Merge tag 'dt' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[linux-2.6.git] / fs / nfs / dir.c
blobb9e66b7e0c1495ba05c1fb6a4b2f1557ca6a9b24
1 /*
2 * linux/fs/nfs/dir.c
4 * Copyright (C) 1992 Rick Sladkey
6 * nfs directory handling functions
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
20 #include <linux/module.h>
21 #include <linux/time.h>
22 #include <linux/errno.h>
23 #include <linux/stat.h>
24 #include <linux/fcntl.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/mm.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/nfs_fs.h>
31 #include <linux/nfs_mount.h>
32 #include <linux/pagemap.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/sched.h>
37 #include <linux/kmemleak.h>
38 #include <linux/xattr.h>
40 #include "delegation.h"
41 #include "iostat.h"
42 #include "internal.h"
43 #include "fscache.h"
45 /* #define NFS_DEBUG_VERBOSE 1 */
47 static int nfs_opendir(struct inode *, struct file *);
48 static int nfs_closedir(struct inode *, struct file *);
49 static int nfs_readdir(struct file *, void *, filldir_t);
50 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
51 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
52 static void nfs_readdir_clear_array(struct page*);
54 const struct file_operations nfs_dir_operations = {
55 .llseek = nfs_llseek_dir,
56 .read = generic_read_dir,
57 .readdir = nfs_readdir,
58 .open = nfs_opendir,
59 .release = nfs_closedir,
60 .fsync = nfs_fsync_dir,
63 const struct address_space_operations nfs_dir_aops = {
64 .freepage = nfs_readdir_clear_array,
67 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
69 struct nfs_open_dir_context *ctx;
70 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
71 if (ctx != NULL) {
72 ctx->duped = 0;
73 ctx->attr_gencount = NFS_I(dir)->attr_gencount;
74 ctx->dir_cookie = 0;
75 ctx->dup_cookie = 0;
76 ctx->cred = get_rpccred(cred);
77 return ctx;
79 return ERR_PTR(-ENOMEM);
82 static void put_nfs_open_dir_context(struct nfs_open_dir_context *ctx)
84 put_rpccred(ctx->cred);
85 kfree(ctx);
89 * Open file
91 static int
92 nfs_opendir(struct inode *inode, struct file *filp)
94 int res = 0;
95 struct nfs_open_dir_context *ctx;
96 struct rpc_cred *cred;
98 dfprintk(FILE, "NFS: open dir(%s/%s)\n",
99 filp->f_path.dentry->d_parent->d_name.name,
100 filp->f_path.dentry->d_name.name);
102 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
104 cred = rpc_lookup_cred();
105 if (IS_ERR(cred))
106 return PTR_ERR(cred);
107 ctx = alloc_nfs_open_dir_context(inode, cred);
108 if (IS_ERR(ctx)) {
109 res = PTR_ERR(ctx);
110 goto out;
112 filp->private_data = ctx;
113 if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
114 /* This is a mountpoint, so d_revalidate will never
115 * have been called, so we need to refresh the
116 * inode (for close-open consistency) ourselves.
118 __nfs_revalidate_inode(NFS_SERVER(inode), inode);
120 out:
121 put_rpccred(cred);
122 return res;
125 static int
126 nfs_closedir(struct inode *inode, struct file *filp)
128 put_nfs_open_dir_context(filp->private_data);
129 return 0;
132 struct nfs_cache_array_entry {
133 u64 cookie;
134 u64 ino;
135 struct qstr string;
136 unsigned char d_type;
139 struct nfs_cache_array {
140 int size;
141 int eof_index;
142 u64 last_cookie;
143 struct nfs_cache_array_entry array[0];
146 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
147 typedef struct {
148 struct file *file;
149 struct page *page;
150 unsigned long page_index;
151 u64 *dir_cookie;
152 u64 last_cookie;
153 loff_t current_index;
154 decode_dirent_t decode;
156 unsigned long timestamp;
157 unsigned long gencount;
158 unsigned int cache_entry_index;
159 unsigned int plus:1;
160 unsigned int eof:1;
161 } nfs_readdir_descriptor_t;
164 * The caller is responsible for calling nfs_readdir_release_array(page)
166 static
167 struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
169 void *ptr;
170 if (page == NULL)
171 return ERR_PTR(-EIO);
172 ptr = kmap(page);
173 if (ptr == NULL)
174 return ERR_PTR(-ENOMEM);
175 return ptr;
178 static
179 void nfs_readdir_release_array(struct page *page)
181 kunmap(page);
185 * we are freeing strings created by nfs_add_to_readdir_array()
187 static
188 void nfs_readdir_clear_array(struct page *page)
190 struct nfs_cache_array *array;
191 int i;
193 array = kmap_atomic(page);
194 for (i = 0; i < array->size; i++)
195 kfree(array->array[i].string.name);
196 kunmap_atomic(array);
200 * the caller is responsible for freeing qstr.name
201 * when called by nfs_readdir_add_to_array, the strings will be freed in
202 * nfs_clear_readdir_array()
204 static
205 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
207 string->len = len;
208 string->name = kmemdup(name, len, GFP_KERNEL);
209 if (string->name == NULL)
210 return -ENOMEM;
212 * Avoid a kmemleak false positive. The pointer to the name is stored
213 * in a page cache page which kmemleak does not scan.
215 kmemleak_not_leak(string->name);
216 string->hash = full_name_hash(name, len);
217 return 0;
220 static
221 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
223 struct nfs_cache_array *array = nfs_readdir_get_array(page);
224 struct nfs_cache_array_entry *cache_entry;
225 int ret;
227 if (IS_ERR(array))
228 return PTR_ERR(array);
230 cache_entry = &array->array[array->size];
232 /* Check that this entry lies within the page bounds */
233 ret = -ENOSPC;
234 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
235 goto out;
237 cache_entry->cookie = entry->prev_cookie;
238 cache_entry->ino = entry->ino;
239 cache_entry->d_type = entry->d_type;
240 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
241 if (ret)
242 goto out;
243 array->last_cookie = entry->cookie;
244 array->size++;
245 if (entry->eof != 0)
246 array->eof_index = array->size;
247 out:
248 nfs_readdir_release_array(page);
249 return ret;
252 static
253 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
255 loff_t diff = desc->file->f_pos - desc->current_index;
256 unsigned int index;
258 if (diff < 0)
259 goto out_eof;
260 if (diff >= array->size) {
261 if (array->eof_index >= 0)
262 goto out_eof;
263 return -EAGAIN;
266 index = (unsigned int)diff;
267 *desc->dir_cookie = array->array[index].cookie;
268 desc->cache_entry_index = index;
269 return 0;
270 out_eof:
271 desc->eof = 1;
272 return -EBADCOOKIE;
275 static
276 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
278 int i;
279 loff_t new_pos;
280 int status = -EAGAIN;
282 for (i = 0; i < array->size; i++) {
283 if (array->array[i].cookie == *desc->dir_cookie) {
284 struct nfs_inode *nfsi = NFS_I(desc->file->f_path.dentry->d_inode);
285 struct nfs_open_dir_context *ctx = desc->file->private_data;
287 new_pos = desc->current_index + i;
288 if (ctx->attr_gencount != nfsi->attr_gencount
289 || (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))) {
290 ctx->duped = 0;
291 ctx->attr_gencount = nfsi->attr_gencount;
292 } else if (new_pos < desc->file->f_pos) {
293 if (ctx->duped > 0
294 && ctx->dup_cookie == *desc->dir_cookie) {
295 if (printk_ratelimit()) {
296 pr_notice("NFS: directory %s/%s contains a readdir loop."
297 "Please contact your server vendor. "
298 "The file: %s has duplicate cookie %llu\n",
299 desc->file->f_dentry->d_parent->d_name.name,
300 desc->file->f_dentry->d_name.name,
301 array->array[i].string.name,
302 *desc->dir_cookie);
304 status = -ELOOP;
305 goto out;
307 ctx->dup_cookie = *desc->dir_cookie;
308 ctx->duped = -1;
310 desc->file->f_pos = new_pos;
311 desc->cache_entry_index = i;
312 return 0;
315 if (array->eof_index >= 0) {
316 status = -EBADCOOKIE;
317 if (*desc->dir_cookie == array->last_cookie)
318 desc->eof = 1;
320 out:
321 return status;
324 static
325 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
327 struct nfs_cache_array *array;
328 int status;
330 array = nfs_readdir_get_array(desc->page);
331 if (IS_ERR(array)) {
332 status = PTR_ERR(array);
333 goto out;
336 if (*desc->dir_cookie == 0)
337 status = nfs_readdir_search_for_pos(array, desc);
338 else
339 status = nfs_readdir_search_for_cookie(array, desc);
341 if (status == -EAGAIN) {
342 desc->last_cookie = array->last_cookie;
343 desc->current_index += array->size;
344 desc->page_index++;
346 nfs_readdir_release_array(desc->page);
347 out:
348 return status;
351 /* Fill a page with xdr information before transferring to the cache page */
352 static
353 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
354 struct nfs_entry *entry, struct file *file, struct inode *inode)
356 struct nfs_open_dir_context *ctx = file->private_data;
357 struct rpc_cred *cred = ctx->cred;
358 unsigned long timestamp, gencount;
359 int error;
361 again:
362 timestamp = jiffies;
363 gencount = nfs_inc_attr_generation_counter();
364 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages,
365 NFS_SERVER(inode)->dtsize, desc->plus);
366 if (error < 0) {
367 /* We requested READDIRPLUS, but the server doesn't grok it */
368 if (error == -ENOTSUPP && desc->plus) {
369 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
370 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
371 desc->plus = 0;
372 goto again;
374 goto error;
376 desc->timestamp = timestamp;
377 desc->gencount = gencount;
378 error:
379 return error;
382 static int xdr_decode(nfs_readdir_descriptor_t *desc,
383 struct nfs_entry *entry, struct xdr_stream *xdr)
385 int error;
387 error = desc->decode(xdr, entry, desc->plus);
388 if (error)
389 return error;
390 entry->fattr->time_start = desc->timestamp;
391 entry->fattr->gencount = desc->gencount;
392 return 0;
395 static
396 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
398 if (dentry->d_inode == NULL)
399 goto different;
400 if (nfs_compare_fh(entry->fh, NFS_FH(dentry->d_inode)) != 0)
401 goto different;
402 return 1;
403 different:
404 return 0;
407 static
408 bool nfs_use_readdirplus(struct inode *dir, struct file *filp)
410 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
411 return false;
412 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
413 return true;
414 if (filp->f_pos == 0)
415 return true;
416 return false;
420 * This function is called by the lookup code to request the use of
421 * readdirplus to accelerate any future lookups in the same
422 * directory.
424 static
425 void nfs_advise_use_readdirplus(struct inode *dir)
427 set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags);
430 static
431 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
433 struct qstr filename = QSTR_INIT(entry->name, entry->len);
434 struct dentry *dentry;
435 struct dentry *alias;
436 struct inode *dir = parent->d_inode;
437 struct inode *inode;
439 if (filename.name[0] == '.') {
440 if (filename.len == 1)
441 return;
442 if (filename.len == 2 && filename.name[1] == '.')
443 return;
445 filename.hash = full_name_hash(filename.name, filename.len);
447 dentry = d_lookup(parent, &filename);
448 if (dentry != NULL) {
449 if (nfs_same_file(dentry, entry)) {
450 nfs_refresh_inode(dentry->d_inode, entry->fattr);
451 goto out;
452 } else {
453 if (d_invalidate(dentry) != 0)
454 goto out;
455 dput(dentry);
459 dentry = d_alloc(parent, &filename);
460 if (dentry == NULL)
461 return;
463 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
464 if (IS_ERR(inode))
465 goto out;
467 alias = d_materialise_unique(dentry, inode);
468 if (IS_ERR(alias))
469 goto out;
470 else if (alias) {
471 nfs_set_verifier(alias, nfs_save_change_attribute(dir));
472 dput(alias);
473 } else
474 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
476 out:
477 dput(dentry);
480 /* Perform conversion from xdr to cache array */
481 static
482 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
483 struct page **xdr_pages, struct page *page, unsigned int buflen)
485 struct xdr_stream stream;
486 struct xdr_buf buf;
487 struct page *scratch;
488 struct nfs_cache_array *array;
489 unsigned int count = 0;
490 int status;
492 scratch = alloc_page(GFP_KERNEL);
493 if (scratch == NULL)
494 return -ENOMEM;
496 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
497 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
499 do {
500 status = xdr_decode(desc, entry, &stream);
501 if (status != 0) {
502 if (status == -EAGAIN)
503 status = 0;
504 break;
507 count++;
509 if (desc->plus != 0)
510 nfs_prime_dcache(desc->file->f_path.dentry, entry);
512 status = nfs_readdir_add_to_array(entry, page);
513 if (status != 0)
514 break;
515 } while (!entry->eof);
517 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
518 array = nfs_readdir_get_array(page);
519 if (!IS_ERR(array)) {
520 array->eof_index = array->size;
521 status = 0;
522 nfs_readdir_release_array(page);
523 } else
524 status = PTR_ERR(array);
527 put_page(scratch);
528 return status;
531 static
532 void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages)
534 unsigned int i;
535 for (i = 0; i < npages; i++)
536 put_page(pages[i]);
539 static
540 void nfs_readdir_free_large_page(void *ptr, struct page **pages,
541 unsigned int npages)
543 nfs_readdir_free_pagearray(pages, npages);
547 * nfs_readdir_large_page will allocate pages that must be freed with a call
548 * to nfs_readdir_free_large_page
550 static
551 int nfs_readdir_large_page(struct page **pages, unsigned int npages)
553 unsigned int i;
555 for (i = 0; i < npages; i++) {
556 struct page *page = alloc_page(GFP_KERNEL);
557 if (page == NULL)
558 goto out_freepages;
559 pages[i] = page;
561 return 0;
563 out_freepages:
564 nfs_readdir_free_pagearray(pages, i);
565 return -ENOMEM;
568 static
569 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
571 struct page *pages[NFS_MAX_READDIR_PAGES];
572 void *pages_ptr = NULL;
573 struct nfs_entry entry;
574 struct file *file = desc->file;
575 struct nfs_cache_array *array;
576 int status = -ENOMEM;
577 unsigned int array_size = ARRAY_SIZE(pages);
579 entry.prev_cookie = 0;
580 entry.cookie = desc->last_cookie;
581 entry.eof = 0;
582 entry.fh = nfs_alloc_fhandle();
583 entry.fattr = nfs_alloc_fattr();
584 entry.server = NFS_SERVER(inode);
585 if (entry.fh == NULL || entry.fattr == NULL)
586 goto out;
588 array = nfs_readdir_get_array(page);
589 if (IS_ERR(array)) {
590 status = PTR_ERR(array);
591 goto out;
593 memset(array, 0, sizeof(struct nfs_cache_array));
594 array->eof_index = -1;
596 status = nfs_readdir_large_page(pages, array_size);
597 if (status < 0)
598 goto out_release_array;
599 do {
600 unsigned int pglen;
601 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
603 if (status < 0)
604 break;
605 pglen = status;
606 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
607 if (status < 0) {
608 if (status == -ENOSPC)
609 status = 0;
610 break;
612 } while (array->eof_index < 0);
614 nfs_readdir_free_large_page(pages_ptr, pages, array_size);
615 out_release_array:
616 nfs_readdir_release_array(page);
617 out:
618 nfs_free_fattr(entry.fattr);
619 nfs_free_fhandle(entry.fh);
620 return status;
624 * Now we cache directories properly, by converting xdr information
625 * to an array that can be used for lookups later. This results in
626 * fewer cache pages, since we can store more information on each page.
627 * We only need to convert from xdr once so future lookups are much simpler
629 static
630 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
632 struct inode *inode = desc->file->f_path.dentry->d_inode;
633 int ret;
635 ret = nfs_readdir_xdr_to_array(desc, page, inode);
636 if (ret < 0)
637 goto error;
638 SetPageUptodate(page);
640 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
641 /* Should never happen */
642 nfs_zap_mapping(inode, inode->i_mapping);
644 unlock_page(page);
645 return 0;
646 error:
647 unlock_page(page);
648 return ret;
651 static
652 void cache_page_release(nfs_readdir_descriptor_t *desc)
654 if (!desc->page->mapping)
655 nfs_readdir_clear_array(desc->page);
656 page_cache_release(desc->page);
657 desc->page = NULL;
660 static
661 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
663 return read_cache_page(desc->file->f_path.dentry->d_inode->i_mapping,
664 desc->page_index, (filler_t *)nfs_readdir_filler, desc);
668 * Returns 0 if desc->dir_cookie was found on page desc->page_index
670 static
671 int find_cache_page(nfs_readdir_descriptor_t *desc)
673 int res;
675 desc->page = get_cache_page(desc);
676 if (IS_ERR(desc->page))
677 return PTR_ERR(desc->page);
679 res = nfs_readdir_search_array(desc);
680 if (res != 0)
681 cache_page_release(desc);
682 return res;
685 /* Search for desc->dir_cookie from the beginning of the page cache */
686 static inline
687 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
689 int res;
691 if (desc->page_index == 0) {
692 desc->current_index = 0;
693 desc->last_cookie = 0;
695 do {
696 res = find_cache_page(desc);
697 } while (res == -EAGAIN);
698 return res;
702 * Once we've found the start of the dirent within a page: fill 'er up...
704 static
705 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
706 filldir_t filldir)
708 struct file *file = desc->file;
709 int i = 0;
710 int res = 0;
711 struct nfs_cache_array *array = NULL;
712 struct nfs_open_dir_context *ctx = file->private_data;
714 array = nfs_readdir_get_array(desc->page);
715 if (IS_ERR(array)) {
716 res = PTR_ERR(array);
717 goto out;
720 for (i = desc->cache_entry_index; i < array->size; i++) {
721 struct nfs_cache_array_entry *ent;
723 ent = &array->array[i];
724 if (filldir(dirent, ent->string.name, ent->string.len,
725 file->f_pos, nfs_compat_user_ino64(ent->ino),
726 ent->d_type) < 0) {
727 desc->eof = 1;
728 break;
730 file->f_pos++;
731 if (i < (array->size-1))
732 *desc->dir_cookie = array->array[i+1].cookie;
733 else
734 *desc->dir_cookie = array->last_cookie;
735 if (ctx->duped != 0)
736 ctx->duped = 1;
738 if (array->eof_index >= 0)
739 desc->eof = 1;
741 nfs_readdir_release_array(desc->page);
742 out:
743 cache_page_release(desc);
744 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
745 (unsigned long long)*desc->dir_cookie, res);
746 return res;
750 * If we cannot find a cookie in our cache, we suspect that this is
751 * because it points to a deleted file, so we ask the server to return
752 * whatever it thinks is the next entry. We then feed this to filldir.
753 * If all goes well, we should then be able to find our way round the
754 * cache on the next call to readdir_search_pagecache();
756 * NOTE: we cannot add the anonymous page to the pagecache because
757 * the data it contains might not be page aligned. Besides,
758 * we should already have a complete representation of the
759 * directory in the page cache by the time we get here.
761 static inline
762 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
763 filldir_t filldir)
765 struct page *page = NULL;
766 int status;
767 struct inode *inode = desc->file->f_path.dentry->d_inode;
768 struct nfs_open_dir_context *ctx = desc->file->private_data;
770 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
771 (unsigned long long)*desc->dir_cookie);
773 page = alloc_page(GFP_HIGHUSER);
774 if (!page) {
775 status = -ENOMEM;
776 goto out;
779 desc->page_index = 0;
780 desc->last_cookie = *desc->dir_cookie;
781 desc->page = page;
782 ctx->duped = 0;
784 status = nfs_readdir_xdr_to_array(desc, page, inode);
785 if (status < 0)
786 goto out_release;
788 status = nfs_do_filldir(desc, dirent, filldir);
790 out:
791 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
792 __func__, status);
793 return status;
794 out_release:
795 cache_page_release(desc);
796 goto out;
799 /* The file offset position represents the dirent entry number. A
800 last cookie cache takes care of the common case of reading the
801 whole directory.
803 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
805 struct dentry *dentry = filp->f_path.dentry;
806 struct inode *inode = dentry->d_inode;
807 nfs_readdir_descriptor_t my_desc,
808 *desc = &my_desc;
809 struct nfs_open_dir_context *dir_ctx = filp->private_data;
810 int res;
812 dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n",
813 dentry->d_parent->d_name.name, dentry->d_name.name,
814 (long long)filp->f_pos);
815 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
818 * filp->f_pos points to the dirent entry number.
819 * *desc->dir_cookie has the cookie for the next entry. We have
820 * to either find the entry with the appropriate number or
821 * revalidate the cookie.
823 memset(desc, 0, sizeof(*desc));
825 desc->file = filp;
826 desc->dir_cookie = &dir_ctx->dir_cookie;
827 desc->decode = NFS_PROTO(inode)->decode_dirent;
828 desc->plus = nfs_use_readdirplus(inode, filp) ? 1 : 0;
830 nfs_block_sillyrename(dentry);
831 res = nfs_revalidate_mapping(inode, filp->f_mapping);
832 if (res < 0)
833 goto out;
835 do {
836 res = readdir_search_pagecache(desc);
838 if (res == -EBADCOOKIE) {
839 res = 0;
840 /* This means either end of directory */
841 if (*desc->dir_cookie && desc->eof == 0) {
842 /* Or that the server has 'lost' a cookie */
843 res = uncached_readdir(desc, dirent, filldir);
844 if (res == 0)
845 continue;
847 break;
849 if (res == -ETOOSMALL && desc->plus) {
850 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
851 nfs_zap_caches(inode);
852 desc->page_index = 0;
853 desc->plus = 0;
854 desc->eof = 0;
855 continue;
857 if (res < 0)
858 break;
860 res = nfs_do_filldir(desc, dirent, filldir);
861 if (res < 0)
862 break;
863 } while (!desc->eof);
864 out:
865 nfs_unblock_sillyrename(dentry);
866 if (res > 0)
867 res = 0;
868 dfprintk(FILE, "NFS: readdir(%s/%s) returns %d\n",
869 dentry->d_parent->d_name.name, dentry->d_name.name,
870 res);
871 return res;
874 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
876 struct dentry *dentry = filp->f_path.dentry;
877 struct inode *inode = dentry->d_inode;
878 struct nfs_open_dir_context *dir_ctx = filp->private_data;
880 dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n",
881 dentry->d_parent->d_name.name,
882 dentry->d_name.name,
883 offset, origin);
885 mutex_lock(&inode->i_mutex);
886 switch (origin) {
887 case 1:
888 offset += filp->f_pos;
889 case 0:
890 if (offset >= 0)
891 break;
892 default:
893 offset = -EINVAL;
894 goto out;
896 if (offset != filp->f_pos) {
897 filp->f_pos = offset;
898 dir_ctx->dir_cookie = 0;
899 dir_ctx->duped = 0;
901 out:
902 mutex_unlock(&inode->i_mutex);
903 return offset;
907 * All directory operations under NFS are synchronous, so fsync()
908 * is a dummy operation.
910 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
911 int datasync)
913 struct dentry *dentry = filp->f_path.dentry;
914 struct inode *inode = dentry->d_inode;
916 dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n",
917 dentry->d_parent->d_name.name, dentry->d_name.name,
918 datasync);
920 mutex_lock(&inode->i_mutex);
921 nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC);
922 mutex_unlock(&inode->i_mutex);
923 return 0;
927 * nfs_force_lookup_revalidate - Mark the directory as having changed
928 * @dir - pointer to directory inode
930 * This forces the revalidation code in nfs_lookup_revalidate() to do a
931 * full lookup on all child dentries of 'dir' whenever a change occurs
932 * on the server that might have invalidated our dcache.
934 * The caller should be holding dir->i_lock
936 void nfs_force_lookup_revalidate(struct inode *dir)
938 NFS_I(dir)->cache_change_attribute++;
940 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
943 * A check for whether or not the parent directory has changed.
944 * In the case it has, we assume that the dentries are untrustworthy
945 * and may need to be looked up again.
947 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
949 if (IS_ROOT(dentry))
950 return 1;
951 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
952 return 0;
953 if (!nfs_verify_change_attribute(dir, dentry->d_time))
954 return 0;
955 /* Revalidate nfsi->cache_change_attribute before we declare a match */
956 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
957 return 0;
958 if (!nfs_verify_change_attribute(dir, dentry->d_time))
959 return 0;
960 return 1;
964 * Use intent information to check whether or not we're going to do
965 * an O_EXCL create using this path component.
967 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
969 if (NFS_PROTO(dir)->version == 2)
970 return 0;
971 return flags & LOOKUP_EXCL;
975 * Inode and filehandle revalidation for lookups.
977 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
978 * or if the intent information indicates that we're about to open this
979 * particular file and the "nocto" mount flag is not set.
982 static inline
983 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
985 struct nfs_server *server = NFS_SERVER(inode);
987 if (IS_AUTOMOUNT(inode))
988 return 0;
989 /* VFS wants an on-the-wire revalidation */
990 if (flags & LOOKUP_REVAL)
991 goto out_force;
992 /* This is an open(2) */
993 if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) &&
994 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
995 goto out_force;
996 return 0;
997 out_force:
998 return __nfs_revalidate_inode(server, inode);
1002 * We judge how long we want to trust negative
1003 * dentries by looking at the parent inode mtime.
1005 * If parent mtime has changed, we revalidate, else we wait for a
1006 * period corresponding to the parent's attribute cache timeout value.
1008 static inline
1009 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1010 unsigned int flags)
1012 /* Don't revalidate a negative dentry if we're creating a new file */
1013 if (flags & LOOKUP_CREATE)
1014 return 0;
1015 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1016 return 1;
1017 return !nfs_check_verifier(dir, dentry);
1021 * This is called every time the dcache has a lookup hit,
1022 * and we should check whether we can really trust that
1023 * lookup.
1025 * NOTE! The hit can be a negative hit too, don't assume
1026 * we have an inode!
1028 * If the parent directory is seen to have changed, we throw out the
1029 * cached dentry and do a new lookup.
1031 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1033 struct inode *dir;
1034 struct inode *inode;
1035 struct dentry *parent;
1036 struct nfs_fh *fhandle = NULL;
1037 struct nfs_fattr *fattr = NULL;
1038 int error;
1040 if (flags & LOOKUP_RCU)
1041 return -ECHILD;
1043 parent = dget_parent(dentry);
1044 dir = parent->d_inode;
1045 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1046 inode = dentry->d_inode;
1048 if (!inode) {
1049 if (nfs_neg_need_reval(dir, dentry, flags))
1050 goto out_bad;
1051 goto out_valid_noent;
1054 if (is_bad_inode(inode)) {
1055 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
1056 __func__, dentry->d_parent->d_name.name,
1057 dentry->d_name.name);
1058 goto out_bad;
1061 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1062 goto out_set_verifier;
1064 /* Force a full look up iff the parent directory has changed */
1065 if (!nfs_is_exclusive_create(dir, flags) && nfs_check_verifier(dir, dentry)) {
1066 if (nfs_lookup_verify_inode(inode, flags))
1067 goto out_zap_parent;
1068 goto out_valid;
1071 if (NFS_STALE(inode))
1072 goto out_bad;
1074 error = -ENOMEM;
1075 fhandle = nfs_alloc_fhandle();
1076 fattr = nfs_alloc_fattr();
1077 if (fhandle == NULL || fattr == NULL)
1078 goto out_error;
1080 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1081 if (error)
1082 goto out_bad;
1083 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1084 goto out_bad;
1085 if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1086 goto out_bad;
1088 nfs_free_fattr(fattr);
1089 nfs_free_fhandle(fhandle);
1090 out_set_verifier:
1091 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1092 out_valid:
1093 /* Success: notify readdir to use READDIRPLUS */
1094 nfs_advise_use_readdirplus(dir);
1095 out_valid_noent:
1096 dput(parent);
1097 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
1098 __func__, dentry->d_parent->d_name.name,
1099 dentry->d_name.name);
1100 return 1;
1101 out_zap_parent:
1102 nfs_zap_caches(dir);
1103 out_bad:
1104 nfs_free_fattr(fattr);
1105 nfs_free_fhandle(fhandle);
1106 nfs_mark_for_revalidate(dir);
1107 if (inode && S_ISDIR(inode->i_mode)) {
1108 /* Purge readdir caches. */
1109 nfs_zap_caches(inode);
1110 /* If we have submounts, don't unhash ! */
1111 if (have_submounts(dentry))
1112 goto out_valid;
1113 if (dentry->d_flags & DCACHE_DISCONNECTED)
1114 goto out_valid;
1115 shrink_dcache_parent(dentry);
1117 d_drop(dentry);
1118 dput(parent);
1119 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
1120 __func__, dentry->d_parent->d_name.name,
1121 dentry->d_name.name);
1122 return 0;
1123 out_error:
1124 nfs_free_fattr(fattr);
1125 nfs_free_fhandle(fhandle);
1126 dput(parent);
1127 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) lookup returned error %d\n",
1128 __func__, dentry->d_parent->d_name.name,
1129 dentry->d_name.name, error);
1130 return error;
1134 * This is called from dput() when d_count is going to 0.
1136 static int nfs_dentry_delete(const struct dentry *dentry)
1138 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
1139 dentry->d_parent->d_name.name, dentry->d_name.name,
1140 dentry->d_flags);
1142 /* Unhash any dentry with a stale inode */
1143 if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
1144 return 1;
1146 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1147 /* Unhash it, so that ->d_iput() would be called */
1148 return 1;
1150 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1151 /* Unhash it, so that ancestors of killed async unlink
1152 * files will be cleaned up during umount */
1153 return 1;
1155 return 0;
1159 static void nfs_drop_nlink(struct inode *inode)
1161 spin_lock(&inode->i_lock);
1162 if (inode->i_nlink > 0)
1163 drop_nlink(inode);
1164 spin_unlock(&inode->i_lock);
1168 * Called when the dentry loses inode.
1169 * We use it to clean up silly-renamed files.
1171 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1173 if (S_ISDIR(inode->i_mode))
1174 /* drop any readdir cache as it could easily be old */
1175 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1177 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1178 drop_nlink(inode);
1179 nfs_complete_unlink(dentry, inode);
1181 iput(inode);
1184 static void nfs_d_release(struct dentry *dentry)
1186 /* free cached devname value, if it survived that far */
1187 if (unlikely(dentry->d_fsdata)) {
1188 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1189 WARN_ON(1);
1190 else
1191 kfree(dentry->d_fsdata);
1195 const struct dentry_operations nfs_dentry_operations = {
1196 .d_revalidate = nfs_lookup_revalidate,
1197 .d_delete = nfs_dentry_delete,
1198 .d_iput = nfs_dentry_iput,
1199 .d_automount = nfs_d_automount,
1200 .d_release = nfs_d_release,
1202 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1204 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1206 struct dentry *res;
1207 struct dentry *parent;
1208 struct inode *inode = NULL;
1209 struct nfs_fh *fhandle = NULL;
1210 struct nfs_fattr *fattr = NULL;
1211 int error;
1213 dfprintk(VFS, "NFS: lookup(%s/%s)\n",
1214 dentry->d_parent->d_name.name, dentry->d_name.name);
1215 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1217 res = ERR_PTR(-ENAMETOOLONG);
1218 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1219 goto out;
1222 * If we're doing an exclusive create, optimize away the lookup
1223 * but don't hash the dentry.
1225 if (nfs_is_exclusive_create(dir, flags)) {
1226 d_instantiate(dentry, NULL);
1227 res = NULL;
1228 goto out;
1231 res = ERR_PTR(-ENOMEM);
1232 fhandle = nfs_alloc_fhandle();
1233 fattr = nfs_alloc_fattr();
1234 if (fhandle == NULL || fattr == NULL)
1235 goto out;
1237 parent = dentry->d_parent;
1238 /* Protect against concurrent sillydeletes */
1239 nfs_block_sillyrename(parent);
1240 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1241 if (error == -ENOENT)
1242 goto no_entry;
1243 if (error < 0) {
1244 res = ERR_PTR(error);
1245 goto out_unblock_sillyrename;
1247 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1248 res = ERR_CAST(inode);
1249 if (IS_ERR(res))
1250 goto out_unblock_sillyrename;
1252 /* Success: notify readdir to use READDIRPLUS */
1253 nfs_advise_use_readdirplus(dir);
1255 no_entry:
1256 res = d_materialise_unique(dentry, inode);
1257 if (res != NULL) {
1258 if (IS_ERR(res))
1259 goto out_unblock_sillyrename;
1260 dentry = res;
1262 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1263 out_unblock_sillyrename:
1264 nfs_unblock_sillyrename(parent);
1265 out:
1266 nfs_free_fattr(fattr);
1267 nfs_free_fhandle(fhandle);
1268 return res;
1270 EXPORT_SYMBOL_GPL(nfs_lookup);
1272 #if IS_ENABLED(CONFIG_NFS_V4)
1273 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1275 const struct dentry_operations nfs4_dentry_operations = {
1276 .d_revalidate = nfs4_lookup_revalidate,
1277 .d_delete = nfs_dentry_delete,
1278 .d_iput = nfs_dentry_iput,
1279 .d_automount = nfs_d_automount,
1280 .d_release = nfs_d_release,
1282 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1284 static fmode_t flags_to_mode(int flags)
1286 fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1287 if ((flags & O_ACCMODE) != O_WRONLY)
1288 res |= FMODE_READ;
1289 if ((flags & O_ACCMODE) != O_RDONLY)
1290 res |= FMODE_WRITE;
1291 return res;
1294 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags)
1296 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags));
1299 static int do_open(struct inode *inode, struct file *filp)
1301 nfs_fscache_set_inode_cookie(inode, filp);
1302 return 0;
1305 static int nfs_finish_open(struct nfs_open_context *ctx,
1306 struct dentry *dentry,
1307 struct file *file, unsigned open_flags,
1308 int *opened)
1310 int err;
1312 if (ctx->dentry != dentry) {
1313 dput(ctx->dentry);
1314 ctx->dentry = dget(dentry);
1317 /* If the open_intent is for execute, we have an extra check to make */
1318 if (ctx->mode & FMODE_EXEC) {
1319 err = nfs_may_open(dentry->d_inode, ctx->cred, open_flags);
1320 if (err < 0)
1321 goto out;
1324 err = finish_open(file, dentry, do_open, opened);
1325 if (err)
1326 goto out;
1327 nfs_file_set_open_context(file, ctx);
1329 out:
1330 put_nfs_open_context(ctx);
1331 return err;
1334 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1335 struct file *file, unsigned open_flags,
1336 umode_t mode, int *opened)
1338 struct nfs_open_context *ctx;
1339 struct dentry *res;
1340 struct iattr attr = { .ia_valid = ATTR_OPEN };
1341 struct inode *inode;
1342 int err;
1344 /* Expect a negative dentry */
1345 BUG_ON(dentry->d_inode);
1347 dfprintk(VFS, "NFS: atomic_open(%s/%ld), %s\n",
1348 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1350 /* NFS only supports OPEN on regular files */
1351 if ((open_flags & O_DIRECTORY)) {
1352 if (!d_unhashed(dentry)) {
1354 * Hashed negative dentry with O_DIRECTORY: dentry was
1355 * revalidated and is fine, no need to perform lookup
1356 * again
1358 return -ENOENT;
1360 goto no_open;
1363 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1364 return -ENAMETOOLONG;
1366 if (open_flags & O_CREAT) {
1367 attr.ia_valid |= ATTR_MODE;
1368 attr.ia_mode = mode & ~current_umask();
1370 if (open_flags & O_TRUNC) {
1371 attr.ia_valid |= ATTR_SIZE;
1372 attr.ia_size = 0;
1375 ctx = create_nfs_open_context(dentry, open_flags);
1376 err = PTR_ERR(ctx);
1377 if (IS_ERR(ctx))
1378 goto out;
1380 nfs_block_sillyrename(dentry->d_parent);
1381 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr);
1382 d_drop(dentry);
1383 if (IS_ERR(inode)) {
1384 nfs_unblock_sillyrename(dentry->d_parent);
1385 put_nfs_open_context(ctx);
1386 err = PTR_ERR(inode);
1387 switch (err) {
1388 case -ENOENT:
1389 d_add(dentry, NULL);
1390 break;
1391 case -EISDIR:
1392 case -ENOTDIR:
1393 goto no_open;
1394 case -ELOOP:
1395 if (!(open_flags & O_NOFOLLOW))
1396 goto no_open;
1397 break;
1398 /* case -EINVAL: */
1399 default:
1400 break;
1402 goto out;
1404 res = d_add_unique(dentry, inode);
1405 if (res != NULL)
1406 dentry = res;
1408 nfs_unblock_sillyrename(dentry->d_parent);
1409 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1411 err = nfs_finish_open(ctx, dentry, file, open_flags, opened);
1413 dput(res);
1414 out:
1415 return err;
1417 no_open:
1418 res = nfs_lookup(dir, dentry, 0);
1419 err = PTR_ERR(res);
1420 if (IS_ERR(res))
1421 goto out;
1423 return finish_no_open(file, res);
1425 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1427 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1429 struct dentry *parent = NULL;
1430 struct inode *inode;
1431 struct inode *dir;
1432 int ret = 0;
1434 if (flags & LOOKUP_RCU)
1435 return -ECHILD;
1437 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1438 goto no_open;
1439 if (d_mountpoint(dentry))
1440 goto no_open;
1442 inode = dentry->d_inode;
1443 parent = dget_parent(dentry);
1444 dir = parent->d_inode;
1446 /* We can't create new files in nfs_open_revalidate(), so we
1447 * optimize away revalidation of negative dentries.
1449 if (inode == NULL) {
1450 if (!nfs_neg_need_reval(dir, dentry, flags))
1451 ret = 1;
1452 goto out;
1455 /* NFS only supports OPEN on regular files */
1456 if (!S_ISREG(inode->i_mode))
1457 goto no_open_dput;
1458 /* We cannot do exclusive creation on a positive dentry */
1459 if (flags & LOOKUP_EXCL)
1460 goto no_open_dput;
1462 /* Let f_op->open() actually open (and revalidate) the file */
1463 ret = 1;
1465 out:
1466 dput(parent);
1467 return ret;
1469 no_open_dput:
1470 dput(parent);
1471 no_open:
1472 return nfs_lookup_revalidate(dentry, flags);
1475 #endif /* CONFIG_NFSV4 */
1478 * Code common to create, mkdir, and mknod.
1480 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1481 struct nfs_fattr *fattr)
1483 struct dentry *parent = dget_parent(dentry);
1484 struct inode *dir = parent->d_inode;
1485 struct inode *inode;
1486 int error = -EACCES;
1488 d_drop(dentry);
1490 /* We may have been initialized further down */
1491 if (dentry->d_inode)
1492 goto out;
1493 if (fhandle->size == 0) {
1494 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1495 if (error)
1496 goto out_error;
1498 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1499 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1500 struct nfs_server *server = NFS_SB(dentry->d_sb);
1501 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1502 if (error < 0)
1503 goto out_error;
1505 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1506 error = PTR_ERR(inode);
1507 if (IS_ERR(inode))
1508 goto out_error;
1509 d_add(dentry, inode);
1510 out:
1511 dput(parent);
1512 return 0;
1513 out_error:
1514 nfs_mark_for_revalidate(dir);
1515 dput(parent);
1516 return error;
1518 EXPORT_SYMBOL_GPL(nfs_instantiate);
1521 * Following a failed create operation, we drop the dentry rather
1522 * than retain a negative dentry. This avoids a problem in the event
1523 * that the operation succeeded on the server, but an error in the
1524 * reply path made it appear to have failed.
1526 int nfs_create(struct inode *dir, struct dentry *dentry,
1527 umode_t mode, bool excl)
1529 struct iattr attr;
1530 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1531 int error;
1533 dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1534 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1536 attr.ia_mode = mode;
1537 attr.ia_valid = ATTR_MODE;
1539 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1540 if (error != 0)
1541 goto out_err;
1542 return 0;
1543 out_err:
1544 d_drop(dentry);
1545 return error;
1547 EXPORT_SYMBOL_GPL(nfs_create);
1550 * See comments for nfs_proc_create regarding failed operations.
1553 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1555 struct iattr attr;
1556 int status;
1558 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1559 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1561 if (!new_valid_dev(rdev))
1562 return -EINVAL;
1564 attr.ia_mode = mode;
1565 attr.ia_valid = ATTR_MODE;
1567 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1568 if (status != 0)
1569 goto out_err;
1570 return 0;
1571 out_err:
1572 d_drop(dentry);
1573 return status;
1575 EXPORT_SYMBOL_GPL(nfs_mknod);
1578 * See comments for nfs_proc_create regarding failed operations.
1580 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1582 struct iattr attr;
1583 int error;
1585 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1586 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1588 attr.ia_valid = ATTR_MODE;
1589 attr.ia_mode = mode | S_IFDIR;
1591 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1592 if (error != 0)
1593 goto out_err;
1594 return 0;
1595 out_err:
1596 d_drop(dentry);
1597 return error;
1599 EXPORT_SYMBOL_GPL(nfs_mkdir);
1601 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1603 if (dentry->d_inode != NULL && !d_unhashed(dentry))
1604 d_delete(dentry);
1607 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1609 int error;
1611 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1612 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1614 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1615 /* Ensure the VFS deletes this inode */
1616 if (error == 0 && dentry->d_inode != NULL)
1617 clear_nlink(dentry->d_inode);
1618 else if (error == -ENOENT)
1619 nfs_dentry_handle_enoent(dentry);
1621 return error;
1623 EXPORT_SYMBOL_GPL(nfs_rmdir);
1626 * Remove a file after making sure there are no pending writes,
1627 * and after checking that the file has only one user.
1629 * We invalidate the attribute cache and free the inode prior to the operation
1630 * to avoid possible races if the server reuses the inode.
1632 static int nfs_safe_remove(struct dentry *dentry)
1634 struct inode *dir = dentry->d_parent->d_inode;
1635 struct inode *inode = dentry->d_inode;
1636 int error = -EBUSY;
1638 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1639 dentry->d_parent->d_name.name, dentry->d_name.name);
1641 /* If the dentry was sillyrenamed, we simply call d_delete() */
1642 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1643 error = 0;
1644 goto out;
1647 if (inode != NULL) {
1648 NFS_PROTO(inode)->return_delegation(inode);
1649 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1650 /* The VFS may want to delete this inode */
1651 if (error == 0)
1652 nfs_drop_nlink(inode);
1653 nfs_mark_for_revalidate(inode);
1654 } else
1655 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1656 if (error == -ENOENT)
1657 nfs_dentry_handle_enoent(dentry);
1658 out:
1659 return error;
1662 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1663 * belongs to an active ".nfs..." file and we return -EBUSY.
1665 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1667 int nfs_unlink(struct inode *dir, struct dentry *dentry)
1669 int error;
1670 int need_rehash = 0;
1672 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1673 dir->i_ino, dentry->d_name.name);
1675 spin_lock(&dentry->d_lock);
1676 if (dentry->d_count > 1) {
1677 spin_unlock(&dentry->d_lock);
1678 /* Start asynchronous writeout of the inode */
1679 write_inode_now(dentry->d_inode, 0);
1680 error = nfs_sillyrename(dir, dentry);
1681 return error;
1683 if (!d_unhashed(dentry)) {
1684 __d_drop(dentry);
1685 need_rehash = 1;
1687 spin_unlock(&dentry->d_lock);
1688 error = nfs_safe_remove(dentry);
1689 if (!error || error == -ENOENT) {
1690 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1691 } else if (need_rehash)
1692 d_rehash(dentry);
1693 return error;
1695 EXPORT_SYMBOL_GPL(nfs_unlink);
1698 * To create a symbolic link, most file systems instantiate a new inode,
1699 * add a page to it containing the path, then write it out to the disk
1700 * using prepare_write/commit_write.
1702 * Unfortunately the NFS client can't create the in-core inode first
1703 * because it needs a file handle to create an in-core inode (see
1704 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1705 * symlink request has completed on the server.
1707 * So instead we allocate a raw page, copy the symname into it, then do
1708 * the SYMLINK request with the page as the buffer. If it succeeds, we
1709 * now have a new file handle and can instantiate an in-core NFS inode
1710 * and move the raw page into its mapping.
1712 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1714 struct pagevec lru_pvec;
1715 struct page *page;
1716 char *kaddr;
1717 struct iattr attr;
1718 unsigned int pathlen = strlen(symname);
1719 int error;
1721 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1722 dir->i_ino, dentry->d_name.name, symname);
1724 if (pathlen > PAGE_SIZE)
1725 return -ENAMETOOLONG;
1727 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1728 attr.ia_valid = ATTR_MODE;
1730 page = alloc_page(GFP_HIGHUSER);
1731 if (!page)
1732 return -ENOMEM;
1734 kaddr = kmap_atomic(page);
1735 memcpy(kaddr, symname, pathlen);
1736 if (pathlen < PAGE_SIZE)
1737 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1738 kunmap_atomic(kaddr);
1740 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1741 if (error != 0) {
1742 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1743 dir->i_sb->s_id, dir->i_ino,
1744 dentry->d_name.name, symname, error);
1745 d_drop(dentry);
1746 __free_page(page);
1747 return error;
1751 * No big deal if we can't add this page to the page cache here.
1752 * READLINK will get the missing page from the server if needed.
1754 pagevec_init(&lru_pvec, 0);
1755 if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1756 GFP_KERNEL)) {
1757 pagevec_add(&lru_pvec, page);
1758 pagevec_lru_add_file(&lru_pvec);
1759 SetPageUptodate(page);
1760 unlock_page(page);
1761 } else
1762 __free_page(page);
1764 return 0;
1766 EXPORT_SYMBOL_GPL(nfs_symlink);
1769 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1771 struct inode *inode = old_dentry->d_inode;
1772 int error;
1774 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1775 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1776 dentry->d_parent->d_name.name, dentry->d_name.name);
1778 NFS_PROTO(inode)->return_delegation(inode);
1780 d_drop(dentry);
1781 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1782 if (error == 0) {
1783 ihold(inode);
1784 d_add(dentry, inode);
1786 return error;
1788 EXPORT_SYMBOL_GPL(nfs_link);
1791 * RENAME
1792 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1793 * different file handle for the same inode after a rename (e.g. when
1794 * moving to a different directory). A fail-safe method to do so would
1795 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1796 * rename the old file using the sillyrename stuff. This way, the original
1797 * file in old_dir will go away when the last process iput()s the inode.
1799 * FIXED.
1801 * It actually works quite well. One needs to have the possibility for
1802 * at least one ".nfs..." file in each directory the file ever gets
1803 * moved or linked to which happens automagically with the new
1804 * implementation that only depends on the dcache stuff instead of
1805 * using the inode layer
1807 * Unfortunately, things are a little more complicated than indicated
1808 * above. For a cross-directory move, we want to make sure we can get
1809 * rid of the old inode after the operation. This means there must be
1810 * no pending writes (if it's a file), and the use count must be 1.
1811 * If these conditions are met, we can drop the dentries before doing
1812 * the rename.
1814 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1815 struct inode *new_dir, struct dentry *new_dentry)
1817 struct inode *old_inode = old_dentry->d_inode;
1818 struct inode *new_inode = new_dentry->d_inode;
1819 struct dentry *dentry = NULL, *rehash = NULL;
1820 int error = -EBUSY;
1822 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1823 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1824 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1825 new_dentry->d_count);
1828 * For non-directories, check whether the target is busy and if so,
1829 * make a copy of the dentry and then do a silly-rename. If the
1830 * silly-rename succeeds, the copied dentry is hashed and becomes
1831 * the new target.
1833 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
1835 * To prevent any new references to the target during the
1836 * rename, we unhash the dentry in advance.
1838 if (!d_unhashed(new_dentry)) {
1839 d_drop(new_dentry);
1840 rehash = new_dentry;
1843 if (new_dentry->d_count > 2) {
1844 int err;
1846 /* copy the target dentry's name */
1847 dentry = d_alloc(new_dentry->d_parent,
1848 &new_dentry->d_name);
1849 if (!dentry)
1850 goto out;
1852 /* silly-rename the existing target ... */
1853 err = nfs_sillyrename(new_dir, new_dentry);
1854 if (err)
1855 goto out;
1857 new_dentry = dentry;
1858 rehash = NULL;
1859 new_inode = NULL;
1863 NFS_PROTO(old_inode)->return_delegation(old_inode);
1864 if (new_inode != NULL)
1865 NFS_PROTO(new_inode)->return_delegation(new_inode);
1867 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1868 new_dir, &new_dentry->d_name);
1869 nfs_mark_for_revalidate(old_inode);
1870 out:
1871 if (rehash)
1872 d_rehash(rehash);
1873 if (!error) {
1874 if (new_inode != NULL)
1875 nfs_drop_nlink(new_inode);
1876 d_move(old_dentry, new_dentry);
1877 nfs_set_verifier(new_dentry,
1878 nfs_save_change_attribute(new_dir));
1879 } else if (error == -ENOENT)
1880 nfs_dentry_handle_enoent(old_dentry);
1882 /* new dentry created? */
1883 if (dentry)
1884 dput(dentry);
1885 return error;
1887 EXPORT_SYMBOL_GPL(nfs_rename);
1889 static DEFINE_SPINLOCK(nfs_access_lru_lock);
1890 static LIST_HEAD(nfs_access_lru_list);
1891 static atomic_long_t nfs_access_nr_entries;
1893 static void nfs_access_free_entry(struct nfs_access_entry *entry)
1895 put_rpccred(entry->cred);
1896 kfree(entry);
1897 smp_mb__before_atomic_dec();
1898 atomic_long_dec(&nfs_access_nr_entries);
1899 smp_mb__after_atomic_dec();
1902 static void nfs_access_free_list(struct list_head *head)
1904 struct nfs_access_entry *cache;
1906 while (!list_empty(head)) {
1907 cache = list_entry(head->next, struct nfs_access_entry, lru);
1908 list_del(&cache->lru);
1909 nfs_access_free_entry(cache);
1913 int nfs_access_cache_shrinker(struct shrinker *shrink,
1914 struct shrink_control *sc)
1916 LIST_HEAD(head);
1917 struct nfs_inode *nfsi, *next;
1918 struct nfs_access_entry *cache;
1919 int nr_to_scan = sc->nr_to_scan;
1920 gfp_t gfp_mask = sc->gfp_mask;
1922 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
1923 return (nr_to_scan == 0) ? 0 : -1;
1925 spin_lock(&nfs_access_lru_lock);
1926 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
1927 struct inode *inode;
1929 if (nr_to_scan-- == 0)
1930 break;
1931 inode = &nfsi->vfs_inode;
1932 spin_lock(&inode->i_lock);
1933 if (list_empty(&nfsi->access_cache_entry_lru))
1934 goto remove_lru_entry;
1935 cache = list_entry(nfsi->access_cache_entry_lru.next,
1936 struct nfs_access_entry, lru);
1937 list_move(&cache->lru, &head);
1938 rb_erase(&cache->rb_node, &nfsi->access_cache);
1939 if (!list_empty(&nfsi->access_cache_entry_lru))
1940 list_move_tail(&nfsi->access_cache_inode_lru,
1941 &nfs_access_lru_list);
1942 else {
1943 remove_lru_entry:
1944 list_del_init(&nfsi->access_cache_inode_lru);
1945 smp_mb__before_clear_bit();
1946 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
1947 smp_mb__after_clear_bit();
1949 spin_unlock(&inode->i_lock);
1951 spin_unlock(&nfs_access_lru_lock);
1952 nfs_access_free_list(&head);
1953 return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
1956 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
1958 struct rb_root *root_node = &nfsi->access_cache;
1959 struct rb_node *n;
1960 struct nfs_access_entry *entry;
1962 /* Unhook entries from the cache */
1963 while ((n = rb_first(root_node)) != NULL) {
1964 entry = rb_entry(n, struct nfs_access_entry, rb_node);
1965 rb_erase(n, root_node);
1966 list_move(&entry->lru, head);
1968 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
1971 void nfs_access_zap_cache(struct inode *inode)
1973 LIST_HEAD(head);
1975 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
1976 return;
1977 /* Remove from global LRU init */
1978 spin_lock(&nfs_access_lru_lock);
1979 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
1980 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
1982 spin_lock(&inode->i_lock);
1983 __nfs_access_zap_cache(NFS_I(inode), &head);
1984 spin_unlock(&inode->i_lock);
1985 spin_unlock(&nfs_access_lru_lock);
1986 nfs_access_free_list(&head);
1988 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
1990 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
1992 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
1993 struct nfs_access_entry *entry;
1995 while (n != NULL) {
1996 entry = rb_entry(n, struct nfs_access_entry, rb_node);
1998 if (cred < entry->cred)
1999 n = n->rb_left;
2000 else if (cred > entry->cred)
2001 n = n->rb_right;
2002 else
2003 return entry;
2005 return NULL;
2008 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2010 struct nfs_inode *nfsi = NFS_I(inode);
2011 struct nfs_access_entry *cache;
2012 int err = -ENOENT;
2014 spin_lock(&inode->i_lock);
2015 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2016 goto out_zap;
2017 cache = nfs_access_search_rbtree(inode, cred);
2018 if (cache == NULL)
2019 goto out;
2020 if (!nfs_have_delegated_attributes(inode) &&
2021 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2022 goto out_stale;
2023 res->jiffies = cache->jiffies;
2024 res->cred = cache->cred;
2025 res->mask = cache->mask;
2026 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2027 err = 0;
2028 out:
2029 spin_unlock(&inode->i_lock);
2030 return err;
2031 out_stale:
2032 rb_erase(&cache->rb_node, &nfsi->access_cache);
2033 list_del(&cache->lru);
2034 spin_unlock(&inode->i_lock);
2035 nfs_access_free_entry(cache);
2036 return -ENOENT;
2037 out_zap:
2038 spin_unlock(&inode->i_lock);
2039 nfs_access_zap_cache(inode);
2040 return -ENOENT;
2043 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2045 struct nfs_inode *nfsi = NFS_I(inode);
2046 struct rb_root *root_node = &nfsi->access_cache;
2047 struct rb_node **p = &root_node->rb_node;
2048 struct rb_node *parent = NULL;
2049 struct nfs_access_entry *entry;
2051 spin_lock(&inode->i_lock);
2052 while (*p != NULL) {
2053 parent = *p;
2054 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2056 if (set->cred < entry->cred)
2057 p = &parent->rb_left;
2058 else if (set->cred > entry->cred)
2059 p = &parent->rb_right;
2060 else
2061 goto found;
2063 rb_link_node(&set->rb_node, parent, p);
2064 rb_insert_color(&set->rb_node, root_node);
2065 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2066 spin_unlock(&inode->i_lock);
2067 return;
2068 found:
2069 rb_replace_node(parent, &set->rb_node, root_node);
2070 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2071 list_del(&entry->lru);
2072 spin_unlock(&inode->i_lock);
2073 nfs_access_free_entry(entry);
2076 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2078 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2079 if (cache == NULL)
2080 return;
2081 RB_CLEAR_NODE(&cache->rb_node);
2082 cache->jiffies = set->jiffies;
2083 cache->cred = get_rpccred(set->cred);
2084 cache->mask = set->mask;
2086 nfs_access_add_rbtree(inode, cache);
2088 /* Update accounting */
2089 smp_mb__before_atomic_inc();
2090 atomic_long_inc(&nfs_access_nr_entries);
2091 smp_mb__after_atomic_inc();
2093 /* Add inode to global LRU list */
2094 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2095 spin_lock(&nfs_access_lru_lock);
2096 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2097 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2098 &nfs_access_lru_list);
2099 spin_unlock(&nfs_access_lru_lock);
2102 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2104 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2106 entry->mask = 0;
2107 if (access_result & NFS4_ACCESS_READ)
2108 entry->mask |= MAY_READ;
2109 if (access_result &
2110 (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
2111 entry->mask |= MAY_WRITE;
2112 if (access_result & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
2113 entry->mask |= MAY_EXEC;
2115 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2117 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2119 struct nfs_access_entry cache;
2120 int status;
2122 status = nfs_access_get_cached(inode, cred, &cache);
2123 if (status == 0)
2124 goto out;
2126 /* Be clever: ask server to check for all possible rights */
2127 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2128 cache.cred = cred;
2129 cache.jiffies = jiffies;
2130 status = NFS_PROTO(inode)->access(inode, &cache);
2131 if (status != 0) {
2132 if (status == -ESTALE) {
2133 nfs_zap_caches(inode);
2134 if (!S_ISDIR(inode->i_mode))
2135 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2137 return status;
2139 nfs_access_add_cache(inode, &cache);
2140 out:
2141 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2142 return 0;
2143 return -EACCES;
2146 static int nfs_open_permission_mask(int openflags)
2148 int mask = 0;
2150 if ((openflags & O_ACCMODE) != O_WRONLY)
2151 mask |= MAY_READ;
2152 if ((openflags & O_ACCMODE) != O_RDONLY)
2153 mask |= MAY_WRITE;
2154 if (openflags & __FMODE_EXEC)
2155 mask |= MAY_EXEC;
2156 return mask;
2159 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2161 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2163 EXPORT_SYMBOL_GPL(nfs_may_open);
2165 int nfs_permission(struct inode *inode, int mask)
2167 struct rpc_cred *cred;
2168 int res = 0;
2170 if (mask & MAY_NOT_BLOCK)
2171 return -ECHILD;
2173 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2175 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2176 goto out;
2177 /* Is this sys_access() ? */
2178 if (mask & (MAY_ACCESS | MAY_CHDIR))
2179 goto force_lookup;
2181 switch (inode->i_mode & S_IFMT) {
2182 case S_IFLNK:
2183 goto out;
2184 case S_IFREG:
2185 /* NFSv4 has atomic_open... */
2186 if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
2187 && (mask & MAY_OPEN)
2188 && !(mask & MAY_EXEC))
2189 goto out;
2190 break;
2191 case S_IFDIR:
2193 * Optimize away all write operations, since the server
2194 * will check permissions when we perform the op.
2196 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2197 goto out;
2200 force_lookup:
2201 if (!NFS_PROTO(inode)->access)
2202 goto out_notsup;
2204 cred = rpc_lookup_cred();
2205 if (!IS_ERR(cred)) {
2206 res = nfs_do_access(inode, cred, mask);
2207 put_rpccred(cred);
2208 } else
2209 res = PTR_ERR(cred);
2210 out:
2211 if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
2212 res = -EACCES;
2214 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
2215 inode->i_sb->s_id, inode->i_ino, mask, res);
2216 return res;
2217 out_notsup:
2218 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2219 if (res == 0)
2220 res = generic_permission(inode, mask);
2221 goto out;
2223 EXPORT_SYMBOL_GPL(nfs_permission);
2226 * Local variables:
2227 * version-control: t
2228 * kept-new-versions: 5
2229 * End: