2 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
4 * Copyright (C) 2008-2009 ST-Ericsson AB
5 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
7 * Author: Linus Walleij <linus.walleij@stericsson.com>
9 * Initial version inspired by:
10 * linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
11 * Initial adoption to PL022 by:
12 * Sachin Verma <sachin.verma@st.com>
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/ioport.h>
29 #include <linux/errno.h>
30 #include <linux/interrupt.h>
31 #include <linux/spi/spi.h>
32 #include <linux/workqueue.h>
33 #include <linux/delay.h>
34 #include <linux/clk.h>
35 #include <linux/err.h>
36 #include <linux/amba/bus.h>
37 #include <linux/amba/pl022.h>
39 #include <linux/slab.h>
40 #include <linux/dmaengine.h>
41 #include <linux/dma-mapping.h>
42 #include <linux/scatterlist.h>
43 #include <linux/pm_runtime.h>
46 * This macro is used to define some register default values.
47 * reg is masked with mask, the OR:ed with an (again masked)
48 * val shifted sb steps to the left.
50 #define SSP_WRITE_BITS(reg, val, mask, sb) \
51 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
54 * This macro is also used to define some default values.
55 * It will just shift val by sb steps to the left and mask
56 * the result with mask.
58 #define GEN_MASK_BITS(val, mask, sb) \
59 (((val)<<(sb)) & (mask))
62 #define DO_NOT_DRIVE_TX 1
64 #define DO_NOT_QUEUE_DMA 0
71 * Macros to access SSP Registers with their offsets
73 #define SSP_CR0(r) (r + 0x000)
74 #define SSP_CR1(r) (r + 0x004)
75 #define SSP_DR(r) (r + 0x008)
76 #define SSP_SR(r) (r + 0x00C)
77 #define SSP_CPSR(r) (r + 0x010)
78 #define SSP_IMSC(r) (r + 0x014)
79 #define SSP_RIS(r) (r + 0x018)
80 #define SSP_MIS(r) (r + 0x01C)
81 #define SSP_ICR(r) (r + 0x020)
82 #define SSP_DMACR(r) (r + 0x024)
83 #define SSP_ITCR(r) (r + 0x080)
84 #define SSP_ITIP(r) (r + 0x084)
85 #define SSP_ITOP(r) (r + 0x088)
86 #define SSP_TDR(r) (r + 0x08C)
88 #define SSP_PID0(r) (r + 0xFE0)
89 #define SSP_PID1(r) (r + 0xFE4)
90 #define SSP_PID2(r) (r + 0xFE8)
91 #define SSP_PID3(r) (r + 0xFEC)
93 #define SSP_CID0(r) (r + 0xFF0)
94 #define SSP_CID1(r) (r + 0xFF4)
95 #define SSP_CID2(r) (r + 0xFF8)
96 #define SSP_CID3(r) (r + 0xFFC)
99 * SSP Control Register 0 - SSP_CR0
101 #define SSP_CR0_MASK_DSS (0x0FUL << 0)
102 #define SSP_CR0_MASK_FRF (0x3UL << 4)
103 #define SSP_CR0_MASK_SPO (0x1UL << 6)
104 #define SSP_CR0_MASK_SPH (0x1UL << 7)
105 #define SSP_CR0_MASK_SCR (0xFFUL << 8)
108 * The ST version of this block moves som bits
109 * in SSP_CR0 and extends it to 32 bits
111 #define SSP_CR0_MASK_DSS_ST (0x1FUL << 0)
112 #define SSP_CR0_MASK_HALFDUP_ST (0x1UL << 5)
113 #define SSP_CR0_MASK_CSS_ST (0x1FUL << 16)
114 #define SSP_CR0_MASK_FRF_ST (0x3UL << 21)
117 * SSP Control Register 0 - SSP_CR1
119 #define SSP_CR1_MASK_LBM (0x1UL << 0)
120 #define SSP_CR1_MASK_SSE (0x1UL << 1)
121 #define SSP_CR1_MASK_MS (0x1UL << 2)
122 #define SSP_CR1_MASK_SOD (0x1UL << 3)
125 * The ST version of this block adds some bits
128 #define SSP_CR1_MASK_RENDN_ST (0x1UL << 4)
129 #define SSP_CR1_MASK_TENDN_ST (0x1UL << 5)
130 #define SSP_CR1_MASK_MWAIT_ST (0x1UL << 6)
131 #define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
132 #define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
133 /* This one is only in the PL023 variant */
134 #define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
137 * SSP Status Register - SSP_SR
139 #define SSP_SR_MASK_TFE (0x1UL << 0) /* Transmit FIFO empty */
140 #define SSP_SR_MASK_TNF (0x1UL << 1) /* Transmit FIFO not full */
141 #define SSP_SR_MASK_RNE (0x1UL << 2) /* Receive FIFO not empty */
142 #define SSP_SR_MASK_RFF (0x1UL << 3) /* Receive FIFO full */
143 #define SSP_SR_MASK_BSY (0x1UL << 4) /* Busy Flag */
146 * SSP Clock Prescale Register - SSP_CPSR
148 #define SSP_CPSR_MASK_CPSDVSR (0xFFUL << 0)
151 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
153 #define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
154 #define SSP_IMSC_MASK_RTIM (0x1UL << 1) /* Receive timeout Interrupt mask */
155 #define SSP_IMSC_MASK_RXIM (0x1UL << 2) /* Receive FIFO Interrupt mask */
156 #define SSP_IMSC_MASK_TXIM (0x1UL << 3) /* Transmit FIFO Interrupt mask */
159 * SSP Raw Interrupt Status Register - SSP_RIS
161 /* Receive Overrun Raw Interrupt status */
162 #define SSP_RIS_MASK_RORRIS (0x1UL << 0)
163 /* Receive Timeout Raw Interrupt status */
164 #define SSP_RIS_MASK_RTRIS (0x1UL << 1)
165 /* Receive FIFO Raw Interrupt status */
166 #define SSP_RIS_MASK_RXRIS (0x1UL << 2)
167 /* Transmit FIFO Raw Interrupt status */
168 #define SSP_RIS_MASK_TXRIS (0x1UL << 3)
171 * SSP Masked Interrupt Status Register - SSP_MIS
173 /* Receive Overrun Masked Interrupt status */
174 #define SSP_MIS_MASK_RORMIS (0x1UL << 0)
175 /* Receive Timeout Masked Interrupt status */
176 #define SSP_MIS_MASK_RTMIS (0x1UL << 1)
177 /* Receive FIFO Masked Interrupt status */
178 #define SSP_MIS_MASK_RXMIS (0x1UL << 2)
179 /* Transmit FIFO Masked Interrupt status */
180 #define SSP_MIS_MASK_TXMIS (0x1UL << 3)
183 * SSP Interrupt Clear Register - SSP_ICR
185 /* Receive Overrun Raw Clear Interrupt bit */
186 #define SSP_ICR_MASK_RORIC (0x1UL << 0)
187 /* Receive Timeout Clear Interrupt bit */
188 #define SSP_ICR_MASK_RTIC (0x1UL << 1)
191 * SSP DMA Control Register - SSP_DMACR
193 /* Receive DMA Enable bit */
194 #define SSP_DMACR_MASK_RXDMAE (0x1UL << 0)
195 /* Transmit DMA Enable bit */
196 #define SSP_DMACR_MASK_TXDMAE (0x1UL << 1)
199 * SSP Integration Test control Register - SSP_ITCR
201 #define SSP_ITCR_MASK_ITEN (0x1UL << 0)
202 #define SSP_ITCR_MASK_TESTFIFO (0x1UL << 1)
205 * SSP Integration Test Input Register - SSP_ITIP
207 #define ITIP_MASK_SSPRXD (0x1UL << 0)
208 #define ITIP_MASK_SSPFSSIN (0x1UL << 1)
209 #define ITIP_MASK_SSPCLKIN (0x1UL << 2)
210 #define ITIP_MASK_RXDMAC (0x1UL << 3)
211 #define ITIP_MASK_TXDMAC (0x1UL << 4)
212 #define ITIP_MASK_SSPTXDIN (0x1UL << 5)
215 * SSP Integration Test output Register - SSP_ITOP
217 #define ITOP_MASK_SSPTXD (0x1UL << 0)
218 #define ITOP_MASK_SSPFSSOUT (0x1UL << 1)
219 #define ITOP_MASK_SSPCLKOUT (0x1UL << 2)
220 #define ITOP_MASK_SSPOEn (0x1UL << 3)
221 #define ITOP_MASK_SSPCTLOEn (0x1UL << 4)
222 #define ITOP_MASK_RORINTR (0x1UL << 5)
223 #define ITOP_MASK_RTINTR (0x1UL << 6)
224 #define ITOP_MASK_RXINTR (0x1UL << 7)
225 #define ITOP_MASK_TXINTR (0x1UL << 8)
226 #define ITOP_MASK_INTR (0x1UL << 9)
227 #define ITOP_MASK_RXDMABREQ (0x1UL << 10)
228 #define ITOP_MASK_RXDMASREQ (0x1UL << 11)
229 #define ITOP_MASK_TXDMABREQ (0x1UL << 12)
230 #define ITOP_MASK_TXDMASREQ (0x1UL << 13)
233 * SSP Test Data Register - SSP_TDR
235 #define TDR_MASK_TESTDATA (0xFFFFFFFF)
239 * we use the spi_message.state (void *) pointer to
240 * hold a single state value, that's why all this
241 * (void *) casting is done here.
243 #define STATE_START ((void *) 0)
244 #define STATE_RUNNING ((void *) 1)
245 #define STATE_DONE ((void *) 2)
246 #define STATE_ERROR ((void *) -1)
249 * SSP State - Whether Enabled or Disabled
251 #define SSP_DISABLED (0)
252 #define SSP_ENABLED (1)
255 * SSP DMA State - Whether DMA Enabled or Disabled
257 #define SSP_DMA_DISABLED (0)
258 #define SSP_DMA_ENABLED (1)
263 #define SSP_DEFAULT_CLKRATE 0x2
264 #define SSP_DEFAULT_PRESCALE 0x40
267 * SSP Clock Parameter ranges
269 #define CPSDVR_MIN 0x02
270 #define CPSDVR_MAX 0xFE
275 * SSP Interrupt related Macros
277 #define DEFAULT_SSP_REG_IMSC 0x0UL
278 #define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
279 #define ENABLE_ALL_INTERRUPTS (~DEFAULT_SSP_REG_IMSC)
281 #define CLEAR_ALL_INTERRUPTS 0x3
283 #define SPI_POLLING_TIMEOUT 1000
286 * The type of reading going on on this chip
296 * The type of writing going on on this chip
306 * struct vendor_data - vendor-specific config parameters
307 * for PL022 derivates
308 * @fifodepth: depth of FIFOs (both)
309 * @max_bpw: maximum number of bits per word
310 * @unidir: supports unidirection transfers
311 * @extended_cr: 32 bit wide control register 0 with extra
312 * features and extra features in CR1 as found in the ST variants
313 * @pl023: supports a subset of the ST extensions called "PL023"
325 * struct pl022 - This is the private SSP driver data structure
326 * @adev: AMBA device model hookup
327 * @vendor: vendor data for the IP block
328 * @phybase: the physical memory where the SSP device resides
329 * @virtbase: the virtual memory where the SSP is mapped
330 * @clk: outgoing clock "SPICLK" for the SPI bus
331 * @master: SPI framework hookup
332 * @master_info: controller-specific data from machine setup
333 * @workqueue: a workqueue on which any spi_message request is queued
334 * @pump_messages: work struct for scheduling work to the workqueue
335 * @queue_lock: spinlock to syncronise access to message queue
336 * @queue: message queue
337 * @busy: workqueue is busy
338 * @running: workqueue is running
339 * @pump_transfers: Tasklet used in Interrupt Transfer mode
340 * @cur_msg: Pointer to current spi_message being processed
341 * @cur_transfer: Pointer to current spi_transfer
342 * @cur_chip: pointer to current clients chip(assigned from controller_state)
343 * @tx: current position in TX buffer to be read
344 * @tx_end: end position in TX buffer to be read
345 * @rx: current position in RX buffer to be written
346 * @rx_end: end position in RX buffer to be written
347 * @read: the type of read currently going on
348 * @write: the type of write currently going on
349 * @exp_fifo_level: expected FIFO level
350 * @dma_rx_channel: optional channel for RX DMA
351 * @dma_tx_channel: optional channel for TX DMA
352 * @sgt_rx: scattertable for the RX transfer
353 * @sgt_tx: scattertable for the TX transfer
354 * @dummypage: a dummy page used for driving data on the bus with DMA
357 struct amba_device
*adev
;
358 struct vendor_data
*vendor
;
359 resource_size_t phybase
;
360 void __iomem
*virtbase
;
362 struct spi_master
*master
;
363 struct pl022_ssp_controller
*master_info
;
364 /* Driver message queue */
365 struct workqueue_struct
*workqueue
;
366 struct work_struct pump_messages
;
367 spinlock_t queue_lock
;
368 struct list_head queue
;
371 /* Message transfer pump */
372 struct tasklet_struct pump_transfers
;
373 struct spi_message
*cur_msg
;
374 struct spi_transfer
*cur_transfer
;
375 struct chip_data
*cur_chip
;
380 enum ssp_reading read
;
381 enum ssp_writing write
;
383 enum ssp_rx_level_trig rx_lev_trig
;
384 enum ssp_tx_level_trig tx_lev_trig
;
386 #ifdef CONFIG_DMA_ENGINE
387 struct dma_chan
*dma_rx_channel
;
388 struct dma_chan
*dma_tx_channel
;
389 struct sg_table sgt_rx
;
390 struct sg_table sgt_tx
;
396 * struct chip_data - To maintain runtime state of SSP for each client chip
397 * @cr0: Value of control register CR0 of SSP - on later ST variants this
398 * register is 32 bits wide rather than just 16
399 * @cr1: Value of control register CR1 of SSP
400 * @dmacr: Value of DMA control Register of SSP
401 * @cpsr: Value of Clock prescale register
402 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
403 * @enable_dma: Whether to enable DMA or not
404 * @read: function ptr to be used to read when doing xfer for this chip
405 * @write: function ptr to be used to write when doing xfer for this chip
406 * @cs_control: chip select callback provided by chip
407 * @xfer_type: polling/interrupt/DMA
409 * Runtime state of the SSP controller, maintained per chip,
410 * This would be set according to the current message that would be served
419 enum ssp_reading read
;
420 enum ssp_writing write
;
421 void (*cs_control
) (u32 command
);
426 * null_cs_control - Dummy chip select function
427 * @command: select/delect the chip
429 * If no chip select function is provided by client this is used as dummy
432 static void null_cs_control(u32 command
)
434 pr_debug("pl022: dummy chip select control, CS=0x%x\n", command
);
438 * giveback - current spi_message is over, schedule next message and call
439 * callback of this message. Assumes that caller already
440 * set message->status; dma and pio irqs are blocked
441 * @pl022: SSP driver private data structure
443 static void giveback(struct pl022
*pl022
)
445 struct spi_transfer
*last_transfer
;
447 struct spi_message
*msg
;
448 void (*curr_cs_control
) (u32 command
);
451 * This local reference to the chip select function
452 * is needed because we set curr_chip to NULL
453 * as a step toward termininating the message.
455 curr_cs_control
= pl022
->cur_chip
->cs_control
;
456 spin_lock_irqsave(&pl022
->queue_lock
, flags
);
457 msg
= pl022
->cur_msg
;
458 pl022
->cur_msg
= NULL
;
459 pl022
->cur_transfer
= NULL
;
460 pl022
->cur_chip
= NULL
;
461 queue_work(pl022
->workqueue
, &pl022
->pump_messages
);
462 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
464 last_transfer
= list_entry(msg
->transfers
.prev
,
468 /* Delay if requested before any change in chip select */
469 if (last_transfer
->delay_usecs
)
471 * FIXME: This runs in interrupt context.
472 * Is this really smart?
474 udelay(last_transfer
->delay_usecs
);
477 * Drop chip select UNLESS cs_change is true or we are returning
478 * a message with an error, or next message is for another chip
480 if (!last_transfer
->cs_change
)
481 curr_cs_control(SSP_CHIP_DESELECT
);
483 struct spi_message
*next_msg
;
485 /* Holding of cs was hinted, but we need to make sure
486 * the next message is for the same chip. Don't waste
487 * time with the following tests unless this was hinted.
489 * We cannot postpone this until pump_messages, because
490 * after calling msg->complete (below) the driver that
491 * sent the current message could be unloaded, which
492 * could invalidate the cs_control() callback...
495 /* get a pointer to the next message, if any */
496 spin_lock_irqsave(&pl022
->queue_lock
, flags
);
497 if (list_empty(&pl022
->queue
))
500 next_msg
= list_entry(pl022
->queue
.next
,
501 struct spi_message
, queue
);
502 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
504 /* see if the next and current messages point
507 if (next_msg
&& next_msg
->spi
!= msg
->spi
)
509 if (!next_msg
|| msg
->state
== STATE_ERROR
)
510 curr_cs_control(SSP_CHIP_DESELECT
);
514 msg
->complete(msg
->context
);
515 /* This message is completed, so let's turn off the clocks & power */
516 pm_runtime_put(&pl022
->adev
->dev
);
520 * flush - flush the FIFO to reach a clean state
521 * @pl022: SSP driver private data structure
523 static int flush(struct pl022
*pl022
)
525 unsigned long limit
= loops_per_jiffy
<< 1;
527 dev_dbg(&pl022
->adev
->dev
, "flush\n");
529 while (readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_RNE
)
530 readw(SSP_DR(pl022
->virtbase
));
531 } while ((readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_BSY
) && limit
--);
533 pl022
->exp_fifo_level
= 0;
539 * restore_state - Load configuration of current chip
540 * @pl022: SSP driver private data structure
542 static void restore_state(struct pl022
*pl022
)
544 struct chip_data
*chip
= pl022
->cur_chip
;
546 if (pl022
->vendor
->extended_cr
)
547 writel(chip
->cr0
, SSP_CR0(pl022
->virtbase
));
549 writew(chip
->cr0
, SSP_CR0(pl022
->virtbase
));
550 writew(chip
->cr1
, SSP_CR1(pl022
->virtbase
));
551 writew(chip
->dmacr
, SSP_DMACR(pl022
->virtbase
));
552 writew(chip
->cpsr
, SSP_CPSR(pl022
->virtbase
));
553 writew(DISABLE_ALL_INTERRUPTS
, SSP_IMSC(pl022
->virtbase
));
554 writew(CLEAR_ALL_INTERRUPTS
, SSP_ICR(pl022
->virtbase
));
558 * Default SSP Register Values
560 #define DEFAULT_SSP_REG_CR0 ( \
561 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0) | \
562 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
563 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
564 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
565 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
568 /* ST versions have slightly different bit layout */
569 #define DEFAULT_SSP_REG_CR0_ST ( \
570 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
571 GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
572 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
573 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
574 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
575 GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16) | \
576 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
579 /* The PL023 version is slightly different again */
580 #define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
581 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
582 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
583 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
584 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
587 #define DEFAULT_SSP_REG_CR1 ( \
588 GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
589 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
590 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
591 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
594 /* ST versions extend this register to use all 16 bits */
595 #define DEFAULT_SSP_REG_CR1_ST ( \
596 DEFAULT_SSP_REG_CR1 | \
597 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
598 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
599 GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
600 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
601 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
605 * The PL023 variant has further differences: no loopback mode, no microwire
606 * support, and a new clock feedback delay setting.
608 #define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
609 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
610 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
611 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
612 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
613 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
614 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
615 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
616 GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
619 #define DEFAULT_SSP_REG_CPSR ( \
620 GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
623 #define DEFAULT_SSP_REG_DMACR (\
624 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
625 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
629 * load_ssp_default_config - Load default configuration for SSP
630 * @pl022: SSP driver private data structure
632 static void load_ssp_default_config(struct pl022
*pl022
)
634 if (pl022
->vendor
->pl023
) {
635 writel(DEFAULT_SSP_REG_CR0_ST_PL023
, SSP_CR0(pl022
->virtbase
));
636 writew(DEFAULT_SSP_REG_CR1_ST_PL023
, SSP_CR1(pl022
->virtbase
));
637 } else if (pl022
->vendor
->extended_cr
) {
638 writel(DEFAULT_SSP_REG_CR0_ST
, SSP_CR0(pl022
->virtbase
));
639 writew(DEFAULT_SSP_REG_CR1_ST
, SSP_CR1(pl022
->virtbase
));
641 writew(DEFAULT_SSP_REG_CR0
, SSP_CR0(pl022
->virtbase
));
642 writew(DEFAULT_SSP_REG_CR1
, SSP_CR1(pl022
->virtbase
));
644 writew(DEFAULT_SSP_REG_DMACR
, SSP_DMACR(pl022
->virtbase
));
645 writew(DEFAULT_SSP_REG_CPSR
, SSP_CPSR(pl022
->virtbase
));
646 writew(DISABLE_ALL_INTERRUPTS
, SSP_IMSC(pl022
->virtbase
));
647 writew(CLEAR_ALL_INTERRUPTS
, SSP_ICR(pl022
->virtbase
));
651 * This will write to TX and read from RX according to the parameters
654 static void readwriter(struct pl022
*pl022
)
658 * The FIFO depth is different between primecell variants.
659 * I believe filling in too much in the FIFO might cause
660 * errons in 8bit wide transfers on ARM variants (just 8 words
661 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
663 * To prevent this issue, the TX FIFO is only filled to the
664 * unused RX FIFO fill length, regardless of what the TX
665 * FIFO status flag indicates.
667 dev_dbg(&pl022
->adev
->dev
,
668 "%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
669 __func__
, pl022
->rx
, pl022
->rx_end
, pl022
->tx
, pl022
->tx_end
);
671 /* Read as much as you can */
672 while ((readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_RNE
)
673 && (pl022
->rx
< pl022
->rx_end
)) {
674 switch (pl022
->read
) {
676 readw(SSP_DR(pl022
->virtbase
));
679 *(u8
*) (pl022
->rx
) =
680 readw(SSP_DR(pl022
->virtbase
)) & 0xFFU
;
683 *(u16
*) (pl022
->rx
) =
684 (u16
) readw(SSP_DR(pl022
->virtbase
));
687 *(u32
*) (pl022
->rx
) =
688 readl(SSP_DR(pl022
->virtbase
));
691 pl022
->rx
+= (pl022
->cur_chip
->n_bytes
);
692 pl022
->exp_fifo_level
--;
695 * Write as much as possible up to the RX FIFO size
697 while ((pl022
->exp_fifo_level
< pl022
->vendor
->fifodepth
)
698 && (pl022
->tx
< pl022
->tx_end
)) {
699 switch (pl022
->write
) {
701 writew(0x0, SSP_DR(pl022
->virtbase
));
704 writew(*(u8
*) (pl022
->tx
), SSP_DR(pl022
->virtbase
));
707 writew((*(u16
*) (pl022
->tx
)), SSP_DR(pl022
->virtbase
));
710 writel(*(u32
*) (pl022
->tx
), SSP_DR(pl022
->virtbase
));
713 pl022
->tx
+= (pl022
->cur_chip
->n_bytes
);
714 pl022
->exp_fifo_level
++;
716 * This inner reader takes care of things appearing in the RX
717 * FIFO as we're transmitting. This will happen a lot since the
718 * clock starts running when you put things into the TX FIFO,
719 * and then things are continuously clocked into the RX FIFO.
721 while ((readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_RNE
)
722 && (pl022
->rx
< pl022
->rx_end
)) {
723 switch (pl022
->read
) {
725 readw(SSP_DR(pl022
->virtbase
));
728 *(u8
*) (pl022
->rx
) =
729 readw(SSP_DR(pl022
->virtbase
)) & 0xFFU
;
732 *(u16
*) (pl022
->rx
) =
733 (u16
) readw(SSP_DR(pl022
->virtbase
));
736 *(u32
*) (pl022
->rx
) =
737 readl(SSP_DR(pl022
->virtbase
));
740 pl022
->rx
+= (pl022
->cur_chip
->n_bytes
);
741 pl022
->exp_fifo_level
--;
745 * When we exit here the TX FIFO should be full and the RX FIFO
751 * next_transfer - Move to the Next transfer in the current spi message
752 * @pl022: SSP driver private data structure
754 * This function moves though the linked list of spi transfers in the
755 * current spi message and returns with the state of current spi
756 * message i.e whether its last transfer is done(STATE_DONE) or
757 * Next transfer is ready(STATE_RUNNING)
759 static void *next_transfer(struct pl022
*pl022
)
761 struct spi_message
*msg
= pl022
->cur_msg
;
762 struct spi_transfer
*trans
= pl022
->cur_transfer
;
764 /* Move to next transfer */
765 if (trans
->transfer_list
.next
!= &msg
->transfers
) {
766 pl022
->cur_transfer
=
767 list_entry(trans
->transfer_list
.next
,
768 struct spi_transfer
, transfer_list
);
769 return STATE_RUNNING
;
775 * This DMA functionality is only compiled in if we have
776 * access to the generic DMA devices/DMA engine.
778 #ifdef CONFIG_DMA_ENGINE
779 static void unmap_free_dma_scatter(struct pl022
*pl022
)
781 /* Unmap and free the SG tables */
782 dma_unmap_sg(pl022
->dma_tx_channel
->device
->dev
, pl022
->sgt_tx
.sgl
,
783 pl022
->sgt_tx
.nents
, DMA_TO_DEVICE
);
784 dma_unmap_sg(pl022
->dma_rx_channel
->device
->dev
, pl022
->sgt_rx
.sgl
,
785 pl022
->sgt_rx
.nents
, DMA_FROM_DEVICE
);
786 sg_free_table(&pl022
->sgt_rx
);
787 sg_free_table(&pl022
->sgt_tx
);
790 static void dma_callback(void *data
)
792 struct pl022
*pl022
= data
;
793 struct spi_message
*msg
= pl022
->cur_msg
;
795 BUG_ON(!pl022
->sgt_rx
.sgl
);
799 * Optionally dump out buffers to inspect contents, this is
800 * good if you want to convince yourself that the loopback
801 * read/write contents are the same, when adopting to a new
805 struct scatterlist
*sg
;
808 dma_sync_sg_for_cpu(&pl022
->adev
->dev
,
813 for_each_sg(pl022
->sgt_rx
.sgl
, sg
, pl022
->sgt_rx
.nents
, i
) {
814 dev_dbg(&pl022
->adev
->dev
, "SPI RX SG ENTRY: %d", i
);
815 print_hex_dump(KERN_ERR
, "SPI RX: ",
823 for_each_sg(pl022
->sgt_tx
.sgl
, sg
, pl022
->sgt_tx
.nents
, i
) {
824 dev_dbg(&pl022
->adev
->dev
, "SPI TX SG ENTRY: %d", i
);
825 print_hex_dump(KERN_ERR
, "SPI TX: ",
836 unmap_free_dma_scatter(pl022
);
838 /* Update total bytes transferred */
839 msg
->actual_length
+= pl022
->cur_transfer
->len
;
840 if (pl022
->cur_transfer
->cs_change
)
842 cs_control(SSP_CHIP_DESELECT
);
844 /* Move to next transfer */
845 msg
->state
= next_transfer(pl022
);
846 tasklet_schedule(&pl022
->pump_transfers
);
849 static void setup_dma_scatter(struct pl022
*pl022
,
852 struct sg_table
*sgtab
)
854 struct scatterlist
*sg
;
855 int bytesleft
= length
;
861 for_each_sg(sgtab
->sgl
, sg
, sgtab
->nents
, i
) {
863 * If there are less bytes left than what fits
864 * in the current page (plus page alignment offset)
865 * we just feed in this, else we stuff in as much
868 if (bytesleft
< (PAGE_SIZE
- offset_in_page(bufp
)))
869 mapbytes
= bytesleft
;
871 mapbytes
= PAGE_SIZE
- offset_in_page(bufp
);
872 sg_set_page(sg
, virt_to_page(bufp
),
873 mapbytes
, offset_in_page(bufp
));
875 bytesleft
-= mapbytes
;
876 dev_dbg(&pl022
->adev
->dev
,
877 "set RX/TX target page @ %p, %d bytes, %d left\n",
878 bufp
, mapbytes
, bytesleft
);
881 /* Map the dummy buffer on every page */
882 for_each_sg(sgtab
->sgl
, sg
, sgtab
->nents
, i
) {
883 if (bytesleft
< PAGE_SIZE
)
884 mapbytes
= bytesleft
;
886 mapbytes
= PAGE_SIZE
;
887 sg_set_page(sg
, virt_to_page(pl022
->dummypage
),
889 bytesleft
-= mapbytes
;
890 dev_dbg(&pl022
->adev
->dev
,
891 "set RX/TX to dummy page %d bytes, %d left\n",
892 mapbytes
, bytesleft
);
900 * configure_dma - configures the channels for the next transfer
901 * @pl022: SSP driver's private data structure
903 static int configure_dma(struct pl022
*pl022
)
905 struct dma_slave_config rx_conf
= {
906 .src_addr
= SSP_DR(pl022
->phybase
),
907 .direction
= DMA_FROM_DEVICE
,
909 struct dma_slave_config tx_conf
= {
910 .dst_addr
= SSP_DR(pl022
->phybase
),
911 .direction
= DMA_TO_DEVICE
,
915 int rx_sglen
, tx_sglen
;
916 struct dma_chan
*rxchan
= pl022
->dma_rx_channel
;
917 struct dma_chan
*txchan
= pl022
->dma_tx_channel
;
918 struct dma_async_tx_descriptor
*rxdesc
;
919 struct dma_async_tx_descriptor
*txdesc
;
921 /* Check that the channels are available */
922 if (!rxchan
|| !txchan
)
926 * If supplied, the DMA burstsize should equal the FIFO trigger level.
927 * Notice that the DMA engine uses one-to-one mapping. Since we can
928 * not trigger on 2 elements this needs explicit mapping rather than
931 switch (pl022
->rx_lev_trig
) {
932 case SSP_RX_1_OR_MORE_ELEM
:
933 rx_conf
.src_maxburst
= 1;
935 case SSP_RX_4_OR_MORE_ELEM
:
936 rx_conf
.src_maxburst
= 4;
938 case SSP_RX_8_OR_MORE_ELEM
:
939 rx_conf
.src_maxburst
= 8;
941 case SSP_RX_16_OR_MORE_ELEM
:
942 rx_conf
.src_maxburst
= 16;
944 case SSP_RX_32_OR_MORE_ELEM
:
945 rx_conf
.src_maxburst
= 32;
948 rx_conf
.src_maxburst
= pl022
->vendor
->fifodepth
>> 1;
952 switch (pl022
->tx_lev_trig
) {
953 case SSP_TX_1_OR_MORE_EMPTY_LOC
:
954 tx_conf
.dst_maxburst
= 1;
956 case SSP_TX_4_OR_MORE_EMPTY_LOC
:
957 tx_conf
.dst_maxburst
= 4;
959 case SSP_TX_8_OR_MORE_EMPTY_LOC
:
960 tx_conf
.dst_maxburst
= 8;
962 case SSP_TX_16_OR_MORE_EMPTY_LOC
:
963 tx_conf
.dst_maxburst
= 16;
965 case SSP_TX_32_OR_MORE_EMPTY_LOC
:
966 tx_conf
.dst_maxburst
= 32;
969 tx_conf
.dst_maxburst
= pl022
->vendor
->fifodepth
>> 1;
973 switch (pl022
->read
) {
975 /* Use the same as for writing */
976 rx_conf
.src_addr_width
= DMA_SLAVE_BUSWIDTH_UNDEFINED
;
979 rx_conf
.src_addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
;
982 rx_conf
.src_addr_width
= DMA_SLAVE_BUSWIDTH_2_BYTES
;
985 rx_conf
.src_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
989 switch (pl022
->write
) {
991 /* Use the same as for reading */
992 tx_conf
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_UNDEFINED
;
995 tx_conf
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
;
998 tx_conf
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_2_BYTES
;
1001 tx_conf
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
1005 /* SPI pecularity: we need to read and write the same width */
1006 if (rx_conf
.src_addr_width
== DMA_SLAVE_BUSWIDTH_UNDEFINED
)
1007 rx_conf
.src_addr_width
= tx_conf
.dst_addr_width
;
1008 if (tx_conf
.dst_addr_width
== DMA_SLAVE_BUSWIDTH_UNDEFINED
)
1009 tx_conf
.dst_addr_width
= rx_conf
.src_addr_width
;
1010 BUG_ON(rx_conf
.src_addr_width
!= tx_conf
.dst_addr_width
);
1012 dmaengine_slave_config(rxchan
, &rx_conf
);
1013 dmaengine_slave_config(txchan
, &tx_conf
);
1015 /* Create sglists for the transfers */
1016 pages
= DIV_ROUND_UP(pl022
->cur_transfer
->len
, PAGE_SIZE
);
1017 dev_dbg(&pl022
->adev
->dev
, "using %d pages for transfer\n", pages
);
1019 ret
= sg_alloc_table(&pl022
->sgt_rx
, pages
, GFP_ATOMIC
);
1021 goto err_alloc_rx_sg
;
1023 ret
= sg_alloc_table(&pl022
->sgt_tx
, pages
, GFP_ATOMIC
);
1025 goto err_alloc_tx_sg
;
1027 /* Fill in the scatterlists for the RX+TX buffers */
1028 setup_dma_scatter(pl022
, pl022
->rx
,
1029 pl022
->cur_transfer
->len
, &pl022
->sgt_rx
);
1030 setup_dma_scatter(pl022
, pl022
->tx
,
1031 pl022
->cur_transfer
->len
, &pl022
->sgt_tx
);
1033 /* Map DMA buffers */
1034 rx_sglen
= dma_map_sg(rxchan
->device
->dev
, pl022
->sgt_rx
.sgl
,
1035 pl022
->sgt_rx
.nents
, DMA_FROM_DEVICE
);
1039 tx_sglen
= dma_map_sg(txchan
->device
->dev
, pl022
->sgt_tx
.sgl
,
1040 pl022
->sgt_tx
.nents
, DMA_TO_DEVICE
);
1044 /* Send both scatterlists */
1045 rxdesc
= rxchan
->device
->device_prep_slave_sg(rxchan
,
1049 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
1053 txdesc
= txchan
->device
->device_prep_slave_sg(txchan
,
1057 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
1061 /* Put the callback on the RX transfer only, that should finish last */
1062 rxdesc
->callback
= dma_callback
;
1063 rxdesc
->callback_param
= pl022
;
1065 /* Submit and fire RX and TX with TX last so we're ready to read! */
1066 dmaengine_submit(rxdesc
);
1067 dmaengine_submit(txdesc
);
1068 dma_async_issue_pending(rxchan
);
1069 dma_async_issue_pending(txchan
);
1074 dmaengine_terminate_all(txchan
);
1076 dmaengine_terminate_all(rxchan
);
1077 dma_unmap_sg(txchan
->device
->dev
, pl022
->sgt_tx
.sgl
,
1078 pl022
->sgt_tx
.nents
, DMA_TO_DEVICE
);
1080 dma_unmap_sg(rxchan
->device
->dev
, pl022
->sgt_rx
.sgl
,
1081 pl022
->sgt_tx
.nents
, DMA_FROM_DEVICE
);
1083 sg_free_table(&pl022
->sgt_tx
);
1085 sg_free_table(&pl022
->sgt_rx
);
1090 static int __init
pl022_dma_probe(struct pl022
*pl022
)
1092 dma_cap_mask_t mask
;
1094 /* Try to acquire a generic DMA engine slave channel */
1096 dma_cap_set(DMA_SLAVE
, mask
);
1098 * We need both RX and TX channels to do DMA, else do none
1101 pl022
->dma_rx_channel
= dma_request_channel(mask
,
1102 pl022
->master_info
->dma_filter
,
1103 pl022
->master_info
->dma_rx_param
);
1104 if (!pl022
->dma_rx_channel
) {
1105 dev_dbg(&pl022
->adev
->dev
, "no RX DMA channel!\n");
1109 pl022
->dma_tx_channel
= dma_request_channel(mask
,
1110 pl022
->master_info
->dma_filter
,
1111 pl022
->master_info
->dma_tx_param
);
1112 if (!pl022
->dma_tx_channel
) {
1113 dev_dbg(&pl022
->adev
->dev
, "no TX DMA channel!\n");
1117 pl022
->dummypage
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
1118 if (!pl022
->dummypage
) {
1119 dev_dbg(&pl022
->adev
->dev
, "no DMA dummypage!\n");
1120 goto err_no_dummypage
;
1123 dev_info(&pl022
->adev
->dev
, "setup for DMA on RX %s, TX %s\n",
1124 dma_chan_name(pl022
->dma_rx_channel
),
1125 dma_chan_name(pl022
->dma_tx_channel
));
1130 dma_release_channel(pl022
->dma_tx_channel
);
1132 dma_release_channel(pl022
->dma_rx_channel
);
1133 pl022
->dma_rx_channel
= NULL
;
1135 dev_err(&pl022
->adev
->dev
,
1136 "Failed to work in dma mode, work without dma!\n");
1140 static void terminate_dma(struct pl022
*pl022
)
1142 struct dma_chan
*rxchan
= pl022
->dma_rx_channel
;
1143 struct dma_chan
*txchan
= pl022
->dma_tx_channel
;
1145 dmaengine_terminate_all(rxchan
);
1146 dmaengine_terminate_all(txchan
);
1147 unmap_free_dma_scatter(pl022
);
1150 static void pl022_dma_remove(struct pl022
*pl022
)
1153 terminate_dma(pl022
);
1154 if (pl022
->dma_tx_channel
)
1155 dma_release_channel(pl022
->dma_tx_channel
);
1156 if (pl022
->dma_rx_channel
)
1157 dma_release_channel(pl022
->dma_rx_channel
);
1158 kfree(pl022
->dummypage
);
1162 static inline int configure_dma(struct pl022
*pl022
)
1167 static inline int pl022_dma_probe(struct pl022
*pl022
)
1172 static inline void pl022_dma_remove(struct pl022
*pl022
)
1178 * pl022_interrupt_handler - Interrupt handler for SSP controller
1180 * This function handles interrupts generated for an interrupt based transfer.
1181 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1182 * current message's state as STATE_ERROR and schedule the tasklet
1183 * pump_transfers which will do the postprocessing of the current message by
1184 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1185 * more data, and writes data in TX FIFO till it is not full. If we complete
1186 * the transfer we move to the next transfer and schedule the tasklet.
1188 static irqreturn_t
pl022_interrupt_handler(int irq
, void *dev_id
)
1190 struct pl022
*pl022
= dev_id
;
1191 struct spi_message
*msg
= pl022
->cur_msg
;
1195 if (unlikely(!msg
)) {
1196 dev_err(&pl022
->adev
->dev
,
1197 "bad message state in interrupt handler");
1202 /* Read the Interrupt Status Register */
1203 irq_status
= readw(SSP_MIS(pl022
->virtbase
));
1205 if (unlikely(!irq_status
))
1209 * This handles the FIFO interrupts, the timeout
1210 * interrupts are flatly ignored, they cannot be
1213 if (unlikely(irq_status
& SSP_MIS_MASK_RORMIS
)) {
1215 * Overrun interrupt - bail out since our Data has been
1218 dev_err(&pl022
->adev
->dev
, "FIFO overrun\n");
1219 if (readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_RFF
)
1220 dev_err(&pl022
->adev
->dev
,
1221 "RXFIFO is full\n");
1222 if (readw(SSP_SR(pl022
->virtbase
)) & SSP_SR_MASK_TNF
)
1223 dev_err(&pl022
->adev
->dev
,
1224 "TXFIFO is full\n");
1227 * Disable and clear interrupts, disable SSP,
1228 * mark message with bad status so it can be
1231 writew(DISABLE_ALL_INTERRUPTS
,
1232 SSP_IMSC(pl022
->virtbase
));
1233 writew(CLEAR_ALL_INTERRUPTS
, SSP_ICR(pl022
->virtbase
));
1234 writew((readw(SSP_CR1(pl022
->virtbase
)) &
1235 (~SSP_CR1_MASK_SSE
)), SSP_CR1(pl022
->virtbase
));
1236 msg
->state
= STATE_ERROR
;
1238 /* Schedule message queue handler */
1239 tasklet_schedule(&pl022
->pump_transfers
);
1245 if ((pl022
->tx
== pl022
->tx_end
) && (flag
== 0)) {
1247 /* Disable Transmit interrupt */
1248 writew(readw(SSP_IMSC(pl022
->virtbase
)) &
1249 (~SSP_IMSC_MASK_TXIM
),
1250 SSP_IMSC(pl022
->virtbase
));
1254 * Since all transactions must write as much as shall be read,
1255 * we can conclude the entire transaction once RX is complete.
1256 * At this point, all TX will always be finished.
1258 if (pl022
->rx
>= pl022
->rx_end
) {
1259 writew(DISABLE_ALL_INTERRUPTS
,
1260 SSP_IMSC(pl022
->virtbase
));
1261 writew(CLEAR_ALL_INTERRUPTS
, SSP_ICR(pl022
->virtbase
));
1262 if (unlikely(pl022
->rx
> pl022
->rx_end
)) {
1263 dev_warn(&pl022
->adev
->dev
, "read %u surplus "
1264 "bytes (did you request an odd "
1265 "number of bytes on a 16bit bus?)\n",
1266 (u32
) (pl022
->rx
- pl022
->rx_end
));
1268 /* Update total bytes transferred */
1269 msg
->actual_length
+= pl022
->cur_transfer
->len
;
1270 if (pl022
->cur_transfer
->cs_change
)
1272 cs_control(SSP_CHIP_DESELECT
);
1273 /* Move to next transfer */
1274 msg
->state
= next_transfer(pl022
);
1275 tasklet_schedule(&pl022
->pump_transfers
);
1283 * This sets up the pointers to memory for the next message to
1284 * send out on the SPI bus.
1286 static int set_up_next_transfer(struct pl022
*pl022
,
1287 struct spi_transfer
*transfer
)
1291 /* Sanity check the message for this bus width */
1292 residue
= pl022
->cur_transfer
->len
% pl022
->cur_chip
->n_bytes
;
1293 if (unlikely(residue
!= 0)) {
1294 dev_err(&pl022
->adev
->dev
,
1295 "message of %u bytes to transmit but the current "
1296 "chip bus has a data width of %u bytes!\n",
1297 pl022
->cur_transfer
->len
,
1298 pl022
->cur_chip
->n_bytes
);
1299 dev_err(&pl022
->adev
->dev
, "skipping this message\n");
1302 pl022
->tx
= (void *)transfer
->tx_buf
;
1303 pl022
->tx_end
= pl022
->tx
+ pl022
->cur_transfer
->len
;
1304 pl022
->rx
= (void *)transfer
->rx_buf
;
1305 pl022
->rx_end
= pl022
->rx
+ pl022
->cur_transfer
->len
;
1307 pl022
->tx
? pl022
->cur_chip
->write
: WRITING_NULL
;
1308 pl022
->read
= pl022
->rx
? pl022
->cur_chip
->read
: READING_NULL
;
1313 * pump_transfers - Tasklet function which schedules next transfer
1314 * when running in interrupt or DMA transfer mode.
1315 * @data: SSP driver private data structure
1318 static void pump_transfers(unsigned long data
)
1320 struct pl022
*pl022
= (struct pl022
*) data
;
1321 struct spi_message
*message
= NULL
;
1322 struct spi_transfer
*transfer
= NULL
;
1323 struct spi_transfer
*previous
= NULL
;
1325 /* Get current state information */
1326 message
= pl022
->cur_msg
;
1327 transfer
= pl022
->cur_transfer
;
1329 /* Handle for abort */
1330 if (message
->state
== STATE_ERROR
) {
1331 message
->status
= -EIO
;
1336 /* Handle end of message */
1337 if (message
->state
== STATE_DONE
) {
1338 message
->status
= 0;
1343 /* Delay if requested at end of transfer before CS change */
1344 if (message
->state
== STATE_RUNNING
) {
1345 previous
= list_entry(transfer
->transfer_list
.prev
,
1346 struct spi_transfer
,
1348 if (previous
->delay_usecs
)
1350 * FIXME: This runs in interrupt context.
1351 * Is this really smart?
1353 udelay(previous
->delay_usecs
);
1355 /* Drop chip select only if cs_change is requested */
1356 if (previous
->cs_change
)
1357 pl022
->cur_chip
->cs_control(SSP_CHIP_SELECT
);
1360 message
->state
= STATE_RUNNING
;
1363 if (set_up_next_transfer(pl022
, transfer
)) {
1364 message
->state
= STATE_ERROR
;
1365 message
->status
= -EIO
;
1369 /* Flush the FIFOs and let's go! */
1372 if (pl022
->cur_chip
->enable_dma
) {
1373 if (configure_dma(pl022
)) {
1374 dev_dbg(&pl022
->adev
->dev
,
1375 "configuration of DMA failed, fall back to interrupt mode\n");
1376 goto err_config_dma
;
1382 writew(ENABLE_ALL_INTERRUPTS
, SSP_IMSC(pl022
->virtbase
));
1385 static void do_interrupt_dma_transfer(struct pl022
*pl022
)
1387 u32 irqflags
= ENABLE_ALL_INTERRUPTS
;
1389 /* Enable target chip */
1390 pl022
->cur_chip
->cs_control(SSP_CHIP_SELECT
);
1391 if (set_up_next_transfer(pl022
, pl022
->cur_transfer
)) {
1393 pl022
->cur_msg
->state
= STATE_ERROR
;
1394 pl022
->cur_msg
->status
= -EIO
;
1398 /* If we're using DMA, set up DMA here */
1399 if (pl022
->cur_chip
->enable_dma
) {
1400 /* Configure DMA transfer */
1401 if (configure_dma(pl022
)) {
1402 dev_dbg(&pl022
->adev
->dev
,
1403 "configuration of DMA failed, fall back to interrupt mode\n");
1404 goto err_config_dma
;
1406 /* Disable interrupts in DMA mode, IRQ from DMA controller */
1407 irqflags
= DISABLE_ALL_INTERRUPTS
;
1410 /* Enable SSP, turn on interrupts */
1411 writew((readw(SSP_CR1(pl022
->virtbase
)) | SSP_CR1_MASK_SSE
),
1412 SSP_CR1(pl022
->virtbase
));
1413 writew(irqflags
, SSP_IMSC(pl022
->virtbase
));
1416 static void do_polling_transfer(struct pl022
*pl022
)
1418 struct spi_message
*message
= NULL
;
1419 struct spi_transfer
*transfer
= NULL
;
1420 struct spi_transfer
*previous
= NULL
;
1421 struct chip_data
*chip
;
1422 unsigned long time
, timeout
;
1424 chip
= pl022
->cur_chip
;
1425 message
= pl022
->cur_msg
;
1427 while (message
->state
!= STATE_DONE
) {
1428 /* Handle for abort */
1429 if (message
->state
== STATE_ERROR
)
1431 transfer
= pl022
->cur_transfer
;
1433 /* Delay if requested at end of transfer */
1434 if (message
->state
== STATE_RUNNING
) {
1436 list_entry(transfer
->transfer_list
.prev
,
1437 struct spi_transfer
, transfer_list
);
1438 if (previous
->delay_usecs
)
1439 udelay(previous
->delay_usecs
);
1440 if (previous
->cs_change
)
1441 pl022
->cur_chip
->cs_control(SSP_CHIP_SELECT
);
1444 message
->state
= STATE_RUNNING
;
1445 pl022
->cur_chip
->cs_control(SSP_CHIP_SELECT
);
1448 /* Configuration Changing Per Transfer */
1449 if (set_up_next_transfer(pl022
, transfer
)) {
1451 message
->state
= STATE_ERROR
;
1454 /* Flush FIFOs and enable SSP */
1456 writew((readw(SSP_CR1(pl022
->virtbase
)) | SSP_CR1_MASK_SSE
),
1457 SSP_CR1(pl022
->virtbase
));
1459 dev_dbg(&pl022
->adev
->dev
, "polling transfer ongoing ...\n");
1461 timeout
= jiffies
+ msecs_to_jiffies(SPI_POLLING_TIMEOUT
);
1462 while (pl022
->tx
< pl022
->tx_end
|| pl022
->rx
< pl022
->rx_end
) {
1465 if (time_after(time
, timeout
)) {
1466 dev_warn(&pl022
->adev
->dev
,
1467 "%s: timeout!\n", __func__
);
1468 message
->state
= STATE_ERROR
;
1474 /* Update total byte transferred */
1475 message
->actual_length
+= pl022
->cur_transfer
->len
;
1476 if (pl022
->cur_transfer
->cs_change
)
1477 pl022
->cur_chip
->cs_control(SSP_CHIP_DESELECT
);
1478 /* Move to next transfer */
1479 message
->state
= next_transfer(pl022
);
1482 /* Handle end of message */
1483 if (message
->state
== STATE_DONE
)
1484 message
->status
= 0;
1486 message
->status
= -EIO
;
1493 * pump_messages - Workqueue function which processes spi message queue
1494 * @data: pointer to private data of SSP driver
1496 * This function checks if there is any spi message in the queue that
1497 * needs processing and delegate control to appropriate function
1498 * do_polling_transfer()/do_interrupt_dma_transfer()
1499 * based on the kind of the transfer
1502 static void pump_messages(struct work_struct
*work
)
1504 struct pl022
*pl022
=
1505 container_of(work
, struct pl022
, pump_messages
);
1506 unsigned long flags
;
1508 /* Lock queue and check for queue work */
1509 spin_lock_irqsave(&pl022
->queue_lock
, flags
);
1510 if (list_empty(&pl022
->queue
) || !pl022
->running
) {
1511 pl022
->busy
= false;
1512 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1515 /* Make sure we are not already running a message */
1516 if (pl022
->cur_msg
) {
1517 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1520 /* Extract head of queue */
1522 list_entry(pl022
->queue
.next
, struct spi_message
, queue
);
1524 list_del_init(&pl022
->cur_msg
->queue
);
1526 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1528 /* Initial message state */
1529 pl022
->cur_msg
->state
= STATE_START
;
1530 pl022
->cur_transfer
= list_entry(pl022
->cur_msg
->transfers
.next
,
1531 struct spi_transfer
, transfer_list
);
1533 /* Setup the SPI using the per chip configuration */
1534 pl022
->cur_chip
= spi_get_ctldata(pl022
->cur_msg
->spi
);
1536 * We enable the core voltage and clocks here, then the clocks
1537 * and core will be disabled when giveback() is called in each method
1538 * (poll/interrupt/DMA)
1540 pm_runtime_get_sync(&pl022
->adev
->dev
);
1541 restore_state(pl022
);
1544 if (pl022
->cur_chip
->xfer_type
== POLLING_TRANSFER
)
1545 do_polling_transfer(pl022
);
1547 do_interrupt_dma_transfer(pl022
);
1550 static int __init
init_queue(struct pl022
*pl022
)
1552 INIT_LIST_HEAD(&pl022
->queue
);
1553 spin_lock_init(&pl022
->queue_lock
);
1555 pl022
->running
= false;
1556 pl022
->busy
= false;
1558 tasklet_init(&pl022
->pump_transfers
, pump_transfers
,
1559 (unsigned long)pl022
);
1561 INIT_WORK(&pl022
->pump_messages
, pump_messages
);
1562 pl022
->workqueue
= create_singlethread_workqueue(
1563 dev_name(pl022
->master
->dev
.parent
));
1564 if (pl022
->workqueue
== NULL
)
1570 static int start_queue(struct pl022
*pl022
)
1572 unsigned long flags
;
1574 spin_lock_irqsave(&pl022
->queue_lock
, flags
);
1576 if (pl022
->running
|| pl022
->busy
) {
1577 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1581 pl022
->running
= true;
1582 pl022
->cur_msg
= NULL
;
1583 pl022
->cur_transfer
= NULL
;
1584 pl022
->cur_chip
= NULL
;
1585 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1587 queue_work(pl022
->workqueue
, &pl022
->pump_messages
);
1592 static int stop_queue(struct pl022
*pl022
)
1594 unsigned long flags
;
1595 unsigned limit
= 500;
1598 spin_lock_irqsave(&pl022
->queue_lock
, flags
);
1600 /* This is a bit lame, but is optimized for the common execution path.
1601 * A wait_queue on the pl022->busy could be used, but then the common
1602 * execution path (pump_messages) would be required to call wake_up or
1603 * friends on every SPI message. Do this instead */
1604 while ((!list_empty(&pl022
->queue
) || pl022
->busy
) && limit
--) {
1605 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1607 spin_lock_irqsave(&pl022
->queue_lock
, flags
);
1610 if (!list_empty(&pl022
->queue
) || pl022
->busy
)
1613 pl022
->running
= false;
1615 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1620 static int destroy_queue(struct pl022
*pl022
)
1624 status
= stop_queue(pl022
);
1625 /* we are unloading the module or failing to load (only two calls
1626 * to this routine), and neither call can handle a return value.
1627 * However, destroy_workqueue calls flush_workqueue, and that will
1628 * block until all work is done. If the reason that stop_queue
1629 * timed out is that the work will never finish, then it does no
1630 * good to call destroy_workqueue, so return anyway. */
1634 destroy_workqueue(pl022
->workqueue
);
1639 static int verify_controller_parameters(struct pl022
*pl022
,
1640 struct pl022_config_chip
const *chip_info
)
1642 if ((chip_info
->iface
< SSP_INTERFACE_MOTOROLA_SPI
)
1643 || (chip_info
->iface
> SSP_INTERFACE_UNIDIRECTIONAL
)) {
1644 dev_err(&pl022
->adev
->dev
,
1645 "interface is configured incorrectly\n");
1648 if ((chip_info
->iface
== SSP_INTERFACE_UNIDIRECTIONAL
) &&
1649 (!pl022
->vendor
->unidir
)) {
1650 dev_err(&pl022
->adev
->dev
,
1651 "unidirectional mode not supported in this "
1652 "hardware version\n");
1655 if ((chip_info
->hierarchy
!= SSP_MASTER
)
1656 && (chip_info
->hierarchy
!= SSP_SLAVE
)) {
1657 dev_err(&pl022
->adev
->dev
,
1658 "hierarchy is configured incorrectly\n");
1661 if ((chip_info
->com_mode
!= INTERRUPT_TRANSFER
)
1662 && (chip_info
->com_mode
!= DMA_TRANSFER
)
1663 && (chip_info
->com_mode
!= POLLING_TRANSFER
)) {
1664 dev_err(&pl022
->adev
->dev
,
1665 "Communication mode is configured incorrectly\n");
1668 switch (chip_info
->rx_lev_trig
) {
1669 case SSP_RX_1_OR_MORE_ELEM
:
1670 case SSP_RX_4_OR_MORE_ELEM
:
1671 case SSP_RX_8_OR_MORE_ELEM
:
1672 /* These are always OK, all variants can handle this */
1674 case SSP_RX_16_OR_MORE_ELEM
:
1675 if (pl022
->vendor
->fifodepth
< 16) {
1676 dev_err(&pl022
->adev
->dev
,
1677 "RX FIFO Trigger Level is configured incorrectly\n");
1681 case SSP_RX_32_OR_MORE_ELEM
:
1682 if (pl022
->vendor
->fifodepth
< 32) {
1683 dev_err(&pl022
->adev
->dev
,
1684 "RX FIFO Trigger Level is configured incorrectly\n");
1689 dev_err(&pl022
->adev
->dev
,
1690 "RX FIFO Trigger Level is configured incorrectly\n");
1694 switch (chip_info
->tx_lev_trig
) {
1695 case SSP_TX_1_OR_MORE_EMPTY_LOC
:
1696 case SSP_TX_4_OR_MORE_EMPTY_LOC
:
1697 case SSP_TX_8_OR_MORE_EMPTY_LOC
:
1698 /* These are always OK, all variants can handle this */
1700 case SSP_TX_16_OR_MORE_EMPTY_LOC
:
1701 if (pl022
->vendor
->fifodepth
< 16) {
1702 dev_err(&pl022
->adev
->dev
,
1703 "TX FIFO Trigger Level is configured incorrectly\n");
1707 case SSP_TX_32_OR_MORE_EMPTY_LOC
:
1708 if (pl022
->vendor
->fifodepth
< 32) {
1709 dev_err(&pl022
->adev
->dev
,
1710 "TX FIFO Trigger Level is configured incorrectly\n");
1715 dev_err(&pl022
->adev
->dev
,
1716 "TX FIFO Trigger Level is configured incorrectly\n");
1720 if (chip_info
->iface
== SSP_INTERFACE_NATIONAL_MICROWIRE
) {
1721 if ((chip_info
->ctrl_len
< SSP_BITS_4
)
1722 || (chip_info
->ctrl_len
> SSP_BITS_32
)) {
1723 dev_err(&pl022
->adev
->dev
,
1724 "CTRL LEN is configured incorrectly\n");
1727 if ((chip_info
->wait_state
!= SSP_MWIRE_WAIT_ZERO
)
1728 && (chip_info
->wait_state
!= SSP_MWIRE_WAIT_ONE
)) {
1729 dev_err(&pl022
->adev
->dev
,
1730 "Wait State is configured incorrectly\n");
1733 /* Half duplex is only available in the ST Micro version */
1734 if (pl022
->vendor
->extended_cr
) {
1735 if ((chip_info
->duplex
!=
1736 SSP_MICROWIRE_CHANNEL_FULL_DUPLEX
)
1737 && (chip_info
->duplex
!=
1738 SSP_MICROWIRE_CHANNEL_HALF_DUPLEX
)) {
1739 dev_err(&pl022
->adev
->dev
,
1740 "Microwire duplex mode is configured incorrectly\n");
1744 if (chip_info
->duplex
!= SSP_MICROWIRE_CHANNEL_FULL_DUPLEX
)
1745 dev_err(&pl022
->adev
->dev
,
1746 "Microwire half duplex mode requested,"
1747 " but this is only available in the"
1748 " ST version of PL022\n");
1756 * pl022_transfer - transfer function registered to SPI master framework
1757 * @spi: spi device which is requesting transfer
1758 * @msg: spi message which is to handled is queued to driver queue
1760 * This function is registered to the SPI framework for this SPI master
1761 * controller. It will queue the spi_message in the queue of driver if
1762 * the queue is not stopped and return.
1764 static int pl022_transfer(struct spi_device
*spi
, struct spi_message
*msg
)
1766 struct pl022
*pl022
= spi_master_get_devdata(spi
->master
);
1767 unsigned long flags
;
1769 spin_lock_irqsave(&pl022
->queue_lock
, flags
);
1771 if (!pl022
->running
) {
1772 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1775 msg
->actual_length
= 0;
1776 msg
->status
= -EINPROGRESS
;
1777 msg
->state
= STATE_START
;
1779 list_add_tail(&msg
->queue
, &pl022
->queue
);
1780 if (pl022
->running
&& !pl022
->busy
)
1781 queue_work(pl022
->workqueue
, &pl022
->pump_messages
);
1783 spin_unlock_irqrestore(&pl022
->queue_lock
, flags
);
1787 static inline u32
spi_rate(u32 rate
, u16 cpsdvsr
, u16 scr
)
1789 return rate
/ (cpsdvsr
* (1 + scr
));
1792 static int calculate_effective_freq(struct pl022
*pl022
, int freq
, struct
1793 ssp_clock_params
* clk_freq
)
1795 /* Lets calculate the frequency parameters */
1796 u16 cpsdvsr
= CPSDVR_MIN
, scr
= SCR_MIN
;
1797 u32 rate
, max_tclk
, min_tclk
, best_freq
= 0, best_cpsdvsr
= 0,
1798 best_scr
= 0, tmp
, found
= 0;
1800 rate
= clk_get_rate(pl022
->clk
);
1801 /* cpsdvscr = 2 & scr 0 */
1802 max_tclk
= spi_rate(rate
, CPSDVR_MIN
, SCR_MIN
);
1803 /* cpsdvsr = 254 & scr = 255 */
1804 min_tclk
= spi_rate(rate
, CPSDVR_MAX
, SCR_MAX
);
1806 if (!((freq
<= max_tclk
) && (freq
>= min_tclk
))) {
1807 dev_err(&pl022
->adev
->dev
,
1808 "controller data is incorrect: out of range frequency");
1813 * best_freq will give closest possible available rate (<= requested
1814 * freq) for all values of scr & cpsdvsr.
1816 while ((cpsdvsr
<= CPSDVR_MAX
) && !found
) {
1817 while (scr
<= SCR_MAX
) {
1818 tmp
= spi_rate(rate
, cpsdvsr
, scr
);
1823 * If found exact value, update and break.
1824 * If found more closer value, update and continue.
1826 else if ((tmp
== freq
) || (tmp
> best_freq
)) {
1828 best_cpsdvsr
= cpsdvsr
;
1840 clk_freq
->cpsdvsr
= (u8
) (best_cpsdvsr
& 0xFF);
1841 clk_freq
->scr
= (u8
) (best_scr
& 0xFF);
1842 dev_dbg(&pl022
->adev
->dev
,
1843 "SSP Target Frequency is: %u, Effective Frequency is %u\n",
1845 dev_dbg(&pl022
->adev
->dev
, "SSP cpsdvsr = %d, scr = %d\n",
1846 clk_freq
->cpsdvsr
, clk_freq
->scr
);
1852 * A piece of default chip info unless the platform
1855 static const struct pl022_config_chip pl022_default_chip_info
= {
1856 .com_mode
= POLLING_TRANSFER
,
1857 .iface
= SSP_INTERFACE_MOTOROLA_SPI
,
1858 .hierarchy
= SSP_SLAVE
,
1859 .slave_tx_disable
= DO_NOT_DRIVE_TX
,
1860 .rx_lev_trig
= SSP_RX_1_OR_MORE_ELEM
,
1861 .tx_lev_trig
= SSP_TX_1_OR_MORE_EMPTY_LOC
,
1862 .ctrl_len
= SSP_BITS_8
,
1863 .wait_state
= SSP_MWIRE_WAIT_ZERO
,
1864 .duplex
= SSP_MICROWIRE_CHANNEL_FULL_DUPLEX
,
1865 .cs_control
= null_cs_control
,
1869 * pl022_setup - setup function registered to SPI master framework
1870 * @spi: spi device which is requesting setup
1872 * This function is registered to the SPI framework for this SPI master
1873 * controller. If it is the first time when setup is called by this device,
1874 * this function will initialize the runtime state for this chip and save
1875 * the same in the device structure. Else it will update the runtime info
1876 * with the updated chip info. Nothing is really being written to the
1877 * controller hardware here, that is not done until the actual transfer
1880 static int pl022_setup(struct spi_device
*spi
)
1882 struct pl022_config_chip
const *chip_info
;
1883 struct chip_data
*chip
;
1884 struct ssp_clock_params clk_freq
= {0, };
1886 struct pl022
*pl022
= spi_master_get_devdata(spi
->master
);
1887 unsigned int bits
= spi
->bits_per_word
;
1890 if (!spi
->max_speed_hz
)
1893 /* Get controller_state if one is supplied */
1894 chip
= spi_get_ctldata(spi
);
1897 chip
= kzalloc(sizeof(struct chip_data
), GFP_KERNEL
);
1900 "cannot allocate controller state\n");
1904 "allocated memory for controller's runtime state\n");
1907 /* Get controller data if one is supplied */
1908 chip_info
= spi
->controller_data
;
1910 if (chip_info
== NULL
) {
1911 chip_info
= &pl022_default_chip_info
;
1912 /* spi_board_info.controller_data not is supplied */
1914 "using default controller_data settings\n");
1917 "using user supplied controller_data settings\n");
1920 * We can override with custom divisors, else we use the board
1923 if ((0 == chip_info
->clk_freq
.cpsdvsr
)
1924 && (0 == chip_info
->clk_freq
.scr
)) {
1925 status
= calculate_effective_freq(pl022
,
1929 goto err_config_params
;
1931 memcpy(&clk_freq
, &chip_info
->clk_freq
, sizeof(clk_freq
));
1932 if ((clk_freq
.cpsdvsr
% 2) != 0)
1934 clk_freq
.cpsdvsr
- 1;
1936 if ((clk_freq
.cpsdvsr
< CPSDVR_MIN
)
1937 || (clk_freq
.cpsdvsr
> CPSDVR_MAX
)) {
1940 "cpsdvsr is configured incorrectly\n");
1941 goto err_config_params
;
1944 status
= verify_controller_parameters(pl022
, chip_info
);
1946 dev_err(&spi
->dev
, "controller data is incorrect");
1947 goto err_config_params
;
1950 pl022
->rx_lev_trig
= chip_info
->rx_lev_trig
;
1951 pl022
->tx_lev_trig
= chip_info
->tx_lev_trig
;
1953 /* Now set controller state based on controller data */
1954 chip
->xfer_type
= chip_info
->com_mode
;
1955 if (!chip_info
->cs_control
) {
1956 chip
->cs_control
= null_cs_control
;
1958 "chip select function is NULL for this chip\n");
1960 chip
->cs_control
= chip_info
->cs_control
;
1963 /* PL022 doesn't support less than 4-bits */
1965 goto err_config_params
;
1966 } else if (bits
<= 8) {
1967 dev_dbg(&spi
->dev
, "4 <= n <=8 bits per word\n");
1969 chip
->read
= READING_U8
;
1970 chip
->write
= WRITING_U8
;
1971 } else if (bits
<= 16) {
1972 dev_dbg(&spi
->dev
, "9 <= n <= 16 bits per word\n");
1974 chip
->read
= READING_U16
;
1975 chip
->write
= WRITING_U16
;
1977 if (pl022
->vendor
->max_bpw
>= 32) {
1978 dev_dbg(&spi
->dev
, "17 <= n <= 32 bits per word\n");
1980 chip
->read
= READING_U32
;
1981 chip
->write
= WRITING_U32
;
1984 "illegal data size for this controller!\n");
1986 "a standard pl022 can only handle "
1987 "1 <= n <= 16 bit words\n");
1989 goto err_config_params
;
1993 /* Now Initialize all register settings required for this chip */
1998 if ((chip_info
->com_mode
== DMA_TRANSFER
)
1999 && ((pl022
->master_info
)->enable_dma
)) {
2000 chip
->enable_dma
= true;
2001 dev_dbg(&spi
->dev
, "DMA mode set in controller state\n");
2002 SSP_WRITE_BITS(chip
->dmacr
, SSP_DMA_ENABLED
,
2003 SSP_DMACR_MASK_RXDMAE
, 0);
2004 SSP_WRITE_BITS(chip
->dmacr
, SSP_DMA_ENABLED
,
2005 SSP_DMACR_MASK_TXDMAE
, 1);
2007 chip
->enable_dma
= false;
2008 dev_dbg(&spi
->dev
, "DMA mode NOT set in controller state\n");
2009 SSP_WRITE_BITS(chip
->dmacr
, SSP_DMA_DISABLED
,
2010 SSP_DMACR_MASK_RXDMAE
, 0);
2011 SSP_WRITE_BITS(chip
->dmacr
, SSP_DMA_DISABLED
,
2012 SSP_DMACR_MASK_TXDMAE
, 1);
2015 chip
->cpsr
= clk_freq
.cpsdvsr
;
2017 /* Special setup for the ST micro extended control registers */
2018 if (pl022
->vendor
->extended_cr
) {
2021 if (pl022
->vendor
->pl023
) {
2022 /* These bits are only in the PL023 */
2023 SSP_WRITE_BITS(chip
->cr1
, chip_info
->clkdelay
,
2024 SSP_CR1_MASK_FBCLKDEL_ST
, 13);
2026 /* These bits are in the PL022 but not PL023 */
2027 SSP_WRITE_BITS(chip
->cr0
, chip_info
->duplex
,
2028 SSP_CR0_MASK_HALFDUP_ST
, 5);
2029 SSP_WRITE_BITS(chip
->cr0
, chip_info
->ctrl_len
,
2030 SSP_CR0_MASK_CSS_ST
, 16);
2031 SSP_WRITE_BITS(chip
->cr0
, chip_info
->iface
,
2032 SSP_CR0_MASK_FRF_ST
, 21);
2033 SSP_WRITE_BITS(chip
->cr1
, chip_info
->wait_state
,
2034 SSP_CR1_MASK_MWAIT_ST
, 6);
2036 SSP_WRITE_BITS(chip
->cr0
, bits
- 1,
2037 SSP_CR0_MASK_DSS_ST
, 0);
2039 if (spi
->mode
& SPI_LSB_FIRST
) {
2046 SSP_WRITE_BITS(chip
->cr1
, tmp
, SSP_CR1_MASK_RENDN_ST
, 4);
2047 SSP_WRITE_BITS(chip
->cr1
, etx
, SSP_CR1_MASK_TENDN_ST
, 5);
2048 SSP_WRITE_BITS(chip
->cr1
, chip_info
->rx_lev_trig
,
2049 SSP_CR1_MASK_RXIFLSEL_ST
, 7);
2050 SSP_WRITE_BITS(chip
->cr1
, chip_info
->tx_lev_trig
,
2051 SSP_CR1_MASK_TXIFLSEL_ST
, 10);
2053 SSP_WRITE_BITS(chip
->cr0
, bits
- 1,
2054 SSP_CR0_MASK_DSS
, 0);
2055 SSP_WRITE_BITS(chip
->cr0
, chip_info
->iface
,
2056 SSP_CR0_MASK_FRF
, 4);
2059 /* Stuff that is common for all versions */
2060 if (spi
->mode
& SPI_CPOL
)
2061 tmp
= SSP_CLK_POL_IDLE_HIGH
;
2063 tmp
= SSP_CLK_POL_IDLE_LOW
;
2064 SSP_WRITE_BITS(chip
->cr0
, tmp
, SSP_CR0_MASK_SPO
, 6);
2066 if (spi
->mode
& SPI_CPHA
)
2067 tmp
= SSP_CLK_SECOND_EDGE
;
2069 tmp
= SSP_CLK_FIRST_EDGE
;
2070 SSP_WRITE_BITS(chip
->cr0
, tmp
, SSP_CR0_MASK_SPH
, 7);
2072 SSP_WRITE_BITS(chip
->cr0
, clk_freq
.scr
, SSP_CR0_MASK_SCR
, 8);
2073 /* Loopback is available on all versions except PL023 */
2074 if (pl022
->vendor
->loopback
) {
2075 if (spi
->mode
& SPI_LOOP
)
2076 tmp
= LOOPBACK_ENABLED
;
2078 tmp
= LOOPBACK_DISABLED
;
2079 SSP_WRITE_BITS(chip
->cr1
, tmp
, SSP_CR1_MASK_LBM
, 0);
2081 SSP_WRITE_BITS(chip
->cr1
, SSP_DISABLED
, SSP_CR1_MASK_SSE
, 1);
2082 SSP_WRITE_BITS(chip
->cr1
, chip_info
->hierarchy
, SSP_CR1_MASK_MS
, 2);
2083 SSP_WRITE_BITS(chip
->cr1
, chip_info
->slave_tx_disable
, SSP_CR1_MASK_SOD
,
2086 /* Save controller_state */
2087 spi_set_ctldata(spi
, chip
);
2090 spi_set_ctldata(spi
, NULL
);
2096 * pl022_cleanup - cleanup function registered to SPI master framework
2097 * @spi: spi device which is requesting cleanup
2099 * This function is registered to the SPI framework for this SPI master
2100 * controller. It will free the runtime state of chip.
2102 static void pl022_cleanup(struct spi_device
*spi
)
2104 struct chip_data
*chip
= spi_get_ctldata(spi
);
2106 spi_set_ctldata(spi
, NULL
);
2110 static int __devinit
2111 pl022_probe(struct amba_device
*adev
, const struct amba_id
*id
)
2113 struct device
*dev
= &adev
->dev
;
2114 struct pl022_ssp_controller
*platform_info
= adev
->dev
.platform_data
;
2115 struct spi_master
*master
;
2116 struct pl022
*pl022
= NULL
; /*Data for this driver */
2119 dev_info(&adev
->dev
,
2120 "ARM PL022 driver, device ID: 0x%08x\n", adev
->periphid
);
2121 if (platform_info
== NULL
) {
2122 dev_err(&adev
->dev
, "probe - no platform data supplied\n");
2127 /* Allocate master with space for data */
2128 master
= spi_alloc_master(dev
, sizeof(struct pl022
));
2129 if (master
== NULL
) {
2130 dev_err(&adev
->dev
, "probe - cannot alloc SPI master\n");
2135 pl022
= spi_master_get_devdata(master
);
2136 pl022
->master
= master
;
2137 pl022
->master_info
= platform_info
;
2139 pl022
->vendor
= id
->data
;
2142 * Bus Number Which has been Assigned to this SSP controller
2145 master
->bus_num
= platform_info
->bus_id
;
2146 master
->num_chipselect
= platform_info
->num_chipselect
;
2147 master
->cleanup
= pl022_cleanup
;
2148 master
->setup
= pl022_setup
;
2149 master
->transfer
= pl022_transfer
;
2152 * Supports mode 0-3, loopback, and active low CS. Transfers are
2153 * always MS bit first on the original pl022.
2155 master
->mode_bits
= SPI_CPOL
| SPI_CPHA
| SPI_CS_HIGH
| SPI_LOOP
;
2156 if (pl022
->vendor
->extended_cr
)
2157 master
->mode_bits
|= SPI_LSB_FIRST
;
2159 dev_dbg(&adev
->dev
, "BUSNO: %d\n", master
->bus_num
);
2161 status
= amba_request_regions(adev
, NULL
);
2163 goto err_no_ioregion
;
2165 pl022
->phybase
= adev
->res
.start
;
2166 pl022
->virtbase
= ioremap(adev
->res
.start
, resource_size(&adev
->res
));
2167 if (pl022
->virtbase
== NULL
) {
2169 goto err_no_ioremap
;
2171 printk(KERN_INFO
"pl022: mapped registers from 0x%08x to %p\n",
2172 adev
->res
.start
, pl022
->virtbase
);
2174 pl022
->clk
= clk_get(&adev
->dev
, NULL
);
2175 if (IS_ERR(pl022
->clk
)) {
2176 status
= PTR_ERR(pl022
->clk
);
2177 dev_err(&adev
->dev
, "could not retrieve SSP/SPI bus clock\n");
2181 status
= clk_prepare(pl022
->clk
);
2183 dev_err(&adev
->dev
, "could not prepare SSP/SPI bus clock\n");
2188 writew((readw(SSP_CR1(pl022
->virtbase
)) & (~SSP_CR1_MASK_SSE
)),
2189 SSP_CR1(pl022
->virtbase
));
2190 load_ssp_default_config(pl022
);
2192 status
= request_irq(adev
->irq
[0], pl022_interrupt_handler
, 0, "pl022",
2195 dev_err(&adev
->dev
, "probe - cannot get IRQ (%d)\n", status
);
2199 /* Get DMA channels */
2200 if (platform_info
->enable_dma
) {
2201 status
= pl022_dma_probe(pl022
);
2203 platform_info
->enable_dma
= 0;
2206 /* Initialize and start queue */
2207 status
= init_queue(pl022
);
2209 dev_err(&adev
->dev
, "probe - problem initializing queue\n");
2210 goto err_init_queue
;
2212 status
= start_queue(pl022
);
2214 dev_err(&adev
->dev
, "probe - problem starting queue\n");
2215 goto err_start_queue
;
2217 /* Register with the SPI framework */
2218 amba_set_drvdata(adev
, pl022
);
2219 status
= spi_register_master(master
);
2222 "probe - problem registering spi master\n");
2223 goto err_spi_register
;
2225 dev_dbg(dev
, "probe succeeded\n");
2227 /* let runtime pm put suspend */
2228 pm_runtime_put(dev
);
2234 destroy_queue(pl022
);
2235 if (platform_info
->enable_dma
)
2236 pl022_dma_remove(pl022
);
2238 free_irq(adev
->irq
[0], pl022
);
2240 clk_unprepare(pl022
->clk
);
2242 clk_put(pl022
->clk
);
2244 iounmap(pl022
->virtbase
);
2246 amba_release_regions(adev
);
2248 spi_master_put(master
);
2254 static int __devexit
2255 pl022_remove(struct amba_device
*adev
)
2257 struct pl022
*pl022
= amba_get_drvdata(adev
);
2263 * undo pm_runtime_put() in probe. I assume that we're not
2264 * accessing the primecell here.
2266 pm_runtime_get_noresume(&adev
->dev
);
2268 /* Remove the queue */
2269 if (destroy_queue(pl022
) != 0)
2270 dev_err(&adev
->dev
, "queue remove failed\n");
2271 load_ssp_default_config(pl022
);
2272 if (pl022
->master_info
->enable_dma
)
2273 pl022_dma_remove(pl022
);
2275 free_irq(adev
->irq
[0], pl022
);
2276 clk_disable(pl022
->clk
);
2277 clk_unprepare(pl022
->clk
);
2278 clk_put(pl022
->clk
);
2279 iounmap(pl022
->virtbase
);
2280 amba_release_regions(adev
);
2281 tasklet_disable(&pl022
->pump_transfers
);
2282 spi_unregister_master(pl022
->master
);
2283 spi_master_put(pl022
->master
);
2284 amba_set_drvdata(adev
, NULL
);
2288 #ifdef CONFIG_SUSPEND
2289 static int pl022_suspend(struct device
*dev
)
2291 struct pl022
*pl022
= dev_get_drvdata(dev
);
2294 status
= stop_queue(pl022
);
2296 dev_warn(dev
, "suspend cannot stop queue\n");
2300 amba_vcore_enable(pl022
->adev
);
2301 amba_pclk_enable(pl022
->adev
);
2302 load_ssp_default_config(pl022
);
2303 amba_pclk_disable(pl022
->adev
);
2304 amba_vcore_disable(pl022
->adev
);
2305 dev_dbg(dev
, "suspended\n");
2309 static int pl022_resume(struct device
*dev
)
2311 struct pl022
*pl022
= dev_get_drvdata(dev
);
2314 /* Start the queue running */
2315 status
= start_queue(pl022
);
2317 dev_err(dev
, "problem starting queue (%d)\n", status
);
2319 dev_dbg(dev
, "resumed\n");
2323 #endif /* CONFIG_PM */
2325 #ifdef CONFIG_PM_RUNTIME
2326 static int pl022_runtime_suspend(struct device
*dev
)
2328 struct pl022
*pl022
= dev_get_drvdata(dev
);
2330 clk_disable(pl022
->clk
);
2331 amba_vcore_disable(pl022
->adev
);
2336 static int pl022_runtime_resume(struct device
*dev
)
2338 struct pl022
*pl022
= dev_get_drvdata(dev
);
2340 amba_vcore_enable(pl022
->adev
);
2341 clk_enable(pl022
->clk
);
2347 static const struct dev_pm_ops pl022_dev_pm_ops
= {
2348 SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend
, pl022_resume
)
2349 SET_RUNTIME_PM_OPS(pl022_runtime_suspend
, pl022_runtime_resume
, NULL
)
2352 static struct vendor_data vendor_arm
= {
2356 .extended_cr
= false,
2361 static struct vendor_data vendor_st
= {
2365 .extended_cr
= true,
2370 static struct vendor_data vendor_st_pl023
= {
2374 .extended_cr
= true,
2379 static struct vendor_data vendor_db5500_pl023
= {
2383 .extended_cr
= true,
2388 static struct amba_id pl022_ids
[] = {
2391 * ARM PL022 variant, this has a 16bit wide
2392 * and 8 locations deep TX/RX FIFO
2396 .data
= &vendor_arm
,
2400 * ST Micro derivative, this has 32bit wide
2401 * and 32 locations deep TX/RX FIFO
2409 * ST-Ericsson derivative "PL023" (this is not
2410 * an official ARM number), this is a PL022 SSP block
2411 * stripped to SPI mode only, it has 32bit wide
2412 * and 32 locations deep TX/RX FIFO but no extended
2417 .data
= &vendor_st_pl023
,
2422 .data
= &vendor_db5500_pl023
,
2427 static struct amba_driver pl022_driver
= {
2429 .name
= "ssp-pl022",
2430 .pm
= &pl022_dev_pm_ops
,
2432 .id_table
= pl022_ids
,
2433 .probe
= pl022_probe
,
2434 .remove
= __devexit_p(pl022_remove
),
2437 static int __init
pl022_init(void)
2439 return amba_driver_register(&pl022_driver
);
2441 subsys_initcall(pl022_init
);
2443 static void __exit
pl022_exit(void)
2445 amba_driver_unregister(&pl022_driver
);
2447 module_exit(pl022_exit
);
2449 MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2450 MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2451 MODULE_LICENSE("GPL");