1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <linux/atomic.h>
49 #include <linux/namei.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/mount.h>
54 #include <linux/socket.h>
55 #include <linux/mqueue.h>
56 #include <linux/audit.h>
57 #include <linux/personality.h>
58 #include <linux/time.h>
59 #include <linux/netlink.h>
60 #include <linux/compiler.h>
61 #include <asm/unistd.h>
62 #include <linux/security.h>
63 #include <linux/list.h>
64 #include <linux/tty.h>
65 #include <linux/binfmts.h>
66 #include <linux/highmem.h>
67 #include <linux/syscalls.h>
68 #include <linux/capability.h>
69 #include <linux/fs_struct.h>
70 #include <linux/compat.h>
74 /* flags stating the success for a syscall */
75 #define AUDITSC_INVALID 0
76 #define AUDITSC_SUCCESS 1
77 #define AUDITSC_FAILURE 2
79 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
80 * for saving names from getname(). If we get more names we will allocate
81 * a name dynamically and also add those to the list anchored by names_list. */
84 /* Indicates that audit should log the full pathname. */
85 #define AUDIT_NAME_FULL -1
87 /* no execve audit message should be longer than this (userspace limits) */
88 #define MAX_EXECVE_AUDIT_LEN 7500
90 /* number of audit rules */
93 /* determines whether we collect data for signals sent */
96 struct audit_cap_data
{
97 kernel_cap_t permitted
;
98 kernel_cap_t inheritable
;
100 unsigned int fE
; /* effective bit of a file capability */
101 kernel_cap_t effective
; /* effective set of a process */
105 /* When fs/namei.c:getname() is called, we store the pointer in name and
106 * we don't let putname() free it (instead we free all of the saved
107 * pointers at syscall exit time).
109 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
111 struct list_head list
; /* audit_context->names_list */
120 struct audit_cap_data fcap
;
121 unsigned int fcap_ver
;
122 int name_len
; /* number of name's characters to log */
123 bool name_put
; /* call __putname() for this name */
125 * This was an allocated audit_names and not from the array of
126 * names allocated in the task audit context. Thus this name
127 * should be freed on syscall exit
132 struct audit_aux_data
{
133 struct audit_aux_data
*next
;
137 #define AUDIT_AUX_IPCPERM 0
139 /* Number of target pids per aux struct. */
140 #define AUDIT_AUX_PIDS 16
142 struct audit_aux_data_execve
{
143 struct audit_aux_data d
;
146 struct mm_struct
*mm
;
149 struct audit_aux_data_pids
{
150 struct audit_aux_data d
;
151 pid_t target_pid
[AUDIT_AUX_PIDS
];
152 uid_t target_auid
[AUDIT_AUX_PIDS
];
153 uid_t target_uid
[AUDIT_AUX_PIDS
];
154 unsigned int target_sessionid
[AUDIT_AUX_PIDS
];
155 u32 target_sid
[AUDIT_AUX_PIDS
];
156 char target_comm
[AUDIT_AUX_PIDS
][TASK_COMM_LEN
];
160 struct audit_aux_data_bprm_fcaps
{
161 struct audit_aux_data d
;
162 struct audit_cap_data fcap
;
163 unsigned int fcap_ver
;
164 struct audit_cap_data old_pcap
;
165 struct audit_cap_data new_pcap
;
168 struct audit_aux_data_capset
{
169 struct audit_aux_data d
;
171 struct audit_cap_data cap
;
174 struct audit_tree_refs
{
175 struct audit_tree_refs
*next
;
176 struct audit_chunk
*c
[31];
179 /* The per-task audit context. */
180 struct audit_context
{
181 int dummy
; /* must be the first element */
182 int in_syscall
; /* 1 if task is in a syscall */
183 enum audit_state state
, current_state
;
184 unsigned int serial
; /* serial number for record */
185 int major
; /* syscall number */
186 struct timespec ctime
; /* time of syscall entry */
187 unsigned long argv
[4]; /* syscall arguments */
188 long return_code
;/* syscall return code */
190 int return_valid
; /* return code is valid */
192 * The names_list is the list of all audit_names collected during this
193 * syscall. The first AUDIT_NAMES entries in the names_list will
194 * actually be from the preallocated_names array for performance
195 * reasons. Except during allocation they should never be referenced
196 * through the preallocated_names array and should only be found/used
197 * by running the names_list.
199 struct audit_names preallocated_names
[AUDIT_NAMES
];
200 int name_count
; /* total records in names_list */
201 struct list_head names_list
; /* anchor for struct audit_names->list */
202 char * filterkey
; /* key for rule that triggered record */
204 struct audit_context
*previous
; /* For nested syscalls */
205 struct audit_aux_data
*aux
;
206 struct audit_aux_data
*aux_pids
;
207 struct sockaddr_storage
*sockaddr
;
209 /* Save things to print about task_struct */
211 uid_t uid
, euid
, suid
, fsuid
;
212 gid_t gid
, egid
, sgid
, fsgid
;
213 unsigned long personality
;
219 unsigned int target_sessionid
;
221 char target_comm
[TASK_COMM_LEN
];
223 struct audit_tree_refs
*trees
, *first_trees
;
224 struct list_head killed_trees
;
242 unsigned long qbytes
;
246 struct mq_attr mqstat
;
255 unsigned int msg_prio
;
256 struct timespec abs_timeout
;
265 struct audit_cap_data cap
;
280 static inline int open_arg(int flags
, int mask
)
282 int n
= ACC_MODE(flags
);
283 if (flags
& (O_TRUNC
| O_CREAT
))
284 n
|= AUDIT_PERM_WRITE
;
288 static int audit_match_perm(struct audit_context
*ctx
, int mask
)
295 switch (audit_classify_syscall(ctx
->arch
, n
)) {
297 if ((mask
& AUDIT_PERM_WRITE
) &&
298 audit_match_class(AUDIT_CLASS_WRITE
, n
))
300 if ((mask
& AUDIT_PERM_READ
) &&
301 audit_match_class(AUDIT_CLASS_READ
, n
))
303 if ((mask
& AUDIT_PERM_ATTR
) &&
304 audit_match_class(AUDIT_CLASS_CHATTR
, n
))
307 case 1: /* 32bit on biarch */
308 if ((mask
& AUDIT_PERM_WRITE
) &&
309 audit_match_class(AUDIT_CLASS_WRITE_32
, n
))
311 if ((mask
& AUDIT_PERM_READ
) &&
312 audit_match_class(AUDIT_CLASS_READ_32
, n
))
314 if ((mask
& AUDIT_PERM_ATTR
) &&
315 audit_match_class(AUDIT_CLASS_CHATTR_32
, n
))
319 return mask
& ACC_MODE(ctx
->argv
[1]);
321 return mask
& ACC_MODE(ctx
->argv
[2]);
322 case 4: /* socketcall */
323 return ((mask
& AUDIT_PERM_WRITE
) && ctx
->argv
[0] == SYS_BIND
);
325 return mask
& AUDIT_PERM_EXEC
;
331 static int audit_match_filetype(struct audit_context
*ctx
, int val
)
333 struct audit_names
*n
;
334 umode_t mode
= (umode_t
)val
;
339 list_for_each_entry(n
, &ctx
->names_list
, list
) {
340 if ((n
->ino
!= -1) &&
341 ((n
->mode
& S_IFMT
) == mode
))
349 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
350 * ->first_trees points to its beginning, ->trees - to the current end of data.
351 * ->tree_count is the number of free entries in array pointed to by ->trees.
352 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
353 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
354 * it's going to remain 1-element for almost any setup) until we free context itself.
355 * References in it _are_ dropped - at the same time we free/drop aux stuff.
358 #ifdef CONFIG_AUDIT_TREE
359 static void audit_set_auditable(struct audit_context
*ctx
)
363 ctx
->current_state
= AUDIT_RECORD_CONTEXT
;
367 static int put_tree_ref(struct audit_context
*ctx
, struct audit_chunk
*chunk
)
369 struct audit_tree_refs
*p
= ctx
->trees
;
370 int left
= ctx
->tree_count
;
372 p
->c
[--left
] = chunk
;
373 ctx
->tree_count
= left
;
382 ctx
->tree_count
= 30;
388 static int grow_tree_refs(struct audit_context
*ctx
)
390 struct audit_tree_refs
*p
= ctx
->trees
;
391 ctx
->trees
= kzalloc(sizeof(struct audit_tree_refs
), GFP_KERNEL
);
397 p
->next
= ctx
->trees
;
399 ctx
->first_trees
= ctx
->trees
;
400 ctx
->tree_count
= 31;
405 static void unroll_tree_refs(struct audit_context
*ctx
,
406 struct audit_tree_refs
*p
, int count
)
408 #ifdef CONFIG_AUDIT_TREE
409 struct audit_tree_refs
*q
;
412 /* we started with empty chain */
413 p
= ctx
->first_trees
;
415 /* if the very first allocation has failed, nothing to do */
420 for (q
= p
; q
!= ctx
->trees
; q
= q
->next
, n
= 31) {
422 audit_put_chunk(q
->c
[n
]);
426 while (n
-- > ctx
->tree_count
) {
427 audit_put_chunk(q
->c
[n
]);
431 ctx
->tree_count
= count
;
435 static void free_tree_refs(struct audit_context
*ctx
)
437 struct audit_tree_refs
*p
, *q
;
438 for (p
= ctx
->first_trees
; p
; p
= q
) {
444 static int match_tree_refs(struct audit_context
*ctx
, struct audit_tree
*tree
)
446 #ifdef CONFIG_AUDIT_TREE
447 struct audit_tree_refs
*p
;
452 for (p
= ctx
->first_trees
; p
!= ctx
->trees
; p
= p
->next
) {
453 for (n
= 0; n
< 31; n
++)
454 if (audit_tree_match(p
->c
[n
], tree
))
459 for (n
= ctx
->tree_count
; n
< 31; n
++)
460 if (audit_tree_match(p
->c
[n
], tree
))
467 static int audit_compare_id(uid_t uid1
,
468 struct audit_names
*name
,
469 unsigned long name_offset
,
470 struct audit_field
*f
,
471 struct audit_context
*ctx
)
473 struct audit_names
*n
;
478 BUILD_BUG_ON(sizeof(uid_t
) != sizeof(gid_t
));
481 addr
= (unsigned long)name
;
484 uid2
= *(uid_t
*)addr
;
485 rc
= audit_comparator(uid1
, f
->op
, uid2
);
491 list_for_each_entry(n
, &ctx
->names_list
, list
) {
492 addr
= (unsigned long)n
;
495 uid2
= *(uid_t
*)addr
;
497 rc
= audit_comparator(uid1
, f
->op
, uid2
);
505 static int audit_field_compare(struct task_struct
*tsk
,
506 const struct cred
*cred
,
507 struct audit_field
*f
,
508 struct audit_context
*ctx
,
509 struct audit_names
*name
)
512 /* process to file object comparisons */
513 case AUDIT_COMPARE_UID_TO_OBJ_UID
:
514 return audit_compare_id(cred
->uid
,
515 name
, offsetof(struct audit_names
, uid
),
517 case AUDIT_COMPARE_GID_TO_OBJ_GID
:
518 return audit_compare_id(cred
->gid
,
519 name
, offsetof(struct audit_names
, gid
),
521 case AUDIT_COMPARE_EUID_TO_OBJ_UID
:
522 return audit_compare_id(cred
->euid
,
523 name
, offsetof(struct audit_names
, uid
),
525 case AUDIT_COMPARE_EGID_TO_OBJ_GID
:
526 return audit_compare_id(cred
->egid
,
527 name
, offsetof(struct audit_names
, gid
),
529 case AUDIT_COMPARE_AUID_TO_OBJ_UID
:
530 return audit_compare_id(tsk
->loginuid
,
531 name
, offsetof(struct audit_names
, uid
),
533 case AUDIT_COMPARE_SUID_TO_OBJ_UID
:
534 return audit_compare_id(cred
->suid
,
535 name
, offsetof(struct audit_names
, uid
),
537 case AUDIT_COMPARE_SGID_TO_OBJ_GID
:
538 return audit_compare_id(cred
->sgid
,
539 name
, offsetof(struct audit_names
, gid
),
541 case AUDIT_COMPARE_FSUID_TO_OBJ_UID
:
542 return audit_compare_id(cred
->fsuid
,
543 name
, offsetof(struct audit_names
, uid
),
545 case AUDIT_COMPARE_FSGID_TO_OBJ_GID
:
546 return audit_compare_id(cred
->fsgid
,
547 name
, offsetof(struct audit_names
, gid
),
549 /* uid comparisons */
550 case AUDIT_COMPARE_UID_TO_AUID
:
551 return audit_comparator(cred
->uid
, f
->op
, tsk
->loginuid
);
552 case AUDIT_COMPARE_UID_TO_EUID
:
553 return audit_comparator(cred
->uid
, f
->op
, cred
->euid
);
554 case AUDIT_COMPARE_UID_TO_SUID
:
555 return audit_comparator(cred
->uid
, f
->op
, cred
->suid
);
556 case AUDIT_COMPARE_UID_TO_FSUID
:
557 return audit_comparator(cred
->uid
, f
->op
, cred
->fsuid
);
558 /* auid comparisons */
559 case AUDIT_COMPARE_AUID_TO_EUID
:
560 return audit_comparator(tsk
->loginuid
, f
->op
, cred
->euid
);
561 case AUDIT_COMPARE_AUID_TO_SUID
:
562 return audit_comparator(tsk
->loginuid
, f
->op
, cred
->suid
);
563 case AUDIT_COMPARE_AUID_TO_FSUID
:
564 return audit_comparator(tsk
->loginuid
, f
->op
, cred
->fsuid
);
565 /* euid comparisons */
566 case AUDIT_COMPARE_EUID_TO_SUID
:
567 return audit_comparator(cred
->euid
, f
->op
, cred
->suid
);
568 case AUDIT_COMPARE_EUID_TO_FSUID
:
569 return audit_comparator(cred
->euid
, f
->op
, cred
->fsuid
);
570 /* suid comparisons */
571 case AUDIT_COMPARE_SUID_TO_FSUID
:
572 return audit_comparator(cred
->suid
, f
->op
, cred
->fsuid
);
573 /* gid comparisons */
574 case AUDIT_COMPARE_GID_TO_EGID
:
575 return audit_comparator(cred
->gid
, f
->op
, cred
->egid
);
576 case AUDIT_COMPARE_GID_TO_SGID
:
577 return audit_comparator(cred
->gid
, f
->op
, cred
->sgid
);
578 case AUDIT_COMPARE_GID_TO_FSGID
:
579 return audit_comparator(cred
->gid
, f
->op
, cred
->fsgid
);
580 /* egid comparisons */
581 case AUDIT_COMPARE_EGID_TO_SGID
:
582 return audit_comparator(cred
->egid
, f
->op
, cred
->sgid
);
583 case AUDIT_COMPARE_EGID_TO_FSGID
:
584 return audit_comparator(cred
->egid
, f
->op
, cred
->fsgid
);
585 /* sgid comparison */
586 case AUDIT_COMPARE_SGID_TO_FSGID
:
587 return audit_comparator(cred
->sgid
, f
->op
, cred
->fsgid
);
589 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
595 /* Determine if any context name data matches a rule's watch data */
596 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
599 * If task_creation is true, this is an explicit indication that we are
600 * filtering a task rule at task creation time. This and tsk == current are
601 * the only situations where tsk->cred may be accessed without an rcu read lock.
603 static int audit_filter_rules(struct task_struct
*tsk
,
604 struct audit_krule
*rule
,
605 struct audit_context
*ctx
,
606 struct audit_names
*name
,
607 enum audit_state
*state
,
610 const struct cred
*cred
;
614 cred
= rcu_dereference_check(tsk
->cred
, tsk
== current
|| task_creation
);
616 for (i
= 0; i
< rule
->field_count
; i
++) {
617 struct audit_field
*f
= &rule
->fields
[i
];
618 struct audit_names
*n
;
623 result
= audit_comparator(tsk
->pid
, f
->op
, f
->val
);
628 ctx
->ppid
= sys_getppid();
629 result
= audit_comparator(ctx
->ppid
, f
->op
, f
->val
);
633 result
= audit_comparator(cred
->uid
, f
->op
, f
->val
);
636 result
= audit_comparator(cred
->euid
, f
->op
, f
->val
);
639 result
= audit_comparator(cred
->suid
, f
->op
, f
->val
);
642 result
= audit_comparator(cred
->fsuid
, f
->op
, f
->val
);
645 result
= audit_comparator(cred
->gid
, f
->op
, f
->val
);
648 result
= audit_comparator(cred
->egid
, f
->op
, f
->val
);
651 result
= audit_comparator(cred
->sgid
, f
->op
, f
->val
);
654 result
= audit_comparator(cred
->fsgid
, f
->op
, f
->val
);
657 result
= audit_comparator(tsk
->personality
, f
->op
, f
->val
);
661 result
= audit_comparator(ctx
->arch
, f
->op
, f
->val
);
665 if (ctx
&& ctx
->return_valid
)
666 result
= audit_comparator(ctx
->return_code
, f
->op
, f
->val
);
669 if (ctx
&& ctx
->return_valid
) {
671 result
= audit_comparator(ctx
->return_valid
, f
->op
, AUDITSC_SUCCESS
);
673 result
= audit_comparator(ctx
->return_valid
, f
->op
, AUDITSC_FAILURE
);
678 if (audit_comparator(MAJOR(name
->dev
), f
->op
, f
->val
) ||
679 audit_comparator(MAJOR(name
->rdev
), f
->op
, f
->val
))
682 list_for_each_entry(n
, &ctx
->names_list
, list
) {
683 if (audit_comparator(MAJOR(n
->dev
), f
->op
, f
->val
) ||
684 audit_comparator(MAJOR(n
->rdev
), f
->op
, f
->val
)) {
693 if (audit_comparator(MINOR(name
->dev
), f
->op
, f
->val
) ||
694 audit_comparator(MINOR(name
->rdev
), f
->op
, f
->val
))
697 list_for_each_entry(n
, &ctx
->names_list
, list
) {
698 if (audit_comparator(MINOR(n
->dev
), f
->op
, f
->val
) ||
699 audit_comparator(MINOR(n
->rdev
), f
->op
, f
->val
)) {
708 result
= (name
->ino
== f
->val
);
710 list_for_each_entry(n
, &ctx
->names_list
, list
) {
711 if (audit_comparator(n
->ino
, f
->op
, f
->val
)) {
720 result
= audit_comparator(name
->uid
, f
->op
, f
->val
);
722 list_for_each_entry(n
, &ctx
->names_list
, list
) {
723 if (audit_comparator(n
->uid
, f
->op
, f
->val
)) {
732 result
= audit_comparator(name
->gid
, f
->op
, f
->val
);
734 list_for_each_entry(n
, &ctx
->names_list
, list
) {
735 if (audit_comparator(n
->gid
, f
->op
, f
->val
)) {
744 result
= audit_watch_compare(rule
->watch
, name
->ino
, name
->dev
);
748 result
= match_tree_refs(ctx
, rule
->tree
);
753 result
= audit_comparator(tsk
->loginuid
, f
->op
, f
->val
);
755 case AUDIT_SUBJ_USER
:
756 case AUDIT_SUBJ_ROLE
:
757 case AUDIT_SUBJ_TYPE
:
760 /* NOTE: this may return negative values indicating
761 a temporary error. We simply treat this as a
762 match for now to avoid losing information that
763 may be wanted. An error message will also be
767 security_task_getsecid(tsk
, &sid
);
770 result
= security_audit_rule_match(sid
, f
->type
,
779 case AUDIT_OBJ_LEV_LOW
:
780 case AUDIT_OBJ_LEV_HIGH
:
781 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
784 /* Find files that match */
786 result
= security_audit_rule_match(
787 name
->osid
, f
->type
, f
->op
,
790 list_for_each_entry(n
, &ctx
->names_list
, list
) {
791 if (security_audit_rule_match(n
->osid
, f
->type
,
799 /* Find ipc objects that match */
800 if (!ctx
|| ctx
->type
!= AUDIT_IPC
)
802 if (security_audit_rule_match(ctx
->ipc
.osid
,
813 result
= audit_comparator(ctx
->argv
[f
->type
-AUDIT_ARG0
], f
->op
, f
->val
);
815 case AUDIT_FILTERKEY
:
816 /* ignore this field for filtering */
820 result
= audit_match_perm(ctx
, f
->val
);
823 result
= audit_match_filetype(ctx
, f
->val
);
825 case AUDIT_FIELD_COMPARE
:
826 result
= audit_field_compare(tsk
, cred
, f
, ctx
, name
);
834 if (rule
->prio
<= ctx
->prio
)
836 if (rule
->filterkey
) {
837 kfree(ctx
->filterkey
);
838 ctx
->filterkey
= kstrdup(rule
->filterkey
, GFP_ATOMIC
);
840 ctx
->prio
= rule
->prio
;
842 switch (rule
->action
) {
843 case AUDIT_NEVER
: *state
= AUDIT_DISABLED
; break;
844 case AUDIT_ALWAYS
: *state
= AUDIT_RECORD_CONTEXT
; break;
849 /* At process creation time, we can determine if system-call auditing is
850 * completely disabled for this task. Since we only have the task
851 * structure at this point, we can only check uid and gid.
853 static enum audit_state
audit_filter_task(struct task_struct
*tsk
, char **key
)
855 struct audit_entry
*e
;
856 enum audit_state state
;
859 list_for_each_entry_rcu(e
, &audit_filter_list
[AUDIT_FILTER_TASK
], list
) {
860 if (audit_filter_rules(tsk
, &e
->rule
, NULL
, NULL
,
862 if (state
== AUDIT_RECORD_CONTEXT
)
863 *key
= kstrdup(e
->rule
.filterkey
, GFP_ATOMIC
);
869 return AUDIT_BUILD_CONTEXT
;
872 /* At syscall entry and exit time, this filter is called if the
873 * audit_state is not low enough that auditing cannot take place, but is
874 * also not high enough that we already know we have to write an audit
875 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
877 static enum audit_state
audit_filter_syscall(struct task_struct
*tsk
,
878 struct audit_context
*ctx
,
879 struct list_head
*list
)
881 struct audit_entry
*e
;
882 enum audit_state state
;
884 if (audit_pid
&& tsk
->tgid
== audit_pid
)
885 return AUDIT_DISABLED
;
888 if (!list_empty(list
)) {
889 int word
= AUDIT_WORD(ctx
->major
);
890 int bit
= AUDIT_BIT(ctx
->major
);
892 list_for_each_entry_rcu(e
, list
, list
) {
893 if ((e
->rule
.mask
[word
] & bit
) == bit
&&
894 audit_filter_rules(tsk
, &e
->rule
, ctx
, NULL
,
897 ctx
->current_state
= state
;
903 return AUDIT_BUILD_CONTEXT
;
907 * Given an audit_name check the inode hash table to see if they match.
908 * Called holding the rcu read lock to protect the use of audit_inode_hash
910 static int audit_filter_inode_name(struct task_struct
*tsk
,
911 struct audit_names
*n
,
912 struct audit_context
*ctx
) {
914 int h
= audit_hash_ino((u32
)n
->ino
);
915 struct list_head
*list
= &audit_inode_hash
[h
];
916 struct audit_entry
*e
;
917 enum audit_state state
;
919 word
= AUDIT_WORD(ctx
->major
);
920 bit
= AUDIT_BIT(ctx
->major
);
922 if (list_empty(list
))
925 list_for_each_entry_rcu(e
, list
, list
) {
926 if ((e
->rule
.mask
[word
] & bit
) == bit
&&
927 audit_filter_rules(tsk
, &e
->rule
, ctx
, n
, &state
, false)) {
928 ctx
->current_state
= state
;
936 /* At syscall exit time, this filter is called if any audit_names have been
937 * collected during syscall processing. We only check rules in sublists at hash
938 * buckets applicable to the inode numbers in audit_names.
939 * Regarding audit_state, same rules apply as for audit_filter_syscall().
941 void audit_filter_inodes(struct task_struct
*tsk
, struct audit_context
*ctx
)
943 struct audit_names
*n
;
945 if (audit_pid
&& tsk
->tgid
== audit_pid
)
950 list_for_each_entry(n
, &ctx
->names_list
, list
) {
951 if (audit_filter_inode_name(tsk
, n
, ctx
))
957 static inline struct audit_context
*audit_get_context(struct task_struct
*tsk
,
961 struct audit_context
*context
= tsk
->audit_context
;
965 context
->return_valid
= return_valid
;
968 * we need to fix up the return code in the audit logs if the actual
969 * return codes are later going to be fixed up by the arch specific
972 * This is actually a test for:
973 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
974 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
976 * but is faster than a bunch of ||
978 if (unlikely(return_code
<= -ERESTARTSYS
) &&
979 (return_code
>= -ERESTART_RESTARTBLOCK
) &&
980 (return_code
!= -ENOIOCTLCMD
))
981 context
->return_code
= -EINTR
;
983 context
->return_code
= return_code
;
985 if (context
->in_syscall
&& !context
->dummy
) {
986 audit_filter_syscall(tsk
, context
, &audit_filter_list
[AUDIT_FILTER_EXIT
]);
987 audit_filter_inodes(tsk
, context
);
990 tsk
->audit_context
= NULL
;
994 static inline void audit_free_names(struct audit_context
*context
)
996 struct audit_names
*n
, *next
;
999 if (context
->put_count
+ context
->ino_count
!= context
->name_count
) {
1000 printk(KERN_ERR
"%s:%d(:%d): major=%d in_syscall=%d"
1001 " name_count=%d put_count=%d"
1002 " ino_count=%d [NOT freeing]\n",
1004 context
->serial
, context
->major
, context
->in_syscall
,
1005 context
->name_count
, context
->put_count
,
1006 context
->ino_count
);
1007 list_for_each_entry(n
, &context
->names_list
, list
) {
1008 printk(KERN_ERR
"names[%d] = %p = %s\n", i
,
1009 n
->name
, n
->name
?: "(null)");
1016 context
->put_count
= 0;
1017 context
->ino_count
= 0;
1020 list_for_each_entry_safe(n
, next
, &context
->names_list
, list
) {
1022 if (n
->name
&& n
->name_put
)
1027 context
->name_count
= 0;
1028 path_put(&context
->pwd
);
1029 context
->pwd
.dentry
= NULL
;
1030 context
->pwd
.mnt
= NULL
;
1033 static inline void audit_free_aux(struct audit_context
*context
)
1035 struct audit_aux_data
*aux
;
1037 while ((aux
= context
->aux
)) {
1038 context
->aux
= aux
->next
;
1041 while ((aux
= context
->aux_pids
)) {
1042 context
->aux_pids
= aux
->next
;
1047 static inline void audit_zero_context(struct audit_context
*context
,
1048 enum audit_state state
)
1050 memset(context
, 0, sizeof(*context
));
1051 context
->state
= state
;
1052 context
->prio
= state
== AUDIT_RECORD_CONTEXT
? ~0ULL : 0;
1055 static inline struct audit_context
*audit_alloc_context(enum audit_state state
)
1057 struct audit_context
*context
;
1059 if (!(context
= kmalloc(sizeof(*context
), GFP_KERNEL
)))
1061 audit_zero_context(context
, state
);
1062 INIT_LIST_HEAD(&context
->killed_trees
);
1063 INIT_LIST_HEAD(&context
->names_list
);
1068 * audit_alloc - allocate an audit context block for a task
1071 * Filter on the task information and allocate a per-task audit context
1072 * if necessary. Doing so turns on system call auditing for the
1073 * specified task. This is called from copy_process, so no lock is
1076 int audit_alloc(struct task_struct
*tsk
)
1078 struct audit_context
*context
;
1079 enum audit_state state
;
1082 if (likely(!audit_ever_enabled
))
1083 return 0; /* Return if not auditing. */
1085 state
= audit_filter_task(tsk
, &key
);
1086 if (state
== AUDIT_DISABLED
)
1089 if (!(context
= audit_alloc_context(state
))) {
1091 audit_log_lost("out of memory in audit_alloc");
1094 context
->filterkey
= key
;
1096 tsk
->audit_context
= context
;
1097 set_tsk_thread_flag(tsk
, TIF_SYSCALL_AUDIT
);
1101 static inline void audit_free_context(struct audit_context
*context
)
1103 struct audit_context
*previous
;
1107 previous
= context
->previous
;
1108 if (previous
|| (count
&& count
< 10)) {
1110 printk(KERN_ERR
"audit(:%d): major=%d name_count=%d:"
1111 " freeing multiple contexts (%d)\n",
1112 context
->serial
, context
->major
,
1113 context
->name_count
, count
);
1115 audit_free_names(context
);
1116 unroll_tree_refs(context
, NULL
, 0);
1117 free_tree_refs(context
);
1118 audit_free_aux(context
);
1119 kfree(context
->filterkey
);
1120 kfree(context
->sockaddr
);
1125 printk(KERN_ERR
"audit: freed %d contexts\n", count
);
1128 void audit_log_task_context(struct audit_buffer
*ab
)
1135 security_task_getsecid(current
, &sid
);
1139 error
= security_secid_to_secctx(sid
, &ctx
, &len
);
1141 if (error
!= -EINVAL
)
1146 audit_log_format(ab
, " subj=%s", ctx
);
1147 security_release_secctx(ctx
, len
);
1151 audit_panic("error in audit_log_task_context");
1155 EXPORT_SYMBOL(audit_log_task_context
);
1157 static void audit_log_task_info(struct audit_buffer
*ab
, struct task_struct
*tsk
)
1159 char name
[sizeof(tsk
->comm
)];
1160 struct mm_struct
*mm
= tsk
->mm
;
1161 struct vm_area_struct
*vma
;
1163 /* tsk == current */
1165 get_task_comm(name
, tsk
);
1166 audit_log_format(ab
, " comm=");
1167 audit_log_untrustedstring(ab
, name
);
1170 down_read(&mm
->mmap_sem
);
1173 if ((vma
->vm_flags
& VM_EXECUTABLE
) &&
1175 audit_log_d_path(ab
, " exe=",
1176 &vma
->vm_file
->f_path
);
1181 up_read(&mm
->mmap_sem
);
1183 audit_log_task_context(ab
);
1186 static int audit_log_pid_context(struct audit_context
*context
, pid_t pid
,
1187 uid_t auid
, uid_t uid
, unsigned int sessionid
,
1188 u32 sid
, char *comm
)
1190 struct audit_buffer
*ab
;
1195 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_OBJ_PID
);
1199 audit_log_format(ab
, "opid=%d oauid=%d ouid=%d oses=%d", pid
, auid
,
1201 if (security_secid_to_secctx(sid
, &ctx
, &len
)) {
1202 audit_log_format(ab
, " obj=(none)");
1205 audit_log_format(ab
, " obj=%s", ctx
);
1206 security_release_secctx(ctx
, len
);
1208 audit_log_format(ab
, " ocomm=");
1209 audit_log_untrustedstring(ab
, comm
);
1216 * to_send and len_sent accounting are very loose estimates. We aren't
1217 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1218 * within about 500 bytes (next page boundary)
1220 * why snprintf? an int is up to 12 digits long. if we just assumed when
1221 * logging that a[%d]= was going to be 16 characters long we would be wasting
1222 * space in every audit message. In one 7500 byte message we can log up to
1223 * about 1000 min size arguments. That comes down to about 50% waste of space
1224 * if we didn't do the snprintf to find out how long arg_num_len was.
1226 static int audit_log_single_execve_arg(struct audit_context
*context
,
1227 struct audit_buffer
**ab
,
1230 const char __user
*p
,
1233 char arg_num_len_buf
[12];
1234 const char __user
*tmp_p
= p
;
1235 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1236 size_t arg_num_len
= snprintf(arg_num_len_buf
, 12, "%d", arg_num
) + 5;
1237 size_t len
, len_left
, to_send
;
1238 size_t max_execve_audit_len
= MAX_EXECVE_AUDIT_LEN
;
1239 unsigned int i
, has_cntl
= 0, too_long
= 0;
1242 /* strnlen_user includes the null we don't want to send */
1243 len_left
= len
= strnlen_user(p
, MAX_ARG_STRLEN
) - 1;
1246 * We just created this mm, if we can't find the strings
1247 * we just copied into it something is _very_ wrong. Similar
1248 * for strings that are too long, we should not have created
1251 if (unlikely((len
== -1) || len
> MAX_ARG_STRLEN
- 1)) {
1253 send_sig(SIGKILL
, current
, 0);
1257 /* walk the whole argument looking for non-ascii chars */
1259 if (len_left
> MAX_EXECVE_AUDIT_LEN
)
1260 to_send
= MAX_EXECVE_AUDIT_LEN
;
1263 ret
= copy_from_user(buf
, tmp_p
, to_send
);
1265 * There is no reason for this copy to be short. We just
1266 * copied them here, and the mm hasn't been exposed to user-
1271 send_sig(SIGKILL
, current
, 0);
1274 buf
[to_send
] = '\0';
1275 has_cntl
= audit_string_contains_control(buf
, to_send
);
1278 * hex messages get logged as 2 bytes, so we can only
1279 * send half as much in each message
1281 max_execve_audit_len
= MAX_EXECVE_AUDIT_LEN
/ 2;
1284 len_left
-= to_send
;
1286 } while (len_left
> 0);
1290 if (len
> max_execve_audit_len
)
1293 /* rewalk the argument actually logging the message */
1294 for (i
= 0; len_left
> 0; i
++) {
1297 if (len_left
> max_execve_audit_len
)
1298 to_send
= max_execve_audit_len
;
1302 /* do we have space left to send this argument in this ab? */
1303 room_left
= MAX_EXECVE_AUDIT_LEN
- arg_num_len
- *len_sent
;
1305 room_left
-= (to_send
* 2);
1307 room_left
-= to_send
;
1308 if (room_left
< 0) {
1311 *ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_EXECVE
);
1317 * first record needs to say how long the original string was
1318 * so we can be sure nothing was lost.
1320 if ((i
== 0) && (too_long
))
1321 audit_log_format(*ab
, " a%d_len=%zu", arg_num
,
1322 has_cntl
? 2*len
: len
);
1325 * normally arguments are small enough to fit and we already
1326 * filled buf above when we checked for control characters
1327 * so don't bother with another copy_from_user
1329 if (len
>= max_execve_audit_len
)
1330 ret
= copy_from_user(buf
, p
, to_send
);
1335 send_sig(SIGKILL
, current
, 0);
1338 buf
[to_send
] = '\0';
1340 /* actually log it */
1341 audit_log_format(*ab
, " a%d", arg_num
);
1343 audit_log_format(*ab
, "[%d]", i
);
1344 audit_log_format(*ab
, "=");
1346 audit_log_n_hex(*ab
, buf
, to_send
);
1348 audit_log_string(*ab
, buf
);
1351 len_left
-= to_send
;
1352 *len_sent
+= arg_num_len
;
1354 *len_sent
+= to_send
* 2;
1356 *len_sent
+= to_send
;
1358 /* include the null we didn't log */
1362 static void audit_log_execve_info(struct audit_context
*context
,
1363 struct audit_buffer
**ab
,
1364 struct audit_aux_data_execve
*axi
)
1367 size_t len_sent
= 0;
1368 const char __user
*p
;
1371 if (axi
->mm
!= current
->mm
)
1372 return; /* execve failed, no additional info */
1374 p
= (const char __user
*)axi
->mm
->arg_start
;
1376 audit_log_format(*ab
, "argc=%d", axi
->argc
);
1379 * we need some kernel buffer to hold the userspace args. Just
1380 * allocate one big one rather than allocating one of the right size
1381 * for every single argument inside audit_log_single_execve_arg()
1382 * should be <8k allocation so should be pretty safe.
1384 buf
= kmalloc(MAX_EXECVE_AUDIT_LEN
+ 1, GFP_KERNEL
);
1386 audit_panic("out of memory for argv string\n");
1390 for (i
= 0; i
< axi
->argc
; i
++) {
1391 len
= audit_log_single_execve_arg(context
, ab
, i
,
1400 static void audit_log_cap(struct audit_buffer
*ab
, char *prefix
, kernel_cap_t
*cap
)
1404 audit_log_format(ab
, " %s=", prefix
);
1405 CAP_FOR_EACH_U32(i
) {
1406 audit_log_format(ab
, "%08x", cap
->cap
[(_KERNEL_CAPABILITY_U32S
-1) - i
]);
1410 static void audit_log_fcaps(struct audit_buffer
*ab
, struct audit_names
*name
)
1412 kernel_cap_t
*perm
= &name
->fcap
.permitted
;
1413 kernel_cap_t
*inh
= &name
->fcap
.inheritable
;
1416 if (!cap_isclear(*perm
)) {
1417 audit_log_cap(ab
, "cap_fp", perm
);
1420 if (!cap_isclear(*inh
)) {
1421 audit_log_cap(ab
, "cap_fi", inh
);
1426 audit_log_format(ab
, " cap_fe=%d cap_fver=%x", name
->fcap
.fE
, name
->fcap_ver
);
1429 static void show_special(struct audit_context
*context
, int *call_panic
)
1431 struct audit_buffer
*ab
;
1434 ab
= audit_log_start(context
, GFP_KERNEL
, context
->type
);
1438 switch (context
->type
) {
1439 case AUDIT_SOCKETCALL
: {
1440 int nargs
= context
->socketcall
.nargs
;
1441 audit_log_format(ab
, "nargs=%d", nargs
);
1442 for (i
= 0; i
< nargs
; i
++)
1443 audit_log_format(ab
, " a%d=%lx", i
,
1444 context
->socketcall
.args
[i
]);
1447 u32 osid
= context
->ipc
.osid
;
1449 audit_log_format(ab
, "ouid=%u ogid=%u mode=%#ho",
1450 context
->ipc
.uid
, context
->ipc
.gid
, context
->ipc
.mode
);
1454 if (security_secid_to_secctx(osid
, &ctx
, &len
)) {
1455 audit_log_format(ab
, " osid=%u", osid
);
1458 audit_log_format(ab
, " obj=%s", ctx
);
1459 security_release_secctx(ctx
, len
);
1462 if (context
->ipc
.has_perm
) {
1464 ab
= audit_log_start(context
, GFP_KERNEL
,
1465 AUDIT_IPC_SET_PERM
);
1466 audit_log_format(ab
,
1467 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1468 context
->ipc
.qbytes
,
1469 context
->ipc
.perm_uid
,
1470 context
->ipc
.perm_gid
,
1471 context
->ipc
.perm_mode
);
1476 case AUDIT_MQ_OPEN
: {
1477 audit_log_format(ab
,
1478 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1479 "mq_msgsize=%ld mq_curmsgs=%ld",
1480 context
->mq_open
.oflag
, context
->mq_open
.mode
,
1481 context
->mq_open
.attr
.mq_flags
,
1482 context
->mq_open
.attr
.mq_maxmsg
,
1483 context
->mq_open
.attr
.mq_msgsize
,
1484 context
->mq_open
.attr
.mq_curmsgs
);
1486 case AUDIT_MQ_SENDRECV
: {
1487 audit_log_format(ab
,
1488 "mqdes=%d msg_len=%zd msg_prio=%u "
1489 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1490 context
->mq_sendrecv
.mqdes
,
1491 context
->mq_sendrecv
.msg_len
,
1492 context
->mq_sendrecv
.msg_prio
,
1493 context
->mq_sendrecv
.abs_timeout
.tv_sec
,
1494 context
->mq_sendrecv
.abs_timeout
.tv_nsec
);
1496 case AUDIT_MQ_NOTIFY
: {
1497 audit_log_format(ab
, "mqdes=%d sigev_signo=%d",
1498 context
->mq_notify
.mqdes
,
1499 context
->mq_notify
.sigev_signo
);
1501 case AUDIT_MQ_GETSETATTR
: {
1502 struct mq_attr
*attr
= &context
->mq_getsetattr
.mqstat
;
1503 audit_log_format(ab
,
1504 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1506 context
->mq_getsetattr
.mqdes
,
1507 attr
->mq_flags
, attr
->mq_maxmsg
,
1508 attr
->mq_msgsize
, attr
->mq_curmsgs
);
1510 case AUDIT_CAPSET
: {
1511 audit_log_format(ab
, "pid=%d", context
->capset
.pid
);
1512 audit_log_cap(ab
, "cap_pi", &context
->capset
.cap
.inheritable
);
1513 audit_log_cap(ab
, "cap_pp", &context
->capset
.cap
.permitted
);
1514 audit_log_cap(ab
, "cap_pe", &context
->capset
.cap
.effective
);
1517 audit_log_format(ab
, "fd=%d flags=0x%x", context
->mmap
.fd
,
1518 context
->mmap
.flags
);
1524 static void audit_log_name(struct audit_context
*context
, struct audit_names
*n
,
1525 int record_num
, int *call_panic
)
1527 struct audit_buffer
*ab
;
1528 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_PATH
);
1530 return; /* audit_panic has been called */
1532 audit_log_format(ab
, "item=%d", record_num
);
1535 switch (n
->name_len
) {
1536 case AUDIT_NAME_FULL
:
1537 /* log the full path */
1538 audit_log_format(ab
, " name=");
1539 audit_log_untrustedstring(ab
, n
->name
);
1542 /* name was specified as a relative path and the
1543 * directory component is the cwd */
1544 audit_log_d_path(ab
, " name=", &context
->pwd
);
1547 /* log the name's directory component */
1548 audit_log_format(ab
, " name=");
1549 audit_log_n_untrustedstring(ab
, n
->name
,
1553 audit_log_format(ab
, " name=(null)");
1555 if (n
->ino
!= (unsigned long)-1) {
1556 audit_log_format(ab
, " inode=%lu"
1557 " dev=%02x:%02x mode=%#ho"
1558 " ouid=%u ogid=%u rdev=%02x:%02x",
1571 if (security_secid_to_secctx(
1572 n
->osid
, &ctx
, &len
)) {
1573 audit_log_format(ab
, " osid=%u", n
->osid
);
1576 audit_log_format(ab
, " obj=%s", ctx
);
1577 security_release_secctx(ctx
, len
);
1581 audit_log_fcaps(ab
, n
);
1586 static void audit_log_exit(struct audit_context
*context
, struct task_struct
*tsk
)
1588 const struct cred
*cred
;
1589 int i
, call_panic
= 0;
1590 struct audit_buffer
*ab
;
1591 struct audit_aux_data
*aux
;
1593 struct audit_names
*n
;
1595 /* tsk == current */
1596 context
->pid
= tsk
->pid
;
1598 context
->ppid
= sys_getppid();
1599 cred
= current_cred();
1600 context
->uid
= cred
->uid
;
1601 context
->gid
= cred
->gid
;
1602 context
->euid
= cred
->euid
;
1603 context
->suid
= cred
->suid
;
1604 context
->fsuid
= cred
->fsuid
;
1605 context
->egid
= cred
->egid
;
1606 context
->sgid
= cred
->sgid
;
1607 context
->fsgid
= cred
->fsgid
;
1608 context
->personality
= tsk
->personality
;
1610 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_SYSCALL
);
1612 return; /* audit_panic has been called */
1613 audit_log_format(ab
, "arch=%x syscall=%d",
1614 context
->arch
, context
->major
);
1615 if (context
->personality
!= PER_LINUX
)
1616 audit_log_format(ab
, " per=%lx", context
->personality
);
1617 if (context
->return_valid
)
1618 audit_log_format(ab
, " success=%s exit=%ld",
1619 (context
->return_valid
==AUDITSC_SUCCESS
)?"yes":"no",
1620 context
->return_code
);
1622 spin_lock_irq(&tsk
->sighand
->siglock
);
1623 if (tsk
->signal
&& tsk
->signal
->tty
&& tsk
->signal
->tty
->name
)
1624 tty
= tsk
->signal
->tty
->name
;
1627 spin_unlock_irq(&tsk
->sighand
->siglock
);
1629 audit_log_format(ab
,
1630 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1631 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1632 " euid=%u suid=%u fsuid=%u"
1633 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1638 context
->name_count
,
1644 context
->euid
, context
->suid
, context
->fsuid
,
1645 context
->egid
, context
->sgid
, context
->fsgid
, tty
,
1649 audit_log_task_info(ab
, tsk
);
1650 audit_log_key(ab
, context
->filterkey
);
1653 for (aux
= context
->aux
; aux
; aux
= aux
->next
) {
1655 ab
= audit_log_start(context
, GFP_KERNEL
, aux
->type
);
1657 continue; /* audit_panic has been called */
1659 switch (aux
->type
) {
1661 case AUDIT_EXECVE
: {
1662 struct audit_aux_data_execve
*axi
= (void *)aux
;
1663 audit_log_execve_info(context
, &ab
, axi
);
1666 case AUDIT_BPRM_FCAPS
: {
1667 struct audit_aux_data_bprm_fcaps
*axs
= (void *)aux
;
1668 audit_log_format(ab
, "fver=%x", axs
->fcap_ver
);
1669 audit_log_cap(ab
, "fp", &axs
->fcap
.permitted
);
1670 audit_log_cap(ab
, "fi", &axs
->fcap
.inheritable
);
1671 audit_log_format(ab
, " fe=%d", axs
->fcap
.fE
);
1672 audit_log_cap(ab
, "old_pp", &axs
->old_pcap
.permitted
);
1673 audit_log_cap(ab
, "old_pi", &axs
->old_pcap
.inheritable
);
1674 audit_log_cap(ab
, "old_pe", &axs
->old_pcap
.effective
);
1675 audit_log_cap(ab
, "new_pp", &axs
->new_pcap
.permitted
);
1676 audit_log_cap(ab
, "new_pi", &axs
->new_pcap
.inheritable
);
1677 audit_log_cap(ab
, "new_pe", &axs
->new_pcap
.effective
);
1685 show_special(context
, &call_panic
);
1687 if (context
->fds
[0] >= 0) {
1688 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_FD_PAIR
);
1690 audit_log_format(ab
, "fd0=%d fd1=%d",
1691 context
->fds
[0], context
->fds
[1]);
1696 if (context
->sockaddr_len
) {
1697 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_SOCKADDR
);
1699 audit_log_format(ab
, "saddr=");
1700 audit_log_n_hex(ab
, (void *)context
->sockaddr
,
1701 context
->sockaddr_len
);
1706 for (aux
= context
->aux_pids
; aux
; aux
= aux
->next
) {
1707 struct audit_aux_data_pids
*axs
= (void *)aux
;
1709 for (i
= 0; i
< axs
->pid_count
; i
++)
1710 if (audit_log_pid_context(context
, axs
->target_pid
[i
],
1711 axs
->target_auid
[i
],
1713 axs
->target_sessionid
[i
],
1715 axs
->target_comm
[i
]))
1719 if (context
->target_pid
&&
1720 audit_log_pid_context(context
, context
->target_pid
,
1721 context
->target_auid
, context
->target_uid
,
1722 context
->target_sessionid
,
1723 context
->target_sid
, context
->target_comm
))
1726 if (context
->pwd
.dentry
&& context
->pwd
.mnt
) {
1727 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_CWD
);
1729 audit_log_d_path(ab
, " cwd=", &context
->pwd
);
1735 list_for_each_entry(n
, &context
->names_list
, list
)
1736 audit_log_name(context
, n
, i
++, &call_panic
);
1738 /* Send end of event record to help user space know we are finished */
1739 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_EOE
);
1743 audit_panic("error converting sid to string");
1747 * audit_free - free a per-task audit context
1748 * @tsk: task whose audit context block to free
1750 * Called from copy_process and do_exit
1752 void __audit_free(struct task_struct
*tsk
)
1754 struct audit_context
*context
;
1756 context
= audit_get_context(tsk
, 0, 0);
1760 /* Check for system calls that do not go through the exit
1761 * function (e.g., exit_group), then free context block.
1762 * We use GFP_ATOMIC here because we might be doing this
1763 * in the context of the idle thread */
1764 /* that can happen only if we are called from do_exit() */
1765 if (context
->in_syscall
&& context
->current_state
== AUDIT_RECORD_CONTEXT
)
1766 audit_log_exit(context
, tsk
);
1767 if (!list_empty(&context
->killed_trees
))
1768 audit_kill_trees(&context
->killed_trees
);
1770 audit_free_context(context
);
1774 * audit_syscall_entry - fill in an audit record at syscall entry
1775 * @arch: architecture type
1776 * @major: major syscall type (function)
1777 * @a1: additional syscall register 1
1778 * @a2: additional syscall register 2
1779 * @a3: additional syscall register 3
1780 * @a4: additional syscall register 4
1782 * Fill in audit context at syscall entry. This only happens if the
1783 * audit context was created when the task was created and the state or
1784 * filters demand the audit context be built. If the state from the
1785 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1786 * then the record will be written at syscall exit time (otherwise, it
1787 * will only be written if another part of the kernel requests that it
1790 void __audit_syscall_entry(int arch
, int major
,
1791 unsigned long a1
, unsigned long a2
,
1792 unsigned long a3
, unsigned long a4
)
1794 struct task_struct
*tsk
= current
;
1795 struct audit_context
*context
= tsk
->audit_context
;
1796 enum audit_state state
;
1802 * This happens only on certain architectures that make system
1803 * calls in kernel_thread via the entry.S interface, instead of
1804 * with direct calls. (If you are porting to a new
1805 * architecture, hitting this condition can indicate that you
1806 * got the _exit/_leave calls backward in entry.S.)
1810 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1812 * This also happens with vm86 emulation in a non-nested manner
1813 * (entries without exits), so this case must be caught.
1815 if (context
->in_syscall
) {
1816 struct audit_context
*newctx
;
1820 "audit(:%d) pid=%d in syscall=%d;"
1821 " entering syscall=%d\n",
1822 context
->serial
, tsk
->pid
, context
->major
, major
);
1824 newctx
= audit_alloc_context(context
->state
);
1826 newctx
->previous
= context
;
1828 tsk
->audit_context
= newctx
;
1830 /* If we can't alloc a new context, the best we
1831 * can do is to leak memory (any pending putname
1832 * will be lost). The only other alternative is
1833 * to abandon auditing. */
1834 audit_zero_context(context
, context
->state
);
1837 BUG_ON(context
->in_syscall
|| context
->name_count
);
1842 context
->arch
= arch
;
1843 context
->major
= major
;
1844 context
->argv
[0] = a1
;
1845 context
->argv
[1] = a2
;
1846 context
->argv
[2] = a3
;
1847 context
->argv
[3] = a4
;
1849 state
= context
->state
;
1850 context
->dummy
= !audit_n_rules
;
1851 if (!context
->dummy
&& state
== AUDIT_BUILD_CONTEXT
) {
1853 state
= audit_filter_syscall(tsk
, context
, &audit_filter_list
[AUDIT_FILTER_ENTRY
]);
1855 if (state
== AUDIT_DISABLED
)
1858 context
->serial
= 0;
1859 context
->ctime
= CURRENT_TIME
;
1860 context
->in_syscall
= 1;
1861 context
->current_state
= state
;
1866 * audit_syscall_exit - deallocate audit context after a system call
1867 * @success: success value of the syscall
1868 * @return_code: return value of the syscall
1870 * Tear down after system call. If the audit context has been marked as
1871 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1872 * filtering, or because some other part of the kernel wrote an audit
1873 * message), then write out the syscall information. In call cases,
1874 * free the names stored from getname().
1876 void __audit_syscall_exit(int success
, long return_code
)
1878 struct task_struct
*tsk
= current
;
1879 struct audit_context
*context
;
1882 success
= AUDITSC_SUCCESS
;
1884 success
= AUDITSC_FAILURE
;
1886 context
= audit_get_context(tsk
, success
, return_code
);
1890 if (context
->in_syscall
&& context
->current_state
== AUDIT_RECORD_CONTEXT
)
1891 audit_log_exit(context
, tsk
);
1893 context
->in_syscall
= 0;
1894 context
->prio
= context
->state
== AUDIT_RECORD_CONTEXT
? ~0ULL : 0;
1896 if (!list_empty(&context
->killed_trees
))
1897 audit_kill_trees(&context
->killed_trees
);
1899 if (context
->previous
) {
1900 struct audit_context
*new_context
= context
->previous
;
1901 context
->previous
= NULL
;
1902 audit_free_context(context
);
1903 tsk
->audit_context
= new_context
;
1905 audit_free_names(context
);
1906 unroll_tree_refs(context
, NULL
, 0);
1907 audit_free_aux(context
);
1908 context
->aux
= NULL
;
1909 context
->aux_pids
= NULL
;
1910 context
->target_pid
= 0;
1911 context
->target_sid
= 0;
1912 context
->sockaddr_len
= 0;
1914 context
->fds
[0] = -1;
1915 if (context
->state
!= AUDIT_RECORD_CONTEXT
) {
1916 kfree(context
->filterkey
);
1917 context
->filterkey
= NULL
;
1919 tsk
->audit_context
= context
;
1923 static inline void handle_one(const struct inode
*inode
)
1925 #ifdef CONFIG_AUDIT_TREE
1926 struct audit_context
*context
;
1927 struct audit_tree_refs
*p
;
1928 struct audit_chunk
*chunk
;
1930 if (likely(hlist_empty(&inode
->i_fsnotify_marks
)))
1932 context
= current
->audit_context
;
1934 count
= context
->tree_count
;
1936 chunk
= audit_tree_lookup(inode
);
1940 if (likely(put_tree_ref(context
, chunk
)))
1942 if (unlikely(!grow_tree_refs(context
))) {
1943 printk(KERN_WARNING
"out of memory, audit has lost a tree reference\n");
1944 audit_set_auditable(context
);
1945 audit_put_chunk(chunk
);
1946 unroll_tree_refs(context
, p
, count
);
1949 put_tree_ref(context
, chunk
);
1953 static void handle_path(const struct dentry
*dentry
)
1955 #ifdef CONFIG_AUDIT_TREE
1956 struct audit_context
*context
;
1957 struct audit_tree_refs
*p
;
1958 const struct dentry
*d
, *parent
;
1959 struct audit_chunk
*drop
;
1963 context
= current
->audit_context
;
1965 count
= context
->tree_count
;
1970 seq
= read_seqbegin(&rename_lock
);
1972 struct inode
*inode
= d
->d_inode
;
1973 if (inode
&& unlikely(!hlist_empty(&inode
->i_fsnotify_marks
))) {
1974 struct audit_chunk
*chunk
;
1975 chunk
= audit_tree_lookup(inode
);
1977 if (unlikely(!put_tree_ref(context
, chunk
))) {
1983 parent
= d
->d_parent
;
1988 if (unlikely(read_seqretry(&rename_lock
, seq
) || drop
)) { /* in this order */
1991 /* just a race with rename */
1992 unroll_tree_refs(context
, p
, count
);
1995 audit_put_chunk(drop
);
1996 if (grow_tree_refs(context
)) {
1997 /* OK, got more space */
1998 unroll_tree_refs(context
, p
, count
);
2003 "out of memory, audit has lost a tree reference\n");
2004 unroll_tree_refs(context
, p
, count
);
2005 audit_set_auditable(context
);
2012 static struct audit_names
*audit_alloc_name(struct audit_context
*context
)
2014 struct audit_names
*aname
;
2016 if (context
->name_count
< AUDIT_NAMES
) {
2017 aname
= &context
->preallocated_names
[context
->name_count
];
2018 memset(aname
, 0, sizeof(*aname
));
2020 aname
= kzalloc(sizeof(*aname
), GFP_NOFS
);
2023 aname
->should_free
= true;
2026 aname
->ino
= (unsigned long)-1;
2027 list_add_tail(&aname
->list
, &context
->names_list
);
2029 context
->name_count
++;
2031 context
->ino_count
++;
2037 * audit_getname - add a name to the list
2038 * @name: name to add
2040 * Add a name to the list of audit names for this context.
2041 * Called from fs/namei.c:getname().
2043 void __audit_getname(const char *name
)
2045 struct audit_context
*context
= current
->audit_context
;
2046 struct audit_names
*n
;
2048 if (!context
->in_syscall
) {
2049 #if AUDIT_DEBUG == 2
2050 printk(KERN_ERR
"%s:%d(:%d): ignoring getname(%p)\n",
2051 __FILE__
, __LINE__
, context
->serial
, name
);
2057 n
= audit_alloc_name(context
);
2062 n
->name_len
= AUDIT_NAME_FULL
;
2065 if (!context
->pwd
.dentry
)
2066 get_fs_pwd(current
->fs
, &context
->pwd
);
2069 /* audit_putname - intercept a putname request
2070 * @name: name to intercept and delay for putname
2072 * If we have stored the name from getname in the audit context,
2073 * then we delay the putname until syscall exit.
2074 * Called from include/linux/fs.h:putname().
2076 void audit_putname(const char *name
)
2078 struct audit_context
*context
= current
->audit_context
;
2081 if (!context
->in_syscall
) {
2082 #if AUDIT_DEBUG == 2
2083 printk(KERN_ERR
"%s:%d(:%d): __putname(%p)\n",
2084 __FILE__
, __LINE__
, context
->serial
, name
);
2085 if (context
->name_count
) {
2086 struct audit_names
*n
;
2089 list_for_each_entry(n
, &context
->names_list
, list
)
2090 printk(KERN_ERR
"name[%d] = %p = %s\n", i
,
2091 n
->name
, n
->name
?: "(null)");
2098 ++context
->put_count
;
2099 if (context
->put_count
> context
->name_count
) {
2100 printk(KERN_ERR
"%s:%d(:%d): major=%d"
2101 " in_syscall=%d putname(%p) name_count=%d"
2104 context
->serial
, context
->major
,
2105 context
->in_syscall
, name
, context
->name_count
,
2106 context
->put_count
);
2113 static inline int audit_copy_fcaps(struct audit_names
*name
, const struct dentry
*dentry
)
2115 struct cpu_vfs_cap_data caps
;
2121 rc
= get_vfs_caps_from_disk(dentry
, &caps
);
2125 name
->fcap
.permitted
= caps
.permitted
;
2126 name
->fcap
.inheritable
= caps
.inheritable
;
2127 name
->fcap
.fE
= !!(caps
.magic_etc
& VFS_CAP_FLAGS_EFFECTIVE
);
2128 name
->fcap_ver
= (caps
.magic_etc
& VFS_CAP_REVISION_MASK
) >> VFS_CAP_REVISION_SHIFT
;
2134 /* Copy inode data into an audit_names. */
2135 static void audit_copy_inode(struct audit_names
*name
, const struct dentry
*dentry
,
2136 const struct inode
*inode
)
2138 name
->ino
= inode
->i_ino
;
2139 name
->dev
= inode
->i_sb
->s_dev
;
2140 name
->mode
= inode
->i_mode
;
2141 name
->uid
= inode
->i_uid
;
2142 name
->gid
= inode
->i_gid
;
2143 name
->rdev
= inode
->i_rdev
;
2144 security_inode_getsecid(inode
, &name
->osid
);
2145 audit_copy_fcaps(name
, dentry
);
2149 * audit_inode - store the inode and device from a lookup
2150 * @name: name being audited
2151 * @dentry: dentry being audited
2153 * Called from fs/namei.c:path_lookup().
2155 void __audit_inode(const char *name
, const struct dentry
*dentry
)
2157 struct audit_context
*context
= current
->audit_context
;
2158 const struct inode
*inode
= dentry
->d_inode
;
2159 struct audit_names
*n
;
2161 if (!context
->in_syscall
)
2164 list_for_each_entry_reverse(n
, &context
->names_list
, list
) {
2165 if (n
->name
&& (n
->name
== name
))
2169 /* unable to find the name from a previous getname() */
2170 n
= audit_alloc_name(context
);
2174 handle_path(dentry
);
2175 audit_copy_inode(n
, dentry
, inode
);
2179 * audit_inode_child - collect inode info for created/removed objects
2180 * @dentry: dentry being audited
2181 * @parent: inode of dentry parent
2183 * For syscalls that create or remove filesystem objects, audit_inode
2184 * can only collect information for the filesystem object's parent.
2185 * This call updates the audit context with the child's information.
2186 * Syscalls that create a new filesystem object must be hooked after
2187 * the object is created. Syscalls that remove a filesystem object
2188 * must be hooked prior, in order to capture the target inode during
2189 * unsuccessful attempts.
2191 void __audit_inode_child(const struct dentry
*dentry
,
2192 const struct inode
*parent
)
2194 struct audit_context
*context
= current
->audit_context
;
2195 const char *found_parent
= NULL
, *found_child
= NULL
;
2196 const struct inode
*inode
= dentry
->d_inode
;
2197 const char *dname
= dentry
->d_name
.name
;
2198 struct audit_names
*n
;
2201 if (!context
->in_syscall
)
2207 /* parent is more likely, look for it first */
2208 list_for_each_entry(n
, &context
->names_list
, list
) {
2212 if (n
->ino
== parent
->i_ino
&&
2213 !audit_compare_dname_path(dname
, n
->name
, &dirlen
)) {
2214 n
->name_len
= dirlen
; /* update parent data in place */
2215 found_parent
= n
->name
;
2220 /* no matching parent, look for matching child */
2221 list_for_each_entry(n
, &context
->names_list
, list
) {
2225 /* strcmp() is the more likely scenario */
2226 if (!strcmp(dname
, n
->name
) ||
2227 !audit_compare_dname_path(dname
, n
->name
, &dirlen
)) {
2229 audit_copy_inode(n
, NULL
, inode
);
2231 n
->ino
= (unsigned long)-1;
2232 found_child
= n
->name
;
2238 if (!found_parent
) {
2239 n
= audit_alloc_name(context
);
2242 audit_copy_inode(n
, NULL
, parent
);
2246 n
= audit_alloc_name(context
);
2250 /* Re-use the name belonging to the slot for a matching parent
2251 * directory. All names for this context are relinquished in
2252 * audit_free_names() */
2254 n
->name
= found_parent
;
2255 n
->name_len
= AUDIT_NAME_FULL
;
2256 /* don't call __putname() */
2257 n
->name_put
= false;
2261 audit_copy_inode(n
, NULL
, inode
);
2264 EXPORT_SYMBOL_GPL(__audit_inode_child
);
2267 * auditsc_get_stamp - get local copies of audit_context values
2268 * @ctx: audit_context for the task
2269 * @t: timespec to store time recorded in the audit_context
2270 * @serial: serial value that is recorded in the audit_context
2272 * Also sets the context as auditable.
2274 int auditsc_get_stamp(struct audit_context
*ctx
,
2275 struct timespec
*t
, unsigned int *serial
)
2277 if (!ctx
->in_syscall
)
2280 ctx
->serial
= audit_serial();
2281 t
->tv_sec
= ctx
->ctime
.tv_sec
;
2282 t
->tv_nsec
= ctx
->ctime
.tv_nsec
;
2283 *serial
= ctx
->serial
;
2286 ctx
->current_state
= AUDIT_RECORD_CONTEXT
;
2291 /* global counter which is incremented every time something logs in */
2292 static atomic_t session_id
= ATOMIC_INIT(0);
2295 * audit_set_loginuid - set current task's audit_context loginuid
2296 * @loginuid: loginuid value
2300 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2302 int audit_set_loginuid(uid_t loginuid
)
2304 struct task_struct
*task
= current
;
2305 struct audit_context
*context
= task
->audit_context
;
2306 unsigned int sessionid
;
2308 #ifdef CONFIG_AUDIT_LOGINUID_IMMUTABLE
2309 if (task
->loginuid
!= -1)
2311 #else /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2312 if (!capable(CAP_AUDIT_CONTROL
))
2314 #endif /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2316 sessionid
= atomic_inc_return(&session_id
);
2317 if (context
&& context
->in_syscall
) {
2318 struct audit_buffer
*ab
;
2320 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_LOGIN
);
2322 audit_log_format(ab
, "login pid=%d uid=%u "
2323 "old auid=%u new auid=%u"
2324 " old ses=%u new ses=%u",
2325 task
->pid
, task_uid(task
),
2326 task
->loginuid
, loginuid
,
2327 task
->sessionid
, sessionid
);
2331 task
->sessionid
= sessionid
;
2332 task
->loginuid
= loginuid
;
2337 * __audit_mq_open - record audit data for a POSIX MQ open
2340 * @attr: queue attributes
2343 void __audit_mq_open(int oflag
, umode_t mode
, struct mq_attr
*attr
)
2345 struct audit_context
*context
= current
->audit_context
;
2348 memcpy(&context
->mq_open
.attr
, attr
, sizeof(struct mq_attr
));
2350 memset(&context
->mq_open
.attr
, 0, sizeof(struct mq_attr
));
2352 context
->mq_open
.oflag
= oflag
;
2353 context
->mq_open
.mode
= mode
;
2355 context
->type
= AUDIT_MQ_OPEN
;
2359 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2360 * @mqdes: MQ descriptor
2361 * @msg_len: Message length
2362 * @msg_prio: Message priority
2363 * @abs_timeout: Message timeout in absolute time
2366 void __audit_mq_sendrecv(mqd_t mqdes
, size_t msg_len
, unsigned int msg_prio
,
2367 const struct timespec
*abs_timeout
)
2369 struct audit_context
*context
= current
->audit_context
;
2370 struct timespec
*p
= &context
->mq_sendrecv
.abs_timeout
;
2373 memcpy(p
, abs_timeout
, sizeof(struct timespec
));
2375 memset(p
, 0, sizeof(struct timespec
));
2377 context
->mq_sendrecv
.mqdes
= mqdes
;
2378 context
->mq_sendrecv
.msg_len
= msg_len
;
2379 context
->mq_sendrecv
.msg_prio
= msg_prio
;
2381 context
->type
= AUDIT_MQ_SENDRECV
;
2385 * __audit_mq_notify - record audit data for a POSIX MQ notify
2386 * @mqdes: MQ descriptor
2387 * @notification: Notification event
2391 void __audit_mq_notify(mqd_t mqdes
, const struct sigevent
*notification
)
2393 struct audit_context
*context
= current
->audit_context
;
2396 context
->mq_notify
.sigev_signo
= notification
->sigev_signo
;
2398 context
->mq_notify
.sigev_signo
= 0;
2400 context
->mq_notify
.mqdes
= mqdes
;
2401 context
->type
= AUDIT_MQ_NOTIFY
;
2405 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2406 * @mqdes: MQ descriptor
2410 void __audit_mq_getsetattr(mqd_t mqdes
, struct mq_attr
*mqstat
)
2412 struct audit_context
*context
= current
->audit_context
;
2413 context
->mq_getsetattr
.mqdes
= mqdes
;
2414 context
->mq_getsetattr
.mqstat
= *mqstat
;
2415 context
->type
= AUDIT_MQ_GETSETATTR
;
2419 * audit_ipc_obj - record audit data for ipc object
2420 * @ipcp: ipc permissions
2423 void __audit_ipc_obj(struct kern_ipc_perm
*ipcp
)
2425 struct audit_context
*context
= current
->audit_context
;
2426 context
->ipc
.uid
= ipcp
->uid
;
2427 context
->ipc
.gid
= ipcp
->gid
;
2428 context
->ipc
.mode
= ipcp
->mode
;
2429 context
->ipc
.has_perm
= 0;
2430 security_ipc_getsecid(ipcp
, &context
->ipc
.osid
);
2431 context
->type
= AUDIT_IPC
;
2435 * audit_ipc_set_perm - record audit data for new ipc permissions
2436 * @qbytes: msgq bytes
2437 * @uid: msgq user id
2438 * @gid: msgq group id
2439 * @mode: msgq mode (permissions)
2441 * Called only after audit_ipc_obj().
2443 void __audit_ipc_set_perm(unsigned long qbytes
, uid_t uid
, gid_t gid
, umode_t mode
)
2445 struct audit_context
*context
= current
->audit_context
;
2447 context
->ipc
.qbytes
= qbytes
;
2448 context
->ipc
.perm_uid
= uid
;
2449 context
->ipc
.perm_gid
= gid
;
2450 context
->ipc
.perm_mode
= mode
;
2451 context
->ipc
.has_perm
= 1;
2454 int __audit_bprm(struct linux_binprm
*bprm
)
2456 struct audit_aux_data_execve
*ax
;
2457 struct audit_context
*context
= current
->audit_context
;
2459 ax
= kmalloc(sizeof(*ax
), GFP_KERNEL
);
2463 ax
->argc
= bprm
->argc
;
2464 ax
->envc
= bprm
->envc
;
2466 ax
->d
.type
= AUDIT_EXECVE
;
2467 ax
->d
.next
= context
->aux
;
2468 context
->aux
= (void *)ax
;
2474 * audit_socketcall - record audit data for sys_socketcall
2475 * @nargs: number of args
2479 void __audit_socketcall(int nargs
, unsigned long *args
)
2481 struct audit_context
*context
= current
->audit_context
;
2483 context
->type
= AUDIT_SOCKETCALL
;
2484 context
->socketcall
.nargs
= nargs
;
2485 memcpy(context
->socketcall
.args
, args
, nargs
* sizeof(unsigned long));
2489 * __audit_fd_pair - record audit data for pipe and socketpair
2490 * @fd1: the first file descriptor
2491 * @fd2: the second file descriptor
2494 void __audit_fd_pair(int fd1
, int fd2
)
2496 struct audit_context
*context
= current
->audit_context
;
2497 context
->fds
[0] = fd1
;
2498 context
->fds
[1] = fd2
;
2502 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2503 * @len: data length in user space
2504 * @a: data address in kernel space
2506 * Returns 0 for success or NULL context or < 0 on error.
2508 int __audit_sockaddr(int len
, void *a
)
2510 struct audit_context
*context
= current
->audit_context
;
2512 if (!context
->sockaddr
) {
2513 void *p
= kmalloc(sizeof(struct sockaddr_storage
), GFP_KERNEL
);
2516 context
->sockaddr
= p
;
2519 context
->sockaddr_len
= len
;
2520 memcpy(context
->sockaddr
, a
, len
);
2524 void __audit_ptrace(struct task_struct
*t
)
2526 struct audit_context
*context
= current
->audit_context
;
2528 context
->target_pid
= t
->pid
;
2529 context
->target_auid
= audit_get_loginuid(t
);
2530 context
->target_uid
= task_uid(t
);
2531 context
->target_sessionid
= audit_get_sessionid(t
);
2532 security_task_getsecid(t
, &context
->target_sid
);
2533 memcpy(context
->target_comm
, t
->comm
, TASK_COMM_LEN
);
2537 * audit_signal_info - record signal info for shutting down audit subsystem
2538 * @sig: signal value
2539 * @t: task being signaled
2541 * If the audit subsystem is being terminated, record the task (pid)
2542 * and uid that is doing that.
2544 int __audit_signal_info(int sig
, struct task_struct
*t
)
2546 struct audit_aux_data_pids
*axp
;
2547 struct task_struct
*tsk
= current
;
2548 struct audit_context
*ctx
= tsk
->audit_context
;
2549 uid_t uid
= current_uid(), t_uid
= task_uid(t
);
2551 if (audit_pid
&& t
->tgid
== audit_pid
) {
2552 if (sig
== SIGTERM
|| sig
== SIGHUP
|| sig
== SIGUSR1
|| sig
== SIGUSR2
) {
2553 audit_sig_pid
= tsk
->pid
;
2554 if (tsk
->loginuid
!= -1)
2555 audit_sig_uid
= tsk
->loginuid
;
2557 audit_sig_uid
= uid
;
2558 security_task_getsecid(tsk
, &audit_sig_sid
);
2560 if (!audit_signals
|| audit_dummy_context())
2564 /* optimize the common case by putting first signal recipient directly
2565 * in audit_context */
2566 if (!ctx
->target_pid
) {
2567 ctx
->target_pid
= t
->tgid
;
2568 ctx
->target_auid
= audit_get_loginuid(t
);
2569 ctx
->target_uid
= t_uid
;
2570 ctx
->target_sessionid
= audit_get_sessionid(t
);
2571 security_task_getsecid(t
, &ctx
->target_sid
);
2572 memcpy(ctx
->target_comm
, t
->comm
, TASK_COMM_LEN
);
2576 axp
= (void *)ctx
->aux_pids
;
2577 if (!axp
|| axp
->pid_count
== AUDIT_AUX_PIDS
) {
2578 axp
= kzalloc(sizeof(*axp
), GFP_ATOMIC
);
2582 axp
->d
.type
= AUDIT_OBJ_PID
;
2583 axp
->d
.next
= ctx
->aux_pids
;
2584 ctx
->aux_pids
= (void *)axp
;
2586 BUG_ON(axp
->pid_count
>= AUDIT_AUX_PIDS
);
2588 axp
->target_pid
[axp
->pid_count
] = t
->tgid
;
2589 axp
->target_auid
[axp
->pid_count
] = audit_get_loginuid(t
);
2590 axp
->target_uid
[axp
->pid_count
] = t_uid
;
2591 axp
->target_sessionid
[axp
->pid_count
] = audit_get_sessionid(t
);
2592 security_task_getsecid(t
, &axp
->target_sid
[axp
->pid_count
]);
2593 memcpy(axp
->target_comm
[axp
->pid_count
], t
->comm
, TASK_COMM_LEN
);
2600 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2601 * @bprm: pointer to the bprm being processed
2602 * @new: the proposed new credentials
2603 * @old: the old credentials
2605 * Simply check if the proc already has the caps given by the file and if not
2606 * store the priv escalation info for later auditing at the end of the syscall
2610 int __audit_log_bprm_fcaps(struct linux_binprm
*bprm
,
2611 const struct cred
*new, const struct cred
*old
)
2613 struct audit_aux_data_bprm_fcaps
*ax
;
2614 struct audit_context
*context
= current
->audit_context
;
2615 struct cpu_vfs_cap_data vcaps
;
2616 struct dentry
*dentry
;
2618 ax
= kmalloc(sizeof(*ax
), GFP_KERNEL
);
2622 ax
->d
.type
= AUDIT_BPRM_FCAPS
;
2623 ax
->d
.next
= context
->aux
;
2624 context
->aux
= (void *)ax
;
2626 dentry
= dget(bprm
->file
->f_dentry
);
2627 get_vfs_caps_from_disk(dentry
, &vcaps
);
2630 ax
->fcap
.permitted
= vcaps
.permitted
;
2631 ax
->fcap
.inheritable
= vcaps
.inheritable
;
2632 ax
->fcap
.fE
= !!(vcaps
.magic_etc
& VFS_CAP_FLAGS_EFFECTIVE
);
2633 ax
->fcap_ver
= (vcaps
.magic_etc
& VFS_CAP_REVISION_MASK
) >> VFS_CAP_REVISION_SHIFT
;
2635 ax
->old_pcap
.permitted
= old
->cap_permitted
;
2636 ax
->old_pcap
.inheritable
= old
->cap_inheritable
;
2637 ax
->old_pcap
.effective
= old
->cap_effective
;
2639 ax
->new_pcap
.permitted
= new->cap_permitted
;
2640 ax
->new_pcap
.inheritable
= new->cap_inheritable
;
2641 ax
->new_pcap
.effective
= new->cap_effective
;
2646 * __audit_log_capset - store information about the arguments to the capset syscall
2647 * @pid: target pid of the capset call
2648 * @new: the new credentials
2649 * @old: the old (current) credentials
2651 * Record the aguments userspace sent to sys_capset for later printing by the
2652 * audit system if applicable
2654 void __audit_log_capset(pid_t pid
,
2655 const struct cred
*new, const struct cred
*old
)
2657 struct audit_context
*context
= current
->audit_context
;
2658 context
->capset
.pid
= pid
;
2659 context
->capset
.cap
.effective
= new->cap_effective
;
2660 context
->capset
.cap
.inheritable
= new->cap_effective
;
2661 context
->capset
.cap
.permitted
= new->cap_permitted
;
2662 context
->type
= AUDIT_CAPSET
;
2665 void __audit_mmap_fd(int fd
, int flags
)
2667 struct audit_context
*context
= current
->audit_context
;
2668 context
->mmap
.fd
= fd
;
2669 context
->mmap
.flags
= flags
;
2670 context
->type
= AUDIT_MMAP
;
2673 static void audit_log_abend(struct audit_buffer
*ab
, char *reason
, long signr
)
2677 unsigned int sessionid
;
2679 auid
= audit_get_loginuid(current
);
2680 sessionid
= audit_get_sessionid(current
);
2681 current_uid_gid(&uid
, &gid
);
2683 audit_log_format(ab
, "auid=%u uid=%u gid=%u ses=%u",
2684 auid
, uid
, gid
, sessionid
);
2685 audit_log_task_context(ab
);
2686 audit_log_format(ab
, " pid=%d comm=", current
->pid
);
2687 audit_log_untrustedstring(ab
, current
->comm
);
2688 audit_log_format(ab
, " reason=");
2689 audit_log_string(ab
, reason
);
2690 audit_log_format(ab
, " sig=%ld", signr
);
2693 * audit_core_dumps - record information about processes that end abnormally
2694 * @signr: signal value
2696 * If a process ends with a core dump, something fishy is going on and we
2697 * should record the event for investigation.
2699 void audit_core_dumps(long signr
)
2701 struct audit_buffer
*ab
;
2706 if (signr
== SIGQUIT
) /* don't care for those */
2709 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_ANOM_ABEND
);
2710 audit_log_abend(ab
, "memory violation", signr
);
2714 void __audit_seccomp(unsigned long syscall
, long signr
, int code
)
2716 struct audit_buffer
*ab
;
2718 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_ANOM_ABEND
);
2719 audit_log_abend(ab
, "seccomp", signr
);
2720 audit_log_format(ab
, " syscall=%ld", syscall
);
2721 audit_log_format(ab
, " compat=%d", is_compat_task());
2722 audit_log_format(ab
, " ip=0x%lx", KSTK_EIP(current
));
2723 audit_log_format(ab
, " code=0x%x", code
);
2727 struct list_head
*audit_killed_trees(void)
2729 struct audit_context
*ctx
= current
->audit_context
;
2730 if (likely(!ctx
|| !ctx
->in_syscall
))
2732 return &ctx
->killed_trees
;