2 * drivers/mtd/nand/diskonchip.c
4 * (C) 2003 Red Hat, Inc.
5 * (C) 2004 Dan Brown <dan_brown@ieee.org>
6 * (C) 2004 Kalev Lember <kalev@smartlink.ee>
8 * Author: David Woodhouse <dwmw2@infradead.org>
9 * Additional Diskonchip 2000 and Millennium support by Dan Brown <dan_brown@ieee.org>
10 * Diskonchip Millennium Plus support by Kalev Lember <kalev@smartlink.ee>
12 * Error correction code lifted from the old docecc code
13 * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
14 * Copyright (C) 2000 Netgem S.A.
15 * converted to the generic Reed-Solomon library by Thomas Gleixner <tglx@linutronix.de>
17 * Interface to generic NAND code for M-Systems DiskOnChip devices
20 #include <linux/kernel.h>
21 #include <linux/init.h>
22 #include <linux/sched.h>
23 #include <linux/delay.h>
24 #include <linux/rslib.h>
25 #include <linux/moduleparam.h>
26 #include <linux/slab.h>
29 #include <linux/mtd/mtd.h>
30 #include <linux/mtd/nand.h>
31 #include <linux/mtd/doc2000.h>
32 #include <linux/mtd/partitions.h>
33 #include <linux/mtd/inftl.h>
34 #include <linux/module.h>
36 /* Where to look for the devices? */
37 #ifndef CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS
38 #define CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 0
41 static unsigned long __initdata doc_locations
[] = {
42 #if defined (__alpha__) || defined(__i386__) || defined(__x86_64__)
43 #ifdef CONFIG_MTD_NAND_DISKONCHIP_PROBE_HIGH
44 0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000,
45 0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000,
46 0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000,
47 0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000,
48 0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000,
49 #else /* CONFIG_MTD_DOCPROBE_HIGH */
50 0xc8000, 0xca000, 0xcc000, 0xce000,
51 0xd0000, 0xd2000, 0xd4000, 0xd6000,
52 0xd8000, 0xda000, 0xdc000, 0xde000,
53 0xe0000, 0xe2000, 0xe4000, 0xe6000,
54 0xe8000, 0xea000, 0xec000, 0xee000,
55 #endif /* CONFIG_MTD_DOCPROBE_HIGH */
59 static struct mtd_info
*doclist
= NULL
;
62 void __iomem
*virtadr
;
63 unsigned long physadr
;
66 int chips_per_floor
; /* The number of chips detected on each floor */
71 struct mtd_info
*nextdoc
;
74 /* This is the syndrome computed by the HW ecc generator upon reading an empty
75 page, one with all 0xff for data and stored ecc code. */
76 static u_char empty_read_syndrome
[6] = { 0x26, 0xff, 0x6d, 0x47, 0x73, 0x7a };
78 /* This is the ecc value computed by the HW ecc generator upon writing an empty
79 page, one with all 0xff for data. */
80 static u_char empty_write_ecc
[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 };
82 #define INFTL_BBT_RESERVED_BLOCKS 4
84 #define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32)
85 #define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil)
86 #define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k)
88 static void doc200x_hwcontrol(struct mtd_info
*mtd
, int cmd
,
89 unsigned int bitmask
);
90 static void doc200x_select_chip(struct mtd_info
*mtd
, int chip
);
93 module_param(debug
, int, 0);
95 static int try_dword
= 1;
96 module_param(try_dword
, int, 0);
98 static int no_ecc_failures
= 0;
99 module_param(no_ecc_failures
, int, 0);
101 static int no_autopart
= 0;
102 module_param(no_autopart
, int, 0);
104 static int show_firmware_partition
= 0;
105 module_param(show_firmware_partition
, int, 0);
107 #ifdef CONFIG_MTD_NAND_DISKONCHIP_BBTWRITE
108 static int inftl_bbt_write
= 1;
110 static int inftl_bbt_write
= 0;
112 module_param(inftl_bbt_write
, int, 0);
114 static unsigned long doc_config_location
= CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS
;
115 module_param(doc_config_location
, ulong
, 0);
116 MODULE_PARM_DESC(doc_config_location
, "Physical memory address at which to probe for DiskOnChip");
118 /* Sector size for HW ECC */
119 #define SECTOR_SIZE 512
120 /* The sector bytes are packed into NB_DATA 10 bit words */
121 #define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10)
122 /* Number of roots */
124 /* First consective root */
126 /* Number of symbols */
129 /* the Reed Solomon control structure */
130 static struct rs_control
*rs_decoder
;
133 * The HW decoder in the DoC ASIC's provides us a error syndrome,
134 * which we must convert to a standard syndrome usable by the generic
135 * Reed-Solomon library code.
137 * Fabrice Bellard figured this out in the old docecc code. I added
138 * some comments, improved a minor bit and converted it to make use
139 * of the generic Reed-Solomon library. tglx
141 static int doc_ecc_decode(struct rs_control
*rs
, uint8_t *data
, uint8_t *ecc
)
143 int i
, j
, nerr
, errpos
[8];
145 uint16_t ds
[4], s
[5], tmp
, errval
[8], syn
[4];
147 memset(syn
, 0, sizeof(syn
));
148 /* Convert the ecc bytes into words */
149 ds
[0] = ((ecc
[4] & 0xff) >> 0) | ((ecc
[5] & 0x03) << 8);
150 ds
[1] = ((ecc
[5] & 0xfc) >> 2) | ((ecc
[2] & 0x0f) << 6);
151 ds
[2] = ((ecc
[2] & 0xf0) >> 4) | ((ecc
[3] & 0x3f) << 4);
152 ds
[3] = ((ecc
[3] & 0xc0) >> 6) | ((ecc
[0] & 0xff) << 2);
155 /* Initialize the syndrome buffer */
156 for (i
= 0; i
< NROOTS
; i
++)
160 * s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0]
161 * where x = alpha^(FCR + i)
163 for (j
= 1; j
< NROOTS
; j
++) {
166 tmp
= rs
->index_of
[ds
[j
]];
167 for (i
= 0; i
< NROOTS
; i
++)
168 s
[i
] ^= rs
->alpha_to
[rs_modnn(rs
, tmp
+ (FCR
+ i
) * j
)];
171 /* Calc syn[i] = s[i] / alpha^(v + i) */
172 for (i
= 0; i
< NROOTS
; i
++) {
174 syn
[i
] = rs_modnn(rs
, rs
->index_of
[s
[i
]] + (NN
- FCR
- i
));
176 /* Call the decoder library */
177 nerr
= decode_rs16(rs
, NULL
, NULL
, 1019, syn
, 0, errpos
, 0, errval
);
179 /* Incorrectable errors ? */
184 * Correct the errors. The bitpositions are a bit of magic,
185 * but they are given by the design of the de/encoder circuit
188 for (i
= 0; i
< nerr
; i
++) {
189 int index
, bitpos
, pos
= 1015 - errpos
[i
];
191 if (pos
>= NB_DATA
&& pos
< 1019)
194 /* extract bit position (MSB first) */
195 pos
= 10 * (NB_DATA
- 1 - pos
) - 6;
196 /* now correct the following 10 bits. At most two bytes
197 can be modified since pos is even */
198 index
= (pos
>> 3) ^ 1;
200 if ((index
>= 0 && index
< SECTOR_SIZE
) || index
== (SECTOR_SIZE
+ 1)) {
201 val
= (uint8_t) (errval
[i
] >> (2 + bitpos
));
203 if (index
< SECTOR_SIZE
)
206 index
= ((pos
>> 3) + 1) ^ 1;
207 bitpos
= (bitpos
+ 10) & 7;
210 if ((index
>= 0 && index
< SECTOR_SIZE
) || index
== (SECTOR_SIZE
+ 1)) {
211 val
= (uint8_t) (errval
[i
] << (8 - bitpos
));
213 if (index
< SECTOR_SIZE
)
218 /* If the parity is wrong, no rescue possible */
219 return parity
? -EBADMSG
: nerr
;
222 static void DoC_Delay(struct doc_priv
*doc
, unsigned short cycles
)
227 for (i
= 0; i
< cycles
; i
++) {
228 if (DoC_is_Millennium(doc
))
229 dummy
= ReadDOC(doc
->virtadr
, NOP
);
230 else if (DoC_is_MillenniumPlus(doc
))
231 dummy
= ReadDOC(doc
->virtadr
, Mplus_NOP
);
233 dummy
= ReadDOC(doc
->virtadr
, DOCStatus
);
238 #define CDSN_CTRL_FR_B_MASK (CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1)
240 /* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
241 static int _DoC_WaitReady(struct doc_priv
*doc
)
243 void __iomem
*docptr
= doc
->virtadr
;
244 unsigned long timeo
= jiffies
+ (HZ
* 10);
247 printk("_DoC_WaitReady...\n");
248 /* Out-of-line routine to wait for chip response */
249 if (DoC_is_MillenniumPlus(doc
)) {
250 while ((ReadDOC(docptr
, Mplus_FlashControl
) & CDSN_CTRL_FR_B_MASK
) != CDSN_CTRL_FR_B_MASK
) {
251 if (time_after(jiffies
, timeo
)) {
252 printk("_DoC_WaitReady timed out.\n");
259 while (!(ReadDOC(docptr
, CDSNControl
) & CDSN_CTRL_FR_B
)) {
260 if (time_after(jiffies
, timeo
)) {
261 printk("_DoC_WaitReady timed out.\n");
272 static inline int DoC_WaitReady(struct doc_priv
*doc
)
274 void __iomem
*docptr
= doc
->virtadr
;
277 if (DoC_is_MillenniumPlus(doc
)) {
280 if ((ReadDOC(docptr
, Mplus_FlashControl
) & CDSN_CTRL_FR_B_MASK
) != CDSN_CTRL_FR_B_MASK
)
281 /* Call the out-of-line routine to wait */
282 ret
= _DoC_WaitReady(doc
);
286 if (!(ReadDOC(docptr
, CDSNControl
) & CDSN_CTRL_FR_B
))
287 /* Call the out-of-line routine to wait */
288 ret
= _DoC_WaitReady(doc
);
293 printk("DoC_WaitReady OK\n");
297 static void doc2000_write_byte(struct mtd_info
*mtd
, u_char datum
)
299 struct nand_chip
*this = mtd
->priv
;
300 struct doc_priv
*doc
= this->priv
;
301 void __iomem
*docptr
= doc
->virtadr
;
304 printk("write_byte %02x\n", datum
);
305 WriteDOC(datum
, docptr
, CDSNSlowIO
);
306 WriteDOC(datum
, docptr
, 2k_CDSN_IO
);
309 static u_char
doc2000_read_byte(struct mtd_info
*mtd
)
311 struct nand_chip
*this = mtd
->priv
;
312 struct doc_priv
*doc
= this->priv
;
313 void __iomem
*docptr
= doc
->virtadr
;
316 ReadDOC(docptr
, CDSNSlowIO
);
318 ret
= ReadDOC(docptr
, 2k_CDSN_IO
);
320 printk("read_byte returns %02x\n", ret
);
324 static void doc2000_writebuf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
326 struct nand_chip
*this = mtd
->priv
;
327 struct doc_priv
*doc
= this->priv
;
328 void __iomem
*docptr
= doc
->virtadr
;
331 printk("writebuf of %d bytes: ", len
);
332 for (i
= 0; i
< len
; i
++) {
333 WriteDOC_(buf
[i
], docptr
, DoC_2k_CDSN_IO
+ i
);
335 printk("%02x ", buf
[i
]);
341 static void doc2000_readbuf(struct mtd_info
*mtd
, u_char
*buf
, int len
)
343 struct nand_chip
*this = mtd
->priv
;
344 struct doc_priv
*doc
= this->priv
;
345 void __iomem
*docptr
= doc
->virtadr
;
349 printk("readbuf of %d bytes: ", len
);
351 for (i
= 0; i
< len
; i
++) {
352 buf
[i
] = ReadDOC(docptr
, 2k_CDSN_IO
+ i
);
356 static void doc2000_readbuf_dword(struct mtd_info
*mtd
, u_char
*buf
, int len
)
358 struct nand_chip
*this = mtd
->priv
;
359 struct doc_priv
*doc
= this->priv
;
360 void __iomem
*docptr
= doc
->virtadr
;
364 printk("readbuf_dword of %d bytes: ", len
);
366 if (unlikely((((unsigned long)buf
) | len
) & 3)) {
367 for (i
= 0; i
< len
; i
++) {
368 *(uint8_t *) (&buf
[i
]) = ReadDOC(docptr
, 2k_CDSN_IO
+ i
);
371 for (i
= 0; i
< len
; i
+= 4) {
372 *(uint32_t *) (&buf
[i
]) = readl(docptr
+ DoC_2k_CDSN_IO
+ i
);
377 static uint16_t __init
doc200x_ident_chip(struct mtd_info
*mtd
, int nr
)
379 struct nand_chip
*this = mtd
->priv
;
380 struct doc_priv
*doc
= this->priv
;
383 doc200x_select_chip(mtd
, nr
);
384 doc200x_hwcontrol(mtd
, NAND_CMD_READID
,
385 NAND_CTRL_CLE
| NAND_CTRL_CHANGE
);
386 doc200x_hwcontrol(mtd
, 0, NAND_CTRL_ALE
| NAND_CTRL_CHANGE
);
387 doc200x_hwcontrol(mtd
, NAND_CMD_NONE
, NAND_NCE
| NAND_CTRL_CHANGE
);
389 /* We can't use dev_ready here, but at least we wait for the
390 * command to complete
394 ret
= this->read_byte(mtd
) << 8;
395 ret
|= this->read_byte(mtd
);
397 if (doc
->ChipID
== DOC_ChipID_Doc2k
&& try_dword
&& !nr
) {
398 /* First chip probe. See if we get same results by 32-bit access */
403 void __iomem
*docptr
= doc
->virtadr
;
405 doc200x_hwcontrol(mtd
, NAND_CMD_READID
,
406 NAND_CTRL_CLE
| NAND_CTRL_CHANGE
);
407 doc200x_hwcontrol(mtd
, 0, NAND_CTRL_ALE
| NAND_CTRL_CHANGE
);
408 doc200x_hwcontrol(mtd
, NAND_CMD_NONE
,
409 NAND_NCE
| NAND_CTRL_CHANGE
);
413 ident
.dword
= readl(docptr
+ DoC_2k_CDSN_IO
);
414 if (((ident
.byte
[0] << 8) | ident
.byte
[1]) == ret
) {
415 printk(KERN_INFO
"DiskOnChip 2000 responds to DWORD access\n");
416 this->read_buf
= &doc2000_readbuf_dword
;
423 static void __init
doc2000_count_chips(struct mtd_info
*mtd
)
425 struct nand_chip
*this = mtd
->priv
;
426 struct doc_priv
*doc
= this->priv
;
430 /* Max 4 chips per floor on DiskOnChip 2000 */
431 doc
->chips_per_floor
= 4;
433 /* Find out what the first chip is */
434 mfrid
= doc200x_ident_chip(mtd
, 0);
436 /* Find how many chips in each floor. */
437 for (i
= 1; i
< 4; i
++) {
438 if (doc200x_ident_chip(mtd
, i
) != mfrid
)
441 doc
->chips_per_floor
= i
;
442 printk(KERN_DEBUG
"Detected %d chips per floor.\n", i
);
445 static int doc200x_wait(struct mtd_info
*mtd
, struct nand_chip
*this)
447 struct doc_priv
*doc
= this->priv
;
452 this->cmdfunc(mtd
, NAND_CMD_STATUS
, -1, -1);
454 status
= (int)this->read_byte(mtd
);
459 static void doc2001_write_byte(struct mtd_info
*mtd
, u_char datum
)
461 struct nand_chip
*this = mtd
->priv
;
462 struct doc_priv
*doc
= this->priv
;
463 void __iomem
*docptr
= doc
->virtadr
;
465 WriteDOC(datum
, docptr
, CDSNSlowIO
);
466 WriteDOC(datum
, docptr
, Mil_CDSN_IO
);
467 WriteDOC(datum
, docptr
, WritePipeTerm
);
470 static u_char
doc2001_read_byte(struct mtd_info
*mtd
)
472 struct nand_chip
*this = mtd
->priv
;
473 struct doc_priv
*doc
= this->priv
;
474 void __iomem
*docptr
= doc
->virtadr
;
476 //ReadDOC(docptr, CDSNSlowIO);
477 /* 11.4.5 -- delay twice to allow extended length cycle */
479 ReadDOC(docptr
, ReadPipeInit
);
480 //return ReadDOC(docptr, Mil_CDSN_IO);
481 return ReadDOC(docptr
, LastDataRead
);
484 static void doc2001_writebuf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
486 struct nand_chip
*this = mtd
->priv
;
487 struct doc_priv
*doc
= this->priv
;
488 void __iomem
*docptr
= doc
->virtadr
;
491 for (i
= 0; i
< len
; i
++)
492 WriteDOC_(buf
[i
], docptr
, DoC_Mil_CDSN_IO
+ i
);
493 /* Terminate write pipeline */
494 WriteDOC(0x00, docptr
, WritePipeTerm
);
497 static void doc2001_readbuf(struct mtd_info
*mtd
, u_char
*buf
, int len
)
499 struct nand_chip
*this = mtd
->priv
;
500 struct doc_priv
*doc
= this->priv
;
501 void __iomem
*docptr
= doc
->virtadr
;
504 /* Start read pipeline */
505 ReadDOC(docptr
, ReadPipeInit
);
507 for (i
= 0; i
< len
- 1; i
++)
508 buf
[i
] = ReadDOC(docptr
, Mil_CDSN_IO
+ (i
& 0xff));
510 /* Terminate read pipeline */
511 buf
[i
] = ReadDOC(docptr
, LastDataRead
);
514 static u_char
doc2001plus_read_byte(struct mtd_info
*mtd
)
516 struct nand_chip
*this = mtd
->priv
;
517 struct doc_priv
*doc
= this->priv
;
518 void __iomem
*docptr
= doc
->virtadr
;
521 ReadDOC(docptr
, Mplus_ReadPipeInit
);
522 ReadDOC(docptr
, Mplus_ReadPipeInit
);
523 ret
= ReadDOC(docptr
, Mplus_LastDataRead
);
525 printk("read_byte returns %02x\n", ret
);
529 static void doc2001plus_writebuf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
531 struct nand_chip
*this = mtd
->priv
;
532 struct doc_priv
*doc
= this->priv
;
533 void __iomem
*docptr
= doc
->virtadr
;
537 printk("writebuf of %d bytes: ", len
);
538 for (i
= 0; i
< len
; i
++) {
539 WriteDOC_(buf
[i
], docptr
, DoC_Mil_CDSN_IO
+ i
);
541 printk("%02x ", buf
[i
]);
547 static void doc2001plus_readbuf(struct mtd_info
*mtd
, u_char
*buf
, int len
)
549 struct nand_chip
*this = mtd
->priv
;
550 struct doc_priv
*doc
= this->priv
;
551 void __iomem
*docptr
= doc
->virtadr
;
555 printk("readbuf of %d bytes: ", len
);
557 /* Start read pipeline */
558 ReadDOC(docptr
, Mplus_ReadPipeInit
);
559 ReadDOC(docptr
, Mplus_ReadPipeInit
);
561 for (i
= 0; i
< len
- 2; i
++) {
562 buf
[i
] = ReadDOC(docptr
, Mil_CDSN_IO
);
564 printk("%02x ", buf
[i
]);
567 /* Terminate read pipeline */
568 buf
[len
- 2] = ReadDOC(docptr
, Mplus_LastDataRead
);
570 printk("%02x ", buf
[len
- 2]);
571 buf
[len
- 1] = ReadDOC(docptr
, Mplus_LastDataRead
);
573 printk("%02x ", buf
[len
- 1]);
578 static void doc2001plus_select_chip(struct mtd_info
*mtd
, int chip
)
580 struct nand_chip
*this = mtd
->priv
;
581 struct doc_priv
*doc
= this->priv
;
582 void __iomem
*docptr
= doc
->virtadr
;
586 printk("select chip (%d)\n", chip
);
589 /* Disable flash internally */
590 WriteDOC(0, docptr
, Mplus_FlashSelect
);
594 floor
= chip
/ doc
->chips_per_floor
;
595 chip
-= (floor
* doc
->chips_per_floor
);
597 /* Assert ChipEnable and deassert WriteProtect */
598 WriteDOC((DOC_FLASH_CE
), docptr
, Mplus_FlashSelect
);
599 this->cmdfunc(mtd
, NAND_CMD_RESET
, -1, -1);
602 doc
->curfloor
= floor
;
605 static void doc200x_select_chip(struct mtd_info
*mtd
, int chip
)
607 struct nand_chip
*this = mtd
->priv
;
608 struct doc_priv
*doc
= this->priv
;
609 void __iomem
*docptr
= doc
->virtadr
;
613 printk("select chip (%d)\n", chip
);
618 floor
= chip
/ doc
->chips_per_floor
;
619 chip
-= (floor
* doc
->chips_per_floor
);
621 /* 11.4.4 -- deassert CE before changing chip */
622 doc200x_hwcontrol(mtd
, NAND_CMD_NONE
, 0 | NAND_CTRL_CHANGE
);
624 WriteDOC(floor
, docptr
, FloorSelect
);
625 WriteDOC(chip
, docptr
, CDSNDeviceSelect
);
627 doc200x_hwcontrol(mtd
, NAND_CMD_NONE
, NAND_NCE
| NAND_CTRL_CHANGE
);
630 doc
->curfloor
= floor
;
633 #define CDSN_CTRL_MSK (CDSN_CTRL_CE | CDSN_CTRL_CLE | CDSN_CTRL_ALE)
635 static void doc200x_hwcontrol(struct mtd_info
*mtd
, int cmd
,
638 struct nand_chip
*this = mtd
->priv
;
639 struct doc_priv
*doc
= this->priv
;
640 void __iomem
*docptr
= doc
->virtadr
;
642 if (ctrl
& NAND_CTRL_CHANGE
) {
643 doc
->CDSNControl
&= ~CDSN_CTRL_MSK
;
644 doc
->CDSNControl
|= ctrl
& CDSN_CTRL_MSK
;
646 printk("hwcontrol(%d): %02x\n", cmd
, doc
->CDSNControl
);
647 WriteDOC(doc
->CDSNControl
, docptr
, CDSNControl
);
648 /* 11.4.3 -- 4 NOPs after CSDNControl write */
651 if (cmd
!= NAND_CMD_NONE
) {
652 if (DoC_is_2000(doc
))
653 doc2000_write_byte(mtd
, cmd
);
655 doc2001_write_byte(mtd
, cmd
);
659 static void doc2001plus_command(struct mtd_info
*mtd
, unsigned command
, int column
, int page_addr
)
661 struct nand_chip
*this = mtd
->priv
;
662 struct doc_priv
*doc
= this->priv
;
663 void __iomem
*docptr
= doc
->virtadr
;
666 * Must terminate write pipeline before sending any commands
669 if (command
== NAND_CMD_PAGEPROG
) {
670 WriteDOC(0x00, docptr
, Mplus_WritePipeTerm
);
671 WriteDOC(0x00, docptr
, Mplus_WritePipeTerm
);
675 * Write out the command to the device.
677 if (command
== NAND_CMD_SEQIN
) {
680 if (column
>= mtd
->writesize
) {
682 column
-= mtd
->writesize
;
683 readcmd
= NAND_CMD_READOOB
;
684 } else if (column
< 256) {
685 /* First 256 bytes --> READ0 */
686 readcmd
= NAND_CMD_READ0
;
689 readcmd
= NAND_CMD_READ1
;
691 WriteDOC(readcmd
, docptr
, Mplus_FlashCmd
);
693 WriteDOC(command
, docptr
, Mplus_FlashCmd
);
694 WriteDOC(0, docptr
, Mplus_WritePipeTerm
);
695 WriteDOC(0, docptr
, Mplus_WritePipeTerm
);
697 if (column
!= -1 || page_addr
!= -1) {
698 /* Serially input address */
700 /* Adjust columns for 16 bit buswidth */
701 if (this->options
& NAND_BUSWIDTH_16
)
703 WriteDOC(column
, docptr
, Mplus_FlashAddress
);
705 if (page_addr
!= -1) {
706 WriteDOC((unsigned char)(page_addr
& 0xff), docptr
, Mplus_FlashAddress
);
707 WriteDOC((unsigned char)((page_addr
>> 8) & 0xff), docptr
, Mplus_FlashAddress
);
708 /* One more address cycle for higher density devices */
709 if (this->chipsize
& 0x0c000000) {
710 WriteDOC((unsigned char)((page_addr
>> 16) & 0x0f), docptr
, Mplus_FlashAddress
);
711 printk("high density\n");
714 WriteDOC(0, docptr
, Mplus_WritePipeTerm
);
715 WriteDOC(0, docptr
, Mplus_WritePipeTerm
);
717 if (command
== NAND_CMD_READ0
|| command
== NAND_CMD_READ1
||
718 command
== NAND_CMD_READOOB
|| command
== NAND_CMD_READID
)
719 WriteDOC(0, docptr
, Mplus_FlashControl
);
723 * program and erase have their own busy handlers
724 * status and sequential in needs no delay
728 case NAND_CMD_PAGEPROG
:
729 case NAND_CMD_ERASE1
:
730 case NAND_CMD_ERASE2
:
732 case NAND_CMD_STATUS
:
738 udelay(this->chip_delay
);
739 WriteDOC(NAND_CMD_STATUS
, docptr
, Mplus_FlashCmd
);
740 WriteDOC(0, docptr
, Mplus_WritePipeTerm
);
741 WriteDOC(0, docptr
, Mplus_WritePipeTerm
);
742 while (!(this->read_byte(mtd
) & 0x40)) ;
745 /* This applies to read commands */
748 * If we don't have access to the busy pin, we apply the given
751 if (!this->dev_ready
) {
752 udelay(this->chip_delay
);
757 /* Apply this short delay always to ensure that we do wait tWB in
758 * any case on any machine. */
760 /* wait until command is processed */
761 while (!this->dev_ready(mtd
)) ;
764 static int doc200x_dev_ready(struct mtd_info
*mtd
)
766 struct nand_chip
*this = mtd
->priv
;
767 struct doc_priv
*doc
= this->priv
;
768 void __iomem
*docptr
= doc
->virtadr
;
770 if (DoC_is_MillenniumPlus(doc
)) {
771 /* 11.4.2 -- must NOP four times before checking FR/B# */
773 if ((ReadDOC(docptr
, Mplus_FlashControl
) & CDSN_CTRL_FR_B_MASK
) != CDSN_CTRL_FR_B_MASK
) {
775 printk("not ready\n");
779 printk("was ready\n");
782 /* 11.4.2 -- must NOP four times before checking FR/B# */
784 if (!(ReadDOC(docptr
, CDSNControl
) & CDSN_CTRL_FR_B
)) {
786 printk("not ready\n");
789 /* 11.4.2 -- Must NOP twice if it's ready */
792 printk("was ready\n");
797 static int doc200x_block_bad(struct mtd_info
*mtd
, loff_t ofs
, int getchip
)
799 /* This is our last resort if we couldn't find or create a BBT. Just
800 pretend all blocks are good. */
804 static void doc200x_enable_hwecc(struct mtd_info
*mtd
, int mode
)
806 struct nand_chip
*this = mtd
->priv
;
807 struct doc_priv
*doc
= this->priv
;
808 void __iomem
*docptr
= doc
->virtadr
;
810 /* Prime the ECC engine */
813 WriteDOC(DOC_ECC_RESET
, docptr
, ECCConf
);
814 WriteDOC(DOC_ECC_EN
, docptr
, ECCConf
);
817 WriteDOC(DOC_ECC_RESET
, docptr
, ECCConf
);
818 WriteDOC(DOC_ECC_EN
| DOC_ECC_RW
, docptr
, ECCConf
);
823 static void doc2001plus_enable_hwecc(struct mtd_info
*mtd
, int mode
)
825 struct nand_chip
*this = mtd
->priv
;
826 struct doc_priv
*doc
= this->priv
;
827 void __iomem
*docptr
= doc
->virtadr
;
829 /* Prime the ECC engine */
832 WriteDOC(DOC_ECC_RESET
, docptr
, Mplus_ECCConf
);
833 WriteDOC(DOC_ECC_EN
, docptr
, Mplus_ECCConf
);
836 WriteDOC(DOC_ECC_RESET
, docptr
, Mplus_ECCConf
);
837 WriteDOC(DOC_ECC_EN
| DOC_ECC_RW
, docptr
, Mplus_ECCConf
);
842 /* This code is only called on write */
843 static int doc200x_calculate_ecc(struct mtd_info
*mtd
, const u_char
*dat
, unsigned char *ecc_code
)
845 struct nand_chip
*this = mtd
->priv
;
846 struct doc_priv
*doc
= this->priv
;
847 void __iomem
*docptr
= doc
->virtadr
;
851 /* flush the pipeline */
852 if (DoC_is_2000(doc
)) {
853 WriteDOC(doc
->CDSNControl
& ~CDSN_CTRL_FLASH_IO
, docptr
, CDSNControl
);
854 WriteDOC(0, docptr
, 2k_CDSN_IO
);
855 WriteDOC(0, docptr
, 2k_CDSN_IO
);
856 WriteDOC(0, docptr
, 2k_CDSN_IO
);
857 WriteDOC(doc
->CDSNControl
, docptr
, CDSNControl
);
858 } else if (DoC_is_MillenniumPlus(doc
)) {
859 WriteDOC(0, docptr
, Mplus_NOP
);
860 WriteDOC(0, docptr
, Mplus_NOP
);
861 WriteDOC(0, docptr
, Mplus_NOP
);
863 WriteDOC(0, docptr
, NOP
);
864 WriteDOC(0, docptr
, NOP
);
865 WriteDOC(0, docptr
, NOP
);
868 for (i
= 0; i
< 6; i
++) {
869 if (DoC_is_MillenniumPlus(doc
))
870 ecc_code
[i
] = ReadDOC_(docptr
, DoC_Mplus_ECCSyndrome0
+ i
);
872 ecc_code
[i
] = ReadDOC_(docptr
, DoC_ECCSyndrome0
+ i
);
873 if (ecc_code
[i
] != empty_write_ecc
[i
])
876 if (DoC_is_MillenniumPlus(doc
))
877 WriteDOC(DOC_ECC_DIS
, docptr
, Mplus_ECCConf
);
879 WriteDOC(DOC_ECC_DIS
, docptr
, ECCConf
);
881 /* If emptymatch=1, we might have an all-0xff data buffer. Check. */
883 /* Note: this somewhat expensive test should not be triggered
884 often. It could be optimized away by examining the data in
885 the writebuf routine, and remembering the result. */
886 for (i
= 0; i
< 512; i
++) {
893 /* If emptymatch still =1, we do have an all-0xff data buffer.
894 Return all-0xff ecc value instead of the computed one, so
895 it'll look just like a freshly-erased page. */
897 memset(ecc_code
, 0xff, 6);
902 static int doc200x_correct_data(struct mtd_info
*mtd
, u_char
*dat
,
903 u_char
*read_ecc
, u_char
*isnull
)
906 struct nand_chip
*this = mtd
->priv
;
907 struct doc_priv
*doc
= this->priv
;
908 void __iomem
*docptr
= doc
->virtadr
;
910 volatile u_char dummy
;
913 /* flush the pipeline */
914 if (DoC_is_2000(doc
)) {
915 dummy
= ReadDOC(docptr
, 2k_ECCStatus
);
916 dummy
= ReadDOC(docptr
, 2k_ECCStatus
);
917 dummy
= ReadDOC(docptr
, 2k_ECCStatus
);
918 } else if (DoC_is_MillenniumPlus(doc
)) {
919 dummy
= ReadDOC(docptr
, Mplus_ECCConf
);
920 dummy
= ReadDOC(docptr
, Mplus_ECCConf
);
921 dummy
= ReadDOC(docptr
, Mplus_ECCConf
);
923 dummy
= ReadDOC(docptr
, ECCConf
);
924 dummy
= ReadDOC(docptr
, ECCConf
);
925 dummy
= ReadDOC(docptr
, ECCConf
);
928 /* Error occurred ? */
930 for (i
= 0; i
< 6; i
++) {
931 if (DoC_is_MillenniumPlus(doc
))
932 calc_ecc
[i
] = ReadDOC_(docptr
, DoC_Mplus_ECCSyndrome0
+ i
);
934 calc_ecc
[i
] = ReadDOC_(docptr
, DoC_ECCSyndrome0
+ i
);
935 if (calc_ecc
[i
] != empty_read_syndrome
[i
])
938 /* If emptymatch=1, the read syndrome is consistent with an
939 all-0xff data and stored ecc block. Check the stored ecc. */
941 for (i
= 0; i
< 6; i
++) {
942 if (read_ecc
[i
] == 0xff)
948 /* If emptymatch still =1, check the data block. */
950 /* Note: this somewhat expensive test should not be triggered
951 often. It could be optimized away by examining the data in
952 the readbuf routine, and remembering the result. */
953 for (i
= 0; i
< 512; i
++) {
960 /* If emptymatch still =1, this is almost certainly a freshly-
961 erased block, in which case the ECC will not come out right.
962 We'll suppress the error and tell the caller everything's
963 OK. Because it is. */
965 ret
= doc_ecc_decode(rs_decoder
, dat
, calc_ecc
);
967 printk(KERN_ERR
"doc200x_correct_data corrected %d errors\n", ret
);
969 if (DoC_is_MillenniumPlus(doc
))
970 WriteDOC(DOC_ECC_DIS
, docptr
, Mplus_ECCConf
);
972 WriteDOC(DOC_ECC_DIS
, docptr
, ECCConf
);
973 if (no_ecc_failures
&& mtd_is_eccerr(ret
)) {
974 printk(KERN_ERR
"suppressing ECC failure\n");
980 //u_char mydatabuf[528];
982 /* The strange out-of-order .oobfree list below is a (possibly unneeded)
983 * attempt to retain compatibility. It used to read:
984 * .oobfree = { {8, 8} }
985 * Since that leaves two bytes unusable, it was changed. But the following
986 * scheme might affect existing jffs2 installs by moving the cleanmarker:
987 * .oobfree = { {6, 10} }
988 * jffs2 seems to handle the above gracefully, but the current scheme seems
989 * safer. The only problem with it is that any code that parses oobfree must
990 * be able to handle out-of-order segments.
992 static struct nand_ecclayout doc200x_oobinfo
= {
994 .eccpos
= {0, 1, 2, 3, 4, 5},
995 .oobfree
= {{8, 8}, {6, 2}}
998 /* Find the (I)NFTL Media Header, and optionally also the mirror media header.
999 On successful return, buf will contain a copy of the media header for
1000 further processing. id is the string to scan for, and will presumably be
1001 either "ANAND" or "BNAND". If findmirror=1, also look for the mirror media
1002 header. The page #s of the found media headers are placed in mh0_page and
1003 mh1_page in the DOC private structure. */
1004 static int __init
find_media_headers(struct mtd_info
*mtd
, u_char
*buf
, const char *id
, int findmirror
)
1006 struct nand_chip
*this = mtd
->priv
;
1007 struct doc_priv
*doc
= this->priv
;
1012 for (offs
= 0; offs
< mtd
->size
; offs
+= mtd
->erasesize
) {
1013 ret
= mtd_read(mtd
, offs
, mtd
->writesize
, &retlen
, buf
);
1014 if (retlen
!= mtd
->writesize
)
1017 printk(KERN_WARNING
"ECC error scanning DOC at 0x%x\n", offs
);
1019 if (memcmp(buf
, id
, 6))
1021 printk(KERN_INFO
"Found DiskOnChip %s Media Header at 0x%x\n", id
, offs
);
1022 if (doc
->mh0_page
== -1) {
1023 doc
->mh0_page
= offs
>> this->page_shift
;
1028 doc
->mh1_page
= offs
>> this->page_shift
;
1031 if (doc
->mh0_page
== -1) {
1032 printk(KERN_WARNING
"DiskOnChip %s Media Header not found.\n", id
);
1035 /* Only one mediaheader was found. We want buf to contain a
1036 mediaheader on return, so we'll have to re-read the one we found. */
1037 offs
= doc
->mh0_page
<< this->page_shift
;
1038 ret
= mtd_read(mtd
, offs
, mtd
->writesize
, &retlen
, buf
);
1039 if (retlen
!= mtd
->writesize
) {
1040 /* Insanity. Give up. */
1041 printk(KERN_ERR
"Read DiskOnChip Media Header once, but can't reread it???\n");
1047 static inline int __init
nftl_partscan(struct mtd_info
*mtd
, struct mtd_partition
*parts
)
1049 struct nand_chip
*this = mtd
->priv
;
1050 struct doc_priv
*doc
= this->priv
;
1053 struct NFTLMediaHeader
*mh
;
1054 const unsigned psize
= 1 << this->page_shift
;
1056 unsigned blocks
, maxblocks
;
1057 int offs
, numheaders
;
1059 buf
= kmalloc(mtd
->writesize
, GFP_KERNEL
);
1061 printk(KERN_ERR
"DiskOnChip mediaheader kmalloc failed!\n");
1064 if (!(numheaders
= find_media_headers(mtd
, buf
, "ANAND", 1)))
1066 mh
= (struct NFTLMediaHeader
*)buf
;
1068 le16_to_cpus(&mh
->NumEraseUnits
);
1069 le16_to_cpus(&mh
->FirstPhysicalEUN
);
1070 le32_to_cpus(&mh
->FormattedSize
);
1072 printk(KERN_INFO
" DataOrgID = %s\n"
1073 " NumEraseUnits = %d\n"
1074 " FirstPhysicalEUN = %d\n"
1075 " FormattedSize = %d\n"
1076 " UnitSizeFactor = %d\n",
1077 mh
->DataOrgID
, mh
->NumEraseUnits
,
1078 mh
->FirstPhysicalEUN
, mh
->FormattedSize
,
1079 mh
->UnitSizeFactor
);
1081 blocks
= mtd
->size
>> this->phys_erase_shift
;
1082 maxblocks
= min(32768U, mtd
->erasesize
- psize
);
1084 if (mh
->UnitSizeFactor
== 0x00) {
1085 /* Auto-determine UnitSizeFactor. The constraints are:
1086 - There can be at most 32768 virtual blocks.
1087 - There can be at most (virtual block size - page size)
1088 virtual blocks (because MediaHeader+BBT must fit in 1).
1090 mh
->UnitSizeFactor
= 0xff;
1091 while (blocks
> maxblocks
) {
1093 maxblocks
= min(32768U, (maxblocks
<< 1) + psize
);
1094 mh
->UnitSizeFactor
--;
1096 printk(KERN_WARNING
"UnitSizeFactor=0x00 detected. Correct value is assumed to be 0x%02x.\n", mh
->UnitSizeFactor
);
1099 /* NOTE: The lines below modify internal variables of the NAND and MTD
1100 layers; variables with have already been configured by nand_scan.
1101 Unfortunately, we didn't know before this point what these values
1102 should be. Thus, this code is somewhat dependent on the exact
1103 implementation of the NAND layer. */
1104 if (mh
->UnitSizeFactor
!= 0xff) {
1105 this->bbt_erase_shift
+= (0xff - mh
->UnitSizeFactor
);
1106 mtd
->erasesize
<<= (0xff - mh
->UnitSizeFactor
);
1107 printk(KERN_INFO
"Setting virtual erase size to %d\n", mtd
->erasesize
);
1108 blocks
= mtd
->size
>> this->bbt_erase_shift
;
1109 maxblocks
= min(32768U, mtd
->erasesize
- psize
);
1112 if (blocks
> maxblocks
) {
1113 printk(KERN_ERR
"UnitSizeFactor of 0x%02x is inconsistent with device size. Aborting.\n", mh
->UnitSizeFactor
);
1117 /* Skip past the media headers. */
1118 offs
= max(doc
->mh0_page
, doc
->mh1_page
);
1119 offs
<<= this->page_shift
;
1120 offs
+= mtd
->erasesize
;
1122 if (show_firmware_partition
== 1) {
1123 parts
[0].name
= " DiskOnChip Firmware / Media Header partition";
1124 parts
[0].offset
= 0;
1125 parts
[0].size
= offs
;
1129 parts
[numparts
].name
= " DiskOnChip BDTL partition";
1130 parts
[numparts
].offset
= offs
;
1131 parts
[numparts
].size
= (mh
->NumEraseUnits
- numheaders
) << this->bbt_erase_shift
;
1133 offs
+= parts
[numparts
].size
;
1136 if (offs
< mtd
->size
) {
1137 parts
[numparts
].name
= " DiskOnChip Remainder partition";
1138 parts
[numparts
].offset
= offs
;
1139 parts
[numparts
].size
= mtd
->size
- offs
;
1149 /* This is a stripped-down copy of the code in inftlmount.c */
1150 static inline int __init
inftl_partscan(struct mtd_info
*mtd
, struct mtd_partition
*parts
)
1152 struct nand_chip
*this = mtd
->priv
;
1153 struct doc_priv
*doc
= this->priv
;
1156 struct INFTLMediaHeader
*mh
;
1157 struct INFTLPartition
*ip
;
1160 int vshift
, lastvunit
= 0;
1162 int end
= mtd
->size
;
1164 if (inftl_bbt_write
)
1165 end
-= (INFTL_BBT_RESERVED_BLOCKS
<< this->phys_erase_shift
);
1167 buf
= kmalloc(mtd
->writesize
, GFP_KERNEL
);
1169 printk(KERN_ERR
"DiskOnChip mediaheader kmalloc failed!\n");
1173 if (!find_media_headers(mtd
, buf
, "BNAND", 0))
1175 doc
->mh1_page
= doc
->mh0_page
+ (4096 >> this->page_shift
);
1176 mh
= (struct INFTLMediaHeader
*)buf
;
1178 le32_to_cpus(&mh
->NoOfBootImageBlocks
);
1179 le32_to_cpus(&mh
->NoOfBinaryPartitions
);
1180 le32_to_cpus(&mh
->NoOfBDTLPartitions
);
1181 le32_to_cpus(&mh
->BlockMultiplierBits
);
1182 le32_to_cpus(&mh
->FormatFlags
);
1183 le32_to_cpus(&mh
->PercentUsed
);
1185 printk(KERN_INFO
" bootRecordID = %s\n"
1186 " NoOfBootImageBlocks = %d\n"
1187 " NoOfBinaryPartitions = %d\n"
1188 " NoOfBDTLPartitions = %d\n"
1189 " BlockMultiplerBits = %d\n"
1190 " FormatFlgs = %d\n"
1191 " OsakVersion = %d.%d.%d.%d\n"
1192 " PercentUsed = %d\n",
1193 mh
->bootRecordID
, mh
->NoOfBootImageBlocks
,
1194 mh
->NoOfBinaryPartitions
,
1195 mh
->NoOfBDTLPartitions
,
1196 mh
->BlockMultiplierBits
, mh
->FormatFlags
,
1197 ((unsigned char *) &mh
->OsakVersion
)[0] & 0xf,
1198 ((unsigned char *) &mh
->OsakVersion
)[1] & 0xf,
1199 ((unsigned char *) &mh
->OsakVersion
)[2] & 0xf,
1200 ((unsigned char *) &mh
->OsakVersion
)[3] & 0xf,
1203 vshift
= this->phys_erase_shift
+ mh
->BlockMultiplierBits
;
1205 blocks
= mtd
->size
>> vshift
;
1206 if (blocks
> 32768) {
1207 printk(KERN_ERR
"BlockMultiplierBits=%d is inconsistent with device size. Aborting.\n", mh
->BlockMultiplierBits
);
1211 blocks
= doc
->chips_per_floor
<< (this->chip_shift
- this->phys_erase_shift
);
1212 if (inftl_bbt_write
&& (blocks
> mtd
->erasesize
)) {
1213 printk(KERN_ERR
"Writeable BBTs spanning more than one erase block are not yet supported. FIX ME!\n");
1217 /* Scan the partitions */
1218 for (i
= 0; (i
< 4); i
++) {
1219 ip
= &(mh
->Partitions
[i
]);
1220 le32_to_cpus(&ip
->virtualUnits
);
1221 le32_to_cpus(&ip
->firstUnit
);
1222 le32_to_cpus(&ip
->lastUnit
);
1223 le32_to_cpus(&ip
->flags
);
1224 le32_to_cpus(&ip
->spareUnits
);
1225 le32_to_cpus(&ip
->Reserved0
);
1227 printk(KERN_INFO
" PARTITION[%d] ->\n"
1228 " virtualUnits = %d\n"
1232 " spareUnits = %d\n",
1233 i
, ip
->virtualUnits
, ip
->firstUnit
,
1234 ip
->lastUnit
, ip
->flags
,
1237 if ((show_firmware_partition
== 1) &&
1238 (i
== 0) && (ip
->firstUnit
> 0)) {
1239 parts
[0].name
= " DiskOnChip IPL / Media Header partition";
1240 parts
[0].offset
= 0;
1241 parts
[0].size
= mtd
->erasesize
* ip
->firstUnit
;
1245 if (ip
->flags
& INFTL_BINARY
)
1246 parts
[numparts
].name
= " DiskOnChip BDK partition";
1248 parts
[numparts
].name
= " DiskOnChip BDTL partition";
1249 parts
[numparts
].offset
= ip
->firstUnit
<< vshift
;
1250 parts
[numparts
].size
= (1 + ip
->lastUnit
- ip
->firstUnit
) << vshift
;
1252 if (ip
->lastUnit
> lastvunit
)
1253 lastvunit
= ip
->lastUnit
;
1254 if (ip
->flags
& INFTL_LAST
)
1258 if ((lastvunit
<< vshift
) < end
) {
1259 parts
[numparts
].name
= " DiskOnChip Remainder partition";
1260 parts
[numparts
].offset
= lastvunit
<< vshift
;
1261 parts
[numparts
].size
= end
- parts
[numparts
].offset
;
1270 static int __init
nftl_scan_bbt(struct mtd_info
*mtd
)
1273 struct nand_chip
*this = mtd
->priv
;
1274 struct doc_priv
*doc
= this->priv
;
1275 struct mtd_partition parts
[2];
1277 memset((char *)parts
, 0, sizeof(parts
));
1278 /* On NFTL, we have to find the media headers before we can read the
1279 BBTs, since they're stored in the media header eraseblocks. */
1280 numparts
= nftl_partscan(mtd
, parts
);
1283 this->bbt_td
->options
= NAND_BBT_ABSPAGE
| NAND_BBT_8BIT
|
1284 NAND_BBT_SAVECONTENT
| NAND_BBT_WRITE
|
1286 this->bbt_td
->veroffs
= 7;
1287 this->bbt_td
->pages
[0] = doc
->mh0_page
+ 1;
1288 if (doc
->mh1_page
!= -1) {
1289 this->bbt_md
->options
= NAND_BBT_ABSPAGE
| NAND_BBT_8BIT
|
1290 NAND_BBT_SAVECONTENT
| NAND_BBT_WRITE
|
1292 this->bbt_md
->veroffs
= 7;
1293 this->bbt_md
->pages
[0] = doc
->mh1_page
+ 1;
1295 this->bbt_md
= NULL
;
1298 /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
1299 At least as nand_bbt.c is currently written. */
1300 if ((ret
= nand_scan_bbt(mtd
, NULL
)))
1302 mtd_device_register(mtd
, NULL
, 0);
1304 mtd_device_register(mtd
, parts
, numparts
);
1308 static int __init
inftl_scan_bbt(struct mtd_info
*mtd
)
1311 struct nand_chip
*this = mtd
->priv
;
1312 struct doc_priv
*doc
= this->priv
;
1313 struct mtd_partition parts
[5];
1315 if (this->numchips
> doc
->chips_per_floor
) {
1316 printk(KERN_ERR
"Multi-floor INFTL devices not yet supported.\n");
1320 if (DoC_is_MillenniumPlus(doc
)) {
1321 this->bbt_td
->options
= NAND_BBT_2BIT
| NAND_BBT_ABSPAGE
;
1322 if (inftl_bbt_write
)
1323 this->bbt_td
->options
|= NAND_BBT_WRITE
;
1324 this->bbt_td
->pages
[0] = 2;
1325 this->bbt_md
= NULL
;
1327 this->bbt_td
->options
= NAND_BBT_LASTBLOCK
| NAND_BBT_8BIT
| NAND_BBT_VERSION
;
1328 if (inftl_bbt_write
)
1329 this->bbt_td
->options
|= NAND_BBT_WRITE
;
1330 this->bbt_td
->offs
= 8;
1331 this->bbt_td
->len
= 8;
1332 this->bbt_td
->veroffs
= 7;
1333 this->bbt_td
->maxblocks
= INFTL_BBT_RESERVED_BLOCKS
;
1334 this->bbt_td
->reserved_block_code
= 0x01;
1335 this->bbt_td
->pattern
= "MSYS_BBT";
1337 this->bbt_md
->options
= NAND_BBT_LASTBLOCK
| NAND_BBT_8BIT
| NAND_BBT_VERSION
;
1338 if (inftl_bbt_write
)
1339 this->bbt_md
->options
|= NAND_BBT_WRITE
;
1340 this->bbt_md
->offs
= 8;
1341 this->bbt_md
->len
= 8;
1342 this->bbt_md
->veroffs
= 7;
1343 this->bbt_md
->maxblocks
= INFTL_BBT_RESERVED_BLOCKS
;
1344 this->bbt_md
->reserved_block_code
= 0x01;
1345 this->bbt_md
->pattern
= "TBB_SYSM";
1348 /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
1349 At least as nand_bbt.c is currently written. */
1350 if ((ret
= nand_scan_bbt(mtd
, NULL
)))
1352 memset((char *)parts
, 0, sizeof(parts
));
1353 numparts
= inftl_partscan(mtd
, parts
);
1354 /* At least for now, require the INFTL Media Header. We could probably
1355 do without it for non-INFTL use, since all it gives us is
1356 autopartitioning, but I want to give it more thought. */
1359 mtd_device_register(mtd
, NULL
, 0);
1361 mtd_device_register(mtd
, parts
, numparts
);
1365 static inline int __init
doc2000_init(struct mtd_info
*mtd
)
1367 struct nand_chip
*this = mtd
->priv
;
1368 struct doc_priv
*doc
= this->priv
;
1370 this->read_byte
= doc2000_read_byte
;
1371 this->write_buf
= doc2000_writebuf
;
1372 this->read_buf
= doc2000_readbuf
;
1373 this->scan_bbt
= nftl_scan_bbt
;
1375 doc
->CDSNControl
= CDSN_CTRL_FLASH_IO
| CDSN_CTRL_ECC_IO
;
1376 doc2000_count_chips(mtd
);
1377 mtd
->name
= "DiskOnChip 2000 (NFTL Model)";
1378 return (4 * doc
->chips_per_floor
);
1381 static inline int __init
doc2001_init(struct mtd_info
*mtd
)
1383 struct nand_chip
*this = mtd
->priv
;
1384 struct doc_priv
*doc
= this->priv
;
1386 this->read_byte
= doc2001_read_byte
;
1387 this->write_buf
= doc2001_writebuf
;
1388 this->read_buf
= doc2001_readbuf
;
1390 ReadDOC(doc
->virtadr
, ChipID
);
1391 ReadDOC(doc
->virtadr
, ChipID
);
1392 ReadDOC(doc
->virtadr
, ChipID
);
1393 if (ReadDOC(doc
->virtadr
, ChipID
) != DOC_ChipID_DocMil
) {
1394 /* It's not a Millennium; it's one of the newer
1395 DiskOnChip 2000 units with a similar ASIC.
1396 Treat it like a Millennium, except that it
1397 can have multiple chips. */
1398 doc2000_count_chips(mtd
);
1399 mtd
->name
= "DiskOnChip 2000 (INFTL Model)";
1400 this->scan_bbt
= inftl_scan_bbt
;
1401 return (4 * doc
->chips_per_floor
);
1403 /* Bog-standard Millennium */
1404 doc
->chips_per_floor
= 1;
1405 mtd
->name
= "DiskOnChip Millennium";
1406 this->scan_bbt
= nftl_scan_bbt
;
1411 static inline int __init
doc2001plus_init(struct mtd_info
*mtd
)
1413 struct nand_chip
*this = mtd
->priv
;
1414 struct doc_priv
*doc
= this->priv
;
1416 this->read_byte
= doc2001plus_read_byte
;
1417 this->write_buf
= doc2001plus_writebuf
;
1418 this->read_buf
= doc2001plus_readbuf
;
1419 this->scan_bbt
= inftl_scan_bbt
;
1420 this->cmd_ctrl
= NULL
;
1421 this->select_chip
= doc2001plus_select_chip
;
1422 this->cmdfunc
= doc2001plus_command
;
1423 this->ecc
.hwctl
= doc2001plus_enable_hwecc
;
1425 doc
->chips_per_floor
= 1;
1426 mtd
->name
= "DiskOnChip Millennium Plus";
1431 static int __init
doc_probe(unsigned long physadr
)
1433 unsigned char ChipID
;
1434 struct mtd_info
*mtd
;
1435 struct nand_chip
*nand
;
1436 struct doc_priv
*doc
;
1437 void __iomem
*virtadr
;
1438 unsigned char save_control
;
1439 unsigned char tmp
, tmpb
, tmpc
;
1440 int reg
, len
, numchips
;
1443 virtadr
= ioremap(physadr
, DOC_IOREMAP_LEN
);
1445 printk(KERN_ERR
"Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN
, physadr
);
1449 /* It's not possible to cleanly detect the DiskOnChip - the
1450 * bootup procedure will put the device into reset mode, and
1451 * it's not possible to talk to it without actually writing
1452 * to the DOCControl register. So we store the current contents
1453 * of the DOCControl register's location, in case we later decide
1454 * that it's not a DiskOnChip, and want to put it back how we
1457 save_control
= ReadDOC(virtadr
, DOCControl
);
1459 /* Reset the DiskOnChip ASIC */
1460 WriteDOC(DOC_MODE_CLR_ERR
| DOC_MODE_MDWREN
| DOC_MODE_RESET
, virtadr
, DOCControl
);
1461 WriteDOC(DOC_MODE_CLR_ERR
| DOC_MODE_MDWREN
| DOC_MODE_RESET
, virtadr
, DOCControl
);
1463 /* Enable the DiskOnChip ASIC */
1464 WriteDOC(DOC_MODE_CLR_ERR
| DOC_MODE_MDWREN
| DOC_MODE_NORMAL
, virtadr
, DOCControl
);
1465 WriteDOC(DOC_MODE_CLR_ERR
| DOC_MODE_MDWREN
| DOC_MODE_NORMAL
, virtadr
, DOCControl
);
1467 ChipID
= ReadDOC(virtadr
, ChipID
);
1470 case DOC_ChipID_Doc2k
:
1471 reg
= DoC_2k_ECCStatus
;
1473 case DOC_ChipID_DocMil
:
1476 case DOC_ChipID_DocMilPlus16
:
1477 case DOC_ChipID_DocMilPlus32
:
1479 /* Possible Millennium Plus, need to do more checks */
1480 /* Possibly release from power down mode */
1481 for (tmp
= 0; (tmp
< 4); tmp
++)
1482 ReadDOC(virtadr
, Mplus_Power
);
1484 /* Reset the Millennium Plus ASIC */
1485 tmp
= DOC_MODE_RESET
| DOC_MODE_MDWREN
| DOC_MODE_RST_LAT
| DOC_MODE_BDECT
;
1486 WriteDOC(tmp
, virtadr
, Mplus_DOCControl
);
1487 WriteDOC(~tmp
, virtadr
, Mplus_CtrlConfirm
);
1490 /* Enable the Millennium Plus ASIC */
1491 tmp
= DOC_MODE_NORMAL
| DOC_MODE_MDWREN
| DOC_MODE_RST_LAT
| DOC_MODE_BDECT
;
1492 WriteDOC(tmp
, virtadr
, Mplus_DOCControl
);
1493 WriteDOC(~tmp
, virtadr
, Mplus_CtrlConfirm
);
1496 ChipID
= ReadDOC(virtadr
, ChipID
);
1499 case DOC_ChipID_DocMilPlus16
:
1500 reg
= DoC_Mplus_Toggle
;
1502 case DOC_ChipID_DocMilPlus32
:
1503 printk(KERN_ERR
"DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n");
1514 /* Check the TOGGLE bit in the ECC register */
1515 tmp
= ReadDOC_(virtadr
, reg
) & DOC_TOGGLE_BIT
;
1516 tmpb
= ReadDOC_(virtadr
, reg
) & DOC_TOGGLE_BIT
;
1517 tmpc
= ReadDOC_(virtadr
, reg
) & DOC_TOGGLE_BIT
;
1518 if ((tmp
== tmpb
) || (tmp
!= tmpc
)) {
1519 printk(KERN_WARNING
"Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr
);
1524 for (mtd
= doclist
; mtd
; mtd
= doc
->nextdoc
) {
1525 unsigned char oldval
;
1526 unsigned char newval
;
1529 /* Use the alias resolution register to determine if this is
1530 in fact the same DOC aliased to a new address. If writes
1531 to one chip's alias resolution register change the value on
1532 the other chip, they're the same chip. */
1533 if (ChipID
== DOC_ChipID_DocMilPlus16
) {
1534 oldval
= ReadDOC(doc
->virtadr
, Mplus_AliasResolution
);
1535 newval
= ReadDOC(virtadr
, Mplus_AliasResolution
);
1537 oldval
= ReadDOC(doc
->virtadr
, AliasResolution
);
1538 newval
= ReadDOC(virtadr
, AliasResolution
);
1540 if (oldval
!= newval
)
1542 if (ChipID
== DOC_ChipID_DocMilPlus16
) {
1543 WriteDOC(~newval
, virtadr
, Mplus_AliasResolution
);
1544 oldval
= ReadDOC(doc
->virtadr
, Mplus_AliasResolution
);
1545 WriteDOC(newval
, virtadr
, Mplus_AliasResolution
); // restore it
1547 WriteDOC(~newval
, virtadr
, AliasResolution
);
1548 oldval
= ReadDOC(doc
->virtadr
, AliasResolution
);
1549 WriteDOC(newval
, virtadr
, AliasResolution
); // restore it
1552 if (oldval
== newval
) {
1553 printk(KERN_DEBUG
"Found alias of DOC at 0x%lx to 0x%lx\n", doc
->physadr
, physadr
);
1558 printk(KERN_NOTICE
"DiskOnChip found at 0x%lx\n", physadr
);
1560 len
= sizeof(struct mtd_info
) +
1561 sizeof(struct nand_chip
) + sizeof(struct doc_priv
) + (2 * sizeof(struct nand_bbt_descr
));
1562 mtd
= kzalloc(len
, GFP_KERNEL
);
1564 printk(KERN_ERR
"DiskOnChip kmalloc (%d bytes) failed!\n", len
);
1569 nand
= (struct nand_chip
*) (mtd
+ 1);
1570 doc
= (struct doc_priv
*) (nand
+ 1);
1571 nand
->bbt_td
= (struct nand_bbt_descr
*) (doc
+ 1);
1572 nand
->bbt_md
= nand
->bbt_td
+ 1;
1575 mtd
->owner
= THIS_MODULE
;
1578 nand
->select_chip
= doc200x_select_chip
;
1579 nand
->cmd_ctrl
= doc200x_hwcontrol
;
1580 nand
->dev_ready
= doc200x_dev_ready
;
1581 nand
->waitfunc
= doc200x_wait
;
1582 nand
->block_bad
= doc200x_block_bad
;
1583 nand
->ecc
.hwctl
= doc200x_enable_hwecc
;
1584 nand
->ecc
.calculate
= doc200x_calculate_ecc
;
1585 nand
->ecc
.correct
= doc200x_correct_data
;
1587 nand
->ecc
.layout
= &doc200x_oobinfo
;
1588 nand
->ecc
.mode
= NAND_ECC_HW_SYNDROME
;
1589 nand
->ecc
.size
= 512;
1590 nand
->ecc
.bytes
= 6;
1591 nand
->ecc
.strength
= 2;
1592 nand
->bbt_options
= NAND_BBT_USE_FLASH
;
1594 doc
->physadr
= physadr
;
1595 doc
->virtadr
= virtadr
;
1596 doc
->ChipID
= ChipID
;
1601 doc
->nextdoc
= doclist
;
1603 if (ChipID
== DOC_ChipID_Doc2k
)
1604 numchips
= doc2000_init(mtd
);
1605 else if (ChipID
== DOC_ChipID_DocMilPlus16
)
1606 numchips
= doc2001plus_init(mtd
);
1608 numchips
= doc2001_init(mtd
);
1610 if ((ret
= nand_scan(mtd
, numchips
))) {
1611 /* DBB note: i believe nand_release is necessary here, as
1612 buffers may have been allocated in nand_base. Check with
1614 /* nand_release will call mtd_device_unregister, but we
1615 haven't yet added it. This is handled without incident by
1616 mtd_device_unregister, as far as I can tell. */
1627 /* Put back the contents of the DOCControl register, in case it's not
1628 actually a DiskOnChip. */
1629 WriteDOC(save_control
, virtadr
, DOCControl
);
1635 static void release_nanddoc(void)
1637 struct mtd_info
*mtd
, *nextmtd
;
1638 struct nand_chip
*nand
;
1639 struct doc_priv
*doc
;
1641 for (mtd
= doclist
; mtd
; mtd
= nextmtd
) {
1645 nextmtd
= doc
->nextdoc
;
1647 iounmap(doc
->virtadr
);
1652 static int __init
init_nanddoc(void)
1656 /* We could create the decoder on demand, if memory is a concern.
1657 * This way we have it handy, if an error happens
1659 * Symbolsize is 10 (bits)
1660 * Primitve polynomial is x^10+x^3+1
1661 * first consecutive root is 510
1662 * primitve element to generate roots = 1
1663 * generator polinomial degree = 4
1665 rs_decoder
= init_rs(10, 0x409, FCR
, 1, NROOTS
);
1667 printk(KERN_ERR
"DiskOnChip: Could not create a RS decoder\n");
1671 if (doc_config_location
) {
1672 printk(KERN_INFO
"Using configured DiskOnChip probe address 0x%lx\n", doc_config_location
);
1673 ret
= doc_probe(doc_config_location
);
1677 for (i
= 0; (doc_locations
[i
] != 0xffffffff); i
++) {
1678 doc_probe(doc_locations
[i
]);
1681 /* No banner message any more. Print a message if no DiskOnChip
1682 found, so the user knows we at least tried. */
1684 printk(KERN_INFO
"No valid DiskOnChip devices found\n");
1690 free_rs(rs_decoder
);
1694 static void __exit
cleanup_nanddoc(void)
1696 /* Cleanup the nand/DoC resources */
1699 /* Free the reed solomon resources */
1701 free_rs(rs_decoder
);
1705 module_init(init_nanddoc
);
1706 module_exit(cleanup_nanddoc
);
1708 MODULE_LICENSE("GPL");
1709 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1710 MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver");