powerpc/crypto: add compression support to arch vec
[linux-2.6.git] / kernel / cgroup.c
blob79818507e444aa3050c9994841258292c294bd2e
1 /*
2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
29 #include <linux/cgroup.h>
30 #include <linux/cred.h>
31 #include <linux/ctype.h>
32 #include <linux/errno.h>
33 #include <linux/fs.h>
34 #include <linux/init_task.h>
35 #include <linux/kernel.h>
36 #include <linux/list.h>
37 #include <linux/mm.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/backing-dev.h>
45 #include <linux/seq_file.h>
46 #include <linux/slab.h>
47 #include <linux/magic.h>
48 #include <linux/spinlock.h>
49 #include <linux/string.h>
50 #include <linux/sort.h>
51 #include <linux/kmod.h>
52 #include <linux/module.h>
53 #include <linux/delayacct.h>
54 #include <linux/cgroupstats.h>
55 #include <linux/hash.h>
56 #include <linux/namei.h>
57 #include <linux/pid_namespace.h>
58 #include <linux/idr.h>
59 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
60 #include <linux/eventfd.h>
61 #include <linux/poll.h>
62 #include <linux/flex_array.h> /* used in cgroup_attach_proc */
63 #include <linux/kthread.h>
65 #include <linux/atomic.h>
67 /* css deactivation bias, makes css->refcnt negative to deny new trygets */
68 #define CSS_DEACT_BIAS INT_MIN
71 * cgroup_mutex is the master lock. Any modification to cgroup or its
72 * hierarchy must be performed while holding it.
74 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
75 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
76 * release_agent_path and so on. Modifying requires both cgroup_mutex and
77 * cgroup_root_mutex. Readers can acquire either of the two. This is to
78 * break the following locking order cycle.
80 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
81 * B. namespace_sem -> cgroup_mutex
83 * B happens only through cgroup_show_options() and using cgroup_root_mutex
84 * breaks it.
86 static DEFINE_MUTEX(cgroup_mutex);
87 static DEFINE_MUTEX(cgroup_root_mutex);
90 * Generate an array of cgroup subsystem pointers. At boot time, this is
91 * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
92 * registered after that. The mutable section of this array is protected by
93 * cgroup_mutex.
95 #define SUBSYS(_x) &_x ## _subsys,
96 static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
97 #include <linux/cgroup_subsys.h>
100 #define MAX_CGROUP_ROOT_NAMELEN 64
103 * A cgroupfs_root represents the root of a cgroup hierarchy,
104 * and may be associated with a superblock to form an active
105 * hierarchy
107 struct cgroupfs_root {
108 struct super_block *sb;
111 * The bitmask of subsystems intended to be attached to this
112 * hierarchy
114 unsigned long subsys_bits;
116 /* Unique id for this hierarchy. */
117 int hierarchy_id;
119 /* The bitmask of subsystems currently attached to this hierarchy */
120 unsigned long actual_subsys_bits;
122 /* A list running through the attached subsystems */
123 struct list_head subsys_list;
125 /* The root cgroup for this hierarchy */
126 struct cgroup top_cgroup;
128 /* Tracks how many cgroups are currently defined in hierarchy.*/
129 int number_of_cgroups;
131 /* A list running through the active hierarchies */
132 struct list_head root_list;
134 /* All cgroups on this root, cgroup_mutex protected */
135 struct list_head allcg_list;
137 /* Hierarchy-specific flags */
138 unsigned long flags;
140 /* The path to use for release notifications. */
141 char release_agent_path[PATH_MAX];
143 /* The name for this hierarchy - may be empty */
144 char name[MAX_CGROUP_ROOT_NAMELEN];
148 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
149 * subsystems that are otherwise unattached - it never has more than a
150 * single cgroup, and all tasks are part of that cgroup.
152 static struct cgroupfs_root rootnode;
155 * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
157 struct cfent {
158 struct list_head node;
159 struct dentry *dentry;
160 struct cftype *type;
164 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
165 * cgroup_subsys->use_id != 0.
167 #define CSS_ID_MAX (65535)
168 struct css_id {
170 * The css to which this ID points. This pointer is set to valid value
171 * after cgroup is populated. If cgroup is removed, this will be NULL.
172 * This pointer is expected to be RCU-safe because destroy()
173 * is called after synchronize_rcu(). But for safe use, css_is_removed()
174 * css_tryget() should be used for avoiding race.
176 struct cgroup_subsys_state __rcu *css;
178 * ID of this css.
180 unsigned short id;
182 * Depth in hierarchy which this ID belongs to.
184 unsigned short depth;
186 * ID is freed by RCU. (and lookup routine is RCU safe.)
188 struct rcu_head rcu_head;
190 * Hierarchy of CSS ID belongs to.
192 unsigned short stack[0]; /* Array of Length (depth+1) */
196 * cgroup_event represents events which userspace want to receive.
198 struct cgroup_event {
200 * Cgroup which the event belongs to.
202 struct cgroup *cgrp;
204 * Control file which the event associated.
206 struct cftype *cft;
208 * eventfd to signal userspace about the event.
210 struct eventfd_ctx *eventfd;
212 * Each of these stored in a list by the cgroup.
214 struct list_head list;
216 * All fields below needed to unregister event when
217 * userspace closes eventfd.
219 poll_table pt;
220 wait_queue_head_t *wqh;
221 wait_queue_t wait;
222 struct work_struct remove;
225 /* The list of hierarchy roots */
227 static LIST_HEAD(roots);
228 static int root_count;
230 static DEFINE_IDA(hierarchy_ida);
231 static int next_hierarchy_id;
232 static DEFINE_SPINLOCK(hierarchy_id_lock);
234 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
235 #define dummytop (&rootnode.top_cgroup)
237 /* This flag indicates whether tasks in the fork and exit paths should
238 * check for fork/exit handlers to call. This avoids us having to do
239 * extra work in the fork/exit path if none of the subsystems need to
240 * be called.
242 static int need_forkexit_callback __read_mostly;
244 #ifdef CONFIG_PROVE_LOCKING
245 int cgroup_lock_is_held(void)
247 return lockdep_is_held(&cgroup_mutex);
249 #else /* #ifdef CONFIG_PROVE_LOCKING */
250 int cgroup_lock_is_held(void)
252 return mutex_is_locked(&cgroup_mutex);
254 #endif /* #else #ifdef CONFIG_PROVE_LOCKING */
256 EXPORT_SYMBOL_GPL(cgroup_lock_is_held);
258 static int css_unbias_refcnt(int refcnt)
260 return refcnt >= 0 ? refcnt : refcnt - CSS_DEACT_BIAS;
263 /* the current nr of refs, always >= 0 whether @css is deactivated or not */
264 static int css_refcnt(struct cgroup_subsys_state *css)
266 int v = atomic_read(&css->refcnt);
268 return css_unbias_refcnt(v);
271 /* convenient tests for these bits */
272 inline int cgroup_is_removed(const struct cgroup *cgrp)
274 return test_bit(CGRP_REMOVED, &cgrp->flags);
277 /* bits in struct cgroupfs_root flags field */
278 enum {
279 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
282 static int cgroup_is_releasable(const struct cgroup *cgrp)
284 const int bits =
285 (1 << CGRP_RELEASABLE) |
286 (1 << CGRP_NOTIFY_ON_RELEASE);
287 return (cgrp->flags & bits) == bits;
290 static int notify_on_release(const struct cgroup *cgrp)
292 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
295 static int clone_children(const struct cgroup *cgrp)
297 return test_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
301 * for_each_subsys() allows you to iterate on each subsystem attached to
302 * an active hierarchy
304 #define for_each_subsys(_root, _ss) \
305 list_for_each_entry(_ss, &_root->subsys_list, sibling)
307 /* for_each_active_root() allows you to iterate across the active hierarchies */
308 #define for_each_active_root(_root) \
309 list_for_each_entry(_root, &roots, root_list)
311 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
313 return dentry->d_fsdata;
316 static inline struct cfent *__d_cfe(struct dentry *dentry)
318 return dentry->d_fsdata;
321 static inline struct cftype *__d_cft(struct dentry *dentry)
323 return __d_cfe(dentry)->type;
326 /* the list of cgroups eligible for automatic release. Protected by
327 * release_list_lock */
328 static LIST_HEAD(release_list);
329 static DEFINE_RAW_SPINLOCK(release_list_lock);
330 static void cgroup_release_agent(struct work_struct *work);
331 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
332 static void check_for_release(struct cgroup *cgrp);
334 /* Link structure for associating css_set objects with cgroups */
335 struct cg_cgroup_link {
337 * List running through cg_cgroup_links associated with a
338 * cgroup, anchored on cgroup->css_sets
340 struct list_head cgrp_link_list;
341 struct cgroup *cgrp;
343 * List running through cg_cgroup_links pointing at a
344 * single css_set object, anchored on css_set->cg_links
346 struct list_head cg_link_list;
347 struct css_set *cg;
350 /* The default css_set - used by init and its children prior to any
351 * hierarchies being mounted. It contains a pointer to the root state
352 * for each subsystem. Also used to anchor the list of css_sets. Not
353 * reference-counted, to improve performance when child cgroups
354 * haven't been created.
357 static struct css_set init_css_set;
358 static struct cg_cgroup_link init_css_set_link;
360 static int cgroup_init_idr(struct cgroup_subsys *ss,
361 struct cgroup_subsys_state *css);
363 /* css_set_lock protects the list of css_set objects, and the
364 * chain of tasks off each css_set. Nests outside task->alloc_lock
365 * due to cgroup_iter_start() */
366 static DEFINE_RWLOCK(css_set_lock);
367 static int css_set_count;
370 * hash table for cgroup groups. This improves the performance to find
371 * an existing css_set. This hash doesn't (currently) take into
372 * account cgroups in empty hierarchies.
374 #define CSS_SET_HASH_BITS 7
375 #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
376 static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
378 static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
380 int i;
381 int index;
382 unsigned long tmp = 0UL;
384 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
385 tmp += (unsigned long)css[i];
386 tmp = (tmp >> 16) ^ tmp;
388 index = hash_long(tmp, CSS_SET_HASH_BITS);
390 return &css_set_table[index];
393 /* We don't maintain the lists running through each css_set to its
394 * task until after the first call to cgroup_iter_start(). This
395 * reduces the fork()/exit() overhead for people who have cgroups
396 * compiled into their kernel but not actually in use */
397 static int use_task_css_set_links __read_mostly;
399 static void __put_css_set(struct css_set *cg, int taskexit)
401 struct cg_cgroup_link *link;
402 struct cg_cgroup_link *saved_link;
404 * Ensure that the refcount doesn't hit zero while any readers
405 * can see it. Similar to atomic_dec_and_lock(), but for an
406 * rwlock
408 if (atomic_add_unless(&cg->refcount, -1, 1))
409 return;
410 write_lock(&css_set_lock);
411 if (!atomic_dec_and_test(&cg->refcount)) {
412 write_unlock(&css_set_lock);
413 return;
416 /* This css_set is dead. unlink it and release cgroup refcounts */
417 hlist_del(&cg->hlist);
418 css_set_count--;
420 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
421 cg_link_list) {
422 struct cgroup *cgrp = link->cgrp;
423 list_del(&link->cg_link_list);
424 list_del(&link->cgrp_link_list);
425 if (atomic_dec_and_test(&cgrp->count) &&
426 notify_on_release(cgrp)) {
427 if (taskexit)
428 set_bit(CGRP_RELEASABLE, &cgrp->flags);
429 check_for_release(cgrp);
432 kfree(link);
435 write_unlock(&css_set_lock);
436 kfree_rcu(cg, rcu_head);
440 * refcounted get/put for css_set objects
442 static inline void get_css_set(struct css_set *cg)
444 atomic_inc(&cg->refcount);
447 static inline void put_css_set(struct css_set *cg)
449 __put_css_set(cg, 0);
452 static inline void put_css_set_taskexit(struct css_set *cg)
454 __put_css_set(cg, 1);
458 * compare_css_sets - helper function for find_existing_css_set().
459 * @cg: candidate css_set being tested
460 * @old_cg: existing css_set for a task
461 * @new_cgrp: cgroup that's being entered by the task
462 * @template: desired set of css pointers in css_set (pre-calculated)
464 * Returns true if "cg" matches "old_cg" except for the hierarchy
465 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
467 static bool compare_css_sets(struct css_set *cg,
468 struct css_set *old_cg,
469 struct cgroup *new_cgrp,
470 struct cgroup_subsys_state *template[])
472 struct list_head *l1, *l2;
474 if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
475 /* Not all subsystems matched */
476 return false;
480 * Compare cgroup pointers in order to distinguish between
481 * different cgroups in heirarchies with no subsystems. We
482 * could get by with just this check alone (and skip the
483 * memcmp above) but on most setups the memcmp check will
484 * avoid the need for this more expensive check on almost all
485 * candidates.
488 l1 = &cg->cg_links;
489 l2 = &old_cg->cg_links;
490 while (1) {
491 struct cg_cgroup_link *cgl1, *cgl2;
492 struct cgroup *cg1, *cg2;
494 l1 = l1->next;
495 l2 = l2->next;
496 /* See if we reached the end - both lists are equal length. */
497 if (l1 == &cg->cg_links) {
498 BUG_ON(l2 != &old_cg->cg_links);
499 break;
500 } else {
501 BUG_ON(l2 == &old_cg->cg_links);
503 /* Locate the cgroups associated with these links. */
504 cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
505 cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
506 cg1 = cgl1->cgrp;
507 cg2 = cgl2->cgrp;
508 /* Hierarchies should be linked in the same order. */
509 BUG_ON(cg1->root != cg2->root);
512 * If this hierarchy is the hierarchy of the cgroup
513 * that's changing, then we need to check that this
514 * css_set points to the new cgroup; if it's any other
515 * hierarchy, then this css_set should point to the
516 * same cgroup as the old css_set.
518 if (cg1->root == new_cgrp->root) {
519 if (cg1 != new_cgrp)
520 return false;
521 } else {
522 if (cg1 != cg2)
523 return false;
526 return true;
530 * find_existing_css_set() is a helper for
531 * find_css_set(), and checks to see whether an existing
532 * css_set is suitable.
534 * oldcg: the cgroup group that we're using before the cgroup
535 * transition
537 * cgrp: the cgroup that we're moving into
539 * template: location in which to build the desired set of subsystem
540 * state objects for the new cgroup group
542 static struct css_set *find_existing_css_set(
543 struct css_set *oldcg,
544 struct cgroup *cgrp,
545 struct cgroup_subsys_state *template[])
547 int i;
548 struct cgroupfs_root *root = cgrp->root;
549 struct hlist_head *hhead;
550 struct hlist_node *node;
551 struct css_set *cg;
554 * Build the set of subsystem state objects that we want to see in the
555 * new css_set. while subsystems can change globally, the entries here
556 * won't change, so no need for locking.
558 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
559 if (root->subsys_bits & (1UL << i)) {
560 /* Subsystem is in this hierarchy. So we want
561 * the subsystem state from the new
562 * cgroup */
563 template[i] = cgrp->subsys[i];
564 } else {
565 /* Subsystem is not in this hierarchy, so we
566 * don't want to change the subsystem state */
567 template[i] = oldcg->subsys[i];
571 hhead = css_set_hash(template);
572 hlist_for_each_entry(cg, node, hhead, hlist) {
573 if (!compare_css_sets(cg, oldcg, cgrp, template))
574 continue;
576 /* This css_set matches what we need */
577 return cg;
580 /* No existing cgroup group matched */
581 return NULL;
584 static void free_cg_links(struct list_head *tmp)
586 struct cg_cgroup_link *link;
587 struct cg_cgroup_link *saved_link;
589 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
590 list_del(&link->cgrp_link_list);
591 kfree(link);
596 * allocate_cg_links() allocates "count" cg_cgroup_link structures
597 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
598 * success or a negative error
600 static int allocate_cg_links(int count, struct list_head *tmp)
602 struct cg_cgroup_link *link;
603 int i;
604 INIT_LIST_HEAD(tmp);
605 for (i = 0; i < count; i++) {
606 link = kmalloc(sizeof(*link), GFP_KERNEL);
607 if (!link) {
608 free_cg_links(tmp);
609 return -ENOMEM;
611 list_add(&link->cgrp_link_list, tmp);
613 return 0;
617 * link_css_set - a helper function to link a css_set to a cgroup
618 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
619 * @cg: the css_set to be linked
620 * @cgrp: the destination cgroup
622 static void link_css_set(struct list_head *tmp_cg_links,
623 struct css_set *cg, struct cgroup *cgrp)
625 struct cg_cgroup_link *link;
627 BUG_ON(list_empty(tmp_cg_links));
628 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
629 cgrp_link_list);
630 link->cg = cg;
631 link->cgrp = cgrp;
632 atomic_inc(&cgrp->count);
633 list_move(&link->cgrp_link_list, &cgrp->css_sets);
635 * Always add links to the tail of the list so that the list
636 * is sorted by order of hierarchy creation
638 list_add_tail(&link->cg_link_list, &cg->cg_links);
642 * find_css_set() takes an existing cgroup group and a
643 * cgroup object, and returns a css_set object that's
644 * equivalent to the old group, but with the given cgroup
645 * substituted into the appropriate hierarchy. Must be called with
646 * cgroup_mutex held
648 static struct css_set *find_css_set(
649 struct css_set *oldcg, struct cgroup *cgrp)
651 struct css_set *res;
652 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
654 struct list_head tmp_cg_links;
656 struct hlist_head *hhead;
657 struct cg_cgroup_link *link;
659 /* First see if we already have a cgroup group that matches
660 * the desired set */
661 read_lock(&css_set_lock);
662 res = find_existing_css_set(oldcg, cgrp, template);
663 if (res)
664 get_css_set(res);
665 read_unlock(&css_set_lock);
667 if (res)
668 return res;
670 res = kmalloc(sizeof(*res), GFP_KERNEL);
671 if (!res)
672 return NULL;
674 /* Allocate all the cg_cgroup_link objects that we'll need */
675 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
676 kfree(res);
677 return NULL;
680 atomic_set(&res->refcount, 1);
681 INIT_LIST_HEAD(&res->cg_links);
682 INIT_LIST_HEAD(&res->tasks);
683 INIT_HLIST_NODE(&res->hlist);
685 /* Copy the set of subsystem state objects generated in
686 * find_existing_css_set() */
687 memcpy(res->subsys, template, sizeof(res->subsys));
689 write_lock(&css_set_lock);
690 /* Add reference counts and links from the new css_set. */
691 list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
692 struct cgroup *c = link->cgrp;
693 if (c->root == cgrp->root)
694 c = cgrp;
695 link_css_set(&tmp_cg_links, res, c);
698 BUG_ON(!list_empty(&tmp_cg_links));
700 css_set_count++;
702 /* Add this cgroup group to the hash table */
703 hhead = css_set_hash(res->subsys);
704 hlist_add_head(&res->hlist, hhead);
706 write_unlock(&css_set_lock);
708 return res;
712 * Return the cgroup for "task" from the given hierarchy. Must be
713 * called with cgroup_mutex held.
715 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
716 struct cgroupfs_root *root)
718 struct css_set *css;
719 struct cgroup *res = NULL;
721 BUG_ON(!mutex_is_locked(&cgroup_mutex));
722 read_lock(&css_set_lock);
724 * No need to lock the task - since we hold cgroup_mutex the
725 * task can't change groups, so the only thing that can happen
726 * is that it exits and its css is set back to init_css_set.
728 css = task->cgroups;
729 if (css == &init_css_set) {
730 res = &root->top_cgroup;
731 } else {
732 struct cg_cgroup_link *link;
733 list_for_each_entry(link, &css->cg_links, cg_link_list) {
734 struct cgroup *c = link->cgrp;
735 if (c->root == root) {
736 res = c;
737 break;
741 read_unlock(&css_set_lock);
742 BUG_ON(!res);
743 return res;
747 * There is one global cgroup mutex. We also require taking
748 * task_lock() when dereferencing a task's cgroup subsys pointers.
749 * See "The task_lock() exception", at the end of this comment.
751 * A task must hold cgroup_mutex to modify cgroups.
753 * Any task can increment and decrement the count field without lock.
754 * So in general, code holding cgroup_mutex can't rely on the count
755 * field not changing. However, if the count goes to zero, then only
756 * cgroup_attach_task() can increment it again. Because a count of zero
757 * means that no tasks are currently attached, therefore there is no
758 * way a task attached to that cgroup can fork (the other way to
759 * increment the count). So code holding cgroup_mutex can safely
760 * assume that if the count is zero, it will stay zero. Similarly, if
761 * a task holds cgroup_mutex on a cgroup with zero count, it
762 * knows that the cgroup won't be removed, as cgroup_rmdir()
763 * needs that mutex.
765 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
766 * (usually) take cgroup_mutex. These are the two most performance
767 * critical pieces of code here. The exception occurs on cgroup_exit(),
768 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
769 * is taken, and if the cgroup count is zero, a usermode call made
770 * to the release agent with the name of the cgroup (path relative to
771 * the root of cgroup file system) as the argument.
773 * A cgroup can only be deleted if both its 'count' of using tasks
774 * is zero, and its list of 'children' cgroups is empty. Since all
775 * tasks in the system use _some_ cgroup, and since there is always at
776 * least one task in the system (init, pid == 1), therefore, top_cgroup
777 * always has either children cgroups and/or using tasks. So we don't
778 * need a special hack to ensure that top_cgroup cannot be deleted.
780 * The task_lock() exception
782 * The need for this exception arises from the action of
783 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
784 * another. It does so using cgroup_mutex, however there are
785 * several performance critical places that need to reference
786 * task->cgroup without the expense of grabbing a system global
787 * mutex. Therefore except as noted below, when dereferencing or, as
788 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
789 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
790 * the task_struct routinely used for such matters.
792 * P.S. One more locking exception. RCU is used to guard the
793 * update of a tasks cgroup pointer by cgroup_attach_task()
797 * cgroup_lock - lock out any changes to cgroup structures
800 void cgroup_lock(void)
802 mutex_lock(&cgroup_mutex);
804 EXPORT_SYMBOL_GPL(cgroup_lock);
807 * cgroup_unlock - release lock on cgroup changes
809 * Undo the lock taken in a previous cgroup_lock() call.
811 void cgroup_unlock(void)
813 mutex_unlock(&cgroup_mutex);
815 EXPORT_SYMBOL_GPL(cgroup_unlock);
818 * A couple of forward declarations required, due to cyclic reference loop:
819 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
820 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
821 * -> cgroup_mkdir.
824 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
825 static struct dentry *cgroup_lookup(struct inode *, struct dentry *, unsigned int);
826 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
827 static int cgroup_populate_dir(struct cgroup *cgrp);
828 static const struct inode_operations cgroup_dir_inode_operations;
829 static const struct file_operations proc_cgroupstats_operations;
831 static struct backing_dev_info cgroup_backing_dev_info = {
832 .name = "cgroup",
833 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
836 static int alloc_css_id(struct cgroup_subsys *ss,
837 struct cgroup *parent, struct cgroup *child);
839 static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
841 struct inode *inode = new_inode(sb);
843 if (inode) {
844 inode->i_ino = get_next_ino();
845 inode->i_mode = mode;
846 inode->i_uid = current_fsuid();
847 inode->i_gid = current_fsgid();
848 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
849 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
851 return inode;
855 * Call subsys's pre_destroy handler.
856 * This is called before css refcnt check.
858 static int cgroup_call_pre_destroy(struct cgroup *cgrp)
860 struct cgroup_subsys *ss;
861 int ret = 0;
863 for_each_subsys(cgrp->root, ss) {
864 if (!ss->pre_destroy)
865 continue;
867 ret = ss->pre_destroy(cgrp);
868 if (ret) {
869 /* ->pre_destroy() failure is being deprecated */
870 WARN_ON_ONCE(!ss->__DEPRECATED_clear_css_refs);
871 break;
875 return ret;
878 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
880 /* is dentry a directory ? if so, kfree() associated cgroup */
881 if (S_ISDIR(inode->i_mode)) {
882 struct cgroup *cgrp = dentry->d_fsdata;
883 struct cgroup_subsys *ss;
884 BUG_ON(!(cgroup_is_removed(cgrp)));
885 /* It's possible for external users to be holding css
886 * reference counts on a cgroup; css_put() needs to
887 * be able to access the cgroup after decrementing
888 * the reference count in order to know if it needs to
889 * queue the cgroup to be handled by the release
890 * agent */
891 synchronize_rcu();
893 mutex_lock(&cgroup_mutex);
895 * Release the subsystem state objects.
897 for_each_subsys(cgrp->root, ss)
898 ss->destroy(cgrp);
900 cgrp->root->number_of_cgroups--;
901 mutex_unlock(&cgroup_mutex);
904 * Drop the active superblock reference that we took when we
905 * created the cgroup
907 deactivate_super(cgrp->root->sb);
910 * if we're getting rid of the cgroup, refcount should ensure
911 * that there are no pidlists left.
913 BUG_ON(!list_empty(&cgrp->pidlists));
915 kfree_rcu(cgrp, rcu_head);
916 } else {
917 struct cfent *cfe = __d_cfe(dentry);
918 struct cgroup *cgrp = dentry->d_parent->d_fsdata;
920 WARN_ONCE(!list_empty(&cfe->node) &&
921 cgrp != &cgrp->root->top_cgroup,
922 "cfe still linked for %s\n", cfe->type->name);
923 kfree(cfe);
925 iput(inode);
928 static int cgroup_delete(const struct dentry *d)
930 return 1;
933 static void remove_dir(struct dentry *d)
935 struct dentry *parent = dget(d->d_parent);
937 d_delete(d);
938 simple_rmdir(parent->d_inode, d);
939 dput(parent);
942 static int cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
944 struct cfent *cfe;
946 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
947 lockdep_assert_held(&cgroup_mutex);
949 list_for_each_entry(cfe, &cgrp->files, node) {
950 struct dentry *d = cfe->dentry;
952 if (cft && cfe->type != cft)
953 continue;
955 dget(d);
956 d_delete(d);
957 simple_unlink(cgrp->dentry->d_inode, d);
958 list_del_init(&cfe->node);
959 dput(d);
961 return 0;
963 return -ENOENT;
966 static void cgroup_clear_directory(struct dentry *dir)
968 struct cgroup *cgrp = __d_cgrp(dir);
970 while (!list_empty(&cgrp->files))
971 cgroup_rm_file(cgrp, NULL);
975 * NOTE : the dentry must have been dget()'ed
977 static void cgroup_d_remove_dir(struct dentry *dentry)
979 struct dentry *parent;
981 cgroup_clear_directory(dentry);
983 parent = dentry->d_parent;
984 spin_lock(&parent->d_lock);
985 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
986 list_del_init(&dentry->d_u.d_child);
987 spin_unlock(&dentry->d_lock);
988 spin_unlock(&parent->d_lock);
989 remove_dir(dentry);
993 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
994 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
995 * reference to css->refcnt. In general, this refcnt is expected to goes down
996 * to zero, soon.
998 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
1000 static DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
1002 static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
1004 if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
1005 wake_up_all(&cgroup_rmdir_waitq);
1008 void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
1010 css_get(css);
1013 void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
1015 cgroup_wakeup_rmdir_waiter(css->cgroup);
1016 css_put(css);
1020 * Call with cgroup_mutex held. Drops reference counts on modules, including
1021 * any duplicate ones that parse_cgroupfs_options took. If this function
1022 * returns an error, no reference counts are touched.
1024 static int rebind_subsystems(struct cgroupfs_root *root,
1025 unsigned long final_bits)
1027 unsigned long added_bits, removed_bits;
1028 struct cgroup *cgrp = &root->top_cgroup;
1029 int i;
1031 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1032 BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
1034 removed_bits = root->actual_subsys_bits & ~final_bits;
1035 added_bits = final_bits & ~root->actual_subsys_bits;
1036 /* Check that any added subsystems are currently free */
1037 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1038 unsigned long bit = 1UL << i;
1039 struct cgroup_subsys *ss = subsys[i];
1040 if (!(bit & added_bits))
1041 continue;
1043 * Nobody should tell us to do a subsys that doesn't exist:
1044 * parse_cgroupfs_options should catch that case and refcounts
1045 * ensure that subsystems won't disappear once selected.
1047 BUG_ON(ss == NULL);
1048 if (ss->root != &rootnode) {
1049 /* Subsystem isn't free */
1050 return -EBUSY;
1054 /* Currently we don't handle adding/removing subsystems when
1055 * any child cgroups exist. This is theoretically supportable
1056 * but involves complex error handling, so it's being left until
1057 * later */
1058 if (root->number_of_cgroups > 1)
1059 return -EBUSY;
1061 /* Process each subsystem */
1062 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1063 struct cgroup_subsys *ss = subsys[i];
1064 unsigned long bit = 1UL << i;
1065 if (bit & added_bits) {
1066 /* We're binding this subsystem to this hierarchy */
1067 BUG_ON(ss == NULL);
1068 BUG_ON(cgrp->subsys[i]);
1069 BUG_ON(!dummytop->subsys[i]);
1070 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
1071 cgrp->subsys[i] = dummytop->subsys[i];
1072 cgrp->subsys[i]->cgroup = cgrp;
1073 list_move(&ss->sibling, &root->subsys_list);
1074 ss->root = root;
1075 if (ss->bind)
1076 ss->bind(cgrp);
1077 /* refcount was already taken, and we're keeping it */
1078 } else if (bit & removed_bits) {
1079 /* We're removing this subsystem */
1080 BUG_ON(ss == NULL);
1081 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
1082 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
1083 if (ss->bind)
1084 ss->bind(dummytop);
1085 dummytop->subsys[i]->cgroup = dummytop;
1086 cgrp->subsys[i] = NULL;
1087 subsys[i]->root = &rootnode;
1088 list_move(&ss->sibling, &rootnode.subsys_list);
1089 /* subsystem is now free - drop reference on module */
1090 module_put(ss->module);
1091 } else if (bit & final_bits) {
1092 /* Subsystem state should already exist */
1093 BUG_ON(ss == NULL);
1094 BUG_ON(!cgrp->subsys[i]);
1096 * a refcount was taken, but we already had one, so
1097 * drop the extra reference.
1099 module_put(ss->module);
1100 #ifdef CONFIG_MODULE_UNLOAD
1101 BUG_ON(ss->module && !module_refcount(ss->module));
1102 #endif
1103 } else {
1104 /* Subsystem state shouldn't exist */
1105 BUG_ON(cgrp->subsys[i]);
1108 root->subsys_bits = root->actual_subsys_bits = final_bits;
1109 synchronize_rcu();
1111 return 0;
1114 static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
1116 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
1117 struct cgroup_subsys *ss;
1119 mutex_lock(&cgroup_root_mutex);
1120 for_each_subsys(root, ss)
1121 seq_printf(seq, ",%s", ss->name);
1122 if (test_bit(ROOT_NOPREFIX, &root->flags))
1123 seq_puts(seq, ",noprefix");
1124 if (strlen(root->release_agent_path))
1125 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1126 if (clone_children(&root->top_cgroup))
1127 seq_puts(seq, ",clone_children");
1128 if (strlen(root->name))
1129 seq_printf(seq, ",name=%s", root->name);
1130 mutex_unlock(&cgroup_root_mutex);
1131 return 0;
1134 struct cgroup_sb_opts {
1135 unsigned long subsys_bits;
1136 unsigned long flags;
1137 char *release_agent;
1138 bool clone_children;
1139 char *name;
1140 /* User explicitly requested empty subsystem */
1141 bool none;
1143 struct cgroupfs_root *new_root;
1148 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
1149 * with cgroup_mutex held to protect the subsys[] array. This function takes
1150 * refcounts on subsystems to be used, unless it returns error, in which case
1151 * no refcounts are taken.
1153 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1155 char *token, *o = data;
1156 bool all_ss = false, one_ss = false;
1157 unsigned long mask = (unsigned long)-1;
1158 int i;
1159 bool module_pin_failed = false;
1161 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1163 #ifdef CONFIG_CPUSETS
1164 mask = ~(1UL << cpuset_subsys_id);
1165 #endif
1167 memset(opts, 0, sizeof(*opts));
1169 while ((token = strsep(&o, ",")) != NULL) {
1170 if (!*token)
1171 return -EINVAL;
1172 if (!strcmp(token, "none")) {
1173 /* Explicitly have no subsystems */
1174 opts->none = true;
1175 continue;
1177 if (!strcmp(token, "all")) {
1178 /* Mutually exclusive option 'all' + subsystem name */
1179 if (one_ss)
1180 return -EINVAL;
1181 all_ss = true;
1182 continue;
1184 if (!strcmp(token, "noprefix")) {
1185 set_bit(ROOT_NOPREFIX, &opts->flags);
1186 continue;
1188 if (!strcmp(token, "clone_children")) {
1189 opts->clone_children = true;
1190 continue;
1192 if (!strncmp(token, "release_agent=", 14)) {
1193 /* Specifying two release agents is forbidden */
1194 if (opts->release_agent)
1195 return -EINVAL;
1196 opts->release_agent =
1197 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1198 if (!opts->release_agent)
1199 return -ENOMEM;
1200 continue;
1202 if (!strncmp(token, "name=", 5)) {
1203 const char *name = token + 5;
1204 /* Can't specify an empty name */
1205 if (!strlen(name))
1206 return -EINVAL;
1207 /* Must match [\w.-]+ */
1208 for (i = 0; i < strlen(name); i++) {
1209 char c = name[i];
1210 if (isalnum(c))
1211 continue;
1212 if ((c == '.') || (c == '-') || (c == '_'))
1213 continue;
1214 return -EINVAL;
1216 /* Specifying two names is forbidden */
1217 if (opts->name)
1218 return -EINVAL;
1219 opts->name = kstrndup(name,
1220 MAX_CGROUP_ROOT_NAMELEN - 1,
1221 GFP_KERNEL);
1222 if (!opts->name)
1223 return -ENOMEM;
1225 continue;
1228 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1229 struct cgroup_subsys *ss = subsys[i];
1230 if (ss == NULL)
1231 continue;
1232 if (strcmp(token, ss->name))
1233 continue;
1234 if (ss->disabled)
1235 continue;
1237 /* Mutually exclusive option 'all' + subsystem name */
1238 if (all_ss)
1239 return -EINVAL;
1240 set_bit(i, &opts->subsys_bits);
1241 one_ss = true;
1243 break;
1245 if (i == CGROUP_SUBSYS_COUNT)
1246 return -ENOENT;
1250 * If the 'all' option was specified select all the subsystems,
1251 * otherwise if 'none', 'name=' and a subsystem name options
1252 * were not specified, let's default to 'all'
1254 if (all_ss || (!one_ss && !opts->none && !opts->name)) {
1255 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1256 struct cgroup_subsys *ss = subsys[i];
1257 if (ss == NULL)
1258 continue;
1259 if (ss->disabled)
1260 continue;
1261 set_bit(i, &opts->subsys_bits);
1265 /* Consistency checks */
1268 * Option noprefix was introduced just for backward compatibility
1269 * with the old cpuset, so we allow noprefix only if mounting just
1270 * the cpuset subsystem.
1272 if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
1273 (opts->subsys_bits & mask))
1274 return -EINVAL;
1277 /* Can't specify "none" and some subsystems */
1278 if (opts->subsys_bits && opts->none)
1279 return -EINVAL;
1282 * We either have to specify by name or by subsystems. (So all
1283 * empty hierarchies must have a name).
1285 if (!opts->subsys_bits && !opts->name)
1286 return -EINVAL;
1289 * Grab references on all the modules we'll need, so the subsystems
1290 * don't dance around before rebind_subsystems attaches them. This may
1291 * take duplicate reference counts on a subsystem that's already used,
1292 * but rebind_subsystems handles this case.
1294 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1295 unsigned long bit = 1UL << i;
1297 if (!(bit & opts->subsys_bits))
1298 continue;
1299 if (!try_module_get(subsys[i]->module)) {
1300 module_pin_failed = true;
1301 break;
1304 if (module_pin_failed) {
1306 * oops, one of the modules was going away. this means that we
1307 * raced with a module_delete call, and to the user this is
1308 * essentially a "subsystem doesn't exist" case.
1310 for (i--; i >= CGROUP_BUILTIN_SUBSYS_COUNT; i--) {
1311 /* drop refcounts only on the ones we took */
1312 unsigned long bit = 1UL << i;
1314 if (!(bit & opts->subsys_bits))
1315 continue;
1316 module_put(subsys[i]->module);
1318 return -ENOENT;
1321 return 0;
1324 static void drop_parsed_module_refcounts(unsigned long subsys_bits)
1326 int i;
1327 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1328 unsigned long bit = 1UL << i;
1330 if (!(bit & subsys_bits))
1331 continue;
1332 module_put(subsys[i]->module);
1336 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1338 int ret = 0;
1339 struct cgroupfs_root *root = sb->s_fs_info;
1340 struct cgroup *cgrp = &root->top_cgroup;
1341 struct cgroup_sb_opts opts;
1343 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1344 mutex_lock(&cgroup_mutex);
1345 mutex_lock(&cgroup_root_mutex);
1347 /* See what subsystems are wanted */
1348 ret = parse_cgroupfs_options(data, &opts);
1349 if (ret)
1350 goto out_unlock;
1352 /* See feature-removal-schedule.txt */
1353 if (opts.subsys_bits != root->actual_subsys_bits || opts.release_agent)
1354 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1355 task_tgid_nr(current), current->comm);
1357 /* Don't allow flags or name to change at remount */
1358 if (opts.flags != root->flags ||
1359 (opts.name && strcmp(opts.name, root->name))) {
1360 ret = -EINVAL;
1361 drop_parsed_module_refcounts(opts.subsys_bits);
1362 goto out_unlock;
1365 ret = rebind_subsystems(root, opts.subsys_bits);
1366 if (ret) {
1367 drop_parsed_module_refcounts(opts.subsys_bits);
1368 goto out_unlock;
1371 /* clear out any existing files and repopulate subsystem files */
1372 cgroup_clear_directory(cgrp->dentry);
1373 cgroup_populate_dir(cgrp);
1375 if (opts.release_agent)
1376 strcpy(root->release_agent_path, opts.release_agent);
1377 out_unlock:
1378 kfree(opts.release_agent);
1379 kfree(opts.name);
1380 mutex_unlock(&cgroup_root_mutex);
1381 mutex_unlock(&cgroup_mutex);
1382 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1383 return ret;
1386 static const struct super_operations cgroup_ops = {
1387 .statfs = simple_statfs,
1388 .drop_inode = generic_delete_inode,
1389 .show_options = cgroup_show_options,
1390 .remount_fs = cgroup_remount,
1393 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1395 INIT_LIST_HEAD(&cgrp->sibling);
1396 INIT_LIST_HEAD(&cgrp->children);
1397 INIT_LIST_HEAD(&cgrp->files);
1398 INIT_LIST_HEAD(&cgrp->css_sets);
1399 INIT_LIST_HEAD(&cgrp->release_list);
1400 INIT_LIST_HEAD(&cgrp->pidlists);
1401 mutex_init(&cgrp->pidlist_mutex);
1402 INIT_LIST_HEAD(&cgrp->event_list);
1403 spin_lock_init(&cgrp->event_list_lock);
1406 static void init_cgroup_root(struct cgroupfs_root *root)
1408 struct cgroup *cgrp = &root->top_cgroup;
1410 INIT_LIST_HEAD(&root->subsys_list);
1411 INIT_LIST_HEAD(&root->root_list);
1412 INIT_LIST_HEAD(&root->allcg_list);
1413 root->number_of_cgroups = 1;
1414 cgrp->root = root;
1415 cgrp->top_cgroup = cgrp;
1416 list_add_tail(&cgrp->allcg_node, &root->allcg_list);
1417 init_cgroup_housekeeping(cgrp);
1420 static bool init_root_id(struct cgroupfs_root *root)
1422 int ret = 0;
1424 do {
1425 if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1426 return false;
1427 spin_lock(&hierarchy_id_lock);
1428 /* Try to allocate the next unused ID */
1429 ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1430 &root->hierarchy_id);
1431 if (ret == -ENOSPC)
1432 /* Try again starting from 0 */
1433 ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1434 if (!ret) {
1435 next_hierarchy_id = root->hierarchy_id + 1;
1436 } else if (ret != -EAGAIN) {
1437 /* Can only get here if the 31-bit IDR is full ... */
1438 BUG_ON(ret);
1440 spin_unlock(&hierarchy_id_lock);
1441 } while (ret);
1442 return true;
1445 static int cgroup_test_super(struct super_block *sb, void *data)
1447 struct cgroup_sb_opts *opts = data;
1448 struct cgroupfs_root *root = sb->s_fs_info;
1450 /* If we asked for a name then it must match */
1451 if (opts->name && strcmp(opts->name, root->name))
1452 return 0;
1455 * If we asked for subsystems (or explicitly for no
1456 * subsystems) then they must match
1458 if ((opts->subsys_bits || opts->none)
1459 && (opts->subsys_bits != root->subsys_bits))
1460 return 0;
1462 return 1;
1465 static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1467 struct cgroupfs_root *root;
1469 if (!opts->subsys_bits && !opts->none)
1470 return NULL;
1472 root = kzalloc(sizeof(*root), GFP_KERNEL);
1473 if (!root)
1474 return ERR_PTR(-ENOMEM);
1476 if (!init_root_id(root)) {
1477 kfree(root);
1478 return ERR_PTR(-ENOMEM);
1480 init_cgroup_root(root);
1482 root->subsys_bits = opts->subsys_bits;
1483 root->flags = opts->flags;
1484 if (opts->release_agent)
1485 strcpy(root->release_agent_path, opts->release_agent);
1486 if (opts->name)
1487 strcpy(root->name, opts->name);
1488 if (opts->clone_children)
1489 set_bit(CGRP_CLONE_CHILDREN, &root->top_cgroup.flags);
1490 return root;
1493 static void cgroup_drop_root(struct cgroupfs_root *root)
1495 if (!root)
1496 return;
1498 BUG_ON(!root->hierarchy_id);
1499 spin_lock(&hierarchy_id_lock);
1500 ida_remove(&hierarchy_ida, root->hierarchy_id);
1501 spin_unlock(&hierarchy_id_lock);
1502 kfree(root);
1505 static int cgroup_set_super(struct super_block *sb, void *data)
1507 int ret;
1508 struct cgroup_sb_opts *opts = data;
1510 /* If we don't have a new root, we can't set up a new sb */
1511 if (!opts->new_root)
1512 return -EINVAL;
1514 BUG_ON(!opts->subsys_bits && !opts->none);
1516 ret = set_anon_super(sb, NULL);
1517 if (ret)
1518 return ret;
1520 sb->s_fs_info = opts->new_root;
1521 opts->new_root->sb = sb;
1523 sb->s_blocksize = PAGE_CACHE_SIZE;
1524 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1525 sb->s_magic = CGROUP_SUPER_MAGIC;
1526 sb->s_op = &cgroup_ops;
1528 return 0;
1531 static int cgroup_get_rootdir(struct super_block *sb)
1533 static const struct dentry_operations cgroup_dops = {
1534 .d_iput = cgroup_diput,
1535 .d_delete = cgroup_delete,
1538 struct inode *inode =
1539 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1541 if (!inode)
1542 return -ENOMEM;
1544 inode->i_fop = &simple_dir_operations;
1545 inode->i_op = &cgroup_dir_inode_operations;
1546 /* directories start off with i_nlink == 2 (for "." entry) */
1547 inc_nlink(inode);
1548 sb->s_root = d_make_root(inode);
1549 if (!sb->s_root)
1550 return -ENOMEM;
1551 /* for everything else we want ->d_op set */
1552 sb->s_d_op = &cgroup_dops;
1553 return 0;
1556 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1557 int flags, const char *unused_dev_name,
1558 void *data)
1560 struct cgroup_sb_opts opts;
1561 struct cgroupfs_root *root;
1562 int ret = 0;
1563 struct super_block *sb;
1564 struct cgroupfs_root *new_root;
1565 struct inode *inode;
1567 /* First find the desired set of subsystems */
1568 mutex_lock(&cgroup_mutex);
1569 ret = parse_cgroupfs_options(data, &opts);
1570 mutex_unlock(&cgroup_mutex);
1571 if (ret)
1572 goto out_err;
1575 * Allocate a new cgroup root. We may not need it if we're
1576 * reusing an existing hierarchy.
1578 new_root = cgroup_root_from_opts(&opts);
1579 if (IS_ERR(new_root)) {
1580 ret = PTR_ERR(new_root);
1581 goto drop_modules;
1583 opts.new_root = new_root;
1585 /* Locate an existing or new sb for this hierarchy */
1586 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, 0, &opts);
1587 if (IS_ERR(sb)) {
1588 ret = PTR_ERR(sb);
1589 cgroup_drop_root(opts.new_root);
1590 goto drop_modules;
1593 root = sb->s_fs_info;
1594 BUG_ON(!root);
1595 if (root == opts.new_root) {
1596 /* We used the new root structure, so this is a new hierarchy */
1597 struct list_head tmp_cg_links;
1598 struct cgroup *root_cgrp = &root->top_cgroup;
1599 struct cgroupfs_root *existing_root;
1600 const struct cred *cred;
1601 int i;
1603 BUG_ON(sb->s_root != NULL);
1605 ret = cgroup_get_rootdir(sb);
1606 if (ret)
1607 goto drop_new_super;
1608 inode = sb->s_root->d_inode;
1610 mutex_lock(&inode->i_mutex);
1611 mutex_lock(&cgroup_mutex);
1612 mutex_lock(&cgroup_root_mutex);
1614 /* Check for name clashes with existing mounts */
1615 ret = -EBUSY;
1616 if (strlen(root->name))
1617 for_each_active_root(existing_root)
1618 if (!strcmp(existing_root->name, root->name))
1619 goto unlock_drop;
1622 * We're accessing css_set_count without locking
1623 * css_set_lock here, but that's OK - it can only be
1624 * increased by someone holding cgroup_lock, and
1625 * that's us. The worst that can happen is that we
1626 * have some link structures left over
1628 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1629 if (ret)
1630 goto unlock_drop;
1632 ret = rebind_subsystems(root, root->subsys_bits);
1633 if (ret == -EBUSY) {
1634 free_cg_links(&tmp_cg_links);
1635 goto unlock_drop;
1638 * There must be no failure case after here, since rebinding
1639 * takes care of subsystems' refcounts, which are explicitly
1640 * dropped in the failure exit path.
1643 /* EBUSY should be the only error here */
1644 BUG_ON(ret);
1646 list_add(&root->root_list, &roots);
1647 root_count++;
1649 sb->s_root->d_fsdata = root_cgrp;
1650 root->top_cgroup.dentry = sb->s_root;
1652 /* Link the top cgroup in this hierarchy into all
1653 * the css_set objects */
1654 write_lock(&css_set_lock);
1655 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1656 struct hlist_head *hhead = &css_set_table[i];
1657 struct hlist_node *node;
1658 struct css_set *cg;
1660 hlist_for_each_entry(cg, node, hhead, hlist)
1661 link_css_set(&tmp_cg_links, cg, root_cgrp);
1663 write_unlock(&css_set_lock);
1665 free_cg_links(&tmp_cg_links);
1667 BUG_ON(!list_empty(&root_cgrp->sibling));
1668 BUG_ON(!list_empty(&root_cgrp->children));
1669 BUG_ON(root->number_of_cgroups != 1);
1671 cred = override_creds(&init_cred);
1672 cgroup_populate_dir(root_cgrp);
1673 revert_creds(cred);
1674 mutex_unlock(&cgroup_root_mutex);
1675 mutex_unlock(&cgroup_mutex);
1676 mutex_unlock(&inode->i_mutex);
1677 } else {
1679 * We re-used an existing hierarchy - the new root (if
1680 * any) is not needed
1682 cgroup_drop_root(opts.new_root);
1683 /* no subsys rebinding, so refcounts don't change */
1684 drop_parsed_module_refcounts(opts.subsys_bits);
1687 kfree(opts.release_agent);
1688 kfree(opts.name);
1689 return dget(sb->s_root);
1691 unlock_drop:
1692 mutex_unlock(&cgroup_root_mutex);
1693 mutex_unlock(&cgroup_mutex);
1694 mutex_unlock(&inode->i_mutex);
1695 drop_new_super:
1696 deactivate_locked_super(sb);
1697 drop_modules:
1698 drop_parsed_module_refcounts(opts.subsys_bits);
1699 out_err:
1700 kfree(opts.release_agent);
1701 kfree(opts.name);
1702 return ERR_PTR(ret);
1705 static void cgroup_kill_sb(struct super_block *sb) {
1706 struct cgroupfs_root *root = sb->s_fs_info;
1707 struct cgroup *cgrp = &root->top_cgroup;
1708 int ret;
1709 struct cg_cgroup_link *link;
1710 struct cg_cgroup_link *saved_link;
1712 BUG_ON(!root);
1714 BUG_ON(root->number_of_cgroups != 1);
1715 BUG_ON(!list_empty(&cgrp->children));
1716 BUG_ON(!list_empty(&cgrp->sibling));
1718 mutex_lock(&cgroup_mutex);
1719 mutex_lock(&cgroup_root_mutex);
1721 /* Rebind all subsystems back to the default hierarchy */
1722 ret = rebind_subsystems(root, 0);
1723 /* Shouldn't be able to fail ... */
1724 BUG_ON(ret);
1727 * Release all the links from css_sets to this hierarchy's
1728 * root cgroup
1730 write_lock(&css_set_lock);
1732 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1733 cgrp_link_list) {
1734 list_del(&link->cg_link_list);
1735 list_del(&link->cgrp_link_list);
1736 kfree(link);
1738 write_unlock(&css_set_lock);
1740 if (!list_empty(&root->root_list)) {
1741 list_del(&root->root_list);
1742 root_count--;
1745 mutex_unlock(&cgroup_root_mutex);
1746 mutex_unlock(&cgroup_mutex);
1748 kill_litter_super(sb);
1749 cgroup_drop_root(root);
1752 static struct file_system_type cgroup_fs_type = {
1753 .name = "cgroup",
1754 .mount = cgroup_mount,
1755 .kill_sb = cgroup_kill_sb,
1758 static struct kobject *cgroup_kobj;
1761 * cgroup_path - generate the path of a cgroup
1762 * @cgrp: the cgroup in question
1763 * @buf: the buffer to write the path into
1764 * @buflen: the length of the buffer
1766 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1767 * reference. Writes path of cgroup into buf. Returns 0 on success,
1768 * -errno on error.
1770 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1772 char *start;
1773 struct dentry *dentry = rcu_dereference_check(cgrp->dentry,
1774 cgroup_lock_is_held());
1776 if (!dentry || cgrp == dummytop) {
1778 * Inactive subsystems have no dentry for their root
1779 * cgroup
1781 strcpy(buf, "/");
1782 return 0;
1785 start = buf + buflen;
1787 *--start = '\0';
1788 for (;;) {
1789 int len = dentry->d_name.len;
1791 if ((start -= len) < buf)
1792 return -ENAMETOOLONG;
1793 memcpy(start, dentry->d_name.name, len);
1794 cgrp = cgrp->parent;
1795 if (!cgrp)
1796 break;
1798 dentry = rcu_dereference_check(cgrp->dentry,
1799 cgroup_lock_is_held());
1800 if (!cgrp->parent)
1801 continue;
1802 if (--start < buf)
1803 return -ENAMETOOLONG;
1804 *start = '/';
1806 memmove(buf, start, buf + buflen - start);
1807 return 0;
1809 EXPORT_SYMBOL_GPL(cgroup_path);
1812 * Control Group taskset
1814 struct task_and_cgroup {
1815 struct task_struct *task;
1816 struct cgroup *cgrp;
1817 struct css_set *cg;
1820 struct cgroup_taskset {
1821 struct task_and_cgroup single;
1822 struct flex_array *tc_array;
1823 int tc_array_len;
1824 int idx;
1825 struct cgroup *cur_cgrp;
1829 * cgroup_taskset_first - reset taskset and return the first task
1830 * @tset: taskset of interest
1832 * @tset iteration is initialized and the first task is returned.
1834 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1836 if (tset->tc_array) {
1837 tset->idx = 0;
1838 return cgroup_taskset_next(tset);
1839 } else {
1840 tset->cur_cgrp = tset->single.cgrp;
1841 return tset->single.task;
1844 EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1847 * cgroup_taskset_next - iterate to the next task in taskset
1848 * @tset: taskset of interest
1850 * Return the next task in @tset. Iteration must have been initialized
1851 * with cgroup_taskset_first().
1853 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1855 struct task_and_cgroup *tc;
1857 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1858 return NULL;
1860 tc = flex_array_get(tset->tc_array, tset->idx++);
1861 tset->cur_cgrp = tc->cgrp;
1862 return tc->task;
1864 EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1867 * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
1868 * @tset: taskset of interest
1870 * Return the cgroup for the current (last returned) task of @tset. This
1871 * function must be preceded by either cgroup_taskset_first() or
1872 * cgroup_taskset_next().
1874 struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
1876 return tset->cur_cgrp;
1878 EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);
1881 * cgroup_taskset_size - return the number of tasks in taskset
1882 * @tset: taskset of interest
1884 int cgroup_taskset_size(struct cgroup_taskset *tset)
1886 return tset->tc_array ? tset->tc_array_len : 1;
1888 EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1892 * cgroup_task_migrate - move a task from one cgroup to another.
1894 * 'guarantee' is set if the caller promises that a new css_set for the task
1895 * will already exist. If not set, this function might sleep, and can fail with
1896 * -ENOMEM. Must be called with cgroup_mutex and threadgroup locked.
1898 static void cgroup_task_migrate(struct cgroup *cgrp, struct cgroup *oldcgrp,
1899 struct task_struct *tsk, struct css_set *newcg)
1901 struct css_set *oldcg;
1904 * We are synchronized through threadgroup_lock() against PF_EXITING
1905 * setting such that we can't race against cgroup_exit() changing the
1906 * css_set to init_css_set and dropping the old one.
1908 WARN_ON_ONCE(tsk->flags & PF_EXITING);
1909 oldcg = tsk->cgroups;
1911 task_lock(tsk);
1912 rcu_assign_pointer(tsk->cgroups, newcg);
1913 task_unlock(tsk);
1915 /* Update the css_set linked lists if we're using them */
1916 write_lock(&css_set_lock);
1917 if (!list_empty(&tsk->cg_list))
1918 list_move(&tsk->cg_list, &newcg->tasks);
1919 write_unlock(&css_set_lock);
1922 * We just gained a reference on oldcg by taking it from the task. As
1923 * trading it for newcg is protected by cgroup_mutex, we're safe to drop
1924 * it here; it will be freed under RCU.
1926 put_css_set(oldcg);
1928 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1932 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1933 * @cgrp: the cgroup the task is attaching to
1934 * @tsk: the task to be attached
1936 * Call with cgroup_mutex and threadgroup locked. May take task_lock of
1937 * @tsk during call.
1939 int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1941 int retval = 0;
1942 struct cgroup_subsys *ss, *failed_ss = NULL;
1943 struct cgroup *oldcgrp;
1944 struct cgroupfs_root *root = cgrp->root;
1945 struct cgroup_taskset tset = { };
1946 struct css_set *newcg;
1948 /* @tsk either already exited or can't exit until the end */
1949 if (tsk->flags & PF_EXITING)
1950 return -ESRCH;
1952 /* Nothing to do if the task is already in that cgroup */
1953 oldcgrp = task_cgroup_from_root(tsk, root);
1954 if (cgrp == oldcgrp)
1955 return 0;
1957 tset.single.task = tsk;
1958 tset.single.cgrp = oldcgrp;
1960 for_each_subsys(root, ss) {
1961 if (ss->can_attach) {
1962 retval = ss->can_attach(cgrp, &tset);
1963 if (retval) {
1965 * Remember on which subsystem the can_attach()
1966 * failed, so that we only call cancel_attach()
1967 * against the subsystems whose can_attach()
1968 * succeeded. (See below)
1970 failed_ss = ss;
1971 goto out;
1976 newcg = find_css_set(tsk->cgroups, cgrp);
1977 if (!newcg) {
1978 retval = -ENOMEM;
1979 goto out;
1982 cgroup_task_migrate(cgrp, oldcgrp, tsk, newcg);
1984 for_each_subsys(root, ss) {
1985 if (ss->attach)
1986 ss->attach(cgrp, &tset);
1989 synchronize_rcu();
1992 * wake up rmdir() waiter. the rmdir should fail since the cgroup
1993 * is no longer empty.
1995 cgroup_wakeup_rmdir_waiter(cgrp);
1996 out:
1997 if (retval) {
1998 for_each_subsys(root, ss) {
1999 if (ss == failed_ss)
2001 * This subsystem was the one that failed the
2002 * can_attach() check earlier, so we don't need
2003 * to call cancel_attach() against it or any
2004 * remaining subsystems.
2006 break;
2007 if (ss->cancel_attach)
2008 ss->cancel_attach(cgrp, &tset);
2011 return retval;
2015 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2016 * @from: attach to all cgroups of a given task
2017 * @tsk: the task to be attached
2019 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2021 struct cgroupfs_root *root;
2022 int retval = 0;
2024 cgroup_lock();
2025 for_each_active_root(root) {
2026 struct cgroup *from_cg = task_cgroup_from_root(from, root);
2028 retval = cgroup_attach_task(from_cg, tsk);
2029 if (retval)
2030 break;
2032 cgroup_unlock();
2034 return retval;
2036 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2039 * cgroup_attach_proc - attach all threads in a threadgroup to a cgroup
2040 * @cgrp: the cgroup to attach to
2041 * @leader: the threadgroup leader task_struct of the group to be attached
2043 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
2044 * task_lock of each thread in leader's threadgroup individually in turn.
2046 static int cgroup_attach_proc(struct cgroup *cgrp, struct task_struct *leader)
2048 int retval, i, group_size;
2049 struct cgroup_subsys *ss, *failed_ss = NULL;
2050 /* guaranteed to be initialized later, but the compiler needs this */
2051 struct cgroupfs_root *root = cgrp->root;
2052 /* threadgroup list cursor and array */
2053 struct task_struct *tsk;
2054 struct task_and_cgroup *tc;
2055 struct flex_array *group;
2056 struct cgroup_taskset tset = { };
2059 * step 0: in order to do expensive, possibly blocking operations for
2060 * every thread, we cannot iterate the thread group list, since it needs
2061 * rcu or tasklist locked. instead, build an array of all threads in the
2062 * group - group_rwsem prevents new threads from appearing, and if
2063 * threads exit, this will just be an over-estimate.
2065 group_size = get_nr_threads(leader);
2066 /* flex_array supports very large thread-groups better than kmalloc. */
2067 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
2068 if (!group)
2069 return -ENOMEM;
2070 /* pre-allocate to guarantee space while iterating in rcu read-side. */
2071 retval = flex_array_prealloc(group, 0, group_size - 1, GFP_KERNEL);
2072 if (retval)
2073 goto out_free_group_list;
2075 tsk = leader;
2076 i = 0;
2078 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2079 * already PF_EXITING could be freed from underneath us unless we
2080 * take an rcu_read_lock.
2082 rcu_read_lock();
2083 do {
2084 struct task_and_cgroup ent;
2086 /* @tsk either already exited or can't exit until the end */
2087 if (tsk->flags & PF_EXITING)
2088 continue;
2090 /* as per above, nr_threads may decrease, but not increase. */
2091 BUG_ON(i >= group_size);
2092 ent.task = tsk;
2093 ent.cgrp = task_cgroup_from_root(tsk, root);
2094 /* nothing to do if this task is already in the cgroup */
2095 if (ent.cgrp == cgrp)
2096 continue;
2098 * saying GFP_ATOMIC has no effect here because we did prealloc
2099 * earlier, but it's good form to communicate our expectations.
2101 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
2102 BUG_ON(retval != 0);
2103 i++;
2104 } while_each_thread(leader, tsk);
2105 rcu_read_unlock();
2106 /* remember the number of threads in the array for later. */
2107 group_size = i;
2108 tset.tc_array = group;
2109 tset.tc_array_len = group_size;
2111 /* methods shouldn't be called if no task is actually migrating */
2112 retval = 0;
2113 if (!group_size)
2114 goto out_free_group_list;
2117 * step 1: check that we can legitimately attach to the cgroup.
2119 for_each_subsys(root, ss) {
2120 if (ss->can_attach) {
2121 retval = ss->can_attach(cgrp, &tset);
2122 if (retval) {
2123 failed_ss = ss;
2124 goto out_cancel_attach;
2130 * step 2: make sure css_sets exist for all threads to be migrated.
2131 * we use find_css_set, which allocates a new one if necessary.
2133 for (i = 0; i < group_size; i++) {
2134 tc = flex_array_get(group, i);
2135 tc->cg = find_css_set(tc->task->cgroups, cgrp);
2136 if (!tc->cg) {
2137 retval = -ENOMEM;
2138 goto out_put_css_set_refs;
2143 * step 3: now that we're guaranteed success wrt the css_sets,
2144 * proceed to move all tasks to the new cgroup. There are no
2145 * failure cases after here, so this is the commit point.
2147 for (i = 0; i < group_size; i++) {
2148 tc = flex_array_get(group, i);
2149 cgroup_task_migrate(cgrp, tc->cgrp, tc->task, tc->cg);
2151 /* nothing is sensitive to fork() after this point. */
2154 * step 4: do subsystem attach callbacks.
2156 for_each_subsys(root, ss) {
2157 if (ss->attach)
2158 ss->attach(cgrp, &tset);
2162 * step 5: success! and cleanup
2164 synchronize_rcu();
2165 cgroup_wakeup_rmdir_waiter(cgrp);
2166 retval = 0;
2167 out_put_css_set_refs:
2168 if (retval) {
2169 for (i = 0; i < group_size; i++) {
2170 tc = flex_array_get(group, i);
2171 if (!tc->cg)
2172 break;
2173 put_css_set(tc->cg);
2176 out_cancel_attach:
2177 if (retval) {
2178 for_each_subsys(root, ss) {
2179 if (ss == failed_ss)
2180 break;
2181 if (ss->cancel_attach)
2182 ss->cancel_attach(cgrp, &tset);
2185 out_free_group_list:
2186 flex_array_free(group);
2187 return retval;
2191 * Find the task_struct of the task to attach by vpid and pass it along to the
2192 * function to attach either it or all tasks in its threadgroup. Will lock
2193 * cgroup_mutex and threadgroup; may take task_lock of task.
2195 static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
2197 struct task_struct *tsk;
2198 const struct cred *cred = current_cred(), *tcred;
2199 int ret;
2201 if (!cgroup_lock_live_group(cgrp))
2202 return -ENODEV;
2204 retry_find_task:
2205 rcu_read_lock();
2206 if (pid) {
2207 tsk = find_task_by_vpid(pid);
2208 if (!tsk) {
2209 rcu_read_unlock();
2210 ret= -ESRCH;
2211 goto out_unlock_cgroup;
2214 * even if we're attaching all tasks in the thread group, we
2215 * only need to check permissions on one of them.
2217 tcred = __task_cred(tsk);
2218 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2219 !uid_eq(cred->euid, tcred->uid) &&
2220 !uid_eq(cred->euid, tcred->suid)) {
2221 rcu_read_unlock();
2222 ret = -EACCES;
2223 goto out_unlock_cgroup;
2225 } else
2226 tsk = current;
2228 if (threadgroup)
2229 tsk = tsk->group_leader;
2232 * Workqueue threads may acquire PF_THREAD_BOUND and become
2233 * trapped in a cpuset, or RT worker may be born in a cgroup
2234 * with no rt_runtime allocated. Just say no.
2236 if (tsk == kthreadd_task || (tsk->flags & PF_THREAD_BOUND)) {
2237 ret = -EINVAL;
2238 rcu_read_unlock();
2239 goto out_unlock_cgroup;
2242 get_task_struct(tsk);
2243 rcu_read_unlock();
2245 threadgroup_lock(tsk);
2246 if (threadgroup) {
2247 if (!thread_group_leader(tsk)) {
2249 * a race with de_thread from another thread's exec()
2250 * may strip us of our leadership, if this happens,
2251 * there is no choice but to throw this task away and
2252 * try again; this is
2253 * "double-double-toil-and-trouble-check locking".
2255 threadgroup_unlock(tsk);
2256 put_task_struct(tsk);
2257 goto retry_find_task;
2259 ret = cgroup_attach_proc(cgrp, tsk);
2260 } else
2261 ret = cgroup_attach_task(cgrp, tsk);
2262 threadgroup_unlock(tsk);
2264 put_task_struct(tsk);
2265 out_unlock_cgroup:
2266 cgroup_unlock();
2267 return ret;
2270 static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
2272 return attach_task_by_pid(cgrp, pid, false);
2275 static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
2277 return attach_task_by_pid(cgrp, tgid, true);
2281 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
2282 * @cgrp: the cgroup to be checked for liveness
2284 * On success, returns true; the lock should be later released with
2285 * cgroup_unlock(). On failure returns false with no lock held.
2287 bool cgroup_lock_live_group(struct cgroup *cgrp)
2289 mutex_lock(&cgroup_mutex);
2290 if (cgroup_is_removed(cgrp)) {
2291 mutex_unlock(&cgroup_mutex);
2292 return false;
2294 return true;
2296 EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
2298 static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
2299 const char *buffer)
2301 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2302 if (strlen(buffer) >= PATH_MAX)
2303 return -EINVAL;
2304 if (!cgroup_lock_live_group(cgrp))
2305 return -ENODEV;
2306 mutex_lock(&cgroup_root_mutex);
2307 strcpy(cgrp->root->release_agent_path, buffer);
2308 mutex_unlock(&cgroup_root_mutex);
2309 cgroup_unlock();
2310 return 0;
2313 static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
2314 struct seq_file *seq)
2316 if (!cgroup_lock_live_group(cgrp))
2317 return -ENODEV;
2318 seq_puts(seq, cgrp->root->release_agent_path);
2319 seq_putc(seq, '\n');
2320 cgroup_unlock();
2321 return 0;
2324 /* A buffer size big enough for numbers or short strings */
2325 #define CGROUP_LOCAL_BUFFER_SIZE 64
2327 static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
2328 struct file *file,
2329 const char __user *userbuf,
2330 size_t nbytes, loff_t *unused_ppos)
2332 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
2333 int retval = 0;
2334 char *end;
2336 if (!nbytes)
2337 return -EINVAL;
2338 if (nbytes >= sizeof(buffer))
2339 return -E2BIG;
2340 if (copy_from_user(buffer, userbuf, nbytes))
2341 return -EFAULT;
2343 buffer[nbytes] = 0; /* nul-terminate */
2344 if (cft->write_u64) {
2345 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
2346 if (*end)
2347 return -EINVAL;
2348 retval = cft->write_u64(cgrp, cft, val);
2349 } else {
2350 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
2351 if (*end)
2352 return -EINVAL;
2353 retval = cft->write_s64(cgrp, cft, val);
2355 if (!retval)
2356 retval = nbytes;
2357 return retval;
2360 static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2361 struct file *file,
2362 const char __user *userbuf,
2363 size_t nbytes, loff_t *unused_ppos)
2365 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
2366 int retval = 0;
2367 size_t max_bytes = cft->max_write_len;
2368 char *buffer = local_buffer;
2370 if (!max_bytes)
2371 max_bytes = sizeof(local_buffer) - 1;
2372 if (nbytes >= max_bytes)
2373 return -E2BIG;
2374 /* Allocate a dynamic buffer if we need one */
2375 if (nbytes >= sizeof(local_buffer)) {
2376 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2377 if (buffer == NULL)
2378 return -ENOMEM;
2380 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2381 retval = -EFAULT;
2382 goto out;
2385 buffer[nbytes] = 0; /* nul-terminate */
2386 retval = cft->write_string(cgrp, cft, strstrip(buffer));
2387 if (!retval)
2388 retval = nbytes;
2389 out:
2390 if (buffer != local_buffer)
2391 kfree(buffer);
2392 return retval;
2395 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2396 size_t nbytes, loff_t *ppos)
2398 struct cftype *cft = __d_cft(file->f_dentry);
2399 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2401 if (cgroup_is_removed(cgrp))
2402 return -ENODEV;
2403 if (cft->write)
2404 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
2405 if (cft->write_u64 || cft->write_s64)
2406 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
2407 if (cft->write_string)
2408 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
2409 if (cft->trigger) {
2410 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2411 return ret ? ret : nbytes;
2413 return -EINVAL;
2416 static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2417 struct file *file,
2418 char __user *buf, size_t nbytes,
2419 loff_t *ppos)
2421 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2422 u64 val = cft->read_u64(cgrp, cft);
2423 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2425 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2428 static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2429 struct file *file,
2430 char __user *buf, size_t nbytes,
2431 loff_t *ppos)
2433 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2434 s64 val = cft->read_s64(cgrp, cft);
2435 int len = sprintf(tmp, "%lld\n", (long long) val);
2437 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2440 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2441 size_t nbytes, loff_t *ppos)
2443 struct cftype *cft = __d_cft(file->f_dentry);
2444 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2446 if (cgroup_is_removed(cgrp))
2447 return -ENODEV;
2449 if (cft->read)
2450 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
2451 if (cft->read_u64)
2452 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
2453 if (cft->read_s64)
2454 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
2455 return -EINVAL;
2459 * seqfile ops/methods for returning structured data. Currently just
2460 * supports string->u64 maps, but can be extended in future.
2463 struct cgroup_seqfile_state {
2464 struct cftype *cft;
2465 struct cgroup *cgroup;
2468 static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2470 struct seq_file *sf = cb->state;
2471 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2474 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2476 struct cgroup_seqfile_state *state = m->private;
2477 struct cftype *cft = state->cft;
2478 if (cft->read_map) {
2479 struct cgroup_map_cb cb = {
2480 .fill = cgroup_map_add,
2481 .state = m,
2483 return cft->read_map(state->cgroup, cft, &cb);
2485 return cft->read_seq_string(state->cgroup, cft, m);
2488 static int cgroup_seqfile_release(struct inode *inode, struct file *file)
2490 struct seq_file *seq = file->private_data;
2491 kfree(seq->private);
2492 return single_release(inode, file);
2495 static const struct file_operations cgroup_seqfile_operations = {
2496 .read = seq_read,
2497 .write = cgroup_file_write,
2498 .llseek = seq_lseek,
2499 .release = cgroup_seqfile_release,
2502 static int cgroup_file_open(struct inode *inode, struct file *file)
2504 int err;
2505 struct cftype *cft;
2507 err = generic_file_open(inode, file);
2508 if (err)
2509 return err;
2510 cft = __d_cft(file->f_dentry);
2512 if (cft->read_map || cft->read_seq_string) {
2513 struct cgroup_seqfile_state *state =
2514 kzalloc(sizeof(*state), GFP_USER);
2515 if (!state)
2516 return -ENOMEM;
2517 state->cft = cft;
2518 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2519 file->f_op = &cgroup_seqfile_operations;
2520 err = single_open(file, cgroup_seqfile_show, state);
2521 if (err < 0)
2522 kfree(state);
2523 } else if (cft->open)
2524 err = cft->open(inode, file);
2525 else
2526 err = 0;
2528 return err;
2531 static int cgroup_file_release(struct inode *inode, struct file *file)
2533 struct cftype *cft = __d_cft(file->f_dentry);
2534 if (cft->release)
2535 return cft->release(inode, file);
2536 return 0;
2540 * cgroup_rename - Only allow simple rename of directories in place.
2542 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2543 struct inode *new_dir, struct dentry *new_dentry)
2545 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2546 return -ENOTDIR;
2547 if (new_dentry->d_inode)
2548 return -EEXIST;
2549 if (old_dir != new_dir)
2550 return -EIO;
2551 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2554 static const struct file_operations cgroup_file_operations = {
2555 .read = cgroup_file_read,
2556 .write = cgroup_file_write,
2557 .llseek = generic_file_llseek,
2558 .open = cgroup_file_open,
2559 .release = cgroup_file_release,
2562 static const struct inode_operations cgroup_dir_inode_operations = {
2563 .lookup = cgroup_lookup,
2564 .mkdir = cgroup_mkdir,
2565 .rmdir = cgroup_rmdir,
2566 .rename = cgroup_rename,
2569 static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2571 if (dentry->d_name.len > NAME_MAX)
2572 return ERR_PTR(-ENAMETOOLONG);
2573 d_add(dentry, NULL);
2574 return NULL;
2578 * Check if a file is a control file
2580 static inline struct cftype *__file_cft(struct file *file)
2582 if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
2583 return ERR_PTR(-EINVAL);
2584 return __d_cft(file->f_dentry);
2587 static int cgroup_create_file(struct dentry *dentry, umode_t mode,
2588 struct super_block *sb)
2590 struct inode *inode;
2592 if (!dentry)
2593 return -ENOENT;
2594 if (dentry->d_inode)
2595 return -EEXIST;
2597 inode = cgroup_new_inode(mode, sb);
2598 if (!inode)
2599 return -ENOMEM;
2601 if (S_ISDIR(mode)) {
2602 inode->i_op = &cgroup_dir_inode_operations;
2603 inode->i_fop = &simple_dir_operations;
2605 /* start off with i_nlink == 2 (for "." entry) */
2606 inc_nlink(inode);
2608 /* start with the directory inode held, so that we can
2609 * populate it without racing with another mkdir */
2610 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2611 } else if (S_ISREG(mode)) {
2612 inode->i_size = 0;
2613 inode->i_fop = &cgroup_file_operations;
2615 d_instantiate(dentry, inode);
2616 dget(dentry); /* Extra count - pin the dentry in core */
2617 return 0;
2621 * cgroup_create_dir - create a directory for an object.
2622 * @cgrp: the cgroup we create the directory for. It must have a valid
2623 * ->parent field. And we are going to fill its ->dentry field.
2624 * @dentry: dentry of the new cgroup
2625 * @mode: mode to set on new directory.
2627 static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
2628 umode_t mode)
2630 struct dentry *parent;
2631 int error = 0;
2633 parent = cgrp->parent->dentry;
2634 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
2635 if (!error) {
2636 dentry->d_fsdata = cgrp;
2637 inc_nlink(parent->d_inode);
2638 rcu_assign_pointer(cgrp->dentry, dentry);
2639 dget(dentry);
2641 dput(dentry);
2643 return error;
2647 * cgroup_file_mode - deduce file mode of a control file
2648 * @cft: the control file in question
2650 * returns cft->mode if ->mode is not 0
2651 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2652 * returns S_IRUGO if it has only a read handler
2653 * returns S_IWUSR if it has only a write hander
2655 static umode_t cgroup_file_mode(const struct cftype *cft)
2657 umode_t mode = 0;
2659 if (cft->mode)
2660 return cft->mode;
2662 if (cft->read || cft->read_u64 || cft->read_s64 ||
2663 cft->read_map || cft->read_seq_string)
2664 mode |= S_IRUGO;
2666 if (cft->write || cft->write_u64 || cft->write_s64 ||
2667 cft->write_string || cft->trigger)
2668 mode |= S_IWUSR;
2670 return mode;
2673 static int cgroup_add_file(struct cgroup *cgrp, struct cgroup_subsys *subsys,
2674 const struct cftype *cft)
2676 struct dentry *dir = cgrp->dentry;
2677 struct cgroup *parent = __d_cgrp(dir);
2678 struct dentry *dentry;
2679 struct cfent *cfe;
2680 int error;
2681 umode_t mode;
2682 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2684 /* does @cft->flags tell us to skip creation on @cgrp? */
2685 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2686 return 0;
2687 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2688 return 0;
2690 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
2691 strcpy(name, subsys->name);
2692 strcat(name, ".");
2694 strcat(name, cft->name);
2696 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2698 cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
2699 if (!cfe)
2700 return -ENOMEM;
2702 dentry = lookup_one_len(name, dir, strlen(name));
2703 if (IS_ERR(dentry)) {
2704 error = PTR_ERR(dentry);
2705 goto out;
2708 mode = cgroup_file_mode(cft);
2709 error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
2710 if (!error) {
2711 cfe->type = (void *)cft;
2712 cfe->dentry = dentry;
2713 dentry->d_fsdata = cfe;
2714 list_add_tail(&cfe->node, &parent->files);
2715 cfe = NULL;
2717 dput(dentry);
2718 out:
2719 kfree(cfe);
2720 return error;
2723 static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
2724 const struct cftype cfts[], bool is_add)
2726 const struct cftype *cft;
2727 int err, ret = 0;
2729 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2730 if (is_add)
2731 err = cgroup_add_file(cgrp, subsys, cft);
2732 else
2733 err = cgroup_rm_file(cgrp, cft);
2734 if (err) {
2735 pr_warning("cgroup_addrm_files: failed to %s %s, err=%d\n",
2736 is_add ? "add" : "remove", cft->name, err);
2737 ret = err;
2740 return ret;
2743 static DEFINE_MUTEX(cgroup_cft_mutex);
2745 static void cgroup_cfts_prepare(void)
2746 __acquires(&cgroup_cft_mutex) __acquires(&cgroup_mutex)
2749 * Thanks to the entanglement with vfs inode locking, we can't walk
2750 * the existing cgroups under cgroup_mutex and create files.
2751 * Instead, we increment reference on all cgroups and build list of
2752 * them using @cgrp->cft_q_node. Grab cgroup_cft_mutex to ensure
2753 * exclusive access to the field.
2755 mutex_lock(&cgroup_cft_mutex);
2756 mutex_lock(&cgroup_mutex);
2759 static void cgroup_cfts_commit(struct cgroup_subsys *ss,
2760 const struct cftype *cfts, bool is_add)
2761 __releases(&cgroup_mutex) __releases(&cgroup_cft_mutex)
2763 LIST_HEAD(pending);
2764 struct cgroup *cgrp, *n;
2766 /* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
2767 if (cfts && ss->root != &rootnode) {
2768 list_for_each_entry(cgrp, &ss->root->allcg_list, allcg_node) {
2769 dget(cgrp->dentry);
2770 list_add_tail(&cgrp->cft_q_node, &pending);
2774 mutex_unlock(&cgroup_mutex);
2777 * All new cgroups will see @cfts update on @ss->cftsets. Add/rm
2778 * files for all cgroups which were created before.
2780 list_for_each_entry_safe(cgrp, n, &pending, cft_q_node) {
2781 struct inode *inode = cgrp->dentry->d_inode;
2783 mutex_lock(&inode->i_mutex);
2784 mutex_lock(&cgroup_mutex);
2785 if (!cgroup_is_removed(cgrp))
2786 cgroup_addrm_files(cgrp, ss, cfts, is_add);
2787 mutex_unlock(&cgroup_mutex);
2788 mutex_unlock(&inode->i_mutex);
2790 list_del_init(&cgrp->cft_q_node);
2791 dput(cgrp->dentry);
2794 mutex_unlock(&cgroup_cft_mutex);
2798 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2799 * @ss: target cgroup subsystem
2800 * @cfts: zero-length name terminated array of cftypes
2802 * Register @cfts to @ss. Files described by @cfts are created for all
2803 * existing cgroups to which @ss is attached and all future cgroups will
2804 * have them too. This function can be called anytime whether @ss is
2805 * attached or not.
2807 * Returns 0 on successful registration, -errno on failure. Note that this
2808 * function currently returns 0 as long as @cfts registration is successful
2809 * even if some file creation attempts on existing cgroups fail.
2811 int cgroup_add_cftypes(struct cgroup_subsys *ss, const struct cftype *cfts)
2813 struct cftype_set *set;
2815 set = kzalloc(sizeof(*set), GFP_KERNEL);
2816 if (!set)
2817 return -ENOMEM;
2819 cgroup_cfts_prepare();
2820 set->cfts = cfts;
2821 list_add_tail(&set->node, &ss->cftsets);
2822 cgroup_cfts_commit(ss, cfts, true);
2824 return 0;
2826 EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
2829 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
2830 * @ss: target cgroup subsystem
2831 * @cfts: zero-length name terminated array of cftypes
2833 * Unregister @cfts from @ss. Files described by @cfts are removed from
2834 * all existing cgroups to which @ss is attached and all future cgroups
2835 * won't have them either. This function can be called anytime whether @ss
2836 * is attached or not.
2838 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2839 * registered with @ss.
2841 int cgroup_rm_cftypes(struct cgroup_subsys *ss, const struct cftype *cfts)
2843 struct cftype_set *set;
2845 cgroup_cfts_prepare();
2847 list_for_each_entry(set, &ss->cftsets, node) {
2848 if (set->cfts == cfts) {
2849 list_del_init(&set->node);
2850 cgroup_cfts_commit(ss, cfts, false);
2851 return 0;
2855 cgroup_cfts_commit(ss, NULL, false);
2856 return -ENOENT;
2860 * cgroup_task_count - count the number of tasks in a cgroup.
2861 * @cgrp: the cgroup in question
2863 * Return the number of tasks in the cgroup.
2865 int cgroup_task_count(const struct cgroup *cgrp)
2867 int count = 0;
2868 struct cg_cgroup_link *link;
2870 read_lock(&css_set_lock);
2871 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
2872 count += atomic_read(&link->cg->refcount);
2874 read_unlock(&css_set_lock);
2875 return count;
2879 * Advance a list_head iterator. The iterator should be positioned at
2880 * the start of a css_set
2882 static void cgroup_advance_iter(struct cgroup *cgrp,
2883 struct cgroup_iter *it)
2885 struct list_head *l = it->cg_link;
2886 struct cg_cgroup_link *link;
2887 struct css_set *cg;
2889 /* Advance to the next non-empty css_set */
2890 do {
2891 l = l->next;
2892 if (l == &cgrp->css_sets) {
2893 it->cg_link = NULL;
2894 return;
2896 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
2897 cg = link->cg;
2898 } while (list_empty(&cg->tasks));
2899 it->cg_link = l;
2900 it->task = cg->tasks.next;
2904 * To reduce the fork() overhead for systems that are not actually
2905 * using their cgroups capability, we don't maintain the lists running
2906 * through each css_set to its tasks until we see the list actually
2907 * used - in other words after the first call to cgroup_iter_start().
2909 static void cgroup_enable_task_cg_lists(void)
2911 struct task_struct *p, *g;
2912 write_lock(&css_set_lock);
2913 use_task_css_set_links = 1;
2915 * We need tasklist_lock because RCU is not safe against
2916 * while_each_thread(). Besides, a forking task that has passed
2917 * cgroup_post_fork() without seeing use_task_css_set_links = 1
2918 * is not guaranteed to have its child immediately visible in the
2919 * tasklist if we walk through it with RCU.
2921 read_lock(&tasklist_lock);
2922 do_each_thread(g, p) {
2923 task_lock(p);
2925 * We should check if the process is exiting, otherwise
2926 * it will race with cgroup_exit() in that the list
2927 * entry won't be deleted though the process has exited.
2929 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2930 list_add(&p->cg_list, &p->cgroups->tasks);
2931 task_unlock(p);
2932 } while_each_thread(g, p);
2933 read_unlock(&tasklist_lock);
2934 write_unlock(&css_set_lock);
2937 void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
2938 __acquires(css_set_lock)
2941 * The first time anyone tries to iterate across a cgroup,
2942 * we need to enable the list linking each css_set to its
2943 * tasks, and fix up all existing tasks.
2945 if (!use_task_css_set_links)
2946 cgroup_enable_task_cg_lists();
2948 read_lock(&css_set_lock);
2949 it->cg_link = &cgrp->css_sets;
2950 cgroup_advance_iter(cgrp, it);
2953 struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
2954 struct cgroup_iter *it)
2956 struct task_struct *res;
2957 struct list_head *l = it->task;
2958 struct cg_cgroup_link *link;
2960 /* If the iterator cg is NULL, we have no tasks */
2961 if (!it->cg_link)
2962 return NULL;
2963 res = list_entry(l, struct task_struct, cg_list);
2964 /* Advance iterator to find next entry */
2965 l = l->next;
2966 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
2967 if (l == &link->cg->tasks) {
2968 /* We reached the end of this task list - move on to
2969 * the next cg_cgroup_link */
2970 cgroup_advance_iter(cgrp, it);
2971 } else {
2972 it->task = l;
2974 return res;
2977 void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
2978 __releases(css_set_lock)
2980 read_unlock(&css_set_lock);
2983 static inline int started_after_time(struct task_struct *t1,
2984 struct timespec *time,
2985 struct task_struct *t2)
2987 int start_diff = timespec_compare(&t1->start_time, time);
2988 if (start_diff > 0) {
2989 return 1;
2990 } else if (start_diff < 0) {
2991 return 0;
2992 } else {
2994 * Arbitrarily, if two processes started at the same
2995 * time, we'll say that the lower pointer value
2996 * started first. Note that t2 may have exited by now
2997 * so this may not be a valid pointer any longer, but
2998 * that's fine - it still serves to distinguish
2999 * between two tasks started (effectively) simultaneously.
3001 return t1 > t2;
3006 * This function is a callback from heap_insert() and is used to order
3007 * the heap.
3008 * In this case we order the heap in descending task start time.
3010 static inline int started_after(void *p1, void *p2)
3012 struct task_struct *t1 = p1;
3013 struct task_struct *t2 = p2;
3014 return started_after_time(t1, &t2->start_time, t2);
3018 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
3019 * @scan: struct cgroup_scanner containing arguments for the scan
3021 * Arguments include pointers to callback functions test_task() and
3022 * process_task().
3023 * Iterate through all the tasks in a cgroup, calling test_task() for each,
3024 * and if it returns true, call process_task() for it also.
3025 * The test_task pointer may be NULL, meaning always true (select all tasks).
3026 * Effectively duplicates cgroup_iter_{start,next,end}()
3027 * but does not lock css_set_lock for the call to process_task().
3028 * The struct cgroup_scanner may be embedded in any structure of the caller's
3029 * creation.
3030 * It is guaranteed that process_task() will act on every task that
3031 * is a member of the cgroup for the duration of this call. This
3032 * function may or may not call process_task() for tasks that exit
3033 * or move to a different cgroup during the call, or are forked or
3034 * move into the cgroup during the call.
3036 * Note that test_task() may be called with locks held, and may in some
3037 * situations be called multiple times for the same task, so it should
3038 * be cheap.
3039 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
3040 * pre-allocated and will be used for heap operations (and its "gt" member will
3041 * be overwritten), else a temporary heap will be used (allocation of which
3042 * may cause this function to fail).
3044 int cgroup_scan_tasks(struct cgroup_scanner *scan)
3046 int retval, i;
3047 struct cgroup_iter it;
3048 struct task_struct *p, *dropped;
3049 /* Never dereference latest_task, since it's not refcounted */
3050 struct task_struct *latest_task = NULL;
3051 struct ptr_heap tmp_heap;
3052 struct ptr_heap *heap;
3053 struct timespec latest_time = { 0, 0 };
3055 if (scan->heap) {
3056 /* The caller supplied our heap and pre-allocated its memory */
3057 heap = scan->heap;
3058 heap->gt = &started_after;
3059 } else {
3060 /* We need to allocate our own heap memory */
3061 heap = &tmp_heap;
3062 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
3063 if (retval)
3064 /* cannot allocate the heap */
3065 return retval;
3068 again:
3070 * Scan tasks in the cgroup, using the scanner's "test_task" callback
3071 * to determine which are of interest, and using the scanner's
3072 * "process_task" callback to process any of them that need an update.
3073 * Since we don't want to hold any locks during the task updates,
3074 * gather tasks to be processed in a heap structure.
3075 * The heap is sorted by descending task start time.
3076 * If the statically-sized heap fills up, we overflow tasks that
3077 * started later, and in future iterations only consider tasks that
3078 * started after the latest task in the previous pass. This
3079 * guarantees forward progress and that we don't miss any tasks.
3081 heap->size = 0;
3082 cgroup_iter_start(scan->cg, &it);
3083 while ((p = cgroup_iter_next(scan->cg, &it))) {
3085 * Only affect tasks that qualify per the caller's callback,
3086 * if he provided one
3088 if (scan->test_task && !scan->test_task(p, scan))
3089 continue;
3091 * Only process tasks that started after the last task
3092 * we processed
3094 if (!started_after_time(p, &latest_time, latest_task))
3095 continue;
3096 dropped = heap_insert(heap, p);
3097 if (dropped == NULL) {
3099 * The new task was inserted; the heap wasn't
3100 * previously full
3102 get_task_struct(p);
3103 } else if (dropped != p) {
3105 * The new task was inserted, and pushed out a
3106 * different task
3108 get_task_struct(p);
3109 put_task_struct(dropped);
3112 * Else the new task was newer than anything already in
3113 * the heap and wasn't inserted
3116 cgroup_iter_end(scan->cg, &it);
3118 if (heap->size) {
3119 for (i = 0; i < heap->size; i++) {
3120 struct task_struct *q = heap->ptrs[i];
3121 if (i == 0) {
3122 latest_time = q->start_time;
3123 latest_task = q;
3125 /* Process the task per the caller's callback */
3126 scan->process_task(q, scan);
3127 put_task_struct(q);
3130 * If we had to process any tasks at all, scan again
3131 * in case some of them were in the middle of forking
3132 * children that didn't get processed.
3133 * Not the most efficient way to do it, but it avoids
3134 * having to take callback_mutex in the fork path
3136 goto again;
3138 if (heap == &tmp_heap)
3139 heap_free(&tmp_heap);
3140 return 0;
3144 * Stuff for reading the 'tasks'/'procs' files.
3146 * Reading this file can return large amounts of data if a cgroup has
3147 * *lots* of attached tasks. So it may need several calls to read(),
3148 * but we cannot guarantee that the information we produce is correct
3149 * unless we produce it entirely atomically.
3153 /* which pidlist file are we talking about? */
3154 enum cgroup_filetype {
3155 CGROUP_FILE_PROCS,
3156 CGROUP_FILE_TASKS,
3160 * A pidlist is a list of pids that virtually represents the contents of one
3161 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3162 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3163 * to the cgroup.
3165 struct cgroup_pidlist {
3167 * used to find which pidlist is wanted. doesn't change as long as
3168 * this particular list stays in the list.
3170 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3171 /* array of xids */
3172 pid_t *list;
3173 /* how many elements the above list has */
3174 int length;
3175 /* how many files are using the current array */
3176 int use_count;
3177 /* each of these stored in a list by its cgroup */
3178 struct list_head links;
3179 /* pointer to the cgroup we belong to, for list removal purposes */
3180 struct cgroup *owner;
3181 /* protects the other fields */
3182 struct rw_semaphore mutex;
3186 * The following two functions "fix" the issue where there are more pids
3187 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3188 * TODO: replace with a kernel-wide solution to this problem
3190 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3191 static void *pidlist_allocate(int count)
3193 if (PIDLIST_TOO_LARGE(count))
3194 return vmalloc(count * sizeof(pid_t));
3195 else
3196 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3198 static void pidlist_free(void *p)
3200 if (is_vmalloc_addr(p))
3201 vfree(p);
3202 else
3203 kfree(p);
3205 static void *pidlist_resize(void *p, int newcount)
3207 void *newlist;
3208 /* note: if new alloc fails, old p will still be valid either way */
3209 if (is_vmalloc_addr(p)) {
3210 newlist = vmalloc(newcount * sizeof(pid_t));
3211 if (!newlist)
3212 return NULL;
3213 memcpy(newlist, p, newcount * sizeof(pid_t));
3214 vfree(p);
3215 } else {
3216 newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
3218 return newlist;
3222 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3223 * If the new stripped list is sufficiently smaller and there's enough memory
3224 * to allocate a new buffer, will let go of the unneeded memory. Returns the
3225 * number of unique elements.
3227 /* is the size difference enough that we should re-allocate the array? */
3228 #define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
3229 static int pidlist_uniq(pid_t **p, int length)
3231 int src, dest = 1;
3232 pid_t *list = *p;
3233 pid_t *newlist;
3236 * we presume the 0th element is unique, so i starts at 1. trivial
3237 * edge cases first; no work needs to be done for either
3239 if (length == 0 || length == 1)
3240 return length;
3241 /* src and dest walk down the list; dest counts unique elements */
3242 for (src = 1; src < length; src++) {
3243 /* find next unique element */
3244 while (list[src] == list[src-1]) {
3245 src++;
3246 if (src == length)
3247 goto after;
3249 /* dest always points to where the next unique element goes */
3250 list[dest] = list[src];
3251 dest++;
3253 after:
3255 * if the length difference is large enough, we want to allocate a
3256 * smaller buffer to save memory. if this fails due to out of memory,
3257 * we'll just stay with what we've got.
3259 if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
3260 newlist = pidlist_resize(list, dest);
3261 if (newlist)
3262 *p = newlist;
3264 return dest;
3267 static int cmppid(const void *a, const void *b)
3269 return *(pid_t *)a - *(pid_t *)b;
3273 * find the appropriate pidlist for our purpose (given procs vs tasks)
3274 * returns with the lock on that pidlist already held, and takes care
3275 * of the use count, or returns NULL with no locks held if we're out of
3276 * memory.
3278 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3279 enum cgroup_filetype type)
3281 struct cgroup_pidlist *l;
3282 /* don't need task_nsproxy() if we're looking at ourself */
3283 struct pid_namespace *ns = current->nsproxy->pid_ns;
3286 * We can't drop the pidlist_mutex before taking the l->mutex in case
3287 * the last ref-holder is trying to remove l from the list at the same
3288 * time. Holding the pidlist_mutex precludes somebody taking whichever
3289 * list we find out from under us - compare release_pid_array().
3291 mutex_lock(&cgrp->pidlist_mutex);
3292 list_for_each_entry(l, &cgrp->pidlists, links) {
3293 if (l->key.type == type && l->key.ns == ns) {
3294 /* make sure l doesn't vanish out from under us */
3295 down_write(&l->mutex);
3296 mutex_unlock(&cgrp->pidlist_mutex);
3297 return l;
3300 /* entry not found; create a new one */
3301 l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3302 if (!l) {
3303 mutex_unlock(&cgrp->pidlist_mutex);
3304 return l;
3306 init_rwsem(&l->mutex);
3307 down_write(&l->mutex);
3308 l->key.type = type;
3309 l->key.ns = get_pid_ns(ns);
3310 l->use_count = 0; /* don't increment here */
3311 l->list = NULL;
3312 l->owner = cgrp;
3313 list_add(&l->links, &cgrp->pidlists);
3314 mutex_unlock(&cgrp->pidlist_mutex);
3315 return l;
3319 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3321 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3322 struct cgroup_pidlist **lp)
3324 pid_t *array;
3325 int length;
3326 int pid, n = 0; /* used for populating the array */
3327 struct cgroup_iter it;
3328 struct task_struct *tsk;
3329 struct cgroup_pidlist *l;
3332 * If cgroup gets more users after we read count, we won't have
3333 * enough space - tough. This race is indistinguishable to the
3334 * caller from the case that the additional cgroup users didn't
3335 * show up until sometime later on.
3337 length = cgroup_task_count(cgrp);
3338 array = pidlist_allocate(length);
3339 if (!array)
3340 return -ENOMEM;
3341 /* now, populate the array */
3342 cgroup_iter_start(cgrp, &it);
3343 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3344 if (unlikely(n == length))
3345 break;
3346 /* get tgid or pid for procs or tasks file respectively */
3347 if (type == CGROUP_FILE_PROCS)
3348 pid = task_tgid_vnr(tsk);
3349 else
3350 pid = task_pid_vnr(tsk);
3351 if (pid > 0) /* make sure to only use valid results */
3352 array[n++] = pid;
3354 cgroup_iter_end(cgrp, &it);
3355 length = n;
3356 /* now sort & (if procs) strip out duplicates */
3357 sort(array, length, sizeof(pid_t), cmppid, NULL);
3358 if (type == CGROUP_FILE_PROCS)
3359 length = pidlist_uniq(&array, length);
3360 l = cgroup_pidlist_find(cgrp, type);
3361 if (!l) {
3362 pidlist_free(array);
3363 return -ENOMEM;
3365 /* store array, freeing old if necessary - lock already held */
3366 pidlist_free(l->list);
3367 l->list = array;
3368 l->length = length;
3369 l->use_count++;
3370 up_write(&l->mutex);
3371 *lp = l;
3372 return 0;
3376 * cgroupstats_build - build and fill cgroupstats
3377 * @stats: cgroupstats to fill information into
3378 * @dentry: A dentry entry belonging to the cgroup for which stats have
3379 * been requested.
3381 * Build and fill cgroupstats so that taskstats can export it to user
3382 * space.
3384 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3386 int ret = -EINVAL;
3387 struct cgroup *cgrp;
3388 struct cgroup_iter it;
3389 struct task_struct *tsk;
3392 * Validate dentry by checking the superblock operations,
3393 * and make sure it's a directory.
3395 if (dentry->d_sb->s_op != &cgroup_ops ||
3396 !S_ISDIR(dentry->d_inode->i_mode))
3397 goto err;
3399 ret = 0;
3400 cgrp = dentry->d_fsdata;
3402 cgroup_iter_start(cgrp, &it);
3403 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3404 switch (tsk->state) {
3405 case TASK_RUNNING:
3406 stats->nr_running++;
3407 break;
3408 case TASK_INTERRUPTIBLE:
3409 stats->nr_sleeping++;
3410 break;
3411 case TASK_UNINTERRUPTIBLE:
3412 stats->nr_uninterruptible++;
3413 break;
3414 case TASK_STOPPED:
3415 stats->nr_stopped++;
3416 break;
3417 default:
3418 if (delayacct_is_task_waiting_on_io(tsk))
3419 stats->nr_io_wait++;
3420 break;
3423 cgroup_iter_end(cgrp, &it);
3425 err:
3426 return ret;
3431 * seq_file methods for the tasks/procs files. The seq_file position is the
3432 * next pid to display; the seq_file iterator is a pointer to the pid
3433 * in the cgroup->l->list array.
3436 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
3439 * Initially we receive a position value that corresponds to
3440 * one more than the last pid shown (or 0 on the first call or
3441 * after a seek to the start). Use a binary-search to find the
3442 * next pid to display, if any
3444 struct cgroup_pidlist *l = s->private;
3445 int index = 0, pid = *pos;
3446 int *iter;
3448 down_read(&l->mutex);
3449 if (pid) {
3450 int end = l->length;
3452 while (index < end) {
3453 int mid = (index + end) / 2;
3454 if (l->list[mid] == pid) {
3455 index = mid;
3456 break;
3457 } else if (l->list[mid] <= pid)
3458 index = mid + 1;
3459 else
3460 end = mid;
3463 /* If we're off the end of the array, we're done */
3464 if (index >= l->length)
3465 return NULL;
3466 /* Update the abstract position to be the actual pid that we found */
3467 iter = l->list + index;
3468 *pos = *iter;
3469 return iter;
3472 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
3474 struct cgroup_pidlist *l = s->private;
3475 up_read(&l->mutex);
3478 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
3480 struct cgroup_pidlist *l = s->private;
3481 pid_t *p = v;
3482 pid_t *end = l->list + l->length;
3484 * Advance to the next pid in the array. If this goes off the
3485 * end, we're done
3487 p++;
3488 if (p >= end) {
3489 return NULL;
3490 } else {
3491 *pos = *p;
3492 return p;
3496 static int cgroup_pidlist_show(struct seq_file *s, void *v)
3498 return seq_printf(s, "%d\n", *(int *)v);
3502 * seq_operations functions for iterating on pidlists through seq_file -
3503 * independent of whether it's tasks or procs
3505 static const struct seq_operations cgroup_pidlist_seq_operations = {
3506 .start = cgroup_pidlist_start,
3507 .stop = cgroup_pidlist_stop,
3508 .next = cgroup_pidlist_next,
3509 .show = cgroup_pidlist_show,
3512 static void cgroup_release_pid_array(struct cgroup_pidlist *l)
3515 * the case where we're the last user of this particular pidlist will
3516 * have us remove it from the cgroup's list, which entails taking the
3517 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3518 * pidlist_mutex, we have to take pidlist_mutex first.
3520 mutex_lock(&l->owner->pidlist_mutex);
3521 down_write(&l->mutex);
3522 BUG_ON(!l->use_count);
3523 if (!--l->use_count) {
3524 /* we're the last user if refcount is 0; remove and free */
3525 list_del(&l->links);
3526 mutex_unlock(&l->owner->pidlist_mutex);
3527 pidlist_free(l->list);
3528 put_pid_ns(l->key.ns);
3529 up_write(&l->mutex);
3530 kfree(l);
3531 return;
3533 mutex_unlock(&l->owner->pidlist_mutex);
3534 up_write(&l->mutex);
3537 static int cgroup_pidlist_release(struct inode *inode, struct file *file)
3539 struct cgroup_pidlist *l;
3540 if (!(file->f_mode & FMODE_READ))
3541 return 0;
3543 * the seq_file will only be initialized if the file was opened for
3544 * reading; hence we check if it's not null only in that case.
3546 l = ((struct seq_file *)file->private_data)->private;
3547 cgroup_release_pid_array(l);
3548 return seq_release(inode, file);
3551 static const struct file_operations cgroup_pidlist_operations = {
3552 .read = seq_read,
3553 .llseek = seq_lseek,
3554 .write = cgroup_file_write,
3555 .release = cgroup_pidlist_release,
3559 * The following functions handle opens on a file that displays a pidlist
3560 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3561 * in the cgroup.
3563 /* helper function for the two below it */
3564 static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
3566 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
3567 struct cgroup_pidlist *l;
3568 int retval;
3570 /* Nothing to do for write-only files */
3571 if (!(file->f_mode & FMODE_READ))
3572 return 0;
3574 /* have the array populated */
3575 retval = pidlist_array_load(cgrp, type, &l);
3576 if (retval)
3577 return retval;
3578 /* configure file information */
3579 file->f_op = &cgroup_pidlist_operations;
3581 retval = seq_open(file, &cgroup_pidlist_seq_operations);
3582 if (retval) {
3583 cgroup_release_pid_array(l);
3584 return retval;
3586 ((struct seq_file *)file->private_data)->private = l;
3587 return 0;
3589 static int cgroup_tasks_open(struct inode *unused, struct file *file)
3591 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
3593 static int cgroup_procs_open(struct inode *unused, struct file *file)
3595 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
3598 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
3599 struct cftype *cft)
3601 return notify_on_release(cgrp);
3604 static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3605 struct cftype *cft,
3606 u64 val)
3608 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3609 if (val)
3610 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3611 else
3612 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3613 return 0;
3617 * Unregister event and free resources.
3619 * Gets called from workqueue.
3621 static void cgroup_event_remove(struct work_struct *work)
3623 struct cgroup_event *event = container_of(work, struct cgroup_event,
3624 remove);
3625 struct cgroup *cgrp = event->cgrp;
3627 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3629 eventfd_ctx_put(event->eventfd);
3630 kfree(event);
3631 dput(cgrp->dentry);
3635 * Gets called on POLLHUP on eventfd when user closes it.
3637 * Called with wqh->lock held and interrupts disabled.
3639 static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3640 int sync, void *key)
3642 struct cgroup_event *event = container_of(wait,
3643 struct cgroup_event, wait);
3644 struct cgroup *cgrp = event->cgrp;
3645 unsigned long flags = (unsigned long)key;
3647 if (flags & POLLHUP) {
3648 __remove_wait_queue(event->wqh, &event->wait);
3649 spin_lock(&cgrp->event_list_lock);
3650 list_del(&event->list);
3651 spin_unlock(&cgrp->event_list_lock);
3653 * We are in atomic context, but cgroup_event_remove() may
3654 * sleep, so we have to call it in workqueue.
3656 schedule_work(&event->remove);
3659 return 0;
3662 static void cgroup_event_ptable_queue_proc(struct file *file,
3663 wait_queue_head_t *wqh, poll_table *pt)
3665 struct cgroup_event *event = container_of(pt,
3666 struct cgroup_event, pt);
3668 event->wqh = wqh;
3669 add_wait_queue(wqh, &event->wait);
3673 * Parse input and register new cgroup event handler.
3675 * Input must be in format '<event_fd> <control_fd> <args>'.
3676 * Interpretation of args is defined by control file implementation.
3678 static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3679 const char *buffer)
3681 struct cgroup_event *event = NULL;
3682 unsigned int efd, cfd;
3683 struct file *efile = NULL;
3684 struct file *cfile = NULL;
3685 char *endp;
3686 int ret;
3688 efd = simple_strtoul(buffer, &endp, 10);
3689 if (*endp != ' ')
3690 return -EINVAL;
3691 buffer = endp + 1;
3693 cfd = simple_strtoul(buffer, &endp, 10);
3694 if ((*endp != ' ') && (*endp != '\0'))
3695 return -EINVAL;
3696 buffer = endp + 1;
3698 event = kzalloc(sizeof(*event), GFP_KERNEL);
3699 if (!event)
3700 return -ENOMEM;
3701 event->cgrp = cgrp;
3702 INIT_LIST_HEAD(&event->list);
3703 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3704 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3705 INIT_WORK(&event->remove, cgroup_event_remove);
3707 efile = eventfd_fget(efd);
3708 if (IS_ERR(efile)) {
3709 ret = PTR_ERR(efile);
3710 goto fail;
3713 event->eventfd = eventfd_ctx_fileget(efile);
3714 if (IS_ERR(event->eventfd)) {
3715 ret = PTR_ERR(event->eventfd);
3716 goto fail;
3719 cfile = fget(cfd);
3720 if (!cfile) {
3721 ret = -EBADF;
3722 goto fail;
3725 /* the process need read permission on control file */
3726 /* AV: shouldn't we check that it's been opened for read instead? */
3727 ret = inode_permission(cfile->f_path.dentry->d_inode, MAY_READ);
3728 if (ret < 0)
3729 goto fail;
3731 event->cft = __file_cft(cfile);
3732 if (IS_ERR(event->cft)) {
3733 ret = PTR_ERR(event->cft);
3734 goto fail;
3737 if (!event->cft->register_event || !event->cft->unregister_event) {
3738 ret = -EINVAL;
3739 goto fail;
3742 ret = event->cft->register_event(cgrp, event->cft,
3743 event->eventfd, buffer);
3744 if (ret)
3745 goto fail;
3747 if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
3748 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3749 ret = 0;
3750 goto fail;
3754 * Events should be removed after rmdir of cgroup directory, but before
3755 * destroying subsystem state objects. Let's take reference to cgroup
3756 * directory dentry to do that.
3758 dget(cgrp->dentry);
3760 spin_lock(&cgrp->event_list_lock);
3761 list_add(&event->list, &cgrp->event_list);
3762 spin_unlock(&cgrp->event_list_lock);
3764 fput(cfile);
3765 fput(efile);
3767 return 0;
3769 fail:
3770 if (cfile)
3771 fput(cfile);
3773 if (event && event->eventfd && !IS_ERR(event->eventfd))
3774 eventfd_ctx_put(event->eventfd);
3776 if (!IS_ERR_OR_NULL(efile))
3777 fput(efile);
3779 kfree(event);
3781 return ret;
3784 static u64 cgroup_clone_children_read(struct cgroup *cgrp,
3785 struct cftype *cft)
3787 return clone_children(cgrp);
3790 static int cgroup_clone_children_write(struct cgroup *cgrp,
3791 struct cftype *cft,
3792 u64 val)
3794 if (val)
3795 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3796 else
3797 clear_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3798 return 0;
3802 * for the common functions, 'private' gives the type of file
3804 /* for hysterical raisins, we can't put this on the older files */
3805 #define CGROUP_FILE_GENERIC_PREFIX "cgroup."
3806 static struct cftype files[] = {
3808 .name = "tasks",
3809 .open = cgroup_tasks_open,
3810 .write_u64 = cgroup_tasks_write,
3811 .release = cgroup_pidlist_release,
3812 .mode = S_IRUGO | S_IWUSR,
3815 .name = CGROUP_FILE_GENERIC_PREFIX "procs",
3816 .open = cgroup_procs_open,
3817 .write_u64 = cgroup_procs_write,
3818 .release = cgroup_pidlist_release,
3819 .mode = S_IRUGO | S_IWUSR,
3822 .name = "notify_on_release",
3823 .read_u64 = cgroup_read_notify_on_release,
3824 .write_u64 = cgroup_write_notify_on_release,
3827 .name = CGROUP_FILE_GENERIC_PREFIX "event_control",
3828 .write_string = cgroup_write_event_control,
3829 .mode = S_IWUGO,
3832 .name = "cgroup.clone_children",
3833 .read_u64 = cgroup_clone_children_read,
3834 .write_u64 = cgroup_clone_children_write,
3837 .name = "release_agent",
3838 .flags = CFTYPE_ONLY_ON_ROOT,
3839 .read_seq_string = cgroup_release_agent_show,
3840 .write_string = cgroup_release_agent_write,
3841 .max_write_len = PATH_MAX,
3843 { } /* terminate */
3846 static int cgroup_populate_dir(struct cgroup *cgrp)
3848 int err;
3849 struct cgroup_subsys *ss;
3851 err = cgroup_addrm_files(cgrp, NULL, files, true);
3852 if (err < 0)
3853 return err;
3855 /* process cftsets of each subsystem */
3856 for_each_subsys(cgrp->root, ss) {
3857 struct cftype_set *set;
3859 list_for_each_entry(set, &ss->cftsets, node)
3860 cgroup_addrm_files(cgrp, ss, set->cfts, true);
3863 /* This cgroup is ready now */
3864 for_each_subsys(cgrp->root, ss) {
3865 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3867 * Update id->css pointer and make this css visible from
3868 * CSS ID functions. This pointer will be dereferened
3869 * from RCU-read-side without locks.
3871 if (css->id)
3872 rcu_assign_pointer(css->id->css, css);
3875 return 0;
3878 static void css_dput_fn(struct work_struct *work)
3880 struct cgroup_subsys_state *css =
3881 container_of(work, struct cgroup_subsys_state, dput_work);
3882 struct dentry *dentry = css->cgroup->dentry;
3883 struct super_block *sb = dentry->d_sb;
3885 atomic_inc(&sb->s_active);
3886 dput(dentry);
3887 deactivate_super(sb);
3890 static void init_cgroup_css(struct cgroup_subsys_state *css,
3891 struct cgroup_subsys *ss,
3892 struct cgroup *cgrp)
3894 css->cgroup = cgrp;
3895 atomic_set(&css->refcnt, 1);
3896 css->flags = 0;
3897 css->id = NULL;
3898 if (cgrp == dummytop)
3899 set_bit(CSS_ROOT, &css->flags);
3900 BUG_ON(cgrp->subsys[ss->subsys_id]);
3901 cgrp->subsys[ss->subsys_id] = css;
3904 * If !clear_css_refs, css holds an extra ref to @cgrp->dentry
3905 * which is put on the last css_put(). dput() requires process
3906 * context, which css_put() may be called without. @css->dput_work
3907 * will be used to invoke dput() asynchronously from css_put().
3909 INIT_WORK(&css->dput_work, css_dput_fn);
3910 if (ss->__DEPRECATED_clear_css_refs)
3911 set_bit(CSS_CLEAR_CSS_REFS, &css->flags);
3915 * cgroup_create - create a cgroup
3916 * @parent: cgroup that will be parent of the new cgroup
3917 * @dentry: dentry of the new cgroup
3918 * @mode: mode to set on new inode
3920 * Must be called with the mutex on the parent inode held
3922 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
3923 umode_t mode)
3925 struct cgroup *cgrp;
3926 struct cgroupfs_root *root = parent->root;
3927 int err = 0;
3928 struct cgroup_subsys *ss;
3929 struct super_block *sb = root->sb;
3931 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3932 if (!cgrp)
3933 return -ENOMEM;
3935 /* Grab a reference on the superblock so the hierarchy doesn't
3936 * get deleted on unmount if there are child cgroups. This
3937 * can be done outside cgroup_mutex, since the sb can't
3938 * disappear while someone has an open control file on the
3939 * fs */
3940 atomic_inc(&sb->s_active);
3942 mutex_lock(&cgroup_mutex);
3944 init_cgroup_housekeeping(cgrp);
3946 cgrp->parent = parent;
3947 cgrp->root = parent->root;
3948 cgrp->top_cgroup = parent->top_cgroup;
3950 if (notify_on_release(parent))
3951 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3953 if (clone_children(parent))
3954 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3956 for_each_subsys(root, ss) {
3957 struct cgroup_subsys_state *css = ss->create(cgrp);
3959 if (IS_ERR(css)) {
3960 err = PTR_ERR(css);
3961 goto err_destroy;
3963 init_cgroup_css(css, ss, cgrp);
3964 if (ss->use_id) {
3965 err = alloc_css_id(ss, parent, cgrp);
3966 if (err)
3967 goto err_destroy;
3969 /* At error, ->destroy() callback has to free assigned ID. */
3970 if (clone_children(parent) && ss->post_clone)
3971 ss->post_clone(cgrp);
3974 list_add(&cgrp->sibling, &cgrp->parent->children);
3975 root->number_of_cgroups++;
3977 err = cgroup_create_dir(cgrp, dentry, mode);
3978 if (err < 0)
3979 goto err_remove;
3981 /* If !clear_css_refs, each css holds a ref to the cgroup's dentry */
3982 for_each_subsys(root, ss)
3983 if (!ss->__DEPRECATED_clear_css_refs)
3984 dget(dentry);
3986 /* The cgroup directory was pre-locked for us */
3987 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
3989 list_add_tail(&cgrp->allcg_node, &root->allcg_list);
3991 err = cgroup_populate_dir(cgrp);
3992 /* If err < 0, we have a half-filled directory - oh well ;) */
3994 mutex_unlock(&cgroup_mutex);
3995 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
3997 return 0;
3999 err_remove:
4001 list_del(&cgrp->sibling);
4002 root->number_of_cgroups--;
4004 err_destroy:
4006 for_each_subsys(root, ss) {
4007 if (cgrp->subsys[ss->subsys_id])
4008 ss->destroy(cgrp);
4011 mutex_unlock(&cgroup_mutex);
4013 /* Release the reference count that we took on the superblock */
4014 deactivate_super(sb);
4016 kfree(cgrp);
4017 return err;
4020 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
4022 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
4024 /* the vfs holds inode->i_mutex already */
4025 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
4029 * Check the reference count on each subsystem. Since we already
4030 * established that there are no tasks in the cgroup, if the css refcount
4031 * is also 1, then there should be no outstanding references, so the
4032 * subsystem is safe to destroy. We scan across all subsystems rather than
4033 * using the per-hierarchy linked list of mounted subsystems since we can
4034 * be called via check_for_release() with no synchronization other than
4035 * RCU, and the subsystem linked list isn't RCU-safe.
4037 static int cgroup_has_css_refs(struct cgroup *cgrp)
4039 int i;
4042 * We won't need to lock the subsys array, because the subsystems
4043 * we're concerned about aren't going anywhere since our cgroup root
4044 * has a reference on them.
4046 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4047 struct cgroup_subsys *ss = subsys[i];
4048 struct cgroup_subsys_state *css;
4050 /* Skip subsystems not present or not in this hierarchy */
4051 if (ss == NULL || ss->root != cgrp->root)
4052 continue;
4054 css = cgrp->subsys[ss->subsys_id];
4056 * When called from check_for_release() it's possible
4057 * that by this point the cgroup has been removed
4058 * and the css deleted. But a false-positive doesn't
4059 * matter, since it can only happen if the cgroup
4060 * has been deleted and hence no longer needs the
4061 * release agent to be called anyway.
4063 if (css && css_refcnt(css) > 1)
4064 return 1;
4066 return 0;
4070 * Atomically mark all (or else none) of the cgroup's CSS objects as
4071 * CSS_REMOVED. Return true on success, or false if the cgroup has
4072 * busy subsystems. Call with cgroup_mutex held
4074 * Depending on whether a subsys has __DEPRECATED_clear_css_refs set or
4075 * not, cgroup removal behaves differently.
4077 * If clear is set, css refcnt for the subsystem should be zero before
4078 * cgroup removal can be committed. This is implemented by
4079 * CGRP_WAIT_ON_RMDIR and retry logic around ->pre_destroy(), which may be
4080 * called multiple times until all css refcnts reach zero and is allowed to
4081 * veto removal on any invocation. This behavior is deprecated and will be
4082 * removed as soon as the existing user (memcg) is updated.
4084 * If clear is not set, each css holds an extra reference to the cgroup's
4085 * dentry and cgroup removal proceeds regardless of css refs.
4086 * ->pre_destroy() will be called at least once and is not allowed to fail.
4087 * On the last put of each css, whenever that may be, the extra dentry ref
4088 * is put so that dentry destruction happens only after all css's are
4089 * released.
4091 static int cgroup_clear_css_refs(struct cgroup *cgrp)
4093 struct cgroup_subsys *ss;
4094 unsigned long flags;
4095 bool failed = false;
4097 local_irq_save(flags);
4100 * Block new css_tryget() by deactivating refcnt. If all refcnts
4101 * for subsystems w/ clear_css_refs set were 1 at the moment of
4102 * deactivation, we succeeded.
4104 for_each_subsys(cgrp->root, ss) {
4105 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4107 WARN_ON(atomic_read(&css->refcnt) < 0);
4108 atomic_add(CSS_DEACT_BIAS, &css->refcnt);
4110 if (ss->__DEPRECATED_clear_css_refs)
4111 failed |= css_refcnt(css) != 1;
4115 * If succeeded, set REMOVED and put all the base refs; otherwise,
4116 * restore refcnts to positive values. Either way, all in-progress
4117 * css_tryget() will be released.
4119 for_each_subsys(cgrp->root, ss) {
4120 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4122 if (!failed) {
4123 set_bit(CSS_REMOVED, &css->flags);
4124 css_put(css);
4125 } else {
4126 atomic_sub(CSS_DEACT_BIAS, &css->refcnt);
4130 local_irq_restore(flags);
4131 return !failed;
4134 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
4136 struct cgroup *cgrp = dentry->d_fsdata;
4137 struct dentry *d;
4138 struct cgroup *parent;
4139 DEFINE_WAIT(wait);
4140 struct cgroup_event *event, *tmp;
4141 int ret;
4143 /* the vfs holds both inode->i_mutex already */
4144 again:
4145 mutex_lock(&cgroup_mutex);
4146 if (atomic_read(&cgrp->count) != 0) {
4147 mutex_unlock(&cgroup_mutex);
4148 return -EBUSY;
4150 if (!list_empty(&cgrp->children)) {
4151 mutex_unlock(&cgroup_mutex);
4152 return -EBUSY;
4154 mutex_unlock(&cgroup_mutex);
4157 * In general, subsystem has no css->refcnt after pre_destroy(). But
4158 * in racy cases, subsystem may have to get css->refcnt after
4159 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
4160 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
4161 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
4162 * and subsystem's reference count handling. Please see css_get/put
4163 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
4165 set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4168 * Call pre_destroy handlers of subsys. Notify subsystems
4169 * that rmdir() request comes.
4171 ret = cgroup_call_pre_destroy(cgrp);
4172 if (ret) {
4173 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4174 return ret;
4177 mutex_lock(&cgroup_mutex);
4178 parent = cgrp->parent;
4179 if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
4180 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4181 mutex_unlock(&cgroup_mutex);
4182 return -EBUSY;
4184 prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
4185 if (!cgroup_clear_css_refs(cgrp)) {
4186 mutex_unlock(&cgroup_mutex);
4188 * Because someone may call cgroup_wakeup_rmdir_waiter() before
4189 * prepare_to_wait(), we need to check this flag.
4191 if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
4192 schedule();
4193 finish_wait(&cgroup_rmdir_waitq, &wait);
4194 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4195 if (signal_pending(current))
4196 return -EINTR;
4197 goto again;
4199 /* NO css_tryget() can success after here. */
4200 finish_wait(&cgroup_rmdir_waitq, &wait);
4201 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4203 raw_spin_lock(&release_list_lock);
4204 set_bit(CGRP_REMOVED, &cgrp->flags);
4205 if (!list_empty(&cgrp->release_list))
4206 list_del_init(&cgrp->release_list);
4207 raw_spin_unlock(&release_list_lock);
4209 /* delete this cgroup from parent->children */
4210 list_del_init(&cgrp->sibling);
4212 list_del_init(&cgrp->allcg_node);
4214 d = dget(cgrp->dentry);
4216 cgroup_d_remove_dir(d);
4217 dput(d);
4219 set_bit(CGRP_RELEASABLE, &parent->flags);
4220 check_for_release(parent);
4223 * Unregister events and notify userspace.
4224 * Notify userspace about cgroup removing only after rmdir of cgroup
4225 * directory to avoid race between userspace and kernelspace
4227 spin_lock(&cgrp->event_list_lock);
4228 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
4229 list_del(&event->list);
4230 remove_wait_queue(event->wqh, &event->wait);
4231 eventfd_signal(event->eventfd, 1);
4232 schedule_work(&event->remove);
4234 spin_unlock(&cgrp->event_list_lock);
4236 mutex_unlock(&cgroup_mutex);
4237 return 0;
4240 static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss)
4242 INIT_LIST_HEAD(&ss->cftsets);
4245 * base_cftset is embedded in subsys itself, no need to worry about
4246 * deregistration.
4248 if (ss->base_cftypes) {
4249 ss->base_cftset.cfts = ss->base_cftypes;
4250 list_add_tail(&ss->base_cftset.node, &ss->cftsets);
4254 static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
4256 struct cgroup_subsys_state *css;
4258 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4260 /* init base cftset */
4261 cgroup_init_cftsets(ss);
4263 /* Create the top cgroup state for this subsystem */
4264 list_add(&ss->sibling, &rootnode.subsys_list);
4265 ss->root = &rootnode;
4266 css = ss->create(dummytop);
4267 /* We don't handle early failures gracefully */
4268 BUG_ON(IS_ERR(css));
4269 init_cgroup_css(css, ss, dummytop);
4271 /* Update the init_css_set to contain a subsys
4272 * pointer to this state - since the subsystem is
4273 * newly registered, all tasks and hence the
4274 * init_css_set is in the subsystem's top cgroup. */
4275 init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
4277 need_forkexit_callback |= ss->fork || ss->exit;
4279 /* At system boot, before all subsystems have been
4280 * registered, no tasks have been forked, so we don't
4281 * need to invoke fork callbacks here. */
4282 BUG_ON(!list_empty(&init_task.tasks));
4284 ss->active = 1;
4286 /* this function shouldn't be used with modular subsystems, since they
4287 * need to register a subsys_id, among other things */
4288 BUG_ON(ss->module);
4292 * cgroup_load_subsys: load and register a modular subsystem at runtime
4293 * @ss: the subsystem to load
4295 * This function should be called in a modular subsystem's initcall. If the
4296 * subsystem is built as a module, it will be assigned a new subsys_id and set
4297 * up for use. If the subsystem is built-in anyway, work is delegated to the
4298 * simpler cgroup_init_subsys.
4300 int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4302 int i;
4303 struct cgroup_subsys_state *css;
4305 /* check name and function validity */
4306 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
4307 ss->create == NULL || ss->destroy == NULL)
4308 return -EINVAL;
4311 * we don't support callbacks in modular subsystems. this check is
4312 * before the ss->module check for consistency; a subsystem that could
4313 * be a module should still have no callbacks even if the user isn't
4314 * compiling it as one.
4316 if (ss->fork || ss->exit)
4317 return -EINVAL;
4320 * an optionally modular subsystem is built-in: we want to do nothing,
4321 * since cgroup_init_subsys will have already taken care of it.
4323 if (ss->module == NULL) {
4324 /* a few sanity checks */
4325 BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT);
4326 BUG_ON(subsys[ss->subsys_id] != ss);
4327 return 0;
4330 /* init base cftset */
4331 cgroup_init_cftsets(ss);
4334 * need to register a subsys id before anything else - for example,
4335 * init_cgroup_css needs it.
4337 mutex_lock(&cgroup_mutex);
4338 /* find the first empty slot in the array */
4339 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
4340 if (subsys[i] == NULL)
4341 break;
4343 if (i == CGROUP_SUBSYS_COUNT) {
4344 /* maximum number of subsystems already registered! */
4345 mutex_unlock(&cgroup_mutex);
4346 return -EBUSY;
4348 /* assign ourselves the subsys_id */
4349 ss->subsys_id = i;
4350 subsys[i] = ss;
4353 * no ss->create seems to need anything important in the ss struct, so
4354 * this can happen first (i.e. before the rootnode attachment).
4356 css = ss->create(dummytop);
4357 if (IS_ERR(css)) {
4358 /* failure case - need to deassign the subsys[] slot. */
4359 subsys[i] = NULL;
4360 mutex_unlock(&cgroup_mutex);
4361 return PTR_ERR(css);
4364 list_add(&ss->sibling, &rootnode.subsys_list);
4365 ss->root = &rootnode;
4367 /* our new subsystem will be attached to the dummy hierarchy. */
4368 init_cgroup_css(css, ss, dummytop);
4369 /* init_idr must be after init_cgroup_css because it sets css->id. */
4370 if (ss->use_id) {
4371 int ret = cgroup_init_idr(ss, css);
4372 if (ret) {
4373 dummytop->subsys[ss->subsys_id] = NULL;
4374 ss->destroy(dummytop);
4375 subsys[i] = NULL;
4376 mutex_unlock(&cgroup_mutex);
4377 return ret;
4382 * Now we need to entangle the css into the existing css_sets. unlike
4383 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4384 * will need a new pointer to it; done by iterating the css_set_table.
4385 * furthermore, modifying the existing css_sets will corrupt the hash
4386 * table state, so each changed css_set will need its hash recomputed.
4387 * this is all done under the css_set_lock.
4389 write_lock(&css_set_lock);
4390 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
4391 struct css_set *cg;
4392 struct hlist_node *node, *tmp;
4393 struct hlist_head *bucket = &css_set_table[i], *new_bucket;
4395 hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
4396 /* skip entries that we already rehashed */
4397 if (cg->subsys[ss->subsys_id])
4398 continue;
4399 /* remove existing entry */
4400 hlist_del(&cg->hlist);
4401 /* set new value */
4402 cg->subsys[ss->subsys_id] = css;
4403 /* recompute hash and restore entry */
4404 new_bucket = css_set_hash(cg->subsys);
4405 hlist_add_head(&cg->hlist, new_bucket);
4408 write_unlock(&css_set_lock);
4410 ss->active = 1;
4412 /* success! */
4413 mutex_unlock(&cgroup_mutex);
4414 return 0;
4416 EXPORT_SYMBOL_GPL(cgroup_load_subsys);
4419 * cgroup_unload_subsys: unload a modular subsystem
4420 * @ss: the subsystem to unload
4422 * This function should be called in a modular subsystem's exitcall. When this
4423 * function is invoked, the refcount on the subsystem's module will be 0, so
4424 * the subsystem will not be attached to any hierarchy.
4426 void cgroup_unload_subsys(struct cgroup_subsys *ss)
4428 struct cg_cgroup_link *link;
4429 struct hlist_head *hhead;
4431 BUG_ON(ss->module == NULL);
4434 * we shouldn't be called if the subsystem is in use, and the use of
4435 * try_module_get in parse_cgroupfs_options should ensure that it
4436 * doesn't start being used while we're killing it off.
4438 BUG_ON(ss->root != &rootnode);
4440 mutex_lock(&cgroup_mutex);
4441 /* deassign the subsys_id */
4442 BUG_ON(ss->subsys_id < CGROUP_BUILTIN_SUBSYS_COUNT);
4443 subsys[ss->subsys_id] = NULL;
4445 /* remove subsystem from rootnode's list of subsystems */
4446 list_del_init(&ss->sibling);
4449 * disentangle the css from all css_sets attached to the dummytop. as
4450 * in loading, we need to pay our respects to the hashtable gods.
4452 write_lock(&css_set_lock);
4453 list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
4454 struct css_set *cg = link->cg;
4456 hlist_del(&cg->hlist);
4457 BUG_ON(!cg->subsys[ss->subsys_id]);
4458 cg->subsys[ss->subsys_id] = NULL;
4459 hhead = css_set_hash(cg->subsys);
4460 hlist_add_head(&cg->hlist, hhead);
4462 write_unlock(&css_set_lock);
4465 * remove subsystem's css from the dummytop and free it - need to free
4466 * before marking as null because ss->destroy needs the cgrp->subsys
4467 * pointer to find their state. note that this also takes care of
4468 * freeing the css_id.
4470 ss->destroy(dummytop);
4471 dummytop->subsys[ss->subsys_id] = NULL;
4473 mutex_unlock(&cgroup_mutex);
4475 EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4478 * cgroup_init_early - cgroup initialization at system boot
4480 * Initialize cgroups at system boot, and initialize any
4481 * subsystems that request early init.
4483 int __init cgroup_init_early(void)
4485 int i;
4486 atomic_set(&init_css_set.refcount, 1);
4487 INIT_LIST_HEAD(&init_css_set.cg_links);
4488 INIT_LIST_HEAD(&init_css_set.tasks);
4489 INIT_HLIST_NODE(&init_css_set.hlist);
4490 css_set_count = 1;
4491 init_cgroup_root(&rootnode);
4492 root_count = 1;
4493 init_task.cgroups = &init_css_set;
4495 init_css_set_link.cg = &init_css_set;
4496 init_css_set_link.cgrp = dummytop;
4497 list_add(&init_css_set_link.cgrp_link_list,
4498 &rootnode.top_cgroup.css_sets);
4499 list_add(&init_css_set_link.cg_link_list,
4500 &init_css_set.cg_links);
4502 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
4503 INIT_HLIST_HEAD(&css_set_table[i]);
4505 /* at bootup time, we don't worry about modular subsystems */
4506 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4507 struct cgroup_subsys *ss = subsys[i];
4509 BUG_ON(!ss->name);
4510 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
4511 BUG_ON(!ss->create);
4512 BUG_ON(!ss->destroy);
4513 if (ss->subsys_id != i) {
4514 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
4515 ss->name, ss->subsys_id);
4516 BUG();
4519 if (ss->early_init)
4520 cgroup_init_subsys(ss);
4522 return 0;
4526 * cgroup_init - cgroup initialization
4528 * Register cgroup filesystem and /proc file, and initialize
4529 * any subsystems that didn't request early init.
4531 int __init cgroup_init(void)
4533 int err;
4534 int i;
4535 struct hlist_head *hhead;
4537 err = bdi_init(&cgroup_backing_dev_info);
4538 if (err)
4539 return err;
4541 /* at bootup time, we don't worry about modular subsystems */
4542 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4543 struct cgroup_subsys *ss = subsys[i];
4544 if (!ss->early_init)
4545 cgroup_init_subsys(ss);
4546 if (ss->use_id)
4547 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
4550 /* Add init_css_set to the hash table */
4551 hhead = css_set_hash(init_css_set.subsys);
4552 hlist_add_head(&init_css_set.hlist, hhead);
4553 BUG_ON(!init_root_id(&rootnode));
4555 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4556 if (!cgroup_kobj) {
4557 err = -ENOMEM;
4558 goto out;
4561 err = register_filesystem(&cgroup_fs_type);
4562 if (err < 0) {
4563 kobject_put(cgroup_kobj);
4564 goto out;
4567 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
4569 out:
4570 if (err)
4571 bdi_destroy(&cgroup_backing_dev_info);
4573 return err;
4577 * proc_cgroup_show()
4578 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4579 * - Used for /proc/<pid>/cgroup.
4580 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4581 * doesn't really matter if tsk->cgroup changes after we read it,
4582 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
4583 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4584 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4585 * cgroup to top_cgroup.
4588 /* TODO: Use a proper seq_file iterator */
4589 static int proc_cgroup_show(struct seq_file *m, void *v)
4591 struct pid *pid;
4592 struct task_struct *tsk;
4593 char *buf;
4594 int retval;
4595 struct cgroupfs_root *root;
4597 retval = -ENOMEM;
4598 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4599 if (!buf)
4600 goto out;
4602 retval = -ESRCH;
4603 pid = m->private;
4604 tsk = get_pid_task(pid, PIDTYPE_PID);
4605 if (!tsk)
4606 goto out_free;
4608 retval = 0;
4610 mutex_lock(&cgroup_mutex);
4612 for_each_active_root(root) {
4613 struct cgroup_subsys *ss;
4614 struct cgroup *cgrp;
4615 int count = 0;
4617 seq_printf(m, "%d:", root->hierarchy_id);
4618 for_each_subsys(root, ss)
4619 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
4620 if (strlen(root->name))
4621 seq_printf(m, "%sname=%s", count ? "," : "",
4622 root->name);
4623 seq_putc(m, ':');
4624 cgrp = task_cgroup_from_root(tsk, root);
4625 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
4626 if (retval < 0)
4627 goto out_unlock;
4628 seq_puts(m, buf);
4629 seq_putc(m, '\n');
4632 out_unlock:
4633 mutex_unlock(&cgroup_mutex);
4634 put_task_struct(tsk);
4635 out_free:
4636 kfree(buf);
4637 out:
4638 return retval;
4641 static int cgroup_open(struct inode *inode, struct file *file)
4643 struct pid *pid = PROC_I(inode)->pid;
4644 return single_open(file, proc_cgroup_show, pid);
4647 const struct file_operations proc_cgroup_operations = {
4648 .open = cgroup_open,
4649 .read = seq_read,
4650 .llseek = seq_lseek,
4651 .release = single_release,
4654 /* Display information about each subsystem and each hierarchy */
4655 static int proc_cgroupstats_show(struct seq_file *m, void *v)
4657 int i;
4659 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
4661 * ideally we don't want subsystems moving around while we do this.
4662 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4663 * subsys/hierarchy state.
4665 mutex_lock(&cgroup_mutex);
4666 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4667 struct cgroup_subsys *ss = subsys[i];
4668 if (ss == NULL)
4669 continue;
4670 seq_printf(m, "%s\t%d\t%d\t%d\n",
4671 ss->name, ss->root->hierarchy_id,
4672 ss->root->number_of_cgroups, !ss->disabled);
4674 mutex_unlock(&cgroup_mutex);
4675 return 0;
4678 static int cgroupstats_open(struct inode *inode, struct file *file)
4680 return single_open(file, proc_cgroupstats_show, NULL);
4683 static const struct file_operations proc_cgroupstats_operations = {
4684 .open = cgroupstats_open,
4685 .read = seq_read,
4686 .llseek = seq_lseek,
4687 .release = single_release,
4691 * cgroup_fork - attach newly forked task to its parents cgroup.
4692 * @child: pointer to task_struct of forking parent process.
4694 * Description: A task inherits its parent's cgroup at fork().
4696 * A pointer to the shared css_set was automatically copied in
4697 * fork.c by dup_task_struct(). However, we ignore that copy, since
4698 * it was not made under the protection of RCU, cgroup_mutex or
4699 * threadgroup_change_begin(), so it might no longer be a valid
4700 * cgroup pointer. cgroup_attach_task() might have already changed
4701 * current->cgroups, allowing the previously referenced cgroup
4702 * group to be removed and freed.
4704 * Outside the pointer validity we also need to process the css_set
4705 * inheritance between threadgoup_change_begin() and
4706 * threadgoup_change_end(), this way there is no leak in any process
4707 * wide migration performed by cgroup_attach_proc() that could otherwise
4708 * miss a thread because it is too early or too late in the fork stage.
4710 * At the point that cgroup_fork() is called, 'current' is the parent
4711 * task, and the passed argument 'child' points to the child task.
4713 void cgroup_fork(struct task_struct *child)
4716 * We don't need to task_lock() current because current->cgroups
4717 * can't be changed concurrently here. The parent obviously hasn't
4718 * exited and called cgroup_exit(), and we are synchronized against
4719 * cgroup migration through threadgroup_change_begin().
4721 child->cgroups = current->cgroups;
4722 get_css_set(child->cgroups);
4723 INIT_LIST_HEAD(&child->cg_list);
4727 * cgroup_fork_callbacks - run fork callbacks
4728 * @child: the new task
4730 * Called on a new task very soon before adding it to the
4731 * tasklist. No need to take any locks since no-one can
4732 * be operating on this task.
4734 void cgroup_fork_callbacks(struct task_struct *child)
4736 if (need_forkexit_callback) {
4737 int i;
4739 * forkexit callbacks are only supported for builtin
4740 * subsystems, and the builtin section of the subsys array is
4741 * immutable, so we don't need to lock the subsys array here.
4743 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4744 struct cgroup_subsys *ss = subsys[i];
4745 if (ss->fork)
4746 ss->fork(child);
4752 * cgroup_post_fork - called on a new task after adding it to the task list
4753 * @child: the task in question
4755 * Adds the task to the list running through its css_set if necessary.
4756 * Has to be after the task is visible on the task list in case we race
4757 * with the first call to cgroup_iter_start() - to guarantee that the
4758 * new task ends up on its list.
4760 void cgroup_post_fork(struct task_struct *child)
4763 * use_task_css_set_links is set to 1 before we walk the tasklist
4764 * under the tasklist_lock and we read it here after we added the child
4765 * to the tasklist under the tasklist_lock as well. If the child wasn't
4766 * yet in the tasklist when we walked through it from
4767 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
4768 * should be visible now due to the paired locking and barriers implied
4769 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
4770 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
4771 * lock on fork.
4773 if (use_task_css_set_links) {
4774 write_lock(&css_set_lock);
4775 if (list_empty(&child->cg_list)) {
4777 * It's safe to use child->cgroups without task_lock()
4778 * here because we are protected through
4779 * threadgroup_change_begin() against concurrent
4780 * css_set change in cgroup_task_migrate(). Also
4781 * the task can't exit at that point until
4782 * wake_up_new_task() is called, so we are protected
4783 * against cgroup_exit() setting child->cgroup to
4784 * init_css_set.
4786 list_add(&child->cg_list, &child->cgroups->tasks);
4788 write_unlock(&css_set_lock);
4792 * cgroup_exit - detach cgroup from exiting task
4793 * @tsk: pointer to task_struct of exiting process
4794 * @run_callback: run exit callbacks?
4796 * Description: Detach cgroup from @tsk and release it.
4798 * Note that cgroups marked notify_on_release force every task in
4799 * them to take the global cgroup_mutex mutex when exiting.
4800 * This could impact scaling on very large systems. Be reluctant to
4801 * use notify_on_release cgroups where very high task exit scaling
4802 * is required on large systems.
4804 * the_top_cgroup_hack:
4806 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4808 * We call cgroup_exit() while the task is still competent to
4809 * handle notify_on_release(), then leave the task attached to the
4810 * root cgroup in each hierarchy for the remainder of its exit.
4812 * To do this properly, we would increment the reference count on
4813 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4814 * code we would add a second cgroup function call, to drop that
4815 * reference. This would just create an unnecessary hot spot on
4816 * the top_cgroup reference count, to no avail.
4818 * Normally, holding a reference to a cgroup without bumping its
4819 * count is unsafe. The cgroup could go away, or someone could
4820 * attach us to a different cgroup, decrementing the count on
4821 * the first cgroup that we never incremented. But in this case,
4822 * top_cgroup isn't going away, and either task has PF_EXITING set,
4823 * which wards off any cgroup_attach_task() attempts, or task is a failed
4824 * fork, never visible to cgroup_attach_task.
4826 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4828 struct css_set *cg;
4829 int i;
4832 * Unlink from the css_set task list if necessary.
4833 * Optimistically check cg_list before taking
4834 * css_set_lock
4836 if (!list_empty(&tsk->cg_list)) {
4837 write_lock(&css_set_lock);
4838 if (!list_empty(&tsk->cg_list))
4839 list_del_init(&tsk->cg_list);
4840 write_unlock(&css_set_lock);
4843 /* Reassign the task to the init_css_set. */
4844 task_lock(tsk);
4845 cg = tsk->cgroups;
4846 tsk->cgroups = &init_css_set;
4848 if (run_callbacks && need_forkexit_callback) {
4850 * modular subsystems can't use callbacks, so no need to lock
4851 * the subsys array
4853 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4854 struct cgroup_subsys *ss = subsys[i];
4855 if (ss->exit) {
4856 struct cgroup *old_cgrp =
4857 rcu_dereference_raw(cg->subsys[i])->cgroup;
4858 struct cgroup *cgrp = task_cgroup(tsk, i);
4859 ss->exit(cgrp, old_cgrp, tsk);
4863 task_unlock(tsk);
4865 if (cg)
4866 put_css_set_taskexit(cg);
4870 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
4871 * @cgrp: the cgroup in question
4872 * @task: the task in question
4874 * See if @cgrp is a descendant of @task's cgroup in the appropriate
4875 * hierarchy.
4877 * If we are sending in dummytop, then presumably we are creating
4878 * the top cgroup in the subsystem.
4880 * Called only by the ns (nsproxy) cgroup.
4882 int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
4884 int ret;
4885 struct cgroup *target;
4887 if (cgrp == dummytop)
4888 return 1;
4890 target = task_cgroup_from_root(task, cgrp->root);
4891 while (cgrp != target && cgrp!= cgrp->top_cgroup)
4892 cgrp = cgrp->parent;
4893 ret = (cgrp == target);
4894 return ret;
4897 static void check_for_release(struct cgroup *cgrp)
4899 /* All of these checks rely on RCU to keep the cgroup
4900 * structure alive */
4901 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
4902 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
4903 /* Control Group is currently removeable. If it's not
4904 * already queued for a userspace notification, queue
4905 * it now */
4906 int need_schedule_work = 0;
4907 raw_spin_lock(&release_list_lock);
4908 if (!cgroup_is_removed(cgrp) &&
4909 list_empty(&cgrp->release_list)) {
4910 list_add(&cgrp->release_list, &release_list);
4911 need_schedule_work = 1;
4913 raw_spin_unlock(&release_list_lock);
4914 if (need_schedule_work)
4915 schedule_work(&release_agent_work);
4919 /* Caller must verify that the css is not for root cgroup */
4920 bool __css_tryget(struct cgroup_subsys_state *css)
4922 do {
4923 int v = css_refcnt(css);
4925 if (atomic_cmpxchg(&css->refcnt, v, v + 1) == v)
4926 return true;
4927 cpu_relax();
4928 } while (!test_bit(CSS_REMOVED, &css->flags));
4930 return false;
4932 EXPORT_SYMBOL_GPL(__css_tryget);
4934 /* Caller must verify that the css is not for root cgroup */
4935 void __css_put(struct cgroup_subsys_state *css)
4937 struct cgroup *cgrp = css->cgroup;
4938 int v;
4940 rcu_read_lock();
4941 v = css_unbias_refcnt(atomic_dec_return(&css->refcnt));
4943 switch (v) {
4944 case 1:
4945 if (notify_on_release(cgrp)) {
4946 set_bit(CGRP_RELEASABLE, &cgrp->flags);
4947 check_for_release(cgrp);
4949 cgroup_wakeup_rmdir_waiter(cgrp);
4950 break;
4951 case 0:
4952 if (!test_bit(CSS_CLEAR_CSS_REFS, &css->flags))
4953 schedule_work(&css->dput_work);
4954 break;
4956 rcu_read_unlock();
4958 EXPORT_SYMBOL_GPL(__css_put);
4961 * Notify userspace when a cgroup is released, by running the
4962 * configured release agent with the name of the cgroup (path
4963 * relative to the root of cgroup file system) as the argument.
4965 * Most likely, this user command will try to rmdir this cgroup.
4967 * This races with the possibility that some other task will be
4968 * attached to this cgroup before it is removed, or that some other
4969 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4970 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4971 * unused, and this cgroup will be reprieved from its death sentence,
4972 * to continue to serve a useful existence. Next time it's released,
4973 * we will get notified again, if it still has 'notify_on_release' set.
4975 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4976 * means only wait until the task is successfully execve()'d. The
4977 * separate release agent task is forked by call_usermodehelper(),
4978 * then control in this thread returns here, without waiting for the
4979 * release agent task. We don't bother to wait because the caller of
4980 * this routine has no use for the exit status of the release agent
4981 * task, so no sense holding our caller up for that.
4983 static void cgroup_release_agent(struct work_struct *work)
4985 BUG_ON(work != &release_agent_work);
4986 mutex_lock(&cgroup_mutex);
4987 raw_spin_lock(&release_list_lock);
4988 while (!list_empty(&release_list)) {
4989 char *argv[3], *envp[3];
4990 int i;
4991 char *pathbuf = NULL, *agentbuf = NULL;
4992 struct cgroup *cgrp = list_entry(release_list.next,
4993 struct cgroup,
4994 release_list);
4995 list_del_init(&cgrp->release_list);
4996 raw_spin_unlock(&release_list_lock);
4997 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4998 if (!pathbuf)
4999 goto continue_free;
5000 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
5001 goto continue_free;
5002 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5003 if (!agentbuf)
5004 goto continue_free;
5006 i = 0;
5007 argv[i++] = agentbuf;
5008 argv[i++] = pathbuf;
5009 argv[i] = NULL;
5011 i = 0;
5012 /* minimal command environment */
5013 envp[i++] = "HOME=/";
5014 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5015 envp[i] = NULL;
5017 /* Drop the lock while we invoke the usermode helper,
5018 * since the exec could involve hitting disk and hence
5019 * be a slow process */
5020 mutex_unlock(&cgroup_mutex);
5021 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
5022 mutex_lock(&cgroup_mutex);
5023 continue_free:
5024 kfree(pathbuf);
5025 kfree(agentbuf);
5026 raw_spin_lock(&release_list_lock);
5028 raw_spin_unlock(&release_list_lock);
5029 mutex_unlock(&cgroup_mutex);
5032 static int __init cgroup_disable(char *str)
5034 int i;
5035 char *token;
5037 while ((token = strsep(&str, ",")) != NULL) {
5038 if (!*token)
5039 continue;
5041 * cgroup_disable, being at boot time, can't know about module
5042 * subsystems, so we don't worry about them.
5044 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
5045 struct cgroup_subsys *ss = subsys[i];
5047 if (!strcmp(token, ss->name)) {
5048 ss->disabled = 1;
5049 printk(KERN_INFO "Disabling %s control group"
5050 " subsystem\n", ss->name);
5051 break;
5055 return 1;
5057 __setup("cgroup_disable=", cgroup_disable);
5060 * Functons for CSS ID.
5064 *To get ID other than 0, this should be called when !cgroup_is_removed().
5066 unsigned short css_id(struct cgroup_subsys_state *css)
5068 struct css_id *cssid;
5071 * This css_id() can return correct value when somone has refcnt
5072 * on this or this is under rcu_read_lock(). Once css->id is allocated,
5073 * it's unchanged until freed.
5075 cssid = rcu_dereference_check(css->id, css_refcnt(css));
5077 if (cssid)
5078 return cssid->id;
5079 return 0;
5081 EXPORT_SYMBOL_GPL(css_id);
5083 unsigned short css_depth(struct cgroup_subsys_state *css)
5085 struct css_id *cssid;
5087 cssid = rcu_dereference_check(css->id, css_refcnt(css));
5089 if (cssid)
5090 return cssid->depth;
5091 return 0;
5093 EXPORT_SYMBOL_GPL(css_depth);
5096 * css_is_ancestor - test "root" css is an ancestor of "child"
5097 * @child: the css to be tested.
5098 * @root: the css supporsed to be an ancestor of the child.
5100 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
5101 * this function reads css->id, the caller must hold rcu_read_lock().
5102 * But, considering usual usage, the csses should be valid objects after test.
5103 * Assuming that the caller will do some action to the child if this returns
5104 * returns true, the caller must take "child";s reference count.
5105 * If "child" is valid object and this returns true, "root" is valid, too.
5108 bool css_is_ancestor(struct cgroup_subsys_state *child,
5109 const struct cgroup_subsys_state *root)
5111 struct css_id *child_id;
5112 struct css_id *root_id;
5114 child_id = rcu_dereference(child->id);
5115 if (!child_id)
5116 return false;
5117 root_id = rcu_dereference(root->id);
5118 if (!root_id)
5119 return false;
5120 if (child_id->depth < root_id->depth)
5121 return false;
5122 if (child_id->stack[root_id->depth] != root_id->id)
5123 return false;
5124 return true;
5127 void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
5129 struct css_id *id = css->id;
5130 /* When this is called before css_id initialization, id can be NULL */
5131 if (!id)
5132 return;
5134 BUG_ON(!ss->use_id);
5136 rcu_assign_pointer(id->css, NULL);
5137 rcu_assign_pointer(css->id, NULL);
5138 spin_lock(&ss->id_lock);
5139 idr_remove(&ss->idr, id->id);
5140 spin_unlock(&ss->id_lock);
5141 kfree_rcu(id, rcu_head);
5143 EXPORT_SYMBOL_GPL(free_css_id);
5146 * This is called by init or create(). Then, calls to this function are
5147 * always serialized (By cgroup_mutex() at create()).
5150 static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
5152 struct css_id *newid;
5153 int myid, error, size;
5155 BUG_ON(!ss->use_id);
5157 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
5158 newid = kzalloc(size, GFP_KERNEL);
5159 if (!newid)
5160 return ERR_PTR(-ENOMEM);
5161 /* get id */
5162 if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
5163 error = -ENOMEM;
5164 goto err_out;
5166 spin_lock(&ss->id_lock);
5167 /* Don't use 0. allocates an ID of 1-65535 */
5168 error = idr_get_new_above(&ss->idr, newid, 1, &myid);
5169 spin_unlock(&ss->id_lock);
5171 /* Returns error when there are no free spaces for new ID.*/
5172 if (error) {
5173 error = -ENOSPC;
5174 goto err_out;
5176 if (myid > CSS_ID_MAX)
5177 goto remove_idr;
5179 newid->id = myid;
5180 newid->depth = depth;
5181 return newid;
5182 remove_idr:
5183 error = -ENOSPC;
5184 spin_lock(&ss->id_lock);
5185 idr_remove(&ss->idr, myid);
5186 spin_unlock(&ss->id_lock);
5187 err_out:
5188 kfree(newid);
5189 return ERR_PTR(error);
5193 static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
5194 struct cgroup_subsys_state *rootcss)
5196 struct css_id *newid;
5198 spin_lock_init(&ss->id_lock);
5199 idr_init(&ss->idr);
5201 newid = get_new_cssid(ss, 0);
5202 if (IS_ERR(newid))
5203 return PTR_ERR(newid);
5205 newid->stack[0] = newid->id;
5206 newid->css = rootcss;
5207 rootcss->id = newid;
5208 return 0;
5211 static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
5212 struct cgroup *child)
5214 int subsys_id, i, depth = 0;
5215 struct cgroup_subsys_state *parent_css, *child_css;
5216 struct css_id *child_id, *parent_id;
5218 subsys_id = ss->subsys_id;
5219 parent_css = parent->subsys[subsys_id];
5220 child_css = child->subsys[subsys_id];
5221 parent_id = parent_css->id;
5222 depth = parent_id->depth + 1;
5224 child_id = get_new_cssid(ss, depth);
5225 if (IS_ERR(child_id))
5226 return PTR_ERR(child_id);
5228 for (i = 0; i < depth; i++)
5229 child_id->stack[i] = parent_id->stack[i];
5230 child_id->stack[depth] = child_id->id;
5232 * child_id->css pointer will be set after this cgroup is available
5233 * see cgroup_populate_dir()
5235 rcu_assign_pointer(child_css->id, child_id);
5237 return 0;
5241 * css_lookup - lookup css by id
5242 * @ss: cgroup subsys to be looked into.
5243 * @id: the id
5245 * Returns pointer to cgroup_subsys_state if there is valid one with id.
5246 * NULL if not. Should be called under rcu_read_lock()
5248 struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
5250 struct css_id *cssid = NULL;
5252 BUG_ON(!ss->use_id);
5253 cssid = idr_find(&ss->idr, id);
5255 if (unlikely(!cssid))
5256 return NULL;
5258 return rcu_dereference(cssid->css);
5260 EXPORT_SYMBOL_GPL(css_lookup);
5263 * css_get_next - lookup next cgroup under specified hierarchy.
5264 * @ss: pointer to subsystem
5265 * @id: current position of iteration.
5266 * @root: pointer to css. search tree under this.
5267 * @foundid: position of found object.
5269 * Search next css under the specified hierarchy of rootid. Calling under
5270 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
5272 struct cgroup_subsys_state *
5273 css_get_next(struct cgroup_subsys *ss, int id,
5274 struct cgroup_subsys_state *root, int *foundid)
5276 struct cgroup_subsys_state *ret = NULL;
5277 struct css_id *tmp;
5278 int tmpid;
5279 int rootid = css_id(root);
5280 int depth = css_depth(root);
5282 if (!rootid)
5283 return NULL;
5285 BUG_ON(!ss->use_id);
5286 WARN_ON_ONCE(!rcu_read_lock_held());
5288 /* fill start point for scan */
5289 tmpid = id;
5290 while (1) {
5292 * scan next entry from bitmap(tree), tmpid is updated after
5293 * idr_get_next().
5295 tmp = idr_get_next(&ss->idr, &tmpid);
5296 if (!tmp)
5297 break;
5298 if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
5299 ret = rcu_dereference(tmp->css);
5300 if (ret) {
5301 *foundid = tmpid;
5302 break;
5305 /* continue to scan from next id */
5306 tmpid = tmpid + 1;
5308 return ret;
5312 * get corresponding css from file open on cgroupfs directory
5314 struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5316 struct cgroup *cgrp;
5317 struct inode *inode;
5318 struct cgroup_subsys_state *css;
5320 inode = f->f_dentry->d_inode;
5321 /* check in cgroup filesystem dir */
5322 if (inode->i_op != &cgroup_dir_inode_operations)
5323 return ERR_PTR(-EBADF);
5325 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5326 return ERR_PTR(-EINVAL);
5328 /* get cgroup */
5329 cgrp = __d_cgrp(f->f_dentry);
5330 css = cgrp->subsys[id];
5331 return css ? css : ERR_PTR(-ENOENT);
5334 #ifdef CONFIG_CGROUP_DEBUG
5335 static struct cgroup_subsys_state *debug_create(struct cgroup *cont)
5337 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5339 if (!css)
5340 return ERR_PTR(-ENOMEM);
5342 return css;
5345 static void debug_destroy(struct cgroup *cont)
5347 kfree(cont->subsys[debug_subsys_id]);
5350 static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
5352 return atomic_read(&cont->count);
5355 static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
5357 return cgroup_task_count(cont);
5360 static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
5362 return (u64)(unsigned long)current->cgroups;
5365 static u64 current_css_set_refcount_read(struct cgroup *cont,
5366 struct cftype *cft)
5368 u64 count;
5370 rcu_read_lock();
5371 count = atomic_read(&current->cgroups->refcount);
5372 rcu_read_unlock();
5373 return count;
5376 static int current_css_set_cg_links_read(struct cgroup *cont,
5377 struct cftype *cft,
5378 struct seq_file *seq)
5380 struct cg_cgroup_link *link;
5381 struct css_set *cg;
5383 read_lock(&css_set_lock);
5384 rcu_read_lock();
5385 cg = rcu_dereference(current->cgroups);
5386 list_for_each_entry(link, &cg->cg_links, cg_link_list) {
5387 struct cgroup *c = link->cgrp;
5388 const char *name;
5390 if (c->dentry)
5391 name = c->dentry->d_name.name;
5392 else
5393 name = "?";
5394 seq_printf(seq, "Root %d group %s\n",
5395 c->root->hierarchy_id, name);
5397 rcu_read_unlock();
5398 read_unlock(&css_set_lock);
5399 return 0;
5402 #define MAX_TASKS_SHOWN_PER_CSS 25
5403 static int cgroup_css_links_read(struct cgroup *cont,
5404 struct cftype *cft,
5405 struct seq_file *seq)
5407 struct cg_cgroup_link *link;
5409 read_lock(&css_set_lock);
5410 list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
5411 struct css_set *cg = link->cg;
5412 struct task_struct *task;
5413 int count = 0;
5414 seq_printf(seq, "css_set %p\n", cg);
5415 list_for_each_entry(task, &cg->tasks, cg_list) {
5416 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5417 seq_puts(seq, " ...\n");
5418 break;
5419 } else {
5420 seq_printf(seq, " task %d\n",
5421 task_pid_vnr(task));
5425 read_unlock(&css_set_lock);
5426 return 0;
5429 static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
5431 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
5434 static struct cftype debug_files[] = {
5436 .name = "cgroup_refcount",
5437 .read_u64 = cgroup_refcount_read,
5440 .name = "taskcount",
5441 .read_u64 = debug_taskcount_read,
5445 .name = "current_css_set",
5446 .read_u64 = current_css_set_read,
5450 .name = "current_css_set_refcount",
5451 .read_u64 = current_css_set_refcount_read,
5455 .name = "current_css_set_cg_links",
5456 .read_seq_string = current_css_set_cg_links_read,
5460 .name = "cgroup_css_links",
5461 .read_seq_string = cgroup_css_links_read,
5465 .name = "releasable",
5466 .read_u64 = releasable_read,
5469 { } /* terminate */
5472 struct cgroup_subsys debug_subsys = {
5473 .name = "debug",
5474 .create = debug_create,
5475 .destroy = debug_destroy,
5476 .subsys_id = debug_subsys_id,
5477 .base_cftypes = debug_files,
5479 #endif /* CONFIG_CGROUP_DEBUG */