oom: allow a non-CAP_SYS_RESOURCE proces to oom_score_adj down
[linux-2.6.git] / include / linux / sched.h
blobf23b5bb6f52ea9f52a35a4d50d32998aa9c4a0d8
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 /* 0x02000000 was previously the unused CLONE_STOPPED (Start in stopped state)
25 and is now available for re-use. */
26 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
27 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
28 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
29 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
30 #define CLONE_NEWNET 0x40000000 /* New network namespace */
31 #define CLONE_IO 0x80000000 /* Clone io context */
34 * Scheduling policies
36 #define SCHED_NORMAL 0
37 #define SCHED_FIFO 1
38 #define SCHED_RR 2
39 #define SCHED_BATCH 3
40 /* SCHED_ISO: reserved but not implemented yet */
41 #define SCHED_IDLE 5
42 /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
43 #define SCHED_RESET_ON_FORK 0x40000000
45 #ifdef __KERNEL__
47 struct sched_param {
48 int sched_priority;
51 #include <asm/param.h> /* for HZ */
53 #include <linux/capability.h>
54 #include <linux/threads.h>
55 #include <linux/kernel.h>
56 #include <linux/types.h>
57 #include <linux/timex.h>
58 #include <linux/jiffies.h>
59 #include <linux/rbtree.h>
60 #include <linux/thread_info.h>
61 #include <linux/cpumask.h>
62 #include <linux/errno.h>
63 #include <linux/nodemask.h>
64 #include <linux/mm_types.h>
66 #include <asm/system.h>
67 #include <asm/page.h>
68 #include <asm/ptrace.h>
69 #include <asm/cputime.h>
71 #include <linux/smp.h>
72 #include <linux/sem.h>
73 #include <linux/signal.h>
74 #include <linux/compiler.h>
75 #include <linux/completion.h>
76 #include <linux/pid.h>
77 #include <linux/percpu.h>
78 #include <linux/topology.h>
79 #include <linux/proportions.h>
80 #include <linux/seccomp.h>
81 #include <linux/rcupdate.h>
82 #include <linux/rculist.h>
83 #include <linux/rtmutex.h>
85 #include <linux/time.h>
86 #include <linux/param.h>
87 #include <linux/resource.h>
88 #include <linux/timer.h>
89 #include <linux/hrtimer.h>
90 #include <linux/task_io_accounting.h>
91 #include <linux/latencytop.h>
92 #include <linux/cred.h>
94 #include <asm/processor.h>
96 struct exec_domain;
97 struct futex_pi_state;
98 struct robust_list_head;
99 struct bio_list;
100 struct fs_struct;
101 struct perf_event_context;
104 * List of flags we want to share for kernel threads,
105 * if only because they are not used by them anyway.
107 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
110 * These are the constant used to fake the fixed-point load-average
111 * counting. Some notes:
112 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
113 * a load-average precision of 10 bits integer + 11 bits fractional
114 * - if you want to count load-averages more often, you need more
115 * precision, or rounding will get you. With 2-second counting freq,
116 * the EXP_n values would be 1981, 2034 and 2043 if still using only
117 * 11 bit fractions.
119 extern unsigned long avenrun[]; /* Load averages */
120 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
122 #define FSHIFT 11 /* nr of bits of precision */
123 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
124 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
125 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
126 #define EXP_5 2014 /* 1/exp(5sec/5min) */
127 #define EXP_15 2037 /* 1/exp(5sec/15min) */
129 #define CALC_LOAD(load,exp,n) \
130 load *= exp; \
131 load += n*(FIXED_1-exp); \
132 load >>= FSHIFT;
134 extern unsigned long total_forks;
135 extern int nr_threads;
136 DECLARE_PER_CPU(unsigned long, process_counts);
137 extern int nr_processes(void);
138 extern unsigned long nr_running(void);
139 extern unsigned long nr_uninterruptible(void);
140 extern unsigned long nr_iowait(void);
141 extern unsigned long nr_iowait_cpu(int cpu);
142 extern unsigned long this_cpu_load(void);
145 extern void calc_global_load(unsigned long ticks);
147 extern unsigned long get_parent_ip(unsigned long addr);
149 struct seq_file;
150 struct cfs_rq;
151 struct task_group;
152 #ifdef CONFIG_SCHED_DEBUG
153 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
154 extern void proc_sched_set_task(struct task_struct *p);
155 extern void
156 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
157 #else
158 static inline void
159 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
162 static inline void proc_sched_set_task(struct task_struct *p)
165 static inline void
166 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
169 #endif
172 * Task state bitmask. NOTE! These bits are also
173 * encoded in fs/proc/array.c: get_task_state().
175 * We have two separate sets of flags: task->state
176 * is about runnability, while task->exit_state are
177 * about the task exiting. Confusing, but this way
178 * modifying one set can't modify the other one by
179 * mistake.
181 #define TASK_RUNNING 0
182 #define TASK_INTERRUPTIBLE 1
183 #define TASK_UNINTERRUPTIBLE 2
184 #define __TASK_STOPPED 4
185 #define __TASK_TRACED 8
186 /* in tsk->exit_state */
187 #define EXIT_ZOMBIE 16
188 #define EXIT_DEAD 32
189 /* in tsk->state again */
190 #define TASK_DEAD 64
191 #define TASK_WAKEKILL 128
192 #define TASK_WAKING 256
193 #define TASK_STATE_MAX 512
195 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW"
197 extern char ___assert_task_state[1 - 2*!!(
198 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
200 /* Convenience macros for the sake of set_task_state */
201 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
202 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
203 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
205 /* Convenience macros for the sake of wake_up */
206 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
207 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
209 /* get_task_state() */
210 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
211 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
212 __TASK_TRACED)
214 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
215 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
216 #define task_is_dead(task) ((task)->exit_state != 0)
217 #define task_is_stopped_or_traced(task) \
218 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
219 #define task_contributes_to_load(task) \
220 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
221 (task->flags & PF_FREEZING) == 0)
223 #define __set_task_state(tsk, state_value) \
224 do { (tsk)->state = (state_value); } while (0)
225 #define set_task_state(tsk, state_value) \
226 set_mb((tsk)->state, (state_value))
229 * set_current_state() includes a barrier so that the write of current->state
230 * is correctly serialised wrt the caller's subsequent test of whether to
231 * actually sleep:
233 * set_current_state(TASK_UNINTERRUPTIBLE);
234 * if (do_i_need_to_sleep())
235 * schedule();
237 * If the caller does not need such serialisation then use __set_current_state()
239 #define __set_current_state(state_value) \
240 do { current->state = (state_value); } while (0)
241 #define set_current_state(state_value) \
242 set_mb(current->state, (state_value))
244 /* Task command name length */
245 #define TASK_COMM_LEN 16
247 #include <linux/spinlock.h>
250 * This serializes "schedule()" and also protects
251 * the run-queue from deletions/modifications (but
252 * _adding_ to the beginning of the run-queue has
253 * a separate lock).
255 extern rwlock_t tasklist_lock;
256 extern spinlock_t mmlist_lock;
258 struct task_struct;
260 #ifdef CONFIG_PROVE_RCU
261 extern int lockdep_tasklist_lock_is_held(void);
262 #endif /* #ifdef CONFIG_PROVE_RCU */
264 extern void sched_init(void);
265 extern void sched_init_smp(void);
266 extern asmlinkage void schedule_tail(struct task_struct *prev);
267 extern void init_idle(struct task_struct *idle, int cpu);
268 extern void init_idle_bootup_task(struct task_struct *idle);
270 extern int runqueue_is_locked(int cpu);
272 extern cpumask_var_t nohz_cpu_mask;
273 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
274 extern void select_nohz_load_balancer(int stop_tick);
275 extern int get_nohz_timer_target(void);
276 #else
277 static inline void select_nohz_load_balancer(int stop_tick) { }
278 #endif
281 * Only dump TASK_* tasks. (0 for all tasks)
283 extern void show_state_filter(unsigned long state_filter);
285 static inline void show_state(void)
287 show_state_filter(0);
290 extern void show_regs(struct pt_regs *);
293 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
294 * task), SP is the stack pointer of the first frame that should be shown in the back
295 * trace (or NULL if the entire call-chain of the task should be shown).
297 extern void show_stack(struct task_struct *task, unsigned long *sp);
299 void io_schedule(void);
300 long io_schedule_timeout(long timeout);
302 extern void cpu_init (void);
303 extern void trap_init(void);
304 extern void update_process_times(int user);
305 extern void scheduler_tick(void);
307 extern void sched_show_task(struct task_struct *p);
309 #ifdef CONFIG_LOCKUP_DETECTOR
310 extern void touch_softlockup_watchdog(void);
311 extern void touch_softlockup_watchdog_sync(void);
312 extern void touch_all_softlockup_watchdogs(void);
313 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
314 void __user *buffer,
315 size_t *lenp, loff_t *ppos);
316 extern unsigned int softlockup_panic;
317 extern int softlockup_thresh;
318 void lockup_detector_init(void);
319 #else
320 static inline void touch_softlockup_watchdog(void)
323 static inline void touch_softlockup_watchdog_sync(void)
326 static inline void touch_all_softlockup_watchdogs(void)
329 static inline void lockup_detector_init(void)
332 #endif
334 #ifdef CONFIG_DETECT_HUNG_TASK
335 extern unsigned int sysctl_hung_task_panic;
336 extern unsigned long sysctl_hung_task_check_count;
337 extern unsigned long sysctl_hung_task_timeout_secs;
338 extern unsigned long sysctl_hung_task_warnings;
339 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
340 void __user *buffer,
341 size_t *lenp, loff_t *ppos);
342 #else
343 /* Avoid need for ifdefs elsewhere in the code */
344 enum { sysctl_hung_task_timeout_secs = 0 };
345 #endif
347 /* Attach to any functions which should be ignored in wchan output. */
348 #define __sched __attribute__((__section__(".sched.text")))
350 /* Linker adds these: start and end of __sched functions */
351 extern char __sched_text_start[], __sched_text_end[];
353 /* Is this address in the __sched functions? */
354 extern int in_sched_functions(unsigned long addr);
356 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
357 extern signed long schedule_timeout(signed long timeout);
358 extern signed long schedule_timeout_interruptible(signed long timeout);
359 extern signed long schedule_timeout_killable(signed long timeout);
360 extern signed long schedule_timeout_uninterruptible(signed long timeout);
361 asmlinkage void schedule(void);
362 extern int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner);
364 struct nsproxy;
365 struct user_namespace;
368 * Default maximum number of active map areas, this limits the number of vmas
369 * per mm struct. Users can overwrite this number by sysctl but there is a
370 * problem.
372 * When a program's coredump is generated as ELF format, a section is created
373 * per a vma. In ELF, the number of sections is represented in unsigned short.
374 * This means the number of sections should be smaller than 65535 at coredump.
375 * Because the kernel adds some informative sections to a image of program at
376 * generating coredump, we need some margin. The number of extra sections is
377 * 1-3 now and depends on arch. We use "5" as safe margin, here.
379 #define MAPCOUNT_ELF_CORE_MARGIN (5)
380 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
382 extern int sysctl_max_map_count;
384 #include <linux/aio.h>
386 #ifdef CONFIG_MMU
387 extern void arch_pick_mmap_layout(struct mm_struct *mm);
388 extern unsigned long
389 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
390 unsigned long, unsigned long);
391 extern unsigned long
392 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
393 unsigned long len, unsigned long pgoff,
394 unsigned long flags);
395 extern void arch_unmap_area(struct mm_struct *, unsigned long);
396 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
397 #else
398 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
399 #endif
402 extern void set_dumpable(struct mm_struct *mm, int value);
403 extern int get_dumpable(struct mm_struct *mm);
405 /* mm flags */
406 /* dumpable bits */
407 #define MMF_DUMPABLE 0 /* core dump is permitted */
408 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
410 #define MMF_DUMPABLE_BITS 2
411 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
413 /* coredump filter bits */
414 #define MMF_DUMP_ANON_PRIVATE 2
415 #define MMF_DUMP_ANON_SHARED 3
416 #define MMF_DUMP_MAPPED_PRIVATE 4
417 #define MMF_DUMP_MAPPED_SHARED 5
418 #define MMF_DUMP_ELF_HEADERS 6
419 #define MMF_DUMP_HUGETLB_PRIVATE 7
420 #define MMF_DUMP_HUGETLB_SHARED 8
422 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
423 #define MMF_DUMP_FILTER_BITS 7
424 #define MMF_DUMP_FILTER_MASK \
425 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
426 #define MMF_DUMP_FILTER_DEFAULT \
427 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
428 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
430 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
431 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
432 #else
433 # define MMF_DUMP_MASK_DEFAULT_ELF 0
434 #endif
435 /* leave room for more dump flags */
436 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
438 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
440 struct sighand_struct {
441 atomic_t count;
442 struct k_sigaction action[_NSIG];
443 spinlock_t siglock;
444 wait_queue_head_t signalfd_wqh;
447 struct pacct_struct {
448 int ac_flag;
449 long ac_exitcode;
450 unsigned long ac_mem;
451 cputime_t ac_utime, ac_stime;
452 unsigned long ac_minflt, ac_majflt;
455 struct cpu_itimer {
456 cputime_t expires;
457 cputime_t incr;
458 u32 error;
459 u32 incr_error;
463 * struct task_cputime - collected CPU time counts
464 * @utime: time spent in user mode, in &cputime_t units
465 * @stime: time spent in kernel mode, in &cputime_t units
466 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
468 * This structure groups together three kinds of CPU time that are
469 * tracked for threads and thread groups. Most things considering
470 * CPU time want to group these counts together and treat all three
471 * of them in parallel.
473 struct task_cputime {
474 cputime_t utime;
475 cputime_t stime;
476 unsigned long long sum_exec_runtime;
478 /* Alternate field names when used to cache expirations. */
479 #define prof_exp stime
480 #define virt_exp utime
481 #define sched_exp sum_exec_runtime
483 #define INIT_CPUTIME \
484 (struct task_cputime) { \
485 .utime = cputime_zero, \
486 .stime = cputime_zero, \
487 .sum_exec_runtime = 0, \
491 * Disable preemption until the scheduler is running.
492 * Reset by start_kernel()->sched_init()->init_idle().
494 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
495 * before the scheduler is active -- see should_resched().
497 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE)
500 * struct thread_group_cputimer - thread group interval timer counts
501 * @cputime: thread group interval timers.
502 * @running: non-zero when there are timers running and
503 * @cputime receives updates.
504 * @lock: lock for fields in this struct.
506 * This structure contains the version of task_cputime, above, that is
507 * used for thread group CPU timer calculations.
509 struct thread_group_cputimer {
510 struct task_cputime cputime;
511 int running;
512 spinlock_t lock;
515 struct autogroup;
518 * NOTE! "signal_struct" does not have it's own
519 * locking, because a shared signal_struct always
520 * implies a shared sighand_struct, so locking
521 * sighand_struct is always a proper superset of
522 * the locking of signal_struct.
524 struct signal_struct {
525 atomic_t sigcnt;
526 atomic_t live;
527 int nr_threads;
529 wait_queue_head_t wait_chldexit; /* for wait4() */
531 /* current thread group signal load-balancing target: */
532 struct task_struct *curr_target;
534 /* shared signal handling: */
535 struct sigpending shared_pending;
537 /* thread group exit support */
538 int group_exit_code;
539 /* overloaded:
540 * - notify group_exit_task when ->count is equal to notify_count
541 * - everyone except group_exit_task is stopped during signal delivery
542 * of fatal signals, group_exit_task processes the signal.
544 int notify_count;
545 struct task_struct *group_exit_task;
547 /* thread group stop support, overloads group_exit_code too */
548 int group_stop_count;
549 unsigned int flags; /* see SIGNAL_* flags below */
551 /* POSIX.1b Interval Timers */
552 struct list_head posix_timers;
554 /* ITIMER_REAL timer for the process */
555 struct hrtimer real_timer;
556 struct pid *leader_pid;
557 ktime_t it_real_incr;
560 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
561 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
562 * values are defined to 0 and 1 respectively
564 struct cpu_itimer it[2];
567 * Thread group totals for process CPU timers.
568 * See thread_group_cputimer(), et al, for details.
570 struct thread_group_cputimer cputimer;
572 /* Earliest-expiration cache. */
573 struct task_cputime cputime_expires;
575 struct list_head cpu_timers[3];
577 struct pid *tty_old_pgrp;
579 /* boolean value for session group leader */
580 int leader;
582 struct tty_struct *tty; /* NULL if no tty */
584 #ifdef CONFIG_SCHED_AUTOGROUP
585 struct autogroup *autogroup;
586 #endif
588 * Cumulative resource counters for dead threads in the group,
589 * and for reaped dead child processes forked by this group.
590 * Live threads maintain their own counters and add to these
591 * in __exit_signal, except for the group leader.
593 cputime_t utime, stime, cutime, cstime;
594 cputime_t gtime;
595 cputime_t cgtime;
596 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
597 cputime_t prev_utime, prev_stime;
598 #endif
599 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
600 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
601 unsigned long inblock, oublock, cinblock, coublock;
602 unsigned long maxrss, cmaxrss;
603 struct task_io_accounting ioac;
606 * Cumulative ns of schedule CPU time fo dead threads in the
607 * group, not including a zombie group leader, (This only differs
608 * from jiffies_to_ns(utime + stime) if sched_clock uses something
609 * other than jiffies.)
611 unsigned long long sum_sched_runtime;
614 * We don't bother to synchronize most readers of this at all,
615 * because there is no reader checking a limit that actually needs
616 * to get both rlim_cur and rlim_max atomically, and either one
617 * alone is a single word that can safely be read normally.
618 * getrlimit/setrlimit use task_lock(current->group_leader) to
619 * protect this instead of the siglock, because they really
620 * have no need to disable irqs.
622 struct rlimit rlim[RLIM_NLIMITS];
624 #ifdef CONFIG_BSD_PROCESS_ACCT
625 struct pacct_struct pacct; /* per-process accounting information */
626 #endif
627 #ifdef CONFIG_TASKSTATS
628 struct taskstats *stats;
629 #endif
630 #ifdef CONFIG_AUDIT
631 unsigned audit_tty;
632 struct tty_audit_buf *tty_audit_buf;
633 #endif
635 int oom_adj; /* OOM kill score adjustment (bit shift) */
636 int oom_score_adj; /* OOM kill score adjustment */
637 int oom_score_adj_min; /* OOM kill score adjustment minimum value.
638 * Only settable by CAP_SYS_RESOURCE. */
640 struct mutex cred_guard_mutex; /* guard against foreign influences on
641 * credential calculations
642 * (notably. ptrace) */
645 /* Context switch must be unlocked if interrupts are to be enabled */
646 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
647 # define __ARCH_WANT_UNLOCKED_CTXSW
648 #endif
651 * Bits in flags field of signal_struct.
653 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
654 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
655 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
656 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
658 * Pending notifications to parent.
660 #define SIGNAL_CLD_STOPPED 0x00000010
661 #define SIGNAL_CLD_CONTINUED 0x00000020
662 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
664 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
666 /* If true, all threads except ->group_exit_task have pending SIGKILL */
667 static inline int signal_group_exit(const struct signal_struct *sig)
669 return (sig->flags & SIGNAL_GROUP_EXIT) ||
670 (sig->group_exit_task != NULL);
674 * Some day this will be a full-fledged user tracking system..
676 struct user_struct {
677 atomic_t __count; /* reference count */
678 atomic_t processes; /* How many processes does this user have? */
679 atomic_t files; /* How many open files does this user have? */
680 atomic_t sigpending; /* How many pending signals does this user have? */
681 #ifdef CONFIG_INOTIFY_USER
682 atomic_t inotify_watches; /* How many inotify watches does this user have? */
683 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
684 #endif
685 #ifdef CONFIG_FANOTIFY
686 atomic_t fanotify_listeners;
687 #endif
688 #ifdef CONFIG_EPOLL
689 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
690 #endif
691 #ifdef CONFIG_POSIX_MQUEUE
692 /* protected by mq_lock */
693 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
694 #endif
695 unsigned long locked_shm; /* How many pages of mlocked shm ? */
697 #ifdef CONFIG_KEYS
698 struct key *uid_keyring; /* UID specific keyring */
699 struct key *session_keyring; /* UID's default session keyring */
700 #endif
702 /* Hash table maintenance information */
703 struct hlist_node uidhash_node;
704 uid_t uid;
705 struct user_namespace *user_ns;
707 #ifdef CONFIG_PERF_EVENTS
708 atomic_long_t locked_vm;
709 #endif
712 extern int uids_sysfs_init(void);
714 extern struct user_struct *find_user(uid_t);
716 extern struct user_struct root_user;
717 #define INIT_USER (&root_user)
720 struct backing_dev_info;
721 struct reclaim_state;
723 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
724 struct sched_info {
725 /* cumulative counters */
726 unsigned long pcount; /* # of times run on this cpu */
727 unsigned long long run_delay; /* time spent waiting on a runqueue */
729 /* timestamps */
730 unsigned long long last_arrival,/* when we last ran on a cpu */
731 last_queued; /* when we were last queued to run */
732 #ifdef CONFIG_SCHEDSTATS
733 /* BKL stats */
734 unsigned int bkl_count;
735 #endif
737 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
739 #ifdef CONFIG_TASK_DELAY_ACCT
740 struct task_delay_info {
741 spinlock_t lock;
742 unsigned int flags; /* Private per-task flags */
744 /* For each stat XXX, add following, aligned appropriately
746 * struct timespec XXX_start, XXX_end;
747 * u64 XXX_delay;
748 * u32 XXX_count;
750 * Atomicity of updates to XXX_delay, XXX_count protected by
751 * single lock above (split into XXX_lock if contention is an issue).
755 * XXX_count is incremented on every XXX operation, the delay
756 * associated with the operation is added to XXX_delay.
757 * XXX_delay contains the accumulated delay time in nanoseconds.
759 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
760 u64 blkio_delay; /* wait for sync block io completion */
761 u64 swapin_delay; /* wait for swapin block io completion */
762 u32 blkio_count; /* total count of the number of sync block */
763 /* io operations performed */
764 u32 swapin_count; /* total count of the number of swapin block */
765 /* io operations performed */
767 struct timespec freepages_start, freepages_end;
768 u64 freepages_delay; /* wait for memory reclaim */
769 u32 freepages_count; /* total count of memory reclaim */
771 #endif /* CONFIG_TASK_DELAY_ACCT */
773 static inline int sched_info_on(void)
775 #ifdef CONFIG_SCHEDSTATS
776 return 1;
777 #elif defined(CONFIG_TASK_DELAY_ACCT)
778 extern int delayacct_on;
779 return delayacct_on;
780 #else
781 return 0;
782 #endif
785 enum cpu_idle_type {
786 CPU_IDLE,
787 CPU_NOT_IDLE,
788 CPU_NEWLY_IDLE,
789 CPU_MAX_IDLE_TYPES
793 * sched-domains (multiprocessor balancing) declarations:
797 * Increase resolution of nice-level calculations:
799 #define SCHED_LOAD_SHIFT 10
800 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
802 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
804 #ifdef CONFIG_SMP
805 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
806 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
807 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
808 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
809 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
810 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
811 #define SD_PREFER_LOCAL 0x0040 /* Prefer to keep tasks local to this domain */
812 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
813 #define SD_POWERSAVINGS_BALANCE 0x0100 /* Balance for power savings */
814 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
815 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
816 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
817 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
819 enum powersavings_balance_level {
820 POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */
821 POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package
822 * first for long running threads
824 POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle
825 * cpu package for power savings
827 MAX_POWERSAVINGS_BALANCE_LEVELS
830 extern int sched_mc_power_savings, sched_smt_power_savings;
832 static inline int sd_balance_for_mc_power(void)
834 if (sched_smt_power_savings)
835 return SD_POWERSAVINGS_BALANCE;
837 if (!sched_mc_power_savings)
838 return SD_PREFER_SIBLING;
840 return 0;
843 static inline int sd_balance_for_package_power(void)
845 if (sched_mc_power_savings | sched_smt_power_savings)
846 return SD_POWERSAVINGS_BALANCE;
848 return SD_PREFER_SIBLING;
851 extern int __weak arch_sd_sibiling_asym_packing(void);
854 * Optimise SD flags for power savings:
855 * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings.
856 * Keep default SD flags if sched_{smt,mc}_power_saving=0
859 static inline int sd_power_saving_flags(void)
861 if (sched_mc_power_savings | sched_smt_power_savings)
862 return SD_BALANCE_NEWIDLE;
864 return 0;
867 struct sched_group {
868 struct sched_group *next; /* Must be a circular list */
871 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
872 * single CPU.
874 unsigned int cpu_power, cpu_power_orig;
875 unsigned int group_weight;
878 * The CPUs this group covers.
880 * NOTE: this field is variable length. (Allocated dynamically
881 * by attaching extra space to the end of the structure,
882 * depending on how many CPUs the kernel has booted up with)
884 * It is also be embedded into static data structures at build
885 * time. (See 'struct static_sched_group' in kernel/sched.c)
887 unsigned long cpumask[0];
890 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
892 return to_cpumask(sg->cpumask);
895 enum sched_domain_level {
896 SD_LV_NONE = 0,
897 SD_LV_SIBLING,
898 SD_LV_MC,
899 SD_LV_BOOK,
900 SD_LV_CPU,
901 SD_LV_NODE,
902 SD_LV_ALLNODES,
903 SD_LV_MAX
906 struct sched_domain_attr {
907 int relax_domain_level;
910 #define SD_ATTR_INIT (struct sched_domain_attr) { \
911 .relax_domain_level = -1, \
914 struct sched_domain {
915 /* These fields must be setup */
916 struct sched_domain *parent; /* top domain must be null terminated */
917 struct sched_domain *child; /* bottom domain must be null terminated */
918 struct sched_group *groups; /* the balancing groups of the domain */
919 unsigned long min_interval; /* Minimum balance interval ms */
920 unsigned long max_interval; /* Maximum balance interval ms */
921 unsigned int busy_factor; /* less balancing by factor if busy */
922 unsigned int imbalance_pct; /* No balance until over watermark */
923 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
924 unsigned int busy_idx;
925 unsigned int idle_idx;
926 unsigned int newidle_idx;
927 unsigned int wake_idx;
928 unsigned int forkexec_idx;
929 unsigned int smt_gain;
930 int flags; /* See SD_* */
931 enum sched_domain_level level;
933 /* Runtime fields. */
934 unsigned long last_balance; /* init to jiffies. units in jiffies */
935 unsigned int balance_interval; /* initialise to 1. units in ms. */
936 unsigned int nr_balance_failed; /* initialise to 0 */
938 u64 last_update;
940 #ifdef CONFIG_SCHEDSTATS
941 /* load_balance() stats */
942 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
943 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
944 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
945 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
946 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
947 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
948 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
949 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
951 /* Active load balancing */
952 unsigned int alb_count;
953 unsigned int alb_failed;
954 unsigned int alb_pushed;
956 /* SD_BALANCE_EXEC stats */
957 unsigned int sbe_count;
958 unsigned int sbe_balanced;
959 unsigned int sbe_pushed;
961 /* SD_BALANCE_FORK stats */
962 unsigned int sbf_count;
963 unsigned int sbf_balanced;
964 unsigned int sbf_pushed;
966 /* try_to_wake_up() stats */
967 unsigned int ttwu_wake_remote;
968 unsigned int ttwu_move_affine;
969 unsigned int ttwu_move_balance;
970 #endif
971 #ifdef CONFIG_SCHED_DEBUG
972 char *name;
973 #endif
975 unsigned int span_weight;
977 * Span of all CPUs in this domain.
979 * NOTE: this field is variable length. (Allocated dynamically
980 * by attaching extra space to the end of the structure,
981 * depending on how many CPUs the kernel has booted up with)
983 * It is also be embedded into static data structures at build
984 * time. (See 'struct static_sched_domain' in kernel/sched.c)
986 unsigned long span[0];
989 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
991 return to_cpumask(sd->span);
994 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
995 struct sched_domain_attr *dattr_new);
997 /* Allocate an array of sched domains, for partition_sched_domains(). */
998 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
999 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1001 /* Test a flag in parent sched domain */
1002 static inline int test_sd_parent(struct sched_domain *sd, int flag)
1004 if (sd->parent && (sd->parent->flags & flag))
1005 return 1;
1007 return 0;
1010 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
1011 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
1013 #else /* CONFIG_SMP */
1015 struct sched_domain_attr;
1017 static inline void
1018 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1019 struct sched_domain_attr *dattr_new)
1022 #endif /* !CONFIG_SMP */
1025 struct io_context; /* See blkdev.h */
1028 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1029 extern void prefetch_stack(struct task_struct *t);
1030 #else
1031 static inline void prefetch_stack(struct task_struct *t) { }
1032 #endif
1034 struct audit_context; /* See audit.c */
1035 struct mempolicy;
1036 struct pipe_inode_info;
1037 struct uts_namespace;
1039 struct rq;
1040 struct sched_domain;
1043 * wake flags
1045 #define WF_SYNC 0x01 /* waker goes to sleep after wakup */
1046 #define WF_FORK 0x02 /* child wakeup after fork */
1048 #define ENQUEUE_WAKEUP 1
1049 #define ENQUEUE_WAKING 2
1050 #define ENQUEUE_HEAD 4
1052 #define DEQUEUE_SLEEP 1
1054 struct sched_class {
1055 const struct sched_class *next;
1057 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1058 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1059 void (*yield_task) (struct rq *rq);
1061 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1063 struct task_struct * (*pick_next_task) (struct rq *rq);
1064 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1066 #ifdef CONFIG_SMP
1067 int (*select_task_rq)(struct rq *rq, struct task_struct *p,
1068 int sd_flag, int flags);
1070 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1071 void (*post_schedule) (struct rq *this_rq);
1072 void (*task_waking) (struct rq *this_rq, struct task_struct *task);
1073 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1075 void (*set_cpus_allowed)(struct task_struct *p,
1076 const struct cpumask *newmask);
1078 void (*rq_online)(struct rq *rq);
1079 void (*rq_offline)(struct rq *rq);
1080 #endif
1082 void (*set_curr_task) (struct rq *rq);
1083 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1084 void (*task_fork) (struct task_struct *p);
1086 void (*switched_from) (struct rq *this_rq, struct task_struct *task,
1087 int running);
1088 void (*switched_to) (struct rq *this_rq, struct task_struct *task,
1089 int running);
1090 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1091 int oldprio, int running);
1093 unsigned int (*get_rr_interval) (struct rq *rq,
1094 struct task_struct *task);
1096 #ifdef CONFIG_FAIR_GROUP_SCHED
1097 void (*task_move_group) (struct task_struct *p, int on_rq);
1098 #endif
1101 struct load_weight {
1102 unsigned long weight, inv_weight;
1105 #ifdef CONFIG_SCHEDSTATS
1106 struct sched_statistics {
1107 u64 wait_start;
1108 u64 wait_max;
1109 u64 wait_count;
1110 u64 wait_sum;
1111 u64 iowait_count;
1112 u64 iowait_sum;
1114 u64 sleep_start;
1115 u64 sleep_max;
1116 s64 sum_sleep_runtime;
1118 u64 block_start;
1119 u64 block_max;
1120 u64 exec_max;
1121 u64 slice_max;
1123 u64 nr_migrations_cold;
1124 u64 nr_failed_migrations_affine;
1125 u64 nr_failed_migrations_running;
1126 u64 nr_failed_migrations_hot;
1127 u64 nr_forced_migrations;
1129 u64 nr_wakeups;
1130 u64 nr_wakeups_sync;
1131 u64 nr_wakeups_migrate;
1132 u64 nr_wakeups_local;
1133 u64 nr_wakeups_remote;
1134 u64 nr_wakeups_affine;
1135 u64 nr_wakeups_affine_attempts;
1136 u64 nr_wakeups_passive;
1137 u64 nr_wakeups_idle;
1139 #endif
1141 struct sched_entity {
1142 struct load_weight load; /* for load-balancing */
1143 struct rb_node run_node;
1144 struct list_head group_node;
1145 unsigned int on_rq;
1147 u64 exec_start;
1148 u64 sum_exec_runtime;
1149 u64 vruntime;
1150 u64 prev_sum_exec_runtime;
1152 u64 nr_migrations;
1154 #ifdef CONFIG_SCHEDSTATS
1155 struct sched_statistics statistics;
1156 #endif
1158 #ifdef CONFIG_FAIR_GROUP_SCHED
1159 struct sched_entity *parent;
1160 /* rq on which this entity is (to be) queued: */
1161 struct cfs_rq *cfs_rq;
1162 /* rq "owned" by this entity/group: */
1163 struct cfs_rq *my_q;
1164 #endif
1167 struct sched_rt_entity {
1168 struct list_head run_list;
1169 unsigned long timeout;
1170 unsigned int time_slice;
1171 int nr_cpus_allowed;
1173 struct sched_rt_entity *back;
1174 #ifdef CONFIG_RT_GROUP_SCHED
1175 struct sched_rt_entity *parent;
1176 /* rq on which this entity is (to be) queued: */
1177 struct rt_rq *rt_rq;
1178 /* rq "owned" by this entity/group: */
1179 struct rt_rq *my_q;
1180 #endif
1183 struct rcu_node;
1185 enum perf_event_task_context {
1186 perf_invalid_context = -1,
1187 perf_hw_context = 0,
1188 perf_sw_context,
1189 perf_nr_task_contexts,
1192 struct task_struct {
1193 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1194 void *stack;
1195 atomic_t usage;
1196 unsigned int flags; /* per process flags, defined below */
1197 unsigned int ptrace;
1199 int lock_depth; /* BKL lock depth */
1201 #ifdef CONFIG_SMP
1202 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1203 int oncpu;
1204 #endif
1205 #endif
1207 int prio, static_prio, normal_prio;
1208 unsigned int rt_priority;
1209 const struct sched_class *sched_class;
1210 struct sched_entity se;
1211 struct sched_rt_entity rt;
1213 #ifdef CONFIG_PREEMPT_NOTIFIERS
1214 /* list of struct preempt_notifier: */
1215 struct hlist_head preempt_notifiers;
1216 #endif
1219 * fpu_counter contains the number of consecutive context switches
1220 * that the FPU is used. If this is over a threshold, the lazy fpu
1221 * saving becomes unlazy to save the trap. This is an unsigned char
1222 * so that after 256 times the counter wraps and the behavior turns
1223 * lazy again; this to deal with bursty apps that only use FPU for
1224 * a short time
1226 unsigned char fpu_counter;
1227 #ifdef CONFIG_BLK_DEV_IO_TRACE
1228 unsigned int btrace_seq;
1229 #endif
1231 unsigned int policy;
1232 cpumask_t cpus_allowed;
1234 #ifdef CONFIG_PREEMPT_RCU
1235 int rcu_read_lock_nesting;
1236 char rcu_read_unlock_special;
1237 struct list_head rcu_node_entry;
1238 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1239 #ifdef CONFIG_TREE_PREEMPT_RCU
1240 struct rcu_node *rcu_blocked_node;
1241 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1242 #ifdef CONFIG_RCU_BOOST
1243 struct rt_mutex *rcu_boost_mutex;
1244 #endif /* #ifdef CONFIG_RCU_BOOST */
1246 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1247 struct sched_info sched_info;
1248 #endif
1250 struct list_head tasks;
1251 #ifdef CONFIG_SMP
1252 struct plist_node pushable_tasks;
1253 #endif
1255 struct mm_struct *mm, *active_mm;
1256 #if defined(SPLIT_RSS_COUNTING)
1257 struct task_rss_stat rss_stat;
1258 #endif
1259 /* task state */
1260 int exit_state;
1261 int exit_code, exit_signal;
1262 int pdeath_signal; /* The signal sent when the parent dies */
1263 /* ??? */
1264 unsigned int personality;
1265 unsigned did_exec:1;
1266 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1267 * execve */
1268 unsigned in_iowait:1;
1271 /* Revert to default priority/policy when forking */
1272 unsigned sched_reset_on_fork:1;
1274 pid_t pid;
1275 pid_t tgid;
1277 #ifdef CONFIG_CC_STACKPROTECTOR
1278 /* Canary value for the -fstack-protector gcc feature */
1279 unsigned long stack_canary;
1280 #endif
1283 * pointers to (original) parent process, youngest child, younger sibling,
1284 * older sibling, respectively. (p->father can be replaced with
1285 * p->real_parent->pid)
1287 struct task_struct *real_parent; /* real parent process */
1288 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1290 * children/sibling forms the list of my natural children
1292 struct list_head children; /* list of my children */
1293 struct list_head sibling; /* linkage in my parent's children list */
1294 struct task_struct *group_leader; /* threadgroup leader */
1297 * ptraced is the list of tasks this task is using ptrace on.
1298 * This includes both natural children and PTRACE_ATTACH targets.
1299 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1301 struct list_head ptraced;
1302 struct list_head ptrace_entry;
1304 /* PID/PID hash table linkage. */
1305 struct pid_link pids[PIDTYPE_MAX];
1306 struct list_head thread_group;
1308 struct completion *vfork_done; /* for vfork() */
1309 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1310 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1312 cputime_t utime, stime, utimescaled, stimescaled;
1313 cputime_t gtime;
1314 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1315 cputime_t prev_utime, prev_stime;
1316 #endif
1317 unsigned long nvcsw, nivcsw; /* context switch counts */
1318 struct timespec start_time; /* monotonic time */
1319 struct timespec real_start_time; /* boot based time */
1320 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1321 unsigned long min_flt, maj_flt;
1323 struct task_cputime cputime_expires;
1324 struct list_head cpu_timers[3];
1326 /* process credentials */
1327 const struct cred __rcu *real_cred; /* objective and real subjective task
1328 * credentials (COW) */
1329 const struct cred __rcu *cred; /* effective (overridable) subjective task
1330 * credentials (COW) */
1331 struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */
1333 char comm[TASK_COMM_LEN]; /* executable name excluding path
1334 - access with [gs]et_task_comm (which lock
1335 it with task_lock())
1336 - initialized normally by setup_new_exec */
1337 /* file system info */
1338 int link_count, total_link_count;
1339 #ifdef CONFIG_SYSVIPC
1340 /* ipc stuff */
1341 struct sysv_sem sysvsem;
1342 #endif
1343 #ifdef CONFIG_DETECT_HUNG_TASK
1344 /* hung task detection */
1345 unsigned long last_switch_count;
1346 #endif
1347 /* CPU-specific state of this task */
1348 struct thread_struct thread;
1349 /* filesystem information */
1350 struct fs_struct *fs;
1351 /* open file information */
1352 struct files_struct *files;
1353 /* namespaces */
1354 struct nsproxy *nsproxy;
1355 /* signal handlers */
1356 struct signal_struct *signal;
1357 struct sighand_struct *sighand;
1359 sigset_t blocked, real_blocked;
1360 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1361 struct sigpending pending;
1363 unsigned long sas_ss_sp;
1364 size_t sas_ss_size;
1365 int (*notifier)(void *priv);
1366 void *notifier_data;
1367 sigset_t *notifier_mask;
1368 struct audit_context *audit_context;
1369 #ifdef CONFIG_AUDITSYSCALL
1370 uid_t loginuid;
1371 unsigned int sessionid;
1372 #endif
1373 seccomp_t seccomp;
1375 /* Thread group tracking */
1376 u32 parent_exec_id;
1377 u32 self_exec_id;
1378 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1379 * mempolicy */
1380 spinlock_t alloc_lock;
1382 #ifdef CONFIG_GENERIC_HARDIRQS
1383 /* IRQ handler threads */
1384 struct irqaction *irqaction;
1385 #endif
1387 /* Protection of the PI data structures: */
1388 raw_spinlock_t pi_lock;
1390 #ifdef CONFIG_RT_MUTEXES
1391 /* PI waiters blocked on a rt_mutex held by this task */
1392 struct plist_head pi_waiters;
1393 /* Deadlock detection and priority inheritance handling */
1394 struct rt_mutex_waiter *pi_blocked_on;
1395 #endif
1397 #ifdef CONFIG_DEBUG_MUTEXES
1398 /* mutex deadlock detection */
1399 struct mutex_waiter *blocked_on;
1400 #endif
1401 #ifdef CONFIG_TRACE_IRQFLAGS
1402 unsigned int irq_events;
1403 unsigned long hardirq_enable_ip;
1404 unsigned long hardirq_disable_ip;
1405 unsigned int hardirq_enable_event;
1406 unsigned int hardirq_disable_event;
1407 int hardirqs_enabled;
1408 int hardirq_context;
1409 unsigned long softirq_disable_ip;
1410 unsigned long softirq_enable_ip;
1411 unsigned int softirq_disable_event;
1412 unsigned int softirq_enable_event;
1413 int softirqs_enabled;
1414 int softirq_context;
1415 #endif
1416 #ifdef CONFIG_LOCKDEP
1417 # define MAX_LOCK_DEPTH 48UL
1418 u64 curr_chain_key;
1419 int lockdep_depth;
1420 unsigned int lockdep_recursion;
1421 struct held_lock held_locks[MAX_LOCK_DEPTH];
1422 gfp_t lockdep_reclaim_gfp;
1423 #endif
1425 /* journalling filesystem info */
1426 void *journal_info;
1428 /* stacked block device info */
1429 struct bio_list *bio_list;
1431 /* VM state */
1432 struct reclaim_state *reclaim_state;
1434 struct backing_dev_info *backing_dev_info;
1436 struct io_context *io_context;
1438 unsigned long ptrace_message;
1439 siginfo_t *last_siginfo; /* For ptrace use. */
1440 struct task_io_accounting ioac;
1441 #if defined(CONFIG_TASK_XACCT)
1442 u64 acct_rss_mem1; /* accumulated rss usage */
1443 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1444 cputime_t acct_timexpd; /* stime + utime since last update */
1445 #endif
1446 #ifdef CONFIG_CPUSETS
1447 nodemask_t mems_allowed; /* Protected by alloc_lock */
1448 int mems_allowed_change_disable;
1449 int cpuset_mem_spread_rotor;
1450 int cpuset_slab_spread_rotor;
1451 #endif
1452 #ifdef CONFIG_CGROUPS
1453 /* Control Group info protected by css_set_lock */
1454 struct css_set __rcu *cgroups;
1455 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1456 struct list_head cg_list;
1457 #endif
1458 #ifdef CONFIG_FUTEX
1459 struct robust_list_head __user *robust_list;
1460 #ifdef CONFIG_COMPAT
1461 struct compat_robust_list_head __user *compat_robust_list;
1462 #endif
1463 struct list_head pi_state_list;
1464 struct futex_pi_state *pi_state_cache;
1465 #endif
1466 #ifdef CONFIG_PERF_EVENTS
1467 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1468 struct mutex perf_event_mutex;
1469 struct list_head perf_event_list;
1470 #endif
1471 #ifdef CONFIG_NUMA
1472 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1473 short il_next;
1474 #endif
1475 atomic_t fs_excl; /* holding fs exclusive resources */
1476 struct rcu_head rcu;
1479 * cache last used pipe for splice
1481 struct pipe_inode_info *splice_pipe;
1482 #ifdef CONFIG_TASK_DELAY_ACCT
1483 struct task_delay_info *delays;
1484 #endif
1485 #ifdef CONFIG_FAULT_INJECTION
1486 int make_it_fail;
1487 #endif
1488 struct prop_local_single dirties;
1489 #ifdef CONFIG_LATENCYTOP
1490 int latency_record_count;
1491 struct latency_record latency_record[LT_SAVECOUNT];
1492 #endif
1494 * time slack values; these are used to round up poll() and
1495 * select() etc timeout values. These are in nanoseconds.
1497 unsigned long timer_slack_ns;
1498 unsigned long default_timer_slack_ns;
1500 struct list_head *scm_work_list;
1501 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1502 /* Index of current stored address in ret_stack */
1503 int curr_ret_stack;
1504 /* Stack of return addresses for return function tracing */
1505 struct ftrace_ret_stack *ret_stack;
1506 /* time stamp for last schedule */
1507 unsigned long long ftrace_timestamp;
1509 * Number of functions that haven't been traced
1510 * because of depth overrun.
1512 atomic_t trace_overrun;
1513 /* Pause for the tracing */
1514 atomic_t tracing_graph_pause;
1515 #endif
1516 #ifdef CONFIG_TRACING
1517 /* state flags for use by tracers */
1518 unsigned long trace;
1519 /* bitmask of trace recursion */
1520 unsigned long trace_recursion;
1521 #endif /* CONFIG_TRACING */
1522 #ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */
1523 struct memcg_batch_info {
1524 int do_batch; /* incremented when batch uncharge started */
1525 struct mem_cgroup *memcg; /* target memcg of uncharge */
1526 unsigned long bytes; /* uncharged usage */
1527 unsigned long memsw_bytes; /* uncharged mem+swap usage */
1528 } memcg_batch;
1529 #endif
1532 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1533 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1536 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1537 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1538 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1539 * values are inverted: lower p->prio value means higher priority.
1541 * The MAX_USER_RT_PRIO value allows the actual maximum
1542 * RT priority to be separate from the value exported to
1543 * user-space. This allows kernel threads to set their
1544 * priority to a value higher than any user task. Note:
1545 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1548 #define MAX_USER_RT_PRIO 100
1549 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1551 #define MAX_PRIO (MAX_RT_PRIO + 40)
1552 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1554 static inline int rt_prio(int prio)
1556 if (unlikely(prio < MAX_RT_PRIO))
1557 return 1;
1558 return 0;
1561 static inline int rt_task(struct task_struct *p)
1563 return rt_prio(p->prio);
1566 static inline struct pid *task_pid(struct task_struct *task)
1568 return task->pids[PIDTYPE_PID].pid;
1571 static inline struct pid *task_tgid(struct task_struct *task)
1573 return task->group_leader->pids[PIDTYPE_PID].pid;
1577 * Without tasklist or rcu lock it is not safe to dereference
1578 * the result of task_pgrp/task_session even if task == current,
1579 * we can race with another thread doing sys_setsid/sys_setpgid.
1581 static inline struct pid *task_pgrp(struct task_struct *task)
1583 return task->group_leader->pids[PIDTYPE_PGID].pid;
1586 static inline struct pid *task_session(struct task_struct *task)
1588 return task->group_leader->pids[PIDTYPE_SID].pid;
1591 struct pid_namespace;
1594 * the helpers to get the task's different pids as they are seen
1595 * from various namespaces
1597 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1598 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1599 * current.
1600 * task_xid_nr_ns() : id seen from the ns specified;
1602 * set_task_vxid() : assigns a virtual id to a task;
1604 * see also pid_nr() etc in include/linux/pid.h
1606 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1607 struct pid_namespace *ns);
1609 static inline pid_t task_pid_nr(struct task_struct *tsk)
1611 return tsk->pid;
1614 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1615 struct pid_namespace *ns)
1617 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1620 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1622 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1626 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1628 return tsk->tgid;
1631 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1633 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1635 return pid_vnr(task_tgid(tsk));
1639 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1640 struct pid_namespace *ns)
1642 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1645 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1647 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1651 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1652 struct pid_namespace *ns)
1654 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1657 static inline pid_t task_session_vnr(struct task_struct *tsk)
1659 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1662 /* obsolete, do not use */
1663 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1665 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1669 * pid_alive - check that a task structure is not stale
1670 * @p: Task structure to be checked.
1672 * Test if a process is not yet dead (at most zombie state)
1673 * If pid_alive fails, then pointers within the task structure
1674 * can be stale and must not be dereferenced.
1676 static inline int pid_alive(struct task_struct *p)
1678 return p->pids[PIDTYPE_PID].pid != NULL;
1682 * is_global_init - check if a task structure is init
1683 * @tsk: Task structure to be checked.
1685 * Check if a task structure is the first user space task the kernel created.
1687 static inline int is_global_init(struct task_struct *tsk)
1689 return tsk->pid == 1;
1693 * is_container_init:
1694 * check whether in the task is init in its own pid namespace.
1696 extern int is_container_init(struct task_struct *tsk);
1698 extern struct pid *cad_pid;
1700 extern void free_task(struct task_struct *tsk);
1701 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1703 extern void __put_task_struct(struct task_struct *t);
1705 static inline void put_task_struct(struct task_struct *t)
1707 if (atomic_dec_and_test(&t->usage))
1708 __put_task_struct(t);
1711 extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1712 extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1715 * Per process flags
1717 #define PF_KSOFTIRQD 0x00000001 /* I am ksoftirqd */
1718 #define PF_STARTING 0x00000002 /* being created */
1719 #define PF_EXITING 0x00000004 /* getting shut down */
1720 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1721 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1722 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1723 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1724 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1725 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1726 #define PF_DUMPCORE 0x00000200 /* dumped core */
1727 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1728 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1729 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1730 #define PF_FREEZING 0x00004000 /* freeze in progress. do not account to load */
1731 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1732 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1733 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1734 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1735 #define PF_OOM_ORIGIN 0x00080000 /* Allocating much memory to others */
1736 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1737 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1738 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1739 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1740 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1741 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1742 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1743 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1744 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1745 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1746 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1747 #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */
1750 * Only the _current_ task can read/write to tsk->flags, but other
1751 * tasks can access tsk->flags in readonly mode for example
1752 * with tsk_used_math (like during threaded core dumping).
1753 * There is however an exception to this rule during ptrace
1754 * or during fork: the ptracer task is allowed to write to the
1755 * child->flags of its traced child (same goes for fork, the parent
1756 * can write to the child->flags), because we're guaranteed the
1757 * child is not running and in turn not changing child->flags
1758 * at the same time the parent does it.
1760 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1761 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1762 #define clear_used_math() clear_stopped_child_used_math(current)
1763 #define set_used_math() set_stopped_child_used_math(current)
1764 #define conditional_stopped_child_used_math(condition, child) \
1765 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1766 #define conditional_used_math(condition) \
1767 conditional_stopped_child_used_math(condition, current)
1768 #define copy_to_stopped_child_used_math(child) \
1769 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1770 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1771 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1772 #define used_math() tsk_used_math(current)
1774 #ifdef CONFIG_PREEMPT_RCU
1776 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1777 #define RCU_READ_UNLOCK_BOOSTED (1 << 1) /* boosted while in RCU read-side. */
1778 #define RCU_READ_UNLOCK_NEED_QS (1 << 2) /* RCU core needs CPU response. */
1780 static inline void rcu_copy_process(struct task_struct *p)
1782 p->rcu_read_lock_nesting = 0;
1783 p->rcu_read_unlock_special = 0;
1784 #ifdef CONFIG_TREE_PREEMPT_RCU
1785 p->rcu_blocked_node = NULL;
1786 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1787 #ifdef CONFIG_RCU_BOOST
1788 p->rcu_boost_mutex = NULL;
1789 #endif /* #ifdef CONFIG_RCU_BOOST */
1790 INIT_LIST_HEAD(&p->rcu_node_entry);
1793 #else
1795 static inline void rcu_copy_process(struct task_struct *p)
1799 #endif
1801 #ifdef CONFIG_SMP
1802 extern int set_cpus_allowed_ptr(struct task_struct *p,
1803 const struct cpumask *new_mask);
1804 #else
1805 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1806 const struct cpumask *new_mask)
1808 if (!cpumask_test_cpu(0, new_mask))
1809 return -EINVAL;
1810 return 0;
1812 #endif
1814 #ifndef CONFIG_CPUMASK_OFFSTACK
1815 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1817 return set_cpus_allowed_ptr(p, &new_mask);
1819 #endif
1822 * Do not use outside of architecture code which knows its limitations.
1824 * sched_clock() has no promise of monotonicity or bounded drift between
1825 * CPUs, use (which you should not) requires disabling IRQs.
1827 * Please use one of the three interfaces below.
1829 extern unsigned long long notrace sched_clock(void);
1831 * See the comment in kernel/sched_clock.c
1833 extern u64 cpu_clock(int cpu);
1834 extern u64 local_clock(void);
1835 extern u64 sched_clock_cpu(int cpu);
1838 extern void sched_clock_init(void);
1840 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1841 static inline void sched_clock_tick(void)
1845 static inline void sched_clock_idle_sleep_event(void)
1849 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1852 #else
1854 * Architectures can set this to 1 if they have specified
1855 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1856 * but then during bootup it turns out that sched_clock()
1857 * is reliable after all:
1859 extern int sched_clock_stable;
1861 extern void sched_clock_tick(void);
1862 extern void sched_clock_idle_sleep_event(void);
1863 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1864 #endif
1866 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1868 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1869 * The reason for this explicit opt-in is not to have perf penalty with
1870 * slow sched_clocks.
1872 extern void enable_sched_clock_irqtime(void);
1873 extern void disable_sched_clock_irqtime(void);
1874 #else
1875 static inline void enable_sched_clock_irqtime(void) {}
1876 static inline void disable_sched_clock_irqtime(void) {}
1877 #endif
1879 extern unsigned long long
1880 task_sched_runtime(struct task_struct *task);
1881 extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1883 /* sched_exec is called by processes performing an exec */
1884 #ifdef CONFIG_SMP
1885 extern void sched_exec(void);
1886 #else
1887 #define sched_exec() {}
1888 #endif
1890 extern void sched_clock_idle_sleep_event(void);
1891 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1893 #ifdef CONFIG_HOTPLUG_CPU
1894 extern void idle_task_exit(void);
1895 #else
1896 static inline void idle_task_exit(void) {}
1897 #endif
1899 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1900 extern void wake_up_idle_cpu(int cpu);
1901 #else
1902 static inline void wake_up_idle_cpu(int cpu) { }
1903 #endif
1905 extern unsigned int sysctl_sched_latency;
1906 extern unsigned int sysctl_sched_min_granularity;
1907 extern unsigned int sysctl_sched_wakeup_granularity;
1908 extern unsigned int sysctl_sched_child_runs_first;
1910 enum sched_tunable_scaling {
1911 SCHED_TUNABLESCALING_NONE,
1912 SCHED_TUNABLESCALING_LOG,
1913 SCHED_TUNABLESCALING_LINEAR,
1914 SCHED_TUNABLESCALING_END,
1916 extern enum sched_tunable_scaling sysctl_sched_tunable_scaling;
1918 #ifdef CONFIG_SCHED_DEBUG
1919 extern unsigned int sysctl_sched_migration_cost;
1920 extern unsigned int sysctl_sched_nr_migrate;
1921 extern unsigned int sysctl_sched_time_avg;
1922 extern unsigned int sysctl_timer_migration;
1923 extern unsigned int sysctl_sched_shares_window;
1925 int sched_proc_update_handler(struct ctl_table *table, int write,
1926 void __user *buffer, size_t *length,
1927 loff_t *ppos);
1928 #endif
1929 #ifdef CONFIG_SCHED_DEBUG
1930 static inline unsigned int get_sysctl_timer_migration(void)
1932 return sysctl_timer_migration;
1934 #else
1935 static inline unsigned int get_sysctl_timer_migration(void)
1937 return 1;
1939 #endif
1940 extern unsigned int sysctl_sched_rt_period;
1941 extern int sysctl_sched_rt_runtime;
1943 int sched_rt_handler(struct ctl_table *table, int write,
1944 void __user *buffer, size_t *lenp,
1945 loff_t *ppos);
1947 extern unsigned int sysctl_sched_compat_yield;
1949 #ifdef CONFIG_SCHED_AUTOGROUP
1950 extern unsigned int sysctl_sched_autogroup_enabled;
1952 extern void sched_autogroup_create_attach(struct task_struct *p);
1953 extern void sched_autogroup_detach(struct task_struct *p);
1954 extern void sched_autogroup_fork(struct signal_struct *sig);
1955 extern void sched_autogroup_exit(struct signal_struct *sig);
1956 #ifdef CONFIG_PROC_FS
1957 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
1958 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int *nice);
1959 #endif
1960 #else
1961 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
1962 static inline void sched_autogroup_detach(struct task_struct *p) { }
1963 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
1964 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
1965 #endif
1967 #ifdef CONFIG_RT_MUTEXES
1968 extern int rt_mutex_getprio(struct task_struct *p);
1969 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1970 extern void rt_mutex_adjust_pi(struct task_struct *p);
1971 #else
1972 static inline int rt_mutex_getprio(struct task_struct *p)
1974 return p->normal_prio;
1976 # define rt_mutex_adjust_pi(p) do { } while (0)
1977 #endif
1979 extern void set_user_nice(struct task_struct *p, long nice);
1980 extern int task_prio(const struct task_struct *p);
1981 extern int task_nice(const struct task_struct *p);
1982 extern int can_nice(const struct task_struct *p, const int nice);
1983 extern int task_curr(const struct task_struct *p);
1984 extern int idle_cpu(int cpu);
1985 extern int sched_setscheduler(struct task_struct *, int,
1986 const struct sched_param *);
1987 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1988 const struct sched_param *);
1989 extern struct task_struct *idle_task(int cpu);
1990 extern struct task_struct *curr_task(int cpu);
1991 extern void set_curr_task(int cpu, struct task_struct *p);
1993 void yield(void);
1996 * The default (Linux) execution domain.
1998 extern struct exec_domain default_exec_domain;
2000 union thread_union {
2001 struct thread_info thread_info;
2002 unsigned long stack[THREAD_SIZE/sizeof(long)];
2005 #ifndef __HAVE_ARCH_KSTACK_END
2006 static inline int kstack_end(void *addr)
2008 /* Reliable end of stack detection:
2009 * Some APM bios versions misalign the stack
2011 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2013 #endif
2015 extern union thread_union init_thread_union;
2016 extern struct task_struct init_task;
2018 extern struct mm_struct init_mm;
2020 extern struct pid_namespace init_pid_ns;
2023 * find a task by one of its numerical ids
2025 * find_task_by_pid_ns():
2026 * finds a task by its pid in the specified namespace
2027 * find_task_by_vpid():
2028 * finds a task by its virtual pid
2030 * see also find_vpid() etc in include/linux/pid.h
2033 extern struct task_struct *find_task_by_vpid(pid_t nr);
2034 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2035 struct pid_namespace *ns);
2037 extern void __set_special_pids(struct pid *pid);
2039 /* per-UID process charging. */
2040 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
2041 static inline struct user_struct *get_uid(struct user_struct *u)
2043 atomic_inc(&u->__count);
2044 return u;
2046 extern void free_uid(struct user_struct *);
2047 extern void release_uids(struct user_namespace *ns);
2049 #include <asm/current.h>
2051 extern void do_timer(unsigned long ticks);
2053 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2054 extern int wake_up_process(struct task_struct *tsk);
2055 extern void wake_up_new_task(struct task_struct *tsk,
2056 unsigned long clone_flags);
2057 #ifdef CONFIG_SMP
2058 extern void kick_process(struct task_struct *tsk);
2059 #else
2060 static inline void kick_process(struct task_struct *tsk) { }
2061 #endif
2062 extern void sched_fork(struct task_struct *p, int clone_flags);
2063 extern void sched_dead(struct task_struct *p);
2065 extern void proc_caches_init(void);
2066 extern void flush_signals(struct task_struct *);
2067 extern void __flush_signals(struct task_struct *);
2068 extern void ignore_signals(struct task_struct *);
2069 extern void flush_signal_handlers(struct task_struct *, int force_default);
2070 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2072 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2074 unsigned long flags;
2075 int ret;
2077 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2078 ret = dequeue_signal(tsk, mask, info);
2079 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2081 return ret;
2084 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2085 sigset_t *mask);
2086 extern void unblock_all_signals(void);
2087 extern void release_task(struct task_struct * p);
2088 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2089 extern int force_sigsegv(int, struct task_struct *);
2090 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2091 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2092 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2093 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
2094 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2095 extern int kill_pid(struct pid *pid, int sig, int priv);
2096 extern int kill_proc_info(int, struct siginfo *, pid_t);
2097 extern int do_notify_parent(struct task_struct *, int);
2098 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2099 extern void force_sig(int, struct task_struct *);
2100 extern int send_sig(int, struct task_struct *, int);
2101 extern int zap_other_threads(struct task_struct *p);
2102 extern struct sigqueue *sigqueue_alloc(void);
2103 extern void sigqueue_free(struct sigqueue *);
2104 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2105 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2106 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
2108 static inline int kill_cad_pid(int sig, int priv)
2110 return kill_pid(cad_pid, sig, priv);
2113 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2114 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2115 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2116 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2119 * True if we are on the alternate signal stack.
2121 static inline int on_sig_stack(unsigned long sp)
2123 #ifdef CONFIG_STACK_GROWSUP
2124 return sp >= current->sas_ss_sp &&
2125 sp - current->sas_ss_sp < current->sas_ss_size;
2126 #else
2127 return sp > current->sas_ss_sp &&
2128 sp - current->sas_ss_sp <= current->sas_ss_size;
2129 #endif
2132 static inline int sas_ss_flags(unsigned long sp)
2134 return (current->sas_ss_size == 0 ? SS_DISABLE
2135 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2139 * Routines for handling mm_structs
2141 extern struct mm_struct * mm_alloc(void);
2143 /* mmdrop drops the mm and the page tables */
2144 extern void __mmdrop(struct mm_struct *);
2145 static inline void mmdrop(struct mm_struct * mm)
2147 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2148 __mmdrop(mm);
2151 /* mmput gets rid of the mappings and all user-space */
2152 extern void mmput(struct mm_struct *);
2153 /* Grab a reference to a task's mm, if it is not already going away */
2154 extern struct mm_struct *get_task_mm(struct task_struct *task);
2155 /* Remove the current tasks stale references to the old mm_struct */
2156 extern void mm_release(struct task_struct *, struct mm_struct *);
2157 /* Allocate a new mm structure and copy contents from tsk->mm */
2158 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2160 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2161 struct task_struct *, struct pt_regs *);
2162 extern void flush_thread(void);
2163 extern void exit_thread(void);
2165 extern void exit_files(struct task_struct *);
2166 extern void __cleanup_sighand(struct sighand_struct *);
2168 extern void exit_itimers(struct signal_struct *);
2169 extern void flush_itimer_signals(void);
2171 extern NORET_TYPE void do_group_exit(int);
2173 extern void daemonize(const char *, ...);
2174 extern int allow_signal(int);
2175 extern int disallow_signal(int);
2177 extern int do_execve(const char *,
2178 const char __user * const __user *,
2179 const char __user * const __user *, struct pt_regs *);
2180 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2181 struct task_struct *fork_idle(int);
2183 extern void set_task_comm(struct task_struct *tsk, char *from);
2184 extern char *get_task_comm(char *to, struct task_struct *tsk);
2186 #ifdef CONFIG_SMP
2187 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2188 #else
2189 static inline unsigned long wait_task_inactive(struct task_struct *p,
2190 long match_state)
2192 return 1;
2194 #endif
2196 #define next_task(p) \
2197 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2199 #define for_each_process(p) \
2200 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2202 extern bool current_is_single_threaded(void);
2205 * Careful: do_each_thread/while_each_thread is a double loop so
2206 * 'break' will not work as expected - use goto instead.
2208 #define do_each_thread(g, t) \
2209 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2211 #define while_each_thread(g, t) \
2212 while ((t = next_thread(t)) != g)
2214 static inline int get_nr_threads(struct task_struct *tsk)
2216 return tsk->signal->nr_threads;
2219 /* de_thread depends on thread_group_leader not being a pid based check */
2220 #define thread_group_leader(p) (p == p->group_leader)
2222 /* Do to the insanities of de_thread it is possible for a process
2223 * to have the pid of the thread group leader without actually being
2224 * the thread group leader. For iteration through the pids in proc
2225 * all we care about is that we have a task with the appropriate
2226 * pid, we don't actually care if we have the right task.
2228 static inline int has_group_leader_pid(struct task_struct *p)
2230 return p->pid == p->tgid;
2233 static inline
2234 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2236 return p1->tgid == p2->tgid;
2239 static inline struct task_struct *next_thread(const struct task_struct *p)
2241 return list_entry_rcu(p->thread_group.next,
2242 struct task_struct, thread_group);
2245 static inline int thread_group_empty(struct task_struct *p)
2247 return list_empty(&p->thread_group);
2250 #define delay_group_leader(p) \
2251 (thread_group_leader(p) && !thread_group_empty(p))
2253 static inline int task_detached(struct task_struct *p)
2255 return p->exit_signal == -1;
2259 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2260 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2261 * pins the final release of task.io_context. Also protects ->cpuset and
2262 * ->cgroup.subsys[].
2264 * Nests both inside and outside of read_lock(&tasklist_lock).
2265 * It must not be nested with write_lock_irq(&tasklist_lock),
2266 * neither inside nor outside.
2268 static inline void task_lock(struct task_struct *p)
2270 spin_lock(&p->alloc_lock);
2273 static inline void task_unlock(struct task_struct *p)
2275 spin_unlock(&p->alloc_lock);
2278 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2279 unsigned long *flags);
2281 #define lock_task_sighand(tsk, flags) \
2282 ({ struct sighand_struct *__ss; \
2283 __cond_lock(&(tsk)->sighand->siglock, \
2284 (__ss = __lock_task_sighand(tsk, flags))); \
2285 __ss; \
2286 }) \
2288 static inline void unlock_task_sighand(struct task_struct *tsk,
2289 unsigned long *flags)
2291 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2294 #ifndef __HAVE_THREAD_FUNCTIONS
2296 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2297 #define task_stack_page(task) ((task)->stack)
2299 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2301 *task_thread_info(p) = *task_thread_info(org);
2302 task_thread_info(p)->task = p;
2305 static inline unsigned long *end_of_stack(struct task_struct *p)
2307 return (unsigned long *)(task_thread_info(p) + 1);
2310 #endif
2312 static inline int object_is_on_stack(void *obj)
2314 void *stack = task_stack_page(current);
2316 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2319 extern void thread_info_cache_init(void);
2321 #ifdef CONFIG_DEBUG_STACK_USAGE
2322 static inline unsigned long stack_not_used(struct task_struct *p)
2324 unsigned long *n = end_of_stack(p);
2326 do { /* Skip over canary */
2327 n++;
2328 } while (!*n);
2330 return (unsigned long)n - (unsigned long)end_of_stack(p);
2332 #endif
2334 /* set thread flags in other task's structures
2335 * - see asm/thread_info.h for TIF_xxxx flags available
2337 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2339 set_ti_thread_flag(task_thread_info(tsk), flag);
2342 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2344 clear_ti_thread_flag(task_thread_info(tsk), flag);
2347 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2349 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2352 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2354 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2357 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2359 return test_ti_thread_flag(task_thread_info(tsk), flag);
2362 static inline void set_tsk_need_resched(struct task_struct *tsk)
2364 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2367 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2369 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2372 static inline int test_tsk_need_resched(struct task_struct *tsk)
2374 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2377 static inline int restart_syscall(void)
2379 set_tsk_thread_flag(current, TIF_SIGPENDING);
2380 return -ERESTARTNOINTR;
2383 static inline int signal_pending(struct task_struct *p)
2385 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2388 static inline int __fatal_signal_pending(struct task_struct *p)
2390 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2393 static inline int fatal_signal_pending(struct task_struct *p)
2395 return signal_pending(p) && __fatal_signal_pending(p);
2398 static inline int signal_pending_state(long state, struct task_struct *p)
2400 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2401 return 0;
2402 if (!signal_pending(p))
2403 return 0;
2405 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2408 static inline int need_resched(void)
2410 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2414 * cond_resched() and cond_resched_lock(): latency reduction via
2415 * explicit rescheduling in places that are safe. The return
2416 * value indicates whether a reschedule was done in fact.
2417 * cond_resched_lock() will drop the spinlock before scheduling,
2418 * cond_resched_softirq() will enable bhs before scheduling.
2420 extern int _cond_resched(void);
2422 #define cond_resched() ({ \
2423 __might_sleep(__FILE__, __LINE__, 0); \
2424 _cond_resched(); \
2427 extern int __cond_resched_lock(spinlock_t *lock);
2429 #ifdef CONFIG_PREEMPT
2430 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2431 #else
2432 #define PREEMPT_LOCK_OFFSET 0
2433 #endif
2435 #define cond_resched_lock(lock) ({ \
2436 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2437 __cond_resched_lock(lock); \
2440 extern int __cond_resched_softirq(void);
2442 #define cond_resched_softirq() ({ \
2443 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2444 __cond_resched_softirq(); \
2448 * Does a critical section need to be broken due to another
2449 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2450 * but a general need for low latency)
2452 static inline int spin_needbreak(spinlock_t *lock)
2454 #ifdef CONFIG_PREEMPT
2455 return spin_is_contended(lock);
2456 #else
2457 return 0;
2458 #endif
2462 * Thread group CPU time accounting.
2464 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2465 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2467 static inline void thread_group_cputime_init(struct signal_struct *sig)
2469 spin_lock_init(&sig->cputimer.lock);
2473 * Reevaluate whether the task has signals pending delivery.
2474 * Wake the task if so.
2475 * This is required every time the blocked sigset_t changes.
2476 * callers must hold sighand->siglock.
2478 extern void recalc_sigpending_and_wake(struct task_struct *t);
2479 extern void recalc_sigpending(void);
2481 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2484 * Wrappers for p->thread_info->cpu access. No-op on UP.
2486 #ifdef CONFIG_SMP
2488 static inline unsigned int task_cpu(const struct task_struct *p)
2490 return task_thread_info(p)->cpu;
2493 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2495 #else
2497 static inline unsigned int task_cpu(const struct task_struct *p)
2499 return 0;
2502 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2506 #endif /* CONFIG_SMP */
2508 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2509 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2511 extern void normalize_rt_tasks(void);
2513 #ifdef CONFIG_CGROUP_SCHED
2515 extern struct task_group root_task_group;
2517 extern struct task_group *sched_create_group(struct task_group *parent);
2518 extern void sched_destroy_group(struct task_group *tg);
2519 extern void sched_move_task(struct task_struct *tsk);
2520 #ifdef CONFIG_FAIR_GROUP_SCHED
2521 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2522 extern unsigned long sched_group_shares(struct task_group *tg);
2523 #endif
2524 #ifdef CONFIG_RT_GROUP_SCHED
2525 extern int sched_group_set_rt_runtime(struct task_group *tg,
2526 long rt_runtime_us);
2527 extern long sched_group_rt_runtime(struct task_group *tg);
2528 extern int sched_group_set_rt_period(struct task_group *tg,
2529 long rt_period_us);
2530 extern long sched_group_rt_period(struct task_group *tg);
2531 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2532 #endif
2533 #endif
2535 extern int task_can_switch_user(struct user_struct *up,
2536 struct task_struct *tsk);
2538 #ifdef CONFIG_TASK_XACCT
2539 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2541 tsk->ioac.rchar += amt;
2544 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2546 tsk->ioac.wchar += amt;
2549 static inline void inc_syscr(struct task_struct *tsk)
2551 tsk->ioac.syscr++;
2554 static inline void inc_syscw(struct task_struct *tsk)
2556 tsk->ioac.syscw++;
2558 #else
2559 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2563 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2567 static inline void inc_syscr(struct task_struct *tsk)
2571 static inline void inc_syscw(struct task_struct *tsk)
2574 #endif
2576 #ifndef TASK_SIZE_OF
2577 #define TASK_SIZE_OF(tsk) TASK_SIZE
2578 #endif
2581 * Call the function if the target task is executing on a CPU right now:
2583 extern void task_oncpu_function_call(struct task_struct *p,
2584 void (*func) (void *info), void *info);
2587 #ifdef CONFIG_MM_OWNER
2588 extern void mm_update_next_owner(struct mm_struct *mm);
2589 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2590 #else
2591 static inline void mm_update_next_owner(struct mm_struct *mm)
2595 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2598 #endif /* CONFIG_MM_OWNER */
2600 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2601 unsigned int limit)
2603 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2606 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2607 unsigned int limit)
2609 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2612 static inline unsigned long rlimit(unsigned int limit)
2614 return task_rlimit(current, limit);
2617 static inline unsigned long rlimit_max(unsigned int limit)
2619 return task_rlimit_max(current, limit);
2622 #endif /* __KERNEL__ */
2624 #endif