drm/tegra: Support the XBGR8888 pixelformat
[linux-2.6.git] / kernel / auditsc.c
bloba371f857a0a908a40a960511bf047d81ade471a9
1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <linux/atomic.h>
48 #include <linux/fs.h>
49 #include <linux/namei.h>
50 #include <linux/mm.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/mount.h>
54 #include <linux/socket.h>
55 #include <linux/mqueue.h>
56 #include <linux/audit.h>
57 #include <linux/personality.h>
58 #include <linux/time.h>
59 #include <linux/netlink.h>
60 #include <linux/compiler.h>
61 #include <asm/unistd.h>
62 #include <linux/security.h>
63 #include <linux/list.h>
64 #include <linux/tty.h>
65 #include <linux/binfmts.h>
66 #include <linux/highmem.h>
67 #include <linux/syscalls.h>
68 #include <linux/capability.h>
69 #include <linux/fs_struct.h>
70 #include <linux/compat.h>
72 #include "audit.h"
74 /* flags stating the success for a syscall */
75 #define AUDITSC_INVALID 0
76 #define AUDITSC_SUCCESS 1
77 #define AUDITSC_FAILURE 2
79 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
80 * for saving names from getname(). If we get more names we will allocate
81 * a name dynamically and also add those to the list anchored by names_list. */
82 #define AUDIT_NAMES 5
84 /* no execve audit message should be longer than this (userspace limits) */
85 #define MAX_EXECVE_AUDIT_LEN 7500
87 /* number of audit rules */
88 int audit_n_rules;
90 /* determines whether we collect data for signals sent */
91 int audit_signals;
93 struct audit_cap_data {
94 kernel_cap_t permitted;
95 kernel_cap_t inheritable;
96 union {
97 unsigned int fE; /* effective bit of a file capability */
98 kernel_cap_t effective; /* effective set of a process */
102 /* When fs/namei.c:getname() is called, we store the pointer in name and
103 * we don't let putname() free it (instead we free all of the saved
104 * pointers at syscall exit time).
106 * Further, in fs/namei.c:path_lookup() we store the inode and device.
108 struct audit_names {
109 struct list_head list; /* audit_context->names_list */
110 struct filename *name;
111 unsigned long ino;
112 dev_t dev;
113 umode_t mode;
114 kuid_t uid;
115 kgid_t gid;
116 dev_t rdev;
117 u32 osid;
118 struct audit_cap_data fcap;
119 unsigned int fcap_ver;
120 int name_len; /* number of name's characters to log */
121 unsigned char type; /* record type */
122 bool name_put; /* call __putname() for this name */
124 * This was an allocated audit_names and not from the array of
125 * names allocated in the task audit context. Thus this name
126 * should be freed on syscall exit
128 bool should_free;
131 struct audit_aux_data {
132 struct audit_aux_data *next;
133 int type;
136 #define AUDIT_AUX_IPCPERM 0
138 /* Number of target pids per aux struct. */
139 #define AUDIT_AUX_PIDS 16
141 struct audit_aux_data_execve {
142 struct audit_aux_data d;
143 int argc;
144 int envc;
145 struct mm_struct *mm;
148 struct audit_aux_data_pids {
149 struct audit_aux_data d;
150 pid_t target_pid[AUDIT_AUX_PIDS];
151 kuid_t target_auid[AUDIT_AUX_PIDS];
152 kuid_t target_uid[AUDIT_AUX_PIDS];
153 unsigned int target_sessionid[AUDIT_AUX_PIDS];
154 u32 target_sid[AUDIT_AUX_PIDS];
155 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
156 int pid_count;
159 struct audit_aux_data_bprm_fcaps {
160 struct audit_aux_data d;
161 struct audit_cap_data fcap;
162 unsigned int fcap_ver;
163 struct audit_cap_data old_pcap;
164 struct audit_cap_data new_pcap;
167 struct audit_aux_data_capset {
168 struct audit_aux_data d;
169 pid_t pid;
170 struct audit_cap_data cap;
173 struct audit_tree_refs {
174 struct audit_tree_refs *next;
175 struct audit_chunk *c[31];
178 /* The per-task audit context. */
179 struct audit_context {
180 int dummy; /* must be the first element */
181 int in_syscall; /* 1 if task is in a syscall */
182 enum audit_state state, current_state;
183 unsigned int serial; /* serial number for record */
184 int major; /* syscall number */
185 struct timespec ctime; /* time of syscall entry */
186 unsigned long argv[4]; /* syscall arguments */
187 long return_code;/* syscall return code */
188 u64 prio;
189 int return_valid; /* return code is valid */
191 * The names_list is the list of all audit_names collected during this
192 * syscall. The first AUDIT_NAMES entries in the names_list will
193 * actually be from the preallocated_names array for performance
194 * reasons. Except during allocation they should never be referenced
195 * through the preallocated_names array and should only be found/used
196 * by running the names_list.
198 struct audit_names preallocated_names[AUDIT_NAMES];
199 int name_count; /* total records in names_list */
200 struct list_head names_list; /* anchor for struct audit_names->list */
201 char * filterkey; /* key for rule that triggered record */
202 struct path pwd;
203 struct audit_aux_data *aux;
204 struct audit_aux_data *aux_pids;
205 struct sockaddr_storage *sockaddr;
206 size_t sockaddr_len;
207 /* Save things to print about task_struct */
208 pid_t pid, ppid;
209 kuid_t uid, euid, suid, fsuid;
210 kgid_t gid, egid, sgid, fsgid;
211 unsigned long personality;
212 int arch;
214 pid_t target_pid;
215 kuid_t target_auid;
216 kuid_t target_uid;
217 unsigned int target_sessionid;
218 u32 target_sid;
219 char target_comm[TASK_COMM_LEN];
221 struct audit_tree_refs *trees, *first_trees;
222 struct list_head killed_trees;
223 int tree_count;
225 int type;
226 union {
227 struct {
228 int nargs;
229 long args[6];
230 } socketcall;
231 struct {
232 kuid_t uid;
233 kgid_t gid;
234 umode_t mode;
235 u32 osid;
236 int has_perm;
237 uid_t perm_uid;
238 gid_t perm_gid;
239 umode_t perm_mode;
240 unsigned long qbytes;
241 } ipc;
242 struct {
243 mqd_t mqdes;
244 struct mq_attr mqstat;
245 } mq_getsetattr;
246 struct {
247 mqd_t mqdes;
248 int sigev_signo;
249 } mq_notify;
250 struct {
251 mqd_t mqdes;
252 size_t msg_len;
253 unsigned int msg_prio;
254 struct timespec abs_timeout;
255 } mq_sendrecv;
256 struct {
257 int oflag;
258 umode_t mode;
259 struct mq_attr attr;
260 } mq_open;
261 struct {
262 pid_t pid;
263 struct audit_cap_data cap;
264 } capset;
265 struct {
266 int fd;
267 int flags;
268 } mmap;
270 int fds[2];
272 #if AUDIT_DEBUG
273 int put_count;
274 int ino_count;
275 #endif
278 static inline int open_arg(int flags, int mask)
280 int n = ACC_MODE(flags);
281 if (flags & (O_TRUNC | O_CREAT))
282 n |= AUDIT_PERM_WRITE;
283 return n & mask;
286 static int audit_match_perm(struct audit_context *ctx, int mask)
288 unsigned n;
289 if (unlikely(!ctx))
290 return 0;
291 n = ctx->major;
293 switch (audit_classify_syscall(ctx->arch, n)) {
294 case 0: /* native */
295 if ((mask & AUDIT_PERM_WRITE) &&
296 audit_match_class(AUDIT_CLASS_WRITE, n))
297 return 1;
298 if ((mask & AUDIT_PERM_READ) &&
299 audit_match_class(AUDIT_CLASS_READ, n))
300 return 1;
301 if ((mask & AUDIT_PERM_ATTR) &&
302 audit_match_class(AUDIT_CLASS_CHATTR, n))
303 return 1;
304 return 0;
305 case 1: /* 32bit on biarch */
306 if ((mask & AUDIT_PERM_WRITE) &&
307 audit_match_class(AUDIT_CLASS_WRITE_32, n))
308 return 1;
309 if ((mask & AUDIT_PERM_READ) &&
310 audit_match_class(AUDIT_CLASS_READ_32, n))
311 return 1;
312 if ((mask & AUDIT_PERM_ATTR) &&
313 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
314 return 1;
315 return 0;
316 case 2: /* open */
317 return mask & ACC_MODE(ctx->argv[1]);
318 case 3: /* openat */
319 return mask & ACC_MODE(ctx->argv[2]);
320 case 4: /* socketcall */
321 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
322 case 5: /* execve */
323 return mask & AUDIT_PERM_EXEC;
324 default:
325 return 0;
329 static int audit_match_filetype(struct audit_context *ctx, int val)
331 struct audit_names *n;
332 umode_t mode = (umode_t)val;
334 if (unlikely(!ctx))
335 return 0;
337 list_for_each_entry(n, &ctx->names_list, list) {
338 if ((n->ino != -1) &&
339 ((n->mode & S_IFMT) == mode))
340 return 1;
343 return 0;
347 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
348 * ->first_trees points to its beginning, ->trees - to the current end of data.
349 * ->tree_count is the number of free entries in array pointed to by ->trees.
350 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
351 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
352 * it's going to remain 1-element for almost any setup) until we free context itself.
353 * References in it _are_ dropped - at the same time we free/drop aux stuff.
356 #ifdef CONFIG_AUDIT_TREE
357 static void audit_set_auditable(struct audit_context *ctx)
359 if (!ctx->prio) {
360 ctx->prio = 1;
361 ctx->current_state = AUDIT_RECORD_CONTEXT;
365 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
367 struct audit_tree_refs *p = ctx->trees;
368 int left = ctx->tree_count;
369 if (likely(left)) {
370 p->c[--left] = chunk;
371 ctx->tree_count = left;
372 return 1;
374 if (!p)
375 return 0;
376 p = p->next;
377 if (p) {
378 p->c[30] = chunk;
379 ctx->trees = p;
380 ctx->tree_count = 30;
381 return 1;
383 return 0;
386 static int grow_tree_refs(struct audit_context *ctx)
388 struct audit_tree_refs *p = ctx->trees;
389 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
390 if (!ctx->trees) {
391 ctx->trees = p;
392 return 0;
394 if (p)
395 p->next = ctx->trees;
396 else
397 ctx->first_trees = ctx->trees;
398 ctx->tree_count = 31;
399 return 1;
401 #endif
403 static void unroll_tree_refs(struct audit_context *ctx,
404 struct audit_tree_refs *p, int count)
406 #ifdef CONFIG_AUDIT_TREE
407 struct audit_tree_refs *q;
408 int n;
409 if (!p) {
410 /* we started with empty chain */
411 p = ctx->first_trees;
412 count = 31;
413 /* if the very first allocation has failed, nothing to do */
414 if (!p)
415 return;
417 n = count;
418 for (q = p; q != ctx->trees; q = q->next, n = 31) {
419 while (n--) {
420 audit_put_chunk(q->c[n]);
421 q->c[n] = NULL;
424 while (n-- > ctx->tree_count) {
425 audit_put_chunk(q->c[n]);
426 q->c[n] = NULL;
428 ctx->trees = p;
429 ctx->tree_count = count;
430 #endif
433 static void free_tree_refs(struct audit_context *ctx)
435 struct audit_tree_refs *p, *q;
436 for (p = ctx->first_trees; p; p = q) {
437 q = p->next;
438 kfree(p);
442 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
444 #ifdef CONFIG_AUDIT_TREE
445 struct audit_tree_refs *p;
446 int n;
447 if (!tree)
448 return 0;
449 /* full ones */
450 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
451 for (n = 0; n < 31; n++)
452 if (audit_tree_match(p->c[n], tree))
453 return 1;
455 /* partial */
456 if (p) {
457 for (n = ctx->tree_count; n < 31; n++)
458 if (audit_tree_match(p->c[n], tree))
459 return 1;
461 #endif
462 return 0;
465 static int audit_compare_uid(kuid_t uid,
466 struct audit_names *name,
467 struct audit_field *f,
468 struct audit_context *ctx)
470 struct audit_names *n;
471 int rc;
473 if (name) {
474 rc = audit_uid_comparator(uid, f->op, name->uid);
475 if (rc)
476 return rc;
479 if (ctx) {
480 list_for_each_entry(n, &ctx->names_list, list) {
481 rc = audit_uid_comparator(uid, f->op, n->uid);
482 if (rc)
483 return rc;
486 return 0;
489 static int audit_compare_gid(kgid_t gid,
490 struct audit_names *name,
491 struct audit_field *f,
492 struct audit_context *ctx)
494 struct audit_names *n;
495 int rc;
497 if (name) {
498 rc = audit_gid_comparator(gid, f->op, name->gid);
499 if (rc)
500 return rc;
503 if (ctx) {
504 list_for_each_entry(n, &ctx->names_list, list) {
505 rc = audit_gid_comparator(gid, f->op, n->gid);
506 if (rc)
507 return rc;
510 return 0;
513 static int audit_field_compare(struct task_struct *tsk,
514 const struct cred *cred,
515 struct audit_field *f,
516 struct audit_context *ctx,
517 struct audit_names *name)
519 switch (f->val) {
520 /* process to file object comparisons */
521 case AUDIT_COMPARE_UID_TO_OBJ_UID:
522 return audit_compare_uid(cred->uid, name, f, ctx);
523 case AUDIT_COMPARE_GID_TO_OBJ_GID:
524 return audit_compare_gid(cred->gid, name, f, ctx);
525 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
526 return audit_compare_uid(cred->euid, name, f, ctx);
527 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
528 return audit_compare_gid(cred->egid, name, f, ctx);
529 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
530 return audit_compare_uid(tsk->loginuid, name, f, ctx);
531 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
532 return audit_compare_uid(cred->suid, name, f, ctx);
533 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
534 return audit_compare_gid(cred->sgid, name, f, ctx);
535 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
536 return audit_compare_uid(cred->fsuid, name, f, ctx);
537 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
538 return audit_compare_gid(cred->fsgid, name, f, ctx);
539 /* uid comparisons */
540 case AUDIT_COMPARE_UID_TO_AUID:
541 return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
542 case AUDIT_COMPARE_UID_TO_EUID:
543 return audit_uid_comparator(cred->uid, f->op, cred->euid);
544 case AUDIT_COMPARE_UID_TO_SUID:
545 return audit_uid_comparator(cred->uid, f->op, cred->suid);
546 case AUDIT_COMPARE_UID_TO_FSUID:
547 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
548 /* auid comparisons */
549 case AUDIT_COMPARE_AUID_TO_EUID:
550 return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
551 case AUDIT_COMPARE_AUID_TO_SUID:
552 return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
553 case AUDIT_COMPARE_AUID_TO_FSUID:
554 return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
555 /* euid comparisons */
556 case AUDIT_COMPARE_EUID_TO_SUID:
557 return audit_uid_comparator(cred->euid, f->op, cred->suid);
558 case AUDIT_COMPARE_EUID_TO_FSUID:
559 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
560 /* suid comparisons */
561 case AUDIT_COMPARE_SUID_TO_FSUID:
562 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
563 /* gid comparisons */
564 case AUDIT_COMPARE_GID_TO_EGID:
565 return audit_gid_comparator(cred->gid, f->op, cred->egid);
566 case AUDIT_COMPARE_GID_TO_SGID:
567 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
568 case AUDIT_COMPARE_GID_TO_FSGID:
569 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
570 /* egid comparisons */
571 case AUDIT_COMPARE_EGID_TO_SGID:
572 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
573 case AUDIT_COMPARE_EGID_TO_FSGID:
574 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
575 /* sgid comparison */
576 case AUDIT_COMPARE_SGID_TO_FSGID:
577 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
578 default:
579 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
580 return 0;
582 return 0;
585 /* Determine if any context name data matches a rule's watch data */
586 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
587 * otherwise.
589 * If task_creation is true, this is an explicit indication that we are
590 * filtering a task rule at task creation time. This and tsk == current are
591 * the only situations where tsk->cred may be accessed without an rcu read lock.
593 static int audit_filter_rules(struct task_struct *tsk,
594 struct audit_krule *rule,
595 struct audit_context *ctx,
596 struct audit_names *name,
597 enum audit_state *state,
598 bool task_creation)
600 const struct cred *cred;
601 int i, need_sid = 1;
602 u32 sid;
604 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
606 for (i = 0; i < rule->field_count; i++) {
607 struct audit_field *f = &rule->fields[i];
608 struct audit_names *n;
609 int result = 0;
611 switch (f->type) {
612 case AUDIT_PID:
613 result = audit_comparator(tsk->pid, f->op, f->val);
614 break;
615 case AUDIT_PPID:
616 if (ctx) {
617 if (!ctx->ppid)
618 ctx->ppid = sys_getppid();
619 result = audit_comparator(ctx->ppid, f->op, f->val);
621 break;
622 case AUDIT_UID:
623 result = audit_uid_comparator(cred->uid, f->op, f->uid);
624 break;
625 case AUDIT_EUID:
626 result = audit_uid_comparator(cred->euid, f->op, f->uid);
627 break;
628 case AUDIT_SUID:
629 result = audit_uid_comparator(cred->suid, f->op, f->uid);
630 break;
631 case AUDIT_FSUID:
632 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
633 break;
634 case AUDIT_GID:
635 result = audit_gid_comparator(cred->gid, f->op, f->gid);
636 break;
637 case AUDIT_EGID:
638 result = audit_gid_comparator(cred->egid, f->op, f->gid);
639 break;
640 case AUDIT_SGID:
641 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
642 break;
643 case AUDIT_FSGID:
644 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
645 break;
646 case AUDIT_PERS:
647 result = audit_comparator(tsk->personality, f->op, f->val);
648 break;
649 case AUDIT_ARCH:
650 if (ctx)
651 result = audit_comparator(ctx->arch, f->op, f->val);
652 break;
654 case AUDIT_EXIT:
655 if (ctx && ctx->return_valid)
656 result = audit_comparator(ctx->return_code, f->op, f->val);
657 break;
658 case AUDIT_SUCCESS:
659 if (ctx && ctx->return_valid) {
660 if (f->val)
661 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
662 else
663 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
665 break;
666 case AUDIT_DEVMAJOR:
667 if (name) {
668 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
669 audit_comparator(MAJOR(name->rdev), f->op, f->val))
670 ++result;
671 } else if (ctx) {
672 list_for_each_entry(n, &ctx->names_list, list) {
673 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
674 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
675 ++result;
676 break;
680 break;
681 case AUDIT_DEVMINOR:
682 if (name) {
683 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
684 audit_comparator(MINOR(name->rdev), f->op, f->val))
685 ++result;
686 } else if (ctx) {
687 list_for_each_entry(n, &ctx->names_list, list) {
688 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
689 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
690 ++result;
691 break;
695 break;
696 case AUDIT_INODE:
697 if (name)
698 result = (name->ino == f->val);
699 else if (ctx) {
700 list_for_each_entry(n, &ctx->names_list, list) {
701 if (audit_comparator(n->ino, f->op, f->val)) {
702 ++result;
703 break;
707 break;
708 case AUDIT_OBJ_UID:
709 if (name) {
710 result = audit_uid_comparator(name->uid, f->op, f->uid);
711 } else if (ctx) {
712 list_for_each_entry(n, &ctx->names_list, list) {
713 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
714 ++result;
715 break;
719 break;
720 case AUDIT_OBJ_GID:
721 if (name) {
722 result = audit_gid_comparator(name->gid, f->op, f->gid);
723 } else if (ctx) {
724 list_for_each_entry(n, &ctx->names_list, list) {
725 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
726 ++result;
727 break;
731 break;
732 case AUDIT_WATCH:
733 if (name)
734 result = audit_watch_compare(rule->watch, name->ino, name->dev);
735 break;
736 case AUDIT_DIR:
737 if (ctx)
738 result = match_tree_refs(ctx, rule->tree);
739 break;
740 case AUDIT_LOGINUID:
741 result = 0;
742 if (ctx)
743 result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
744 break;
745 case AUDIT_SUBJ_USER:
746 case AUDIT_SUBJ_ROLE:
747 case AUDIT_SUBJ_TYPE:
748 case AUDIT_SUBJ_SEN:
749 case AUDIT_SUBJ_CLR:
750 /* NOTE: this may return negative values indicating
751 a temporary error. We simply treat this as a
752 match for now to avoid losing information that
753 may be wanted. An error message will also be
754 logged upon error */
755 if (f->lsm_rule) {
756 if (need_sid) {
757 security_task_getsecid(tsk, &sid);
758 need_sid = 0;
760 result = security_audit_rule_match(sid, f->type,
761 f->op,
762 f->lsm_rule,
763 ctx);
765 break;
766 case AUDIT_OBJ_USER:
767 case AUDIT_OBJ_ROLE:
768 case AUDIT_OBJ_TYPE:
769 case AUDIT_OBJ_LEV_LOW:
770 case AUDIT_OBJ_LEV_HIGH:
771 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
772 also applies here */
773 if (f->lsm_rule) {
774 /* Find files that match */
775 if (name) {
776 result = security_audit_rule_match(
777 name->osid, f->type, f->op,
778 f->lsm_rule, ctx);
779 } else if (ctx) {
780 list_for_each_entry(n, &ctx->names_list, list) {
781 if (security_audit_rule_match(n->osid, f->type,
782 f->op, f->lsm_rule,
783 ctx)) {
784 ++result;
785 break;
789 /* Find ipc objects that match */
790 if (!ctx || ctx->type != AUDIT_IPC)
791 break;
792 if (security_audit_rule_match(ctx->ipc.osid,
793 f->type, f->op,
794 f->lsm_rule, ctx))
795 ++result;
797 break;
798 case AUDIT_ARG0:
799 case AUDIT_ARG1:
800 case AUDIT_ARG2:
801 case AUDIT_ARG3:
802 if (ctx)
803 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
804 break;
805 case AUDIT_FILTERKEY:
806 /* ignore this field for filtering */
807 result = 1;
808 break;
809 case AUDIT_PERM:
810 result = audit_match_perm(ctx, f->val);
811 break;
812 case AUDIT_FILETYPE:
813 result = audit_match_filetype(ctx, f->val);
814 break;
815 case AUDIT_FIELD_COMPARE:
816 result = audit_field_compare(tsk, cred, f, ctx, name);
817 break;
819 if (!result)
820 return 0;
823 if (ctx) {
824 if (rule->prio <= ctx->prio)
825 return 0;
826 if (rule->filterkey) {
827 kfree(ctx->filterkey);
828 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
830 ctx->prio = rule->prio;
832 switch (rule->action) {
833 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
834 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
836 return 1;
839 /* At process creation time, we can determine if system-call auditing is
840 * completely disabled for this task. Since we only have the task
841 * structure at this point, we can only check uid and gid.
843 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
845 struct audit_entry *e;
846 enum audit_state state;
848 rcu_read_lock();
849 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
850 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
851 &state, true)) {
852 if (state == AUDIT_RECORD_CONTEXT)
853 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
854 rcu_read_unlock();
855 return state;
858 rcu_read_unlock();
859 return AUDIT_BUILD_CONTEXT;
862 /* At syscall entry and exit time, this filter is called if the
863 * audit_state is not low enough that auditing cannot take place, but is
864 * also not high enough that we already know we have to write an audit
865 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
867 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
868 struct audit_context *ctx,
869 struct list_head *list)
871 struct audit_entry *e;
872 enum audit_state state;
874 if (audit_pid && tsk->tgid == audit_pid)
875 return AUDIT_DISABLED;
877 rcu_read_lock();
878 if (!list_empty(list)) {
879 int word = AUDIT_WORD(ctx->major);
880 int bit = AUDIT_BIT(ctx->major);
882 list_for_each_entry_rcu(e, list, list) {
883 if ((e->rule.mask[word] & bit) == bit &&
884 audit_filter_rules(tsk, &e->rule, ctx, NULL,
885 &state, false)) {
886 rcu_read_unlock();
887 ctx->current_state = state;
888 return state;
892 rcu_read_unlock();
893 return AUDIT_BUILD_CONTEXT;
897 * Given an audit_name check the inode hash table to see if they match.
898 * Called holding the rcu read lock to protect the use of audit_inode_hash
900 static int audit_filter_inode_name(struct task_struct *tsk,
901 struct audit_names *n,
902 struct audit_context *ctx) {
903 int word, bit;
904 int h = audit_hash_ino((u32)n->ino);
905 struct list_head *list = &audit_inode_hash[h];
906 struct audit_entry *e;
907 enum audit_state state;
909 word = AUDIT_WORD(ctx->major);
910 bit = AUDIT_BIT(ctx->major);
912 if (list_empty(list))
913 return 0;
915 list_for_each_entry_rcu(e, list, list) {
916 if ((e->rule.mask[word] & bit) == bit &&
917 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
918 ctx->current_state = state;
919 return 1;
923 return 0;
926 /* At syscall exit time, this filter is called if any audit_names have been
927 * collected during syscall processing. We only check rules in sublists at hash
928 * buckets applicable to the inode numbers in audit_names.
929 * Regarding audit_state, same rules apply as for audit_filter_syscall().
931 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
933 struct audit_names *n;
935 if (audit_pid && tsk->tgid == audit_pid)
936 return;
938 rcu_read_lock();
940 list_for_each_entry(n, &ctx->names_list, list) {
941 if (audit_filter_inode_name(tsk, n, ctx))
942 break;
944 rcu_read_unlock();
947 static inline struct audit_context *audit_get_context(struct task_struct *tsk,
948 int return_valid,
949 long return_code)
951 struct audit_context *context = tsk->audit_context;
953 if (!context)
954 return NULL;
955 context->return_valid = return_valid;
958 * we need to fix up the return code in the audit logs if the actual
959 * return codes are later going to be fixed up by the arch specific
960 * signal handlers
962 * This is actually a test for:
963 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
964 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
966 * but is faster than a bunch of ||
968 if (unlikely(return_code <= -ERESTARTSYS) &&
969 (return_code >= -ERESTART_RESTARTBLOCK) &&
970 (return_code != -ENOIOCTLCMD))
971 context->return_code = -EINTR;
972 else
973 context->return_code = return_code;
975 if (context->in_syscall && !context->dummy) {
976 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
977 audit_filter_inodes(tsk, context);
980 tsk->audit_context = NULL;
981 return context;
984 static inline void audit_free_names(struct audit_context *context)
986 struct audit_names *n, *next;
988 #if AUDIT_DEBUG == 2
989 if (context->put_count + context->ino_count != context->name_count) {
990 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
991 " name_count=%d put_count=%d"
992 " ino_count=%d [NOT freeing]\n",
993 __FILE__, __LINE__,
994 context->serial, context->major, context->in_syscall,
995 context->name_count, context->put_count,
996 context->ino_count);
997 list_for_each_entry(n, &context->names_list, list) {
998 printk(KERN_ERR "names[%d] = %p = %s\n", i,
999 n->name, n->name->name ?: "(null)");
1001 dump_stack();
1002 return;
1004 #endif
1005 #if AUDIT_DEBUG
1006 context->put_count = 0;
1007 context->ino_count = 0;
1008 #endif
1010 list_for_each_entry_safe(n, next, &context->names_list, list) {
1011 list_del(&n->list);
1012 if (n->name && n->name_put)
1013 __putname(n->name);
1014 if (n->should_free)
1015 kfree(n);
1017 context->name_count = 0;
1018 path_put(&context->pwd);
1019 context->pwd.dentry = NULL;
1020 context->pwd.mnt = NULL;
1023 static inline void audit_free_aux(struct audit_context *context)
1025 struct audit_aux_data *aux;
1027 while ((aux = context->aux)) {
1028 context->aux = aux->next;
1029 kfree(aux);
1031 while ((aux = context->aux_pids)) {
1032 context->aux_pids = aux->next;
1033 kfree(aux);
1037 static inline void audit_zero_context(struct audit_context *context,
1038 enum audit_state state)
1040 memset(context, 0, sizeof(*context));
1041 context->state = state;
1042 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1045 static inline struct audit_context *audit_alloc_context(enum audit_state state)
1047 struct audit_context *context;
1049 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
1050 return NULL;
1051 audit_zero_context(context, state);
1052 INIT_LIST_HEAD(&context->killed_trees);
1053 INIT_LIST_HEAD(&context->names_list);
1054 return context;
1058 * audit_alloc - allocate an audit context block for a task
1059 * @tsk: task
1061 * Filter on the task information and allocate a per-task audit context
1062 * if necessary. Doing so turns on system call auditing for the
1063 * specified task. This is called from copy_process, so no lock is
1064 * needed.
1066 int audit_alloc(struct task_struct *tsk)
1068 struct audit_context *context;
1069 enum audit_state state;
1070 char *key = NULL;
1072 if (likely(!audit_ever_enabled))
1073 return 0; /* Return if not auditing. */
1075 state = audit_filter_task(tsk, &key);
1076 if (state == AUDIT_DISABLED)
1077 return 0;
1079 if (!(context = audit_alloc_context(state))) {
1080 kfree(key);
1081 audit_log_lost("out of memory in audit_alloc");
1082 return -ENOMEM;
1084 context->filterkey = key;
1086 tsk->audit_context = context;
1087 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
1088 return 0;
1091 static inline void audit_free_context(struct audit_context *context)
1093 audit_free_names(context);
1094 unroll_tree_refs(context, NULL, 0);
1095 free_tree_refs(context);
1096 audit_free_aux(context);
1097 kfree(context->filterkey);
1098 kfree(context->sockaddr);
1099 kfree(context);
1102 void audit_log_task_context(struct audit_buffer *ab)
1104 char *ctx = NULL;
1105 unsigned len;
1106 int error;
1107 u32 sid;
1109 security_task_getsecid(current, &sid);
1110 if (!sid)
1111 return;
1113 error = security_secid_to_secctx(sid, &ctx, &len);
1114 if (error) {
1115 if (error != -EINVAL)
1116 goto error_path;
1117 return;
1120 audit_log_format(ab, " subj=%s", ctx);
1121 security_release_secctx(ctx, len);
1122 return;
1124 error_path:
1125 audit_panic("error in audit_log_task_context");
1126 return;
1129 EXPORT_SYMBOL(audit_log_task_context);
1131 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1133 const struct cred *cred;
1134 char name[sizeof(tsk->comm)];
1135 struct mm_struct *mm = tsk->mm;
1136 char *tty;
1138 if (!ab)
1139 return;
1141 /* tsk == current */
1142 cred = current_cred();
1144 spin_lock_irq(&tsk->sighand->siglock);
1145 if (tsk->signal && tsk->signal->tty)
1146 tty = tsk->signal->tty->name;
1147 else
1148 tty = "(none)";
1149 spin_unlock_irq(&tsk->sighand->siglock);
1152 audit_log_format(ab,
1153 " ppid=%ld pid=%d auid=%u uid=%u gid=%u"
1154 " euid=%u suid=%u fsuid=%u"
1155 " egid=%u sgid=%u fsgid=%u ses=%u tty=%s",
1156 sys_getppid(),
1157 tsk->pid,
1158 from_kuid(&init_user_ns, tsk->loginuid),
1159 from_kuid(&init_user_ns, cred->uid),
1160 from_kgid(&init_user_ns, cred->gid),
1161 from_kuid(&init_user_ns, cred->euid),
1162 from_kuid(&init_user_ns, cred->suid),
1163 from_kuid(&init_user_ns, cred->fsuid),
1164 from_kgid(&init_user_ns, cred->egid),
1165 from_kgid(&init_user_ns, cred->sgid),
1166 from_kgid(&init_user_ns, cred->fsgid),
1167 tsk->sessionid, tty);
1169 get_task_comm(name, tsk);
1170 audit_log_format(ab, " comm=");
1171 audit_log_untrustedstring(ab, name);
1173 if (mm) {
1174 down_read(&mm->mmap_sem);
1175 if (mm->exe_file)
1176 audit_log_d_path(ab, " exe=", &mm->exe_file->f_path);
1177 up_read(&mm->mmap_sem);
1179 audit_log_task_context(ab);
1182 EXPORT_SYMBOL(audit_log_task_info);
1184 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
1185 kuid_t auid, kuid_t uid, unsigned int sessionid,
1186 u32 sid, char *comm)
1188 struct audit_buffer *ab;
1189 char *ctx = NULL;
1190 u32 len;
1191 int rc = 0;
1193 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1194 if (!ab)
1195 return rc;
1197 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
1198 from_kuid(&init_user_ns, auid),
1199 from_kuid(&init_user_ns, uid), sessionid);
1200 if (security_secid_to_secctx(sid, &ctx, &len)) {
1201 audit_log_format(ab, " obj=(none)");
1202 rc = 1;
1203 } else {
1204 audit_log_format(ab, " obj=%s", ctx);
1205 security_release_secctx(ctx, len);
1207 audit_log_format(ab, " ocomm=");
1208 audit_log_untrustedstring(ab, comm);
1209 audit_log_end(ab);
1211 return rc;
1215 * to_send and len_sent accounting are very loose estimates. We aren't
1216 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1217 * within about 500 bytes (next page boundary)
1219 * why snprintf? an int is up to 12 digits long. if we just assumed when
1220 * logging that a[%d]= was going to be 16 characters long we would be wasting
1221 * space in every audit message. In one 7500 byte message we can log up to
1222 * about 1000 min size arguments. That comes down to about 50% waste of space
1223 * if we didn't do the snprintf to find out how long arg_num_len was.
1225 static int audit_log_single_execve_arg(struct audit_context *context,
1226 struct audit_buffer **ab,
1227 int arg_num,
1228 size_t *len_sent,
1229 const char __user *p,
1230 char *buf)
1232 char arg_num_len_buf[12];
1233 const char __user *tmp_p = p;
1234 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1235 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1236 size_t len, len_left, to_send;
1237 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1238 unsigned int i, has_cntl = 0, too_long = 0;
1239 int ret;
1241 /* strnlen_user includes the null we don't want to send */
1242 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1245 * We just created this mm, if we can't find the strings
1246 * we just copied into it something is _very_ wrong. Similar
1247 * for strings that are too long, we should not have created
1248 * any.
1250 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1251 WARN_ON(1);
1252 send_sig(SIGKILL, current, 0);
1253 return -1;
1256 /* walk the whole argument looking for non-ascii chars */
1257 do {
1258 if (len_left > MAX_EXECVE_AUDIT_LEN)
1259 to_send = MAX_EXECVE_AUDIT_LEN;
1260 else
1261 to_send = len_left;
1262 ret = copy_from_user(buf, tmp_p, to_send);
1264 * There is no reason for this copy to be short. We just
1265 * copied them here, and the mm hasn't been exposed to user-
1266 * space yet.
1268 if (ret) {
1269 WARN_ON(1);
1270 send_sig(SIGKILL, current, 0);
1271 return -1;
1273 buf[to_send] = '\0';
1274 has_cntl = audit_string_contains_control(buf, to_send);
1275 if (has_cntl) {
1277 * hex messages get logged as 2 bytes, so we can only
1278 * send half as much in each message
1280 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1281 break;
1283 len_left -= to_send;
1284 tmp_p += to_send;
1285 } while (len_left > 0);
1287 len_left = len;
1289 if (len > max_execve_audit_len)
1290 too_long = 1;
1292 /* rewalk the argument actually logging the message */
1293 for (i = 0; len_left > 0; i++) {
1294 int room_left;
1296 if (len_left > max_execve_audit_len)
1297 to_send = max_execve_audit_len;
1298 else
1299 to_send = len_left;
1301 /* do we have space left to send this argument in this ab? */
1302 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1303 if (has_cntl)
1304 room_left -= (to_send * 2);
1305 else
1306 room_left -= to_send;
1307 if (room_left < 0) {
1308 *len_sent = 0;
1309 audit_log_end(*ab);
1310 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1311 if (!*ab)
1312 return 0;
1316 * first record needs to say how long the original string was
1317 * so we can be sure nothing was lost.
1319 if ((i == 0) && (too_long))
1320 audit_log_format(*ab, " a%d_len=%zu", arg_num,
1321 has_cntl ? 2*len : len);
1324 * normally arguments are small enough to fit and we already
1325 * filled buf above when we checked for control characters
1326 * so don't bother with another copy_from_user
1328 if (len >= max_execve_audit_len)
1329 ret = copy_from_user(buf, p, to_send);
1330 else
1331 ret = 0;
1332 if (ret) {
1333 WARN_ON(1);
1334 send_sig(SIGKILL, current, 0);
1335 return -1;
1337 buf[to_send] = '\0';
1339 /* actually log it */
1340 audit_log_format(*ab, " a%d", arg_num);
1341 if (too_long)
1342 audit_log_format(*ab, "[%d]", i);
1343 audit_log_format(*ab, "=");
1344 if (has_cntl)
1345 audit_log_n_hex(*ab, buf, to_send);
1346 else
1347 audit_log_string(*ab, buf);
1349 p += to_send;
1350 len_left -= to_send;
1351 *len_sent += arg_num_len;
1352 if (has_cntl)
1353 *len_sent += to_send * 2;
1354 else
1355 *len_sent += to_send;
1357 /* include the null we didn't log */
1358 return len + 1;
1361 static void audit_log_execve_info(struct audit_context *context,
1362 struct audit_buffer **ab,
1363 struct audit_aux_data_execve *axi)
1365 int i, len;
1366 size_t len_sent = 0;
1367 const char __user *p;
1368 char *buf;
1370 if (axi->mm != current->mm)
1371 return; /* execve failed, no additional info */
1373 p = (const char __user *)axi->mm->arg_start;
1375 audit_log_format(*ab, "argc=%d", axi->argc);
1378 * we need some kernel buffer to hold the userspace args. Just
1379 * allocate one big one rather than allocating one of the right size
1380 * for every single argument inside audit_log_single_execve_arg()
1381 * should be <8k allocation so should be pretty safe.
1383 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1384 if (!buf) {
1385 audit_panic("out of memory for argv string\n");
1386 return;
1389 for (i = 0; i < axi->argc; i++) {
1390 len = audit_log_single_execve_arg(context, ab, i,
1391 &len_sent, p, buf);
1392 if (len <= 0)
1393 break;
1394 p += len;
1396 kfree(buf);
1399 static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1401 int i;
1403 audit_log_format(ab, " %s=", prefix);
1404 CAP_FOR_EACH_U32(i) {
1405 audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1409 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1411 kernel_cap_t *perm = &name->fcap.permitted;
1412 kernel_cap_t *inh = &name->fcap.inheritable;
1413 int log = 0;
1415 if (!cap_isclear(*perm)) {
1416 audit_log_cap(ab, "cap_fp", perm);
1417 log = 1;
1419 if (!cap_isclear(*inh)) {
1420 audit_log_cap(ab, "cap_fi", inh);
1421 log = 1;
1424 if (log)
1425 audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1428 static void show_special(struct audit_context *context, int *call_panic)
1430 struct audit_buffer *ab;
1431 int i;
1433 ab = audit_log_start(context, GFP_KERNEL, context->type);
1434 if (!ab)
1435 return;
1437 switch (context->type) {
1438 case AUDIT_SOCKETCALL: {
1439 int nargs = context->socketcall.nargs;
1440 audit_log_format(ab, "nargs=%d", nargs);
1441 for (i = 0; i < nargs; i++)
1442 audit_log_format(ab, " a%d=%lx", i,
1443 context->socketcall.args[i]);
1444 break; }
1445 case AUDIT_IPC: {
1446 u32 osid = context->ipc.osid;
1448 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1449 from_kuid(&init_user_ns, context->ipc.uid),
1450 from_kgid(&init_user_ns, context->ipc.gid),
1451 context->ipc.mode);
1452 if (osid) {
1453 char *ctx = NULL;
1454 u32 len;
1455 if (security_secid_to_secctx(osid, &ctx, &len)) {
1456 audit_log_format(ab, " osid=%u", osid);
1457 *call_panic = 1;
1458 } else {
1459 audit_log_format(ab, " obj=%s", ctx);
1460 security_release_secctx(ctx, len);
1463 if (context->ipc.has_perm) {
1464 audit_log_end(ab);
1465 ab = audit_log_start(context, GFP_KERNEL,
1466 AUDIT_IPC_SET_PERM);
1467 if (unlikely(!ab))
1468 return;
1469 audit_log_format(ab,
1470 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1471 context->ipc.qbytes,
1472 context->ipc.perm_uid,
1473 context->ipc.perm_gid,
1474 context->ipc.perm_mode);
1476 break; }
1477 case AUDIT_MQ_OPEN: {
1478 audit_log_format(ab,
1479 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1480 "mq_msgsize=%ld mq_curmsgs=%ld",
1481 context->mq_open.oflag, context->mq_open.mode,
1482 context->mq_open.attr.mq_flags,
1483 context->mq_open.attr.mq_maxmsg,
1484 context->mq_open.attr.mq_msgsize,
1485 context->mq_open.attr.mq_curmsgs);
1486 break; }
1487 case AUDIT_MQ_SENDRECV: {
1488 audit_log_format(ab,
1489 "mqdes=%d msg_len=%zd msg_prio=%u "
1490 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1491 context->mq_sendrecv.mqdes,
1492 context->mq_sendrecv.msg_len,
1493 context->mq_sendrecv.msg_prio,
1494 context->mq_sendrecv.abs_timeout.tv_sec,
1495 context->mq_sendrecv.abs_timeout.tv_nsec);
1496 break; }
1497 case AUDIT_MQ_NOTIFY: {
1498 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1499 context->mq_notify.mqdes,
1500 context->mq_notify.sigev_signo);
1501 break; }
1502 case AUDIT_MQ_GETSETATTR: {
1503 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1504 audit_log_format(ab,
1505 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1506 "mq_curmsgs=%ld ",
1507 context->mq_getsetattr.mqdes,
1508 attr->mq_flags, attr->mq_maxmsg,
1509 attr->mq_msgsize, attr->mq_curmsgs);
1510 break; }
1511 case AUDIT_CAPSET: {
1512 audit_log_format(ab, "pid=%d", context->capset.pid);
1513 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1514 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1515 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1516 break; }
1517 case AUDIT_MMAP: {
1518 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1519 context->mmap.flags);
1520 break; }
1522 audit_log_end(ab);
1525 static void audit_log_name(struct audit_context *context, struct audit_names *n,
1526 int record_num, int *call_panic)
1528 struct audit_buffer *ab;
1529 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1530 if (!ab)
1531 return; /* audit_panic has been called */
1533 audit_log_format(ab, "item=%d", record_num);
1535 if (n->name) {
1536 switch (n->name_len) {
1537 case AUDIT_NAME_FULL:
1538 /* log the full path */
1539 audit_log_format(ab, " name=");
1540 audit_log_untrustedstring(ab, n->name->name);
1541 break;
1542 case 0:
1543 /* name was specified as a relative path and the
1544 * directory component is the cwd */
1545 audit_log_d_path(ab, " name=", &context->pwd);
1546 break;
1547 default:
1548 /* log the name's directory component */
1549 audit_log_format(ab, " name=");
1550 audit_log_n_untrustedstring(ab, n->name->name,
1551 n->name_len);
1553 } else
1554 audit_log_format(ab, " name=(null)");
1556 if (n->ino != (unsigned long)-1) {
1557 audit_log_format(ab, " inode=%lu"
1558 " dev=%02x:%02x mode=%#ho"
1559 " ouid=%u ogid=%u rdev=%02x:%02x",
1560 n->ino,
1561 MAJOR(n->dev),
1562 MINOR(n->dev),
1563 n->mode,
1564 from_kuid(&init_user_ns, n->uid),
1565 from_kgid(&init_user_ns, n->gid),
1566 MAJOR(n->rdev),
1567 MINOR(n->rdev));
1569 if (n->osid != 0) {
1570 char *ctx = NULL;
1571 u32 len;
1572 if (security_secid_to_secctx(
1573 n->osid, &ctx, &len)) {
1574 audit_log_format(ab, " osid=%u", n->osid);
1575 *call_panic = 2;
1576 } else {
1577 audit_log_format(ab, " obj=%s", ctx);
1578 security_release_secctx(ctx, len);
1582 audit_log_fcaps(ab, n);
1584 audit_log_end(ab);
1587 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1589 int i, call_panic = 0;
1590 struct audit_buffer *ab;
1591 struct audit_aux_data *aux;
1592 struct audit_names *n;
1594 /* tsk == current */
1595 context->personality = tsk->personality;
1597 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1598 if (!ab)
1599 return; /* audit_panic has been called */
1600 audit_log_format(ab, "arch=%x syscall=%d",
1601 context->arch, context->major);
1602 if (context->personality != PER_LINUX)
1603 audit_log_format(ab, " per=%lx", context->personality);
1604 if (context->return_valid)
1605 audit_log_format(ab, " success=%s exit=%ld",
1606 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1607 context->return_code);
1609 audit_log_format(ab,
1610 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1611 context->argv[0],
1612 context->argv[1],
1613 context->argv[2],
1614 context->argv[3],
1615 context->name_count);
1617 audit_log_task_info(ab, tsk);
1618 audit_log_key(ab, context->filterkey);
1619 audit_log_end(ab);
1621 for (aux = context->aux; aux; aux = aux->next) {
1623 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1624 if (!ab)
1625 continue; /* audit_panic has been called */
1627 switch (aux->type) {
1629 case AUDIT_EXECVE: {
1630 struct audit_aux_data_execve *axi = (void *)aux;
1631 audit_log_execve_info(context, &ab, axi);
1632 break; }
1634 case AUDIT_BPRM_FCAPS: {
1635 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1636 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1637 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1638 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1639 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1640 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1641 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1642 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1643 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1644 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1645 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1646 break; }
1649 audit_log_end(ab);
1652 if (context->type)
1653 show_special(context, &call_panic);
1655 if (context->fds[0] >= 0) {
1656 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1657 if (ab) {
1658 audit_log_format(ab, "fd0=%d fd1=%d",
1659 context->fds[0], context->fds[1]);
1660 audit_log_end(ab);
1664 if (context->sockaddr_len) {
1665 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1666 if (ab) {
1667 audit_log_format(ab, "saddr=");
1668 audit_log_n_hex(ab, (void *)context->sockaddr,
1669 context->sockaddr_len);
1670 audit_log_end(ab);
1674 for (aux = context->aux_pids; aux; aux = aux->next) {
1675 struct audit_aux_data_pids *axs = (void *)aux;
1677 for (i = 0; i < axs->pid_count; i++)
1678 if (audit_log_pid_context(context, axs->target_pid[i],
1679 axs->target_auid[i],
1680 axs->target_uid[i],
1681 axs->target_sessionid[i],
1682 axs->target_sid[i],
1683 axs->target_comm[i]))
1684 call_panic = 1;
1687 if (context->target_pid &&
1688 audit_log_pid_context(context, context->target_pid,
1689 context->target_auid, context->target_uid,
1690 context->target_sessionid,
1691 context->target_sid, context->target_comm))
1692 call_panic = 1;
1694 if (context->pwd.dentry && context->pwd.mnt) {
1695 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1696 if (ab) {
1697 audit_log_d_path(ab, " cwd=", &context->pwd);
1698 audit_log_end(ab);
1702 i = 0;
1703 list_for_each_entry(n, &context->names_list, list)
1704 audit_log_name(context, n, i++, &call_panic);
1706 /* Send end of event record to help user space know we are finished */
1707 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1708 if (ab)
1709 audit_log_end(ab);
1710 if (call_panic)
1711 audit_panic("error converting sid to string");
1715 * audit_free - free a per-task audit context
1716 * @tsk: task whose audit context block to free
1718 * Called from copy_process and do_exit
1720 void __audit_free(struct task_struct *tsk)
1722 struct audit_context *context;
1724 context = audit_get_context(tsk, 0, 0);
1725 if (!context)
1726 return;
1728 /* Check for system calls that do not go through the exit
1729 * function (e.g., exit_group), then free context block.
1730 * We use GFP_ATOMIC here because we might be doing this
1731 * in the context of the idle thread */
1732 /* that can happen only if we are called from do_exit() */
1733 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1734 audit_log_exit(context, tsk);
1735 if (!list_empty(&context->killed_trees))
1736 audit_kill_trees(&context->killed_trees);
1738 audit_free_context(context);
1742 * audit_syscall_entry - fill in an audit record at syscall entry
1743 * @arch: architecture type
1744 * @major: major syscall type (function)
1745 * @a1: additional syscall register 1
1746 * @a2: additional syscall register 2
1747 * @a3: additional syscall register 3
1748 * @a4: additional syscall register 4
1750 * Fill in audit context at syscall entry. This only happens if the
1751 * audit context was created when the task was created and the state or
1752 * filters demand the audit context be built. If the state from the
1753 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1754 * then the record will be written at syscall exit time (otherwise, it
1755 * will only be written if another part of the kernel requests that it
1756 * be written).
1758 void __audit_syscall_entry(int arch, int major,
1759 unsigned long a1, unsigned long a2,
1760 unsigned long a3, unsigned long a4)
1762 struct task_struct *tsk = current;
1763 struct audit_context *context = tsk->audit_context;
1764 enum audit_state state;
1766 if (!context)
1767 return;
1769 BUG_ON(context->in_syscall || context->name_count);
1771 if (!audit_enabled)
1772 return;
1774 context->arch = arch;
1775 context->major = major;
1776 context->argv[0] = a1;
1777 context->argv[1] = a2;
1778 context->argv[2] = a3;
1779 context->argv[3] = a4;
1781 state = context->state;
1782 context->dummy = !audit_n_rules;
1783 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1784 context->prio = 0;
1785 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1787 if (state == AUDIT_DISABLED)
1788 return;
1790 context->serial = 0;
1791 context->ctime = CURRENT_TIME;
1792 context->in_syscall = 1;
1793 context->current_state = state;
1794 context->ppid = 0;
1798 * audit_syscall_exit - deallocate audit context after a system call
1799 * @success: success value of the syscall
1800 * @return_code: return value of the syscall
1802 * Tear down after system call. If the audit context has been marked as
1803 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1804 * filtering, or because some other part of the kernel wrote an audit
1805 * message), then write out the syscall information. In call cases,
1806 * free the names stored from getname().
1808 void __audit_syscall_exit(int success, long return_code)
1810 struct task_struct *tsk = current;
1811 struct audit_context *context;
1813 if (success)
1814 success = AUDITSC_SUCCESS;
1815 else
1816 success = AUDITSC_FAILURE;
1818 context = audit_get_context(tsk, success, return_code);
1819 if (!context)
1820 return;
1822 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1823 audit_log_exit(context, tsk);
1825 context->in_syscall = 0;
1826 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1828 if (!list_empty(&context->killed_trees))
1829 audit_kill_trees(&context->killed_trees);
1831 audit_free_names(context);
1832 unroll_tree_refs(context, NULL, 0);
1833 audit_free_aux(context);
1834 context->aux = NULL;
1835 context->aux_pids = NULL;
1836 context->target_pid = 0;
1837 context->target_sid = 0;
1838 context->sockaddr_len = 0;
1839 context->type = 0;
1840 context->fds[0] = -1;
1841 if (context->state != AUDIT_RECORD_CONTEXT) {
1842 kfree(context->filterkey);
1843 context->filterkey = NULL;
1845 tsk->audit_context = context;
1848 static inline void handle_one(const struct inode *inode)
1850 #ifdef CONFIG_AUDIT_TREE
1851 struct audit_context *context;
1852 struct audit_tree_refs *p;
1853 struct audit_chunk *chunk;
1854 int count;
1855 if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1856 return;
1857 context = current->audit_context;
1858 p = context->trees;
1859 count = context->tree_count;
1860 rcu_read_lock();
1861 chunk = audit_tree_lookup(inode);
1862 rcu_read_unlock();
1863 if (!chunk)
1864 return;
1865 if (likely(put_tree_ref(context, chunk)))
1866 return;
1867 if (unlikely(!grow_tree_refs(context))) {
1868 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1869 audit_set_auditable(context);
1870 audit_put_chunk(chunk);
1871 unroll_tree_refs(context, p, count);
1872 return;
1874 put_tree_ref(context, chunk);
1875 #endif
1878 static void handle_path(const struct dentry *dentry)
1880 #ifdef CONFIG_AUDIT_TREE
1881 struct audit_context *context;
1882 struct audit_tree_refs *p;
1883 const struct dentry *d, *parent;
1884 struct audit_chunk *drop;
1885 unsigned long seq;
1886 int count;
1888 context = current->audit_context;
1889 p = context->trees;
1890 count = context->tree_count;
1891 retry:
1892 drop = NULL;
1893 d = dentry;
1894 rcu_read_lock();
1895 seq = read_seqbegin(&rename_lock);
1896 for(;;) {
1897 struct inode *inode = d->d_inode;
1898 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1899 struct audit_chunk *chunk;
1900 chunk = audit_tree_lookup(inode);
1901 if (chunk) {
1902 if (unlikely(!put_tree_ref(context, chunk))) {
1903 drop = chunk;
1904 break;
1908 parent = d->d_parent;
1909 if (parent == d)
1910 break;
1911 d = parent;
1913 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1914 rcu_read_unlock();
1915 if (!drop) {
1916 /* just a race with rename */
1917 unroll_tree_refs(context, p, count);
1918 goto retry;
1920 audit_put_chunk(drop);
1921 if (grow_tree_refs(context)) {
1922 /* OK, got more space */
1923 unroll_tree_refs(context, p, count);
1924 goto retry;
1926 /* too bad */
1927 printk(KERN_WARNING
1928 "out of memory, audit has lost a tree reference\n");
1929 unroll_tree_refs(context, p, count);
1930 audit_set_auditable(context);
1931 return;
1933 rcu_read_unlock();
1934 #endif
1937 static struct audit_names *audit_alloc_name(struct audit_context *context,
1938 unsigned char type)
1940 struct audit_names *aname;
1942 if (context->name_count < AUDIT_NAMES) {
1943 aname = &context->preallocated_names[context->name_count];
1944 memset(aname, 0, sizeof(*aname));
1945 } else {
1946 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1947 if (!aname)
1948 return NULL;
1949 aname->should_free = true;
1952 aname->ino = (unsigned long)-1;
1953 aname->type = type;
1954 list_add_tail(&aname->list, &context->names_list);
1956 context->name_count++;
1957 #if AUDIT_DEBUG
1958 context->ino_count++;
1959 #endif
1960 return aname;
1964 * audit_reusename - fill out filename with info from existing entry
1965 * @uptr: userland ptr to pathname
1967 * Search the audit_names list for the current audit context. If there is an
1968 * existing entry with a matching "uptr" then return the filename
1969 * associated with that audit_name. If not, return NULL.
1971 struct filename *
1972 __audit_reusename(const __user char *uptr)
1974 struct audit_context *context = current->audit_context;
1975 struct audit_names *n;
1977 list_for_each_entry(n, &context->names_list, list) {
1978 if (!n->name)
1979 continue;
1980 if (n->name->uptr == uptr)
1981 return n->name;
1983 return NULL;
1987 * audit_getname - add a name to the list
1988 * @name: name to add
1990 * Add a name to the list of audit names for this context.
1991 * Called from fs/namei.c:getname().
1993 void __audit_getname(struct filename *name)
1995 struct audit_context *context = current->audit_context;
1996 struct audit_names *n;
1998 if (!context->in_syscall) {
1999 #if AUDIT_DEBUG == 2
2000 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
2001 __FILE__, __LINE__, context->serial, name);
2002 dump_stack();
2003 #endif
2004 return;
2007 #if AUDIT_DEBUG
2008 /* The filename _must_ have a populated ->name */
2009 BUG_ON(!name->name);
2010 #endif
2012 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2013 if (!n)
2014 return;
2016 n->name = name;
2017 n->name_len = AUDIT_NAME_FULL;
2018 n->name_put = true;
2019 name->aname = n;
2021 if (!context->pwd.dentry)
2022 get_fs_pwd(current->fs, &context->pwd);
2025 /* audit_putname - intercept a putname request
2026 * @name: name to intercept and delay for putname
2028 * If we have stored the name from getname in the audit context,
2029 * then we delay the putname until syscall exit.
2030 * Called from include/linux/fs.h:putname().
2032 void audit_putname(struct filename *name)
2034 struct audit_context *context = current->audit_context;
2036 BUG_ON(!context);
2037 if (!context->in_syscall) {
2038 #if AUDIT_DEBUG == 2
2039 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
2040 __FILE__, __LINE__, context->serial, name);
2041 if (context->name_count) {
2042 struct audit_names *n;
2043 int i;
2045 list_for_each_entry(n, &context->names_list, list)
2046 printk(KERN_ERR "name[%d] = %p = %s\n", i,
2047 n->name, n->name->name ?: "(null)");
2049 #endif
2050 __putname(name);
2052 #if AUDIT_DEBUG
2053 else {
2054 ++context->put_count;
2055 if (context->put_count > context->name_count) {
2056 printk(KERN_ERR "%s:%d(:%d): major=%d"
2057 " in_syscall=%d putname(%p) name_count=%d"
2058 " put_count=%d\n",
2059 __FILE__, __LINE__,
2060 context->serial, context->major,
2061 context->in_syscall, name->name,
2062 context->name_count, context->put_count);
2063 dump_stack();
2066 #endif
2069 static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
2071 struct cpu_vfs_cap_data caps;
2072 int rc;
2074 if (!dentry)
2075 return 0;
2077 rc = get_vfs_caps_from_disk(dentry, &caps);
2078 if (rc)
2079 return rc;
2081 name->fcap.permitted = caps.permitted;
2082 name->fcap.inheritable = caps.inheritable;
2083 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2084 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2086 return 0;
2090 /* Copy inode data into an audit_names. */
2091 static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
2092 const struct inode *inode)
2094 name->ino = inode->i_ino;
2095 name->dev = inode->i_sb->s_dev;
2096 name->mode = inode->i_mode;
2097 name->uid = inode->i_uid;
2098 name->gid = inode->i_gid;
2099 name->rdev = inode->i_rdev;
2100 security_inode_getsecid(inode, &name->osid);
2101 audit_copy_fcaps(name, dentry);
2105 * __audit_inode - store the inode and device from a lookup
2106 * @name: name being audited
2107 * @dentry: dentry being audited
2108 * @parent: does this dentry represent the parent?
2110 void __audit_inode(struct filename *name, const struct dentry *dentry,
2111 unsigned int parent)
2113 struct audit_context *context = current->audit_context;
2114 const struct inode *inode = dentry->d_inode;
2115 struct audit_names *n;
2117 if (!context->in_syscall)
2118 return;
2120 if (!name)
2121 goto out_alloc;
2123 #if AUDIT_DEBUG
2124 /* The struct filename _must_ have a populated ->name */
2125 BUG_ON(!name->name);
2126 #endif
2128 * If we have a pointer to an audit_names entry already, then we can
2129 * just use it directly if the type is correct.
2131 n = name->aname;
2132 if (n) {
2133 if (parent) {
2134 if (n->type == AUDIT_TYPE_PARENT ||
2135 n->type == AUDIT_TYPE_UNKNOWN)
2136 goto out;
2137 } else {
2138 if (n->type != AUDIT_TYPE_PARENT)
2139 goto out;
2143 list_for_each_entry_reverse(n, &context->names_list, list) {
2144 /* does the name pointer match? */
2145 if (!n->name || n->name->name != name->name)
2146 continue;
2148 /* match the correct record type */
2149 if (parent) {
2150 if (n->type == AUDIT_TYPE_PARENT ||
2151 n->type == AUDIT_TYPE_UNKNOWN)
2152 goto out;
2153 } else {
2154 if (n->type != AUDIT_TYPE_PARENT)
2155 goto out;
2159 out_alloc:
2160 /* unable to find the name from a previous getname(). Allocate a new
2161 * anonymous entry.
2163 n = audit_alloc_name(context, AUDIT_TYPE_NORMAL);
2164 if (!n)
2165 return;
2166 out:
2167 if (parent) {
2168 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2169 n->type = AUDIT_TYPE_PARENT;
2170 } else {
2171 n->name_len = AUDIT_NAME_FULL;
2172 n->type = AUDIT_TYPE_NORMAL;
2174 handle_path(dentry);
2175 audit_copy_inode(n, dentry, inode);
2179 * __audit_inode_child - collect inode info for created/removed objects
2180 * @parent: inode of dentry parent
2181 * @dentry: dentry being audited
2182 * @type: AUDIT_TYPE_* value that we're looking for
2184 * For syscalls that create or remove filesystem objects, audit_inode
2185 * can only collect information for the filesystem object's parent.
2186 * This call updates the audit context with the child's information.
2187 * Syscalls that create a new filesystem object must be hooked after
2188 * the object is created. Syscalls that remove a filesystem object
2189 * must be hooked prior, in order to capture the target inode during
2190 * unsuccessful attempts.
2192 void __audit_inode_child(const struct inode *parent,
2193 const struct dentry *dentry,
2194 const unsigned char type)
2196 struct audit_context *context = current->audit_context;
2197 const struct inode *inode = dentry->d_inode;
2198 const char *dname = dentry->d_name.name;
2199 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2201 if (!context->in_syscall)
2202 return;
2204 if (inode)
2205 handle_one(inode);
2207 /* look for a parent entry first */
2208 list_for_each_entry(n, &context->names_list, list) {
2209 if (!n->name || n->type != AUDIT_TYPE_PARENT)
2210 continue;
2212 if (n->ino == parent->i_ino &&
2213 !audit_compare_dname_path(dname, n->name->name, n->name_len)) {
2214 found_parent = n;
2215 break;
2219 /* is there a matching child entry? */
2220 list_for_each_entry(n, &context->names_list, list) {
2221 /* can only match entries that have a name */
2222 if (!n->name || n->type != type)
2223 continue;
2225 /* if we found a parent, make sure this one is a child of it */
2226 if (found_parent && (n->name != found_parent->name))
2227 continue;
2229 if (!strcmp(dname, n->name->name) ||
2230 !audit_compare_dname_path(dname, n->name->name,
2231 found_parent ?
2232 found_parent->name_len :
2233 AUDIT_NAME_FULL)) {
2234 found_child = n;
2235 break;
2239 if (!found_parent) {
2240 /* create a new, "anonymous" parent record */
2241 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2242 if (!n)
2243 return;
2244 audit_copy_inode(n, NULL, parent);
2247 if (!found_child) {
2248 found_child = audit_alloc_name(context, type);
2249 if (!found_child)
2250 return;
2252 /* Re-use the name belonging to the slot for a matching parent
2253 * directory. All names for this context are relinquished in
2254 * audit_free_names() */
2255 if (found_parent) {
2256 found_child->name = found_parent->name;
2257 found_child->name_len = AUDIT_NAME_FULL;
2258 /* don't call __putname() */
2259 found_child->name_put = false;
2262 if (inode)
2263 audit_copy_inode(found_child, dentry, inode);
2264 else
2265 found_child->ino = (unsigned long)-1;
2267 EXPORT_SYMBOL_GPL(__audit_inode_child);
2270 * auditsc_get_stamp - get local copies of audit_context values
2271 * @ctx: audit_context for the task
2272 * @t: timespec to store time recorded in the audit_context
2273 * @serial: serial value that is recorded in the audit_context
2275 * Also sets the context as auditable.
2277 int auditsc_get_stamp(struct audit_context *ctx,
2278 struct timespec *t, unsigned int *serial)
2280 if (!ctx->in_syscall)
2281 return 0;
2282 if (!ctx->serial)
2283 ctx->serial = audit_serial();
2284 t->tv_sec = ctx->ctime.tv_sec;
2285 t->tv_nsec = ctx->ctime.tv_nsec;
2286 *serial = ctx->serial;
2287 if (!ctx->prio) {
2288 ctx->prio = 1;
2289 ctx->current_state = AUDIT_RECORD_CONTEXT;
2291 return 1;
2294 /* global counter which is incremented every time something logs in */
2295 static atomic_t session_id = ATOMIC_INIT(0);
2298 * audit_set_loginuid - set current task's audit_context loginuid
2299 * @loginuid: loginuid value
2301 * Returns 0.
2303 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2305 int audit_set_loginuid(kuid_t loginuid)
2307 struct task_struct *task = current;
2308 struct audit_context *context = task->audit_context;
2309 unsigned int sessionid;
2311 #ifdef CONFIG_AUDIT_LOGINUID_IMMUTABLE
2312 if (uid_valid(task->loginuid))
2313 return -EPERM;
2314 #else /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2315 if (!capable(CAP_AUDIT_CONTROL))
2316 return -EPERM;
2317 #endif /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2319 sessionid = atomic_inc_return(&session_id);
2320 if (context && context->in_syscall) {
2321 struct audit_buffer *ab;
2323 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2324 if (ab) {
2325 audit_log_format(ab, "login pid=%d uid=%u "
2326 "old auid=%u new auid=%u"
2327 " old ses=%u new ses=%u",
2328 task->pid,
2329 from_kuid(&init_user_ns, task_uid(task)),
2330 from_kuid(&init_user_ns, task->loginuid),
2331 from_kuid(&init_user_ns, loginuid),
2332 task->sessionid, sessionid);
2333 audit_log_end(ab);
2336 task->sessionid = sessionid;
2337 task->loginuid = loginuid;
2338 return 0;
2342 * __audit_mq_open - record audit data for a POSIX MQ open
2343 * @oflag: open flag
2344 * @mode: mode bits
2345 * @attr: queue attributes
2348 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2350 struct audit_context *context = current->audit_context;
2352 if (attr)
2353 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2354 else
2355 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2357 context->mq_open.oflag = oflag;
2358 context->mq_open.mode = mode;
2360 context->type = AUDIT_MQ_OPEN;
2364 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2365 * @mqdes: MQ descriptor
2366 * @msg_len: Message length
2367 * @msg_prio: Message priority
2368 * @abs_timeout: Message timeout in absolute time
2371 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2372 const struct timespec *abs_timeout)
2374 struct audit_context *context = current->audit_context;
2375 struct timespec *p = &context->mq_sendrecv.abs_timeout;
2377 if (abs_timeout)
2378 memcpy(p, abs_timeout, sizeof(struct timespec));
2379 else
2380 memset(p, 0, sizeof(struct timespec));
2382 context->mq_sendrecv.mqdes = mqdes;
2383 context->mq_sendrecv.msg_len = msg_len;
2384 context->mq_sendrecv.msg_prio = msg_prio;
2386 context->type = AUDIT_MQ_SENDRECV;
2390 * __audit_mq_notify - record audit data for a POSIX MQ notify
2391 * @mqdes: MQ descriptor
2392 * @notification: Notification event
2396 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2398 struct audit_context *context = current->audit_context;
2400 if (notification)
2401 context->mq_notify.sigev_signo = notification->sigev_signo;
2402 else
2403 context->mq_notify.sigev_signo = 0;
2405 context->mq_notify.mqdes = mqdes;
2406 context->type = AUDIT_MQ_NOTIFY;
2410 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2411 * @mqdes: MQ descriptor
2412 * @mqstat: MQ flags
2415 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2417 struct audit_context *context = current->audit_context;
2418 context->mq_getsetattr.mqdes = mqdes;
2419 context->mq_getsetattr.mqstat = *mqstat;
2420 context->type = AUDIT_MQ_GETSETATTR;
2424 * audit_ipc_obj - record audit data for ipc object
2425 * @ipcp: ipc permissions
2428 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2430 struct audit_context *context = current->audit_context;
2431 context->ipc.uid = ipcp->uid;
2432 context->ipc.gid = ipcp->gid;
2433 context->ipc.mode = ipcp->mode;
2434 context->ipc.has_perm = 0;
2435 security_ipc_getsecid(ipcp, &context->ipc.osid);
2436 context->type = AUDIT_IPC;
2440 * audit_ipc_set_perm - record audit data for new ipc permissions
2441 * @qbytes: msgq bytes
2442 * @uid: msgq user id
2443 * @gid: msgq group id
2444 * @mode: msgq mode (permissions)
2446 * Called only after audit_ipc_obj().
2448 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2450 struct audit_context *context = current->audit_context;
2452 context->ipc.qbytes = qbytes;
2453 context->ipc.perm_uid = uid;
2454 context->ipc.perm_gid = gid;
2455 context->ipc.perm_mode = mode;
2456 context->ipc.has_perm = 1;
2459 int __audit_bprm(struct linux_binprm *bprm)
2461 struct audit_aux_data_execve *ax;
2462 struct audit_context *context = current->audit_context;
2464 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2465 if (!ax)
2466 return -ENOMEM;
2468 ax->argc = bprm->argc;
2469 ax->envc = bprm->envc;
2470 ax->mm = bprm->mm;
2471 ax->d.type = AUDIT_EXECVE;
2472 ax->d.next = context->aux;
2473 context->aux = (void *)ax;
2474 return 0;
2479 * audit_socketcall - record audit data for sys_socketcall
2480 * @nargs: number of args
2481 * @args: args array
2484 void __audit_socketcall(int nargs, unsigned long *args)
2486 struct audit_context *context = current->audit_context;
2488 context->type = AUDIT_SOCKETCALL;
2489 context->socketcall.nargs = nargs;
2490 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2494 * __audit_fd_pair - record audit data for pipe and socketpair
2495 * @fd1: the first file descriptor
2496 * @fd2: the second file descriptor
2499 void __audit_fd_pair(int fd1, int fd2)
2501 struct audit_context *context = current->audit_context;
2502 context->fds[0] = fd1;
2503 context->fds[1] = fd2;
2507 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2508 * @len: data length in user space
2509 * @a: data address in kernel space
2511 * Returns 0 for success or NULL context or < 0 on error.
2513 int __audit_sockaddr(int len, void *a)
2515 struct audit_context *context = current->audit_context;
2517 if (!context->sockaddr) {
2518 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2519 if (!p)
2520 return -ENOMEM;
2521 context->sockaddr = p;
2524 context->sockaddr_len = len;
2525 memcpy(context->sockaddr, a, len);
2526 return 0;
2529 void __audit_ptrace(struct task_struct *t)
2531 struct audit_context *context = current->audit_context;
2533 context->target_pid = t->pid;
2534 context->target_auid = audit_get_loginuid(t);
2535 context->target_uid = task_uid(t);
2536 context->target_sessionid = audit_get_sessionid(t);
2537 security_task_getsecid(t, &context->target_sid);
2538 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2542 * audit_signal_info - record signal info for shutting down audit subsystem
2543 * @sig: signal value
2544 * @t: task being signaled
2546 * If the audit subsystem is being terminated, record the task (pid)
2547 * and uid that is doing that.
2549 int __audit_signal_info(int sig, struct task_struct *t)
2551 struct audit_aux_data_pids *axp;
2552 struct task_struct *tsk = current;
2553 struct audit_context *ctx = tsk->audit_context;
2554 kuid_t uid = current_uid(), t_uid = task_uid(t);
2556 if (audit_pid && t->tgid == audit_pid) {
2557 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2558 audit_sig_pid = tsk->pid;
2559 if (uid_valid(tsk->loginuid))
2560 audit_sig_uid = tsk->loginuid;
2561 else
2562 audit_sig_uid = uid;
2563 security_task_getsecid(tsk, &audit_sig_sid);
2565 if (!audit_signals || audit_dummy_context())
2566 return 0;
2569 /* optimize the common case by putting first signal recipient directly
2570 * in audit_context */
2571 if (!ctx->target_pid) {
2572 ctx->target_pid = t->tgid;
2573 ctx->target_auid = audit_get_loginuid(t);
2574 ctx->target_uid = t_uid;
2575 ctx->target_sessionid = audit_get_sessionid(t);
2576 security_task_getsecid(t, &ctx->target_sid);
2577 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2578 return 0;
2581 axp = (void *)ctx->aux_pids;
2582 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2583 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2584 if (!axp)
2585 return -ENOMEM;
2587 axp->d.type = AUDIT_OBJ_PID;
2588 axp->d.next = ctx->aux_pids;
2589 ctx->aux_pids = (void *)axp;
2591 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2593 axp->target_pid[axp->pid_count] = t->tgid;
2594 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2595 axp->target_uid[axp->pid_count] = t_uid;
2596 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2597 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2598 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2599 axp->pid_count++;
2601 return 0;
2605 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2606 * @bprm: pointer to the bprm being processed
2607 * @new: the proposed new credentials
2608 * @old: the old credentials
2610 * Simply check if the proc already has the caps given by the file and if not
2611 * store the priv escalation info for later auditing at the end of the syscall
2613 * -Eric
2615 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2616 const struct cred *new, const struct cred *old)
2618 struct audit_aux_data_bprm_fcaps *ax;
2619 struct audit_context *context = current->audit_context;
2620 struct cpu_vfs_cap_data vcaps;
2621 struct dentry *dentry;
2623 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2624 if (!ax)
2625 return -ENOMEM;
2627 ax->d.type = AUDIT_BPRM_FCAPS;
2628 ax->d.next = context->aux;
2629 context->aux = (void *)ax;
2631 dentry = dget(bprm->file->f_dentry);
2632 get_vfs_caps_from_disk(dentry, &vcaps);
2633 dput(dentry);
2635 ax->fcap.permitted = vcaps.permitted;
2636 ax->fcap.inheritable = vcaps.inheritable;
2637 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2638 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2640 ax->old_pcap.permitted = old->cap_permitted;
2641 ax->old_pcap.inheritable = old->cap_inheritable;
2642 ax->old_pcap.effective = old->cap_effective;
2644 ax->new_pcap.permitted = new->cap_permitted;
2645 ax->new_pcap.inheritable = new->cap_inheritable;
2646 ax->new_pcap.effective = new->cap_effective;
2647 return 0;
2651 * __audit_log_capset - store information about the arguments to the capset syscall
2652 * @pid: target pid of the capset call
2653 * @new: the new credentials
2654 * @old: the old (current) credentials
2656 * Record the aguments userspace sent to sys_capset for later printing by the
2657 * audit system if applicable
2659 void __audit_log_capset(pid_t pid,
2660 const struct cred *new, const struct cred *old)
2662 struct audit_context *context = current->audit_context;
2663 context->capset.pid = pid;
2664 context->capset.cap.effective = new->cap_effective;
2665 context->capset.cap.inheritable = new->cap_effective;
2666 context->capset.cap.permitted = new->cap_permitted;
2667 context->type = AUDIT_CAPSET;
2670 void __audit_mmap_fd(int fd, int flags)
2672 struct audit_context *context = current->audit_context;
2673 context->mmap.fd = fd;
2674 context->mmap.flags = flags;
2675 context->type = AUDIT_MMAP;
2678 static void audit_log_task(struct audit_buffer *ab)
2680 kuid_t auid, uid;
2681 kgid_t gid;
2682 unsigned int sessionid;
2684 auid = audit_get_loginuid(current);
2685 sessionid = audit_get_sessionid(current);
2686 current_uid_gid(&uid, &gid);
2688 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2689 from_kuid(&init_user_ns, auid),
2690 from_kuid(&init_user_ns, uid),
2691 from_kgid(&init_user_ns, gid),
2692 sessionid);
2693 audit_log_task_context(ab);
2694 audit_log_format(ab, " pid=%d comm=", current->pid);
2695 audit_log_untrustedstring(ab, current->comm);
2698 static void audit_log_abend(struct audit_buffer *ab, char *reason, long signr)
2700 audit_log_task(ab);
2701 audit_log_format(ab, " reason=");
2702 audit_log_string(ab, reason);
2703 audit_log_format(ab, " sig=%ld", signr);
2706 * audit_core_dumps - record information about processes that end abnormally
2707 * @signr: signal value
2709 * If a process ends with a core dump, something fishy is going on and we
2710 * should record the event for investigation.
2712 void audit_core_dumps(long signr)
2714 struct audit_buffer *ab;
2716 if (!audit_enabled)
2717 return;
2719 if (signr == SIGQUIT) /* don't care for those */
2720 return;
2722 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2723 if (unlikely(!ab))
2724 return;
2725 audit_log_abend(ab, "memory violation", signr);
2726 audit_log_end(ab);
2729 void __audit_seccomp(unsigned long syscall, long signr, int code)
2731 struct audit_buffer *ab;
2733 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP);
2734 if (unlikely(!ab))
2735 return;
2736 audit_log_task(ab);
2737 audit_log_format(ab, " sig=%ld", signr);
2738 audit_log_format(ab, " syscall=%ld", syscall);
2739 audit_log_format(ab, " compat=%d", is_compat_task());
2740 audit_log_format(ab, " ip=0x%lx", KSTK_EIP(current));
2741 audit_log_format(ab, " code=0x%x", code);
2742 audit_log_end(ab);
2745 struct list_head *audit_killed_trees(void)
2747 struct audit_context *ctx = current->audit_context;
2748 if (likely(!ctx || !ctx->in_syscall))
2749 return NULL;
2750 return &ctx->killed_trees;