pinctrl: use dev_info instead of pr_info in pinctrl_select_state_locked
[linux-2.6.git] / drivers / pinctrl / core.c
blob986d0e02761c81ca3a85e4ddbb11bcd38e7304b2
1 /*
2 * Core driver for the pin control subsystem
4 * Copyright (C) 2011-2012 ST-Ericsson SA
5 * Written on behalf of Linaro for ST-Ericsson
6 * Based on bits of regulator core, gpio core and clk core
8 * Author: Linus Walleij <linus.walleij@linaro.org>
10 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
12 * License terms: GNU General Public License (GPL) version 2
14 #define pr_fmt(fmt) "pinctrl core: " fmt
16 #include <linux/kernel.h>
17 #include <linux/kref.h>
18 #include <linux/export.h>
19 #include <linux/init.h>
20 #include <linux/device.h>
21 #include <linux/slab.h>
22 #include <linux/err.h>
23 #include <linux/list.h>
24 #include <linux/sysfs.h>
25 #include <linux/debugfs.h>
26 #include <linux/seq_file.h>
27 #include <linux/pinctrl/consumer.h>
28 #include <linux/pinctrl/pinctrl.h>
29 #include <linux/pinctrl/machine.h>
31 #ifdef CONFIG_GPIOLIB
32 #include <asm-generic/gpio.h>
33 #endif
35 #include "core.h"
36 #include "devicetree.h"
37 #include "pinmux.h"
38 #include "pinconf.h"
41 static bool pinctrl_dummy_state;
43 /* Mutex taken by all entry points */
44 DEFINE_MUTEX(pinctrl_mutex);
46 /* Global list of pin control devices (struct pinctrl_dev) */
47 LIST_HEAD(pinctrldev_list);
49 /* List of pin controller handles (struct pinctrl) */
50 static LIST_HEAD(pinctrl_list);
52 /* List of pinctrl maps (struct pinctrl_maps) */
53 LIST_HEAD(pinctrl_maps);
56 /**
57 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
59 * Usually this function is called by platforms without pinctrl driver support
60 * but run with some shared drivers using pinctrl APIs.
61 * After calling this function, the pinctrl core will return successfully
62 * with creating a dummy state for the driver to keep going smoothly.
64 void pinctrl_provide_dummies(void)
66 pinctrl_dummy_state = true;
69 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
71 /* We're not allowed to register devices without name */
72 return pctldev->desc->name;
74 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
76 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
78 return dev_name(pctldev->dev);
80 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
82 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
84 return pctldev->driver_data;
86 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
88 /**
89 * get_pinctrl_dev_from_devname() - look up pin controller device
90 * @devname: the name of a device instance, as returned by dev_name()
92 * Looks up a pin control device matching a certain device name or pure device
93 * pointer, the pure device pointer will take precedence.
95 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
97 struct pinctrl_dev *pctldev = NULL;
98 bool found = false;
100 if (!devname)
101 return NULL;
103 list_for_each_entry(pctldev, &pinctrldev_list, node) {
104 if (!strcmp(dev_name(pctldev->dev), devname)) {
105 /* Matched on device name */
106 found = true;
107 break;
111 return found ? pctldev : NULL;
115 * pin_get_from_name() - look up a pin number from a name
116 * @pctldev: the pin control device to lookup the pin on
117 * @name: the name of the pin to look up
119 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
121 unsigned i, pin;
123 /* The pin number can be retrived from the pin controller descriptor */
124 for (i = 0; i < pctldev->desc->npins; i++) {
125 struct pin_desc *desc;
127 pin = pctldev->desc->pins[i].number;
128 desc = pin_desc_get(pctldev, pin);
129 /* Pin space may be sparse */
130 if (desc == NULL)
131 continue;
132 if (desc->name && !strcmp(name, desc->name))
133 return pin;
136 return -EINVAL;
140 * pin_get_name_from_id() - look up a pin name from a pin id
141 * @pctldev: the pin control device to lookup the pin on
142 * @name: the name of the pin to look up
144 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
146 const struct pin_desc *desc;
148 desc = pin_desc_get(pctldev, pin);
149 if (desc == NULL) {
150 dev_err(pctldev->dev, "failed to get pin(%d) name\n",
151 pin);
152 return NULL;
155 return desc->name;
159 * pin_is_valid() - check if pin exists on controller
160 * @pctldev: the pin control device to check the pin on
161 * @pin: pin to check, use the local pin controller index number
163 * This tells us whether a certain pin exist on a certain pin controller or
164 * not. Pin lists may be sparse, so some pins may not exist.
166 bool pin_is_valid(struct pinctrl_dev *pctldev, int pin)
168 struct pin_desc *pindesc;
170 if (pin < 0)
171 return false;
173 mutex_lock(&pinctrl_mutex);
174 pindesc = pin_desc_get(pctldev, pin);
175 mutex_unlock(&pinctrl_mutex);
177 return pindesc != NULL;
179 EXPORT_SYMBOL_GPL(pin_is_valid);
181 /* Deletes a range of pin descriptors */
182 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
183 const struct pinctrl_pin_desc *pins,
184 unsigned num_pins)
186 int i;
188 for (i = 0; i < num_pins; i++) {
189 struct pin_desc *pindesc;
191 pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
192 pins[i].number);
193 if (pindesc != NULL) {
194 radix_tree_delete(&pctldev->pin_desc_tree,
195 pins[i].number);
196 if (pindesc->dynamic_name)
197 kfree(pindesc->name);
199 kfree(pindesc);
203 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
204 unsigned number, const char *name)
206 struct pin_desc *pindesc;
208 pindesc = pin_desc_get(pctldev, number);
209 if (pindesc != NULL) {
210 pr_err("pin %d already registered on %s\n", number,
211 pctldev->desc->name);
212 return -EINVAL;
215 pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
216 if (pindesc == NULL) {
217 dev_err(pctldev->dev, "failed to alloc struct pin_desc\n");
218 return -ENOMEM;
221 /* Set owner */
222 pindesc->pctldev = pctldev;
224 /* Copy basic pin info */
225 if (name) {
226 pindesc->name = name;
227 } else {
228 pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", number);
229 if (pindesc->name == NULL) {
230 kfree(pindesc);
231 return -ENOMEM;
233 pindesc->dynamic_name = true;
236 radix_tree_insert(&pctldev->pin_desc_tree, number, pindesc);
237 pr_debug("registered pin %d (%s) on %s\n",
238 number, pindesc->name, pctldev->desc->name);
239 return 0;
242 static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
243 struct pinctrl_pin_desc const *pins,
244 unsigned num_descs)
246 unsigned i;
247 int ret = 0;
249 for (i = 0; i < num_descs; i++) {
250 ret = pinctrl_register_one_pin(pctldev,
251 pins[i].number, pins[i].name);
252 if (ret)
253 return ret;
256 return 0;
260 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
261 * @pctldev: pin controller device to check
262 * @gpio: gpio pin to check taken from the global GPIO pin space
264 * Tries to match a GPIO pin number to the ranges handled by a certain pin
265 * controller, return the range or NULL
267 static struct pinctrl_gpio_range *
268 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
270 struct pinctrl_gpio_range *range = NULL;
272 /* Loop over the ranges */
273 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
274 /* Check if we're in the valid range */
275 if (gpio >= range->base &&
276 gpio < range->base + range->npins) {
277 return range;
281 return NULL;
285 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
286 * the same GPIO chip are in range
287 * @gpio: gpio pin to check taken from the global GPIO pin space
289 * This function is complement of pinctrl_match_gpio_range(). If the return
290 * value of pinctrl_match_gpio_range() is NULL, this function could be used
291 * to check whether pinctrl device is ready or not. Maybe some GPIO pins
292 * of the same GPIO chip don't have back-end pinctrl interface.
293 * If the return value is true, it means that pinctrl device is ready & the
294 * certain GPIO pin doesn't have back-end pinctrl device. If the return value
295 * is false, it means that pinctrl device may not be ready.
297 #ifdef CONFIG_GPIOLIB
298 static bool pinctrl_ready_for_gpio_range(unsigned gpio)
300 struct pinctrl_dev *pctldev;
301 struct pinctrl_gpio_range *range = NULL;
302 struct gpio_chip *chip = gpio_to_chip(gpio);
304 /* Loop over the pin controllers */
305 list_for_each_entry(pctldev, &pinctrldev_list, node) {
306 /* Loop over the ranges */
307 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
308 /* Check if any gpio range overlapped with gpio chip */
309 if (range->base + range->npins - 1 < chip->base ||
310 range->base > chip->base + chip->ngpio - 1)
311 continue;
312 return true;
315 return false;
317 #else
318 static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
319 #endif
322 * pinctrl_get_device_gpio_range() - find device for GPIO range
323 * @gpio: the pin to locate the pin controller for
324 * @outdev: the pin control device if found
325 * @outrange: the GPIO range if found
327 * Find the pin controller handling a certain GPIO pin from the pinspace of
328 * the GPIO subsystem, return the device and the matching GPIO range. Returns
329 * -EPROBE_DEFER if the GPIO range could not be found in any device since it
330 * may still have not been registered.
332 static int pinctrl_get_device_gpio_range(unsigned gpio,
333 struct pinctrl_dev **outdev,
334 struct pinctrl_gpio_range **outrange)
336 struct pinctrl_dev *pctldev = NULL;
338 /* Loop over the pin controllers */
339 list_for_each_entry(pctldev, &pinctrldev_list, node) {
340 struct pinctrl_gpio_range *range;
342 range = pinctrl_match_gpio_range(pctldev, gpio);
343 if (range != NULL) {
344 *outdev = pctldev;
345 *outrange = range;
346 return 0;
350 return -EPROBE_DEFER;
354 * pinctrl_add_gpio_range() - register a GPIO range for a controller
355 * @pctldev: pin controller device to add the range to
356 * @range: the GPIO range to add
358 * This adds a range of GPIOs to be handled by a certain pin controller. Call
359 * this to register handled ranges after registering your pin controller.
361 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
362 struct pinctrl_gpio_range *range)
364 mutex_lock(&pinctrl_mutex);
365 list_add_tail(&range->node, &pctldev->gpio_ranges);
366 mutex_unlock(&pinctrl_mutex);
368 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
370 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
371 struct pinctrl_gpio_range *ranges,
372 unsigned nranges)
374 int i;
376 for (i = 0; i < nranges; i++)
377 pinctrl_add_gpio_range(pctldev, &ranges[i]);
379 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
381 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
382 struct pinctrl_gpio_range *range)
384 struct pinctrl_dev *pctldev = get_pinctrl_dev_from_devname(devname);
387 * If we can't find this device, let's assume that is because
388 * it has not probed yet, so the driver trying to register this
389 * range need to defer probing.
391 if (!pctldev)
392 return ERR_PTR(-EPROBE_DEFER);
394 pinctrl_add_gpio_range(pctldev, range);
395 return pctldev;
397 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
400 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
401 * @pctldev: the pin controller device to look in
402 * @pin: a controller-local number to find the range for
404 struct pinctrl_gpio_range *
405 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
406 unsigned int pin)
408 struct pinctrl_gpio_range *range = NULL;
410 /* Loop over the ranges */
411 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
412 /* Check if we're in the valid range */
413 if (pin >= range->pin_base &&
414 pin < range->pin_base + range->npins) {
415 return range;
419 return NULL;
421 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
424 * pinctrl_remove_gpio_range() - remove a range of GPIOs fro a pin controller
425 * @pctldev: pin controller device to remove the range from
426 * @range: the GPIO range to remove
428 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
429 struct pinctrl_gpio_range *range)
431 mutex_lock(&pinctrl_mutex);
432 list_del(&range->node);
433 mutex_unlock(&pinctrl_mutex);
435 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
438 * pinctrl_get_group_selector() - returns the group selector for a group
439 * @pctldev: the pin controller handling the group
440 * @pin_group: the pin group to look up
442 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
443 const char *pin_group)
445 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
446 unsigned ngroups = pctlops->get_groups_count(pctldev);
447 unsigned group_selector = 0;
449 while (group_selector < ngroups) {
450 const char *gname = pctlops->get_group_name(pctldev,
451 group_selector);
452 if (!strcmp(gname, pin_group)) {
453 dev_dbg(pctldev->dev,
454 "found group selector %u for %s\n",
455 group_selector,
456 pin_group);
457 return group_selector;
460 group_selector++;
463 dev_err(pctldev->dev, "does not have pin group %s\n",
464 pin_group);
466 return -EINVAL;
470 * pinctrl_request_gpio() - request a single pin to be used in as GPIO
471 * @gpio: the GPIO pin number from the GPIO subsystem number space
473 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
474 * as part of their gpio_request() semantics, platforms and individual drivers
475 * shall *NOT* request GPIO pins to be muxed in.
477 int pinctrl_request_gpio(unsigned gpio)
479 struct pinctrl_dev *pctldev;
480 struct pinctrl_gpio_range *range;
481 int ret;
482 int pin;
484 mutex_lock(&pinctrl_mutex);
486 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
487 if (ret) {
488 if (pinctrl_ready_for_gpio_range(gpio))
489 ret = 0;
490 mutex_unlock(&pinctrl_mutex);
491 return ret;
494 /* Convert to the pin controllers number space */
495 pin = gpio - range->base + range->pin_base;
497 ret = pinmux_request_gpio(pctldev, range, pin, gpio);
499 mutex_unlock(&pinctrl_mutex);
500 return ret;
502 EXPORT_SYMBOL_GPL(pinctrl_request_gpio);
505 * pinctrl_free_gpio() - free control on a single pin, currently used as GPIO
506 * @gpio: the GPIO pin number from the GPIO subsystem number space
508 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
509 * as part of their gpio_free() semantics, platforms and individual drivers
510 * shall *NOT* request GPIO pins to be muxed out.
512 void pinctrl_free_gpio(unsigned gpio)
514 struct pinctrl_dev *pctldev;
515 struct pinctrl_gpio_range *range;
516 int ret;
517 int pin;
519 mutex_lock(&pinctrl_mutex);
521 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
522 if (ret) {
523 mutex_unlock(&pinctrl_mutex);
524 return;
527 /* Convert to the pin controllers number space */
528 pin = gpio - range->base + range->pin_base;
530 pinmux_free_gpio(pctldev, pin, range);
532 mutex_unlock(&pinctrl_mutex);
534 EXPORT_SYMBOL_GPL(pinctrl_free_gpio);
536 static int pinctrl_gpio_direction(unsigned gpio, bool input)
538 struct pinctrl_dev *pctldev;
539 struct pinctrl_gpio_range *range;
540 int ret;
541 int pin;
543 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
544 if (ret)
545 return ret;
547 /* Convert to the pin controllers number space */
548 pin = gpio - range->base + range->pin_base;
550 return pinmux_gpio_direction(pctldev, range, pin, input);
554 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
555 * @gpio: the GPIO pin number from the GPIO subsystem number space
557 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
558 * as part of their gpio_direction_input() semantics, platforms and individual
559 * drivers shall *NOT* touch pin control GPIO calls.
561 int pinctrl_gpio_direction_input(unsigned gpio)
563 int ret;
564 mutex_lock(&pinctrl_mutex);
565 ret = pinctrl_gpio_direction(gpio, true);
566 mutex_unlock(&pinctrl_mutex);
567 return ret;
569 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
572 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
573 * @gpio: the GPIO pin number from the GPIO subsystem number space
575 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
576 * as part of their gpio_direction_output() semantics, platforms and individual
577 * drivers shall *NOT* touch pin control GPIO calls.
579 int pinctrl_gpio_direction_output(unsigned gpio)
581 int ret;
582 mutex_lock(&pinctrl_mutex);
583 ret = pinctrl_gpio_direction(gpio, false);
584 mutex_unlock(&pinctrl_mutex);
585 return ret;
587 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
589 static struct pinctrl_state *find_state(struct pinctrl *p,
590 const char *name)
592 struct pinctrl_state *state;
594 list_for_each_entry(state, &p->states, node)
595 if (!strcmp(state->name, name))
596 return state;
598 return NULL;
601 static struct pinctrl_state *create_state(struct pinctrl *p,
602 const char *name)
604 struct pinctrl_state *state;
606 state = kzalloc(sizeof(*state), GFP_KERNEL);
607 if (state == NULL) {
608 dev_err(p->dev,
609 "failed to alloc struct pinctrl_state\n");
610 return ERR_PTR(-ENOMEM);
613 state->name = name;
614 INIT_LIST_HEAD(&state->settings);
616 list_add_tail(&state->node, &p->states);
618 return state;
621 static int add_setting(struct pinctrl *p, struct pinctrl_map const *map)
623 struct pinctrl_state *state;
624 struct pinctrl_setting *setting;
625 int ret;
627 state = find_state(p, map->name);
628 if (!state)
629 state = create_state(p, map->name);
630 if (IS_ERR(state))
631 return PTR_ERR(state);
633 if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
634 return 0;
636 setting = kzalloc(sizeof(*setting), GFP_KERNEL);
637 if (setting == NULL) {
638 dev_err(p->dev,
639 "failed to alloc struct pinctrl_setting\n");
640 return -ENOMEM;
643 setting->type = map->type;
645 setting->pctldev = get_pinctrl_dev_from_devname(map->ctrl_dev_name);
646 if (setting->pctldev == NULL) {
647 kfree(setting);
648 /* Do not defer probing of hogs (circular loop) */
649 if (!strcmp(map->ctrl_dev_name, map->dev_name))
650 return -ENODEV;
652 * OK let us guess that the driver is not there yet, and
653 * let's defer obtaining this pinctrl handle to later...
655 dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
656 map->ctrl_dev_name);
657 return -EPROBE_DEFER;
660 setting->dev_name = map->dev_name;
662 switch (map->type) {
663 case PIN_MAP_TYPE_MUX_GROUP:
664 ret = pinmux_map_to_setting(map, setting);
665 break;
666 case PIN_MAP_TYPE_CONFIGS_PIN:
667 case PIN_MAP_TYPE_CONFIGS_GROUP:
668 ret = pinconf_map_to_setting(map, setting);
669 break;
670 default:
671 ret = -EINVAL;
672 break;
674 if (ret < 0) {
675 kfree(setting);
676 return ret;
679 list_add_tail(&setting->node, &state->settings);
681 return 0;
684 static struct pinctrl *find_pinctrl(struct device *dev)
686 struct pinctrl *p;
688 list_for_each_entry(p, &pinctrl_list, node)
689 if (p->dev == dev)
690 return p;
692 return NULL;
695 static void pinctrl_put_locked(struct pinctrl *p, bool inlist);
697 static struct pinctrl *create_pinctrl(struct device *dev)
699 struct pinctrl *p;
700 const char *devname;
701 struct pinctrl_maps *maps_node;
702 int i;
703 struct pinctrl_map const *map;
704 int ret;
707 * create the state cookie holder struct pinctrl for each
708 * mapping, this is what consumers will get when requesting
709 * a pin control handle with pinctrl_get()
711 p = kzalloc(sizeof(*p), GFP_KERNEL);
712 if (p == NULL) {
713 dev_err(dev, "failed to alloc struct pinctrl\n");
714 return ERR_PTR(-ENOMEM);
716 p->dev = dev;
717 INIT_LIST_HEAD(&p->states);
718 INIT_LIST_HEAD(&p->dt_maps);
720 ret = pinctrl_dt_to_map(p);
721 if (ret < 0) {
722 kfree(p);
723 return ERR_PTR(ret);
726 devname = dev_name(dev);
728 /* Iterate over the pin control maps to locate the right ones */
729 for_each_maps(maps_node, i, map) {
730 /* Map must be for this device */
731 if (strcmp(map->dev_name, devname))
732 continue;
734 ret = add_setting(p, map);
736 * At this point the adding of a setting may:
738 * - Defer, if the pinctrl device is not yet available
739 * - Fail, if the pinctrl device is not yet available,
740 * AND the setting is a hog. We cannot defer that, since
741 * the hog will kick in immediately after the device
742 * is registered.
744 * If the error returned was not -EPROBE_DEFER then we
745 * accumulate the errors to see if we end up with
746 * an -EPROBE_DEFER later, as that is the worst case.
748 if (ret == -EPROBE_DEFER) {
749 pinctrl_put_locked(p, false);
750 return ERR_PTR(ret);
753 if (ret < 0) {
754 /* If some other error than deferral occured, return here */
755 pinctrl_put_locked(p, false);
756 return ERR_PTR(ret);
759 kref_init(&p->users);
761 /* Add the pinctrl handle to the global list */
762 list_add_tail(&p->node, &pinctrl_list);
764 return p;
767 static struct pinctrl *pinctrl_get_locked(struct device *dev)
769 struct pinctrl *p;
771 if (WARN_ON(!dev))
772 return ERR_PTR(-EINVAL);
775 * See if somebody else (such as the device core) has already
776 * obtained a handle to the pinctrl for this device. In that case,
777 * return another pointer to it.
779 p = find_pinctrl(dev);
780 if (p != NULL) {
781 dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
782 kref_get(&p->users);
783 return p;
786 return create_pinctrl(dev);
790 * pinctrl_get() - retrieves the pinctrl handle for a device
791 * @dev: the device to obtain the handle for
793 struct pinctrl *pinctrl_get(struct device *dev)
795 struct pinctrl *p;
797 mutex_lock(&pinctrl_mutex);
798 p = pinctrl_get_locked(dev);
799 mutex_unlock(&pinctrl_mutex);
801 return p;
803 EXPORT_SYMBOL_GPL(pinctrl_get);
805 static void pinctrl_free_setting(bool disable_setting,
806 struct pinctrl_setting *setting)
808 switch (setting->type) {
809 case PIN_MAP_TYPE_MUX_GROUP:
810 if (disable_setting)
811 pinmux_disable_setting(setting);
812 pinmux_free_setting(setting);
813 break;
814 case PIN_MAP_TYPE_CONFIGS_PIN:
815 case PIN_MAP_TYPE_CONFIGS_GROUP:
816 pinconf_free_setting(setting);
817 break;
818 default:
819 break;
823 static void pinctrl_put_locked(struct pinctrl *p, bool inlist)
825 struct pinctrl_state *state, *n1;
826 struct pinctrl_setting *setting, *n2;
828 list_for_each_entry_safe(state, n1, &p->states, node) {
829 list_for_each_entry_safe(setting, n2, &state->settings, node) {
830 pinctrl_free_setting(state == p->state, setting);
831 list_del(&setting->node);
832 kfree(setting);
834 list_del(&state->node);
835 kfree(state);
838 pinctrl_dt_free_maps(p);
840 if (inlist)
841 list_del(&p->node);
842 kfree(p);
846 * pinctrl_release() - release the pinctrl handle
847 * @kref: the kref in the pinctrl being released
849 static void pinctrl_release(struct kref *kref)
851 struct pinctrl *p = container_of(kref, struct pinctrl, users);
853 pinctrl_put_locked(p, true);
857 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
858 * @p: the pinctrl handle to release
860 void pinctrl_put(struct pinctrl *p)
862 mutex_lock(&pinctrl_mutex);
863 kref_put(&p->users, pinctrl_release);
864 mutex_unlock(&pinctrl_mutex);
866 EXPORT_SYMBOL_GPL(pinctrl_put);
868 static struct pinctrl_state *pinctrl_lookup_state_locked(struct pinctrl *p,
869 const char *name)
871 struct pinctrl_state *state;
873 state = find_state(p, name);
874 if (!state) {
875 if (pinctrl_dummy_state) {
876 /* create dummy state */
877 dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
878 name);
879 state = create_state(p, name);
880 } else
881 state = ERR_PTR(-ENODEV);
884 return state;
888 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
889 * @p: the pinctrl handle to retrieve the state from
890 * @name: the state name to retrieve
892 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p, const char *name)
894 struct pinctrl_state *s;
896 mutex_lock(&pinctrl_mutex);
897 s = pinctrl_lookup_state_locked(p, name);
898 mutex_unlock(&pinctrl_mutex);
900 return s;
902 EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
904 static int pinctrl_select_state_locked(struct pinctrl *p,
905 struct pinctrl_state *state)
907 struct pinctrl_setting *setting, *setting2;
908 struct pinctrl_state *old_state = p->state;
909 int ret;
911 if (p->state == state)
912 return 0;
914 if (p->state) {
916 * The set of groups with a mux configuration in the old state
917 * may not be identical to the set of groups with a mux setting
918 * in the new state. While this might be unusual, it's entirely
919 * possible for the "user"-supplied mapping table to be written
920 * that way. For each group that was configured in the old state
921 * but not in the new state, this code puts that group into a
922 * safe/disabled state.
924 list_for_each_entry(setting, &p->state->settings, node) {
925 bool found = false;
926 if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
927 continue;
928 list_for_each_entry(setting2, &state->settings, node) {
929 if (setting2->type != PIN_MAP_TYPE_MUX_GROUP)
930 continue;
931 if (setting2->data.mux.group ==
932 setting->data.mux.group) {
933 found = true;
934 break;
937 if (!found)
938 pinmux_disable_setting(setting);
942 p->state = NULL;
944 /* Apply all the settings for the new state */
945 list_for_each_entry(setting, &state->settings, node) {
946 switch (setting->type) {
947 case PIN_MAP_TYPE_MUX_GROUP:
948 ret = pinmux_enable_setting(setting);
949 break;
950 case PIN_MAP_TYPE_CONFIGS_PIN:
951 case PIN_MAP_TYPE_CONFIGS_GROUP:
952 ret = pinconf_apply_setting(setting);
953 break;
954 default:
955 ret = -EINVAL;
956 break;
959 if (ret < 0)
960 goto unapply_new_state;
963 p->state = state;
965 return 0;
967 unapply_new_state:
968 dev_err(p->dev, "Error applying setting, reverse things back\n");
971 * If the loop stopped on the 1st entry, nothing has been enabled,
972 * so jump directly to the 2nd phase
974 if (list_entry(&setting->node, typeof(*setting), node) ==
975 list_first_entry(&state->settings, typeof(*setting), node))
976 goto reapply_old_state;
978 list_for_each_entry(setting2, &state->settings, node) {
979 if (&setting2->node == &setting->node)
980 break;
981 pinctrl_free_setting(true, setting2);
983 reapply_old_state:
984 if (old_state) {
985 list_for_each_entry(setting, &old_state->settings, node) {
986 bool found = false;
987 if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
988 continue;
989 list_for_each_entry(setting2, &state->settings, node) {
990 if (setting2->type != PIN_MAP_TYPE_MUX_GROUP)
991 continue;
992 if (setting2->data.mux.group ==
993 setting->data.mux.group) {
994 found = true;
995 break;
998 if (!found)
999 pinmux_enable_setting(setting);
1002 return ret;
1006 * pinctrl_select() - select/activate/program a pinctrl state to HW
1007 * @p: the pinctrl handle for the device that requests configuratio
1008 * @state: the state handle to select/activate/program
1010 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
1012 int ret;
1014 mutex_lock(&pinctrl_mutex);
1015 ret = pinctrl_select_state_locked(p, state);
1016 mutex_unlock(&pinctrl_mutex);
1018 return ret;
1020 EXPORT_SYMBOL_GPL(pinctrl_select_state);
1022 static void devm_pinctrl_release(struct device *dev, void *res)
1024 pinctrl_put(*(struct pinctrl **)res);
1028 * struct devm_pinctrl_get() - Resource managed pinctrl_get()
1029 * @dev: the device to obtain the handle for
1031 * If there is a need to explicitly destroy the returned struct pinctrl,
1032 * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1034 struct pinctrl *devm_pinctrl_get(struct device *dev)
1036 struct pinctrl **ptr, *p;
1038 ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1039 if (!ptr)
1040 return ERR_PTR(-ENOMEM);
1042 p = pinctrl_get(dev);
1043 if (!IS_ERR(p)) {
1044 *ptr = p;
1045 devres_add(dev, ptr);
1046 } else {
1047 devres_free(ptr);
1050 return p;
1052 EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1054 static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1056 struct pinctrl **p = res;
1058 return *p == data;
1062 * devm_pinctrl_put() - Resource managed pinctrl_put()
1063 * @p: the pinctrl handle to release
1065 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1066 * this function will not need to be called and the resource management
1067 * code will ensure that the resource is freed.
1069 void devm_pinctrl_put(struct pinctrl *p)
1071 WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1072 devm_pinctrl_match, p));
1074 EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1076 int pinctrl_register_map(struct pinctrl_map const *maps, unsigned num_maps,
1077 bool dup, bool locked)
1079 int i, ret;
1080 struct pinctrl_maps *maps_node;
1082 pr_debug("add %d pinmux maps\n", num_maps);
1084 /* First sanity check the new mapping */
1085 for (i = 0; i < num_maps; i++) {
1086 if (!maps[i].dev_name) {
1087 pr_err("failed to register map %s (%d): no device given\n",
1088 maps[i].name, i);
1089 return -EINVAL;
1092 if (!maps[i].name) {
1093 pr_err("failed to register map %d: no map name given\n",
1095 return -EINVAL;
1098 if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1099 !maps[i].ctrl_dev_name) {
1100 pr_err("failed to register map %s (%d): no pin control device given\n",
1101 maps[i].name, i);
1102 return -EINVAL;
1105 switch (maps[i].type) {
1106 case PIN_MAP_TYPE_DUMMY_STATE:
1107 break;
1108 case PIN_MAP_TYPE_MUX_GROUP:
1109 ret = pinmux_validate_map(&maps[i], i);
1110 if (ret < 0)
1111 return ret;
1112 break;
1113 case PIN_MAP_TYPE_CONFIGS_PIN:
1114 case PIN_MAP_TYPE_CONFIGS_GROUP:
1115 ret = pinconf_validate_map(&maps[i], i);
1116 if (ret < 0)
1117 return ret;
1118 break;
1119 default:
1120 pr_err("failed to register map %s (%d): invalid type given\n",
1121 maps[i].name, i);
1122 return -EINVAL;
1126 maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1127 if (!maps_node) {
1128 pr_err("failed to alloc struct pinctrl_maps\n");
1129 return -ENOMEM;
1132 maps_node->num_maps = num_maps;
1133 if (dup) {
1134 maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps,
1135 GFP_KERNEL);
1136 if (!maps_node->maps) {
1137 pr_err("failed to duplicate mapping table\n");
1138 kfree(maps_node);
1139 return -ENOMEM;
1141 } else {
1142 maps_node->maps = maps;
1145 if (!locked)
1146 mutex_lock(&pinctrl_mutex);
1147 list_add_tail(&maps_node->node, &pinctrl_maps);
1148 if (!locked)
1149 mutex_unlock(&pinctrl_mutex);
1151 return 0;
1155 * pinctrl_register_mappings() - register a set of pin controller mappings
1156 * @maps: the pincontrol mappings table to register. This should probably be
1157 * marked with __initdata so it can be discarded after boot. This
1158 * function will perform a shallow copy for the mapping entries.
1159 * @num_maps: the number of maps in the mapping table
1161 int pinctrl_register_mappings(struct pinctrl_map const *maps,
1162 unsigned num_maps)
1164 return pinctrl_register_map(maps, num_maps, true, false);
1167 void pinctrl_unregister_map(struct pinctrl_map const *map)
1169 struct pinctrl_maps *maps_node;
1171 list_for_each_entry(maps_node, &pinctrl_maps, node) {
1172 if (maps_node->maps == map) {
1173 list_del(&maps_node->node);
1174 return;
1180 * pinctrl_force_sleep() - turn a given controller device into sleep state
1181 * @pctldev: pin controller device
1183 int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1185 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1186 return pinctrl_select_state(pctldev->p, pctldev->hog_sleep);
1187 return 0;
1189 EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1192 * pinctrl_force_default() - turn a given controller device into default state
1193 * @pctldev: pin controller device
1195 int pinctrl_force_default(struct pinctrl_dev *pctldev)
1197 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1198 return pinctrl_select_state(pctldev->p, pctldev->hog_default);
1199 return 0;
1201 EXPORT_SYMBOL_GPL(pinctrl_force_default);
1203 #ifdef CONFIG_DEBUG_FS
1205 static int pinctrl_pins_show(struct seq_file *s, void *what)
1207 struct pinctrl_dev *pctldev = s->private;
1208 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1209 unsigned i, pin;
1211 seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1213 mutex_lock(&pinctrl_mutex);
1215 /* The pin number can be retrived from the pin controller descriptor */
1216 for (i = 0; i < pctldev->desc->npins; i++) {
1217 struct pin_desc *desc;
1219 pin = pctldev->desc->pins[i].number;
1220 desc = pin_desc_get(pctldev, pin);
1221 /* Pin space may be sparse */
1222 if (desc == NULL)
1223 continue;
1225 seq_printf(s, "pin %d (%s) ", pin,
1226 desc->name ? desc->name : "unnamed");
1228 /* Driver-specific info per pin */
1229 if (ops->pin_dbg_show)
1230 ops->pin_dbg_show(pctldev, s, pin);
1232 seq_puts(s, "\n");
1235 mutex_unlock(&pinctrl_mutex);
1237 return 0;
1240 static int pinctrl_groups_show(struct seq_file *s, void *what)
1242 struct pinctrl_dev *pctldev = s->private;
1243 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1244 unsigned ngroups, selector = 0;
1246 ngroups = ops->get_groups_count(pctldev);
1247 mutex_lock(&pinctrl_mutex);
1249 seq_puts(s, "registered pin groups:\n");
1250 while (selector < ngroups) {
1251 const unsigned *pins;
1252 unsigned num_pins;
1253 const char *gname = ops->get_group_name(pctldev, selector);
1254 const char *pname;
1255 int ret;
1256 int i;
1258 ret = ops->get_group_pins(pctldev, selector,
1259 &pins, &num_pins);
1260 if (ret)
1261 seq_printf(s, "%s [ERROR GETTING PINS]\n",
1262 gname);
1263 else {
1264 seq_printf(s, "group: %s\n", gname);
1265 for (i = 0; i < num_pins; i++) {
1266 pname = pin_get_name(pctldev, pins[i]);
1267 if (WARN_ON(!pname)) {
1268 mutex_unlock(&pinctrl_mutex);
1269 return -EINVAL;
1271 seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1273 seq_puts(s, "\n");
1275 selector++;
1278 mutex_unlock(&pinctrl_mutex);
1280 return 0;
1283 static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1285 struct pinctrl_dev *pctldev = s->private;
1286 struct pinctrl_gpio_range *range = NULL;
1288 seq_puts(s, "GPIO ranges handled:\n");
1290 mutex_lock(&pinctrl_mutex);
1292 /* Loop over the ranges */
1293 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1294 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1295 range->id, range->name,
1296 range->base, (range->base + range->npins - 1),
1297 range->pin_base,
1298 (range->pin_base + range->npins - 1));
1301 mutex_unlock(&pinctrl_mutex);
1303 return 0;
1306 static int pinctrl_devices_show(struct seq_file *s, void *what)
1308 struct pinctrl_dev *pctldev;
1310 seq_puts(s, "name [pinmux] [pinconf]\n");
1312 mutex_lock(&pinctrl_mutex);
1314 list_for_each_entry(pctldev, &pinctrldev_list, node) {
1315 seq_printf(s, "%s ", pctldev->desc->name);
1316 if (pctldev->desc->pmxops)
1317 seq_puts(s, "yes ");
1318 else
1319 seq_puts(s, "no ");
1320 if (pctldev->desc->confops)
1321 seq_puts(s, "yes");
1322 else
1323 seq_puts(s, "no");
1324 seq_puts(s, "\n");
1327 mutex_unlock(&pinctrl_mutex);
1329 return 0;
1332 static inline const char *map_type(enum pinctrl_map_type type)
1334 static const char * const names[] = {
1335 "INVALID",
1336 "DUMMY_STATE",
1337 "MUX_GROUP",
1338 "CONFIGS_PIN",
1339 "CONFIGS_GROUP",
1342 if (type >= ARRAY_SIZE(names))
1343 return "UNKNOWN";
1345 return names[type];
1348 static int pinctrl_maps_show(struct seq_file *s, void *what)
1350 struct pinctrl_maps *maps_node;
1351 int i;
1352 struct pinctrl_map const *map;
1354 seq_puts(s, "Pinctrl maps:\n");
1356 mutex_lock(&pinctrl_mutex);
1358 for_each_maps(maps_node, i, map) {
1359 seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1360 map->dev_name, map->name, map_type(map->type),
1361 map->type);
1363 if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1364 seq_printf(s, "controlling device %s\n",
1365 map->ctrl_dev_name);
1367 switch (map->type) {
1368 case PIN_MAP_TYPE_MUX_GROUP:
1369 pinmux_show_map(s, map);
1370 break;
1371 case PIN_MAP_TYPE_CONFIGS_PIN:
1372 case PIN_MAP_TYPE_CONFIGS_GROUP:
1373 pinconf_show_map(s, map);
1374 break;
1375 default:
1376 break;
1379 seq_printf(s, "\n");
1382 mutex_unlock(&pinctrl_mutex);
1384 return 0;
1387 static int pinctrl_show(struct seq_file *s, void *what)
1389 struct pinctrl *p;
1390 struct pinctrl_state *state;
1391 struct pinctrl_setting *setting;
1393 seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1395 mutex_lock(&pinctrl_mutex);
1397 list_for_each_entry(p, &pinctrl_list, node) {
1398 seq_printf(s, "device: %s current state: %s\n",
1399 dev_name(p->dev),
1400 p->state ? p->state->name : "none");
1402 list_for_each_entry(state, &p->states, node) {
1403 seq_printf(s, " state: %s\n", state->name);
1405 list_for_each_entry(setting, &state->settings, node) {
1406 struct pinctrl_dev *pctldev = setting->pctldev;
1408 seq_printf(s, " type: %s controller %s ",
1409 map_type(setting->type),
1410 pinctrl_dev_get_name(pctldev));
1412 switch (setting->type) {
1413 case PIN_MAP_TYPE_MUX_GROUP:
1414 pinmux_show_setting(s, setting);
1415 break;
1416 case PIN_MAP_TYPE_CONFIGS_PIN:
1417 case PIN_MAP_TYPE_CONFIGS_GROUP:
1418 pinconf_show_setting(s, setting);
1419 break;
1420 default:
1421 break;
1427 mutex_unlock(&pinctrl_mutex);
1429 return 0;
1432 static int pinctrl_pins_open(struct inode *inode, struct file *file)
1434 return single_open(file, pinctrl_pins_show, inode->i_private);
1437 static int pinctrl_groups_open(struct inode *inode, struct file *file)
1439 return single_open(file, pinctrl_groups_show, inode->i_private);
1442 static int pinctrl_gpioranges_open(struct inode *inode, struct file *file)
1444 return single_open(file, pinctrl_gpioranges_show, inode->i_private);
1447 static int pinctrl_devices_open(struct inode *inode, struct file *file)
1449 return single_open(file, pinctrl_devices_show, NULL);
1452 static int pinctrl_maps_open(struct inode *inode, struct file *file)
1454 return single_open(file, pinctrl_maps_show, NULL);
1457 static int pinctrl_open(struct inode *inode, struct file *file)
1459 return single_open(file, pinctrl_show, NULL);
1462 static const struct file_operations pinctrl_pins_ops = {
1463 .open = pinctrl_pins_open,
1464 .read = seq_read,
1465 .llseek = seq_lseek,
1466 .release = single_release,
1469 static const struct file_operations pinctrl_groups_ops = {
1470 .open = pinctrl_groups_open,
1471 .read = seq_read,
1472 .llseek = seq_lseek,
1473 .release = single_release,
1476 static const struct file_operations pinctrl_gpioranges_ops = {
1477 .open = pinctrl_gpioranges_open,
1478 .read = seq_read,
1479 .llseek = seq_lseek,
1480 .release = single_release,
1483 static const struct file_operations pinctrl_devices_ops = {
1484 .open = pinctrl_devices_open,
1485 .read = seq_read,
1486 .llseek = seq_lseek,
1487 .release = single_release,
1490 static const struct file_operations pinctrl_maps_ops = {
1491 .open = pinctrl_maps_open,
1492 .read = seq_read,
1493 .llseek = seq_lseek,
1494 .release = single_release,
1497 static const struct file_operations pinctrl_ops = {
1498 .open = pinctrl_open,
1499 .read = seq_read,
1500 .llseek = seq_lseek,
1501 .release = single_release,
1504 static struct dentry *debugfs_root;
1506 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1508 struct dentry *device_root;
1510 device_root = debugfs_create_dir(dev_name(pctldev->dev),
1511 debugfs_root);
1512 pctldev->device_root = device_root;
1514 if (IS_ERR(device_root) || !device_root) {
1515 pr_warn("failed to create debugfs directory for %s\n",
1516 dev_name(pctldev->dev));
1517 return;
1519 debugfs_create_file("pins", S_IFREG | S_IRUGO,
1520 device_root, pctldev, &pinctrl_pins_ops);
1521 debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
1522 device_root, pctldev, &pinctrl_groups_ops);
1523 debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
1524 device_root, pctldev, &pinctrl_gpioranges_ops);
1525 pinmux_init_device_debugfs(device_root, pctldev);
1526 pinconf_init_device_debugfs(device_root, pctldev);
1529 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1531 debugfs_remove_recursive(pctldev->device_root);
1534 static void pinctrl_init_debugfs(void)
1536 debugfs_root = debugfs_create_dir("pinctrl", NULL);
1537 if (IS_ERR(debugfs_root) || !debugfs_root) {
1538 pr_warn("failed to create debugfs directory\n");
1539 debugfs_root = NULL;
1540 return;
1543 debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
1544 debugfs_root, NULL, &pinctrl_devices_ops);
1545 debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
1546 debugfs_root, NULL, &pinctrl_maps_ops);
1547 debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
1548 debugfs_root, NULL, &pinctrl_ops);
1551 #else /* CONFIG_DEBUG_FS */
1553 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1557 static void pinctrl_init_debugfs(void)
1561 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1565 #endif
1567 static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1569 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1571 if (!ops ||
1572 !ops->get_groups_count ||
1573 !ops->get_group_name ||
1574 !ops->get_group_pins)
1575 return -EINVAL;
1577 if (ops->dt_node_to_map && !ops->dt_free_map)
1578 return -EINVAL;
1580 return 0;
1584 * pinctrl_register() - register a pin controller device
1585 * @pctldesc: descriptor for this pin controller
1586 * @dev: parent device for this pin controller
1587 * @driver_data: private pin controller data for this pin controller
1589 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
1590 struct device *dev, void *driver_data)
1592 struct pinctrl_dev *pctldev;
1593 int ret;
1595 if (!pctldesc)
1596 return NULL;
1597 if (!pctldesc->name)
1598 return NULL;
1600 pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
1601 if (pctldev == NULL) {
1602 dev_err(dev, "failed to alloc struct pinctrl_dev\n");
1603 return NULL;
1606 /* Initialize pin control device struct */
1607 pctldev->owner = pctldesc->owner;
1608 pctldev->desc = pctldesc;
1609 pctldev->driver_data = driver_data;
1610 INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
1611 INIT_LIST_HEAD(&pctldev->gpio_ranges);
1612 pctldev->dev = dev;
1614 /* check core ops for sanity */
1615 if (pinctrl_check_ops(pctldev)) {
1616 dev_err(dev, "pinctrl ops lacks necessary functions\n");
1617 goto out_err;
1620 /* If we're implementing pinmuxing, check the ops for sanity */
1621 if (pctldesc->pmxops) {
1622 if (pinmux_check_ops(pctldev))
1623 goto out_err;
1626 /* If we're implementing pinconfig, check the ops for sanity */
1627 if (pctldesc->confops) {
1628 if (pinconf_check_ops(pctldev))
1629 goto out_err;
1632 /* Register all the pins */
1633 dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins);
1634 ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
1635 if (ret) {
1636 dev_err(dev, "error during pin registration\n");
1637 pinctrl_free_pindescs(pctldev, pctldesc->pins,
1638 pctldesc->npins);
1639 goto out_err;
1642 mutex_lock(&pinctrl_mutex);
1644 list_add_tail(&pctldev->node, &pinctrldev_list);
1646 pctldev->p = pinctrl_get_locked(pctldev->dev);
1647 if (!IS_ERR(pctldev->p)) {
1648 pctldev->hog_default =
1649 pinctrl_lookup_state_locked(pctldev->p,
1650 PINCTRL_STATE_DEFAULT);
1651 if (IS_ERR(pctldev->hog_default)) {
1652 dev_dbg(dev, "failed to lookup the default state\n");
1653 } else {
1654 if (pinctrl_select_state_locked(pctldev->p,
1655 pctldev->hog_default))
1656 dev_err(dev,
1657 "failed to select default state\n");
1660 pctldev->hog_sleep =
1661 pinctrl_lookup_state_locked(pctldev->p,
1662 PINCTRL_STATE_SLEEP);
1663 if (IS_ERR(pctldev->hog_sleep))
1664 dev_dbg(dev, "failed to lookup the sleep state\n");
1667 mutex_unlock(&pinctrl_mutex);
1669 pinctrl_init_device_debugfs(pctldev);
1671 return pctldev;
1673 out_err:
1674 kfree(pctldev);
1675 return NULL;
1677 EXPORT_SYMBOL_GPL(pinctrl_register);
1680 * pinctrl_unregister() - unregister pinmux
1681 * @pctldev: pin controller to unregister
1683 * Called by pinmux drivers to unregister a pinmux.
1685 void pinctrl_unregister(struct pinctrl_dev *pctldev)
1687 struct pinctrl_gpio_range *range, *n;
1688 if (pctldev == NULL)
1689 return;
1691 pinctrl_remove_device_debugfs(pctldev);
1693 mutex_lock(&pinctrl_mutex);
1695 if (!IS_ERR(pctldev->p))
1696 pinctrl_put_locked(pctldev->p, true);
1698 /* TODO: check that no pinmuxes are still active? */
1699 list_del(&pctldev->node);
1700 /* Destroy descriptor tree */
1701 pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
1702 pctldev->desc->npins);
1703 /* remove gpio ranges map */
1704 list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
1705 list_del(&range->node);
1707 kfree(pctldev);
1709 mutex_unlock(&pinctrl_mutex);
1711 EXPORT_SYMBOL_GPL(pinctrl_unregister);
1713 static int __init pinctrl_init(void)
1715 pr_info("initialized pinctrl subsystem\n");
1716 pinctrl_init_debugfs();
1717 return 0;
1720 /* init early since many drivers really need to initialized pinmux early */
1721 core_initcall(pinctrl_init);