n
* HZ
/ 512, NSEC_PER_SEC
/ 512);
672 * Generic case - optimized for cases where HZ is a multiple of 3.
673 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
675 return div_u64(n
* 9, (9ull * NSEC_PER_SEC
+ HZ
/ 2) / HZ
);
680 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
684 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
685 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
686 * for scheduler, not for use in device drivers to calculate timeout value.
689 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
690 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
692 unsigned long nsecs_to_jiffies(u64 n
)
694 return (unsigned long)nsecs_to_jiffies64(n
);
698 * Add two timespec values and do a safety check for overflow.
699 * It's assumed that both values are valid (>= 0)
701 struct timespec
timespec_add_safe(const struct timespec lhs
,
702 const struct timespec rhs
)
706 set_normalized_timespec(&res
, lhs
.tv_sec
+ rhs
.tv_sec
,
707 lhs
.tv_nsec
+ rhs
.tv_nsec
);
709 if (res
.tv_sec
< lhs
.tv_sec
|| res
.tv_sec
< rhs
.tv_sec
)
710 res
.tv_sec
= TIME_T_MAX
;