e1000e: 82571 Serdes can fail to get link
[linux-2.6.git] / drivers / net / e1000e / 82571.c
blobe57e4097ef1bf01bca62b14bc007687bb317f241
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2010 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * 82571EB Gigabit Ethernet Controller
31 * 82571EB Gigabit Ethernet Controller (Copper)
32 * 82571EB Gigabit Ethernet Controller (Fiber)
33 * 82571EB Dual Port Gigabit Mezzanine Adapter
34 * 82571EB Quad Port Gigabit Mezzanine Adapter
35 * 82571PT Gigabit PT Quad Port Server ExpressModule
36 * 82572EI Gigabit Ethernet Controller (Copper)
37 * 82572EI Gigabit Ethernet Controller (Fiber)
38 * 82572EI Gigabit Ethernet Controller
39 * 82573V Gigabit Ethernet Controller (Copper)
40 * 82573E Gigabit Ethernet Controller (Copper)
41 * 82573L Gigabit Ethernet Controller
42 * 82574L Gigabit Network Connection
43 * 82583V Gigabit Network Connection
46 #include "e1000.h"
48 #define ID_LED_RESERVED_F746 0xF746
49 #define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
50 (ID_LED_OFF1_ON2 << 8) | \
51 (ID_LED_DEF1_DEF2 << 4) | \
52 (ID_LED_DEF1_DEF2))
54 #define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
55 #define AN_RETRY_COUNT 5 /* Autoneg Retry Count value */
56 #define E1000_BASE1000T_STATUS 10
57 #define E1000_IDLE_ERROR_COUNT_MASK 0xFF
58 #define E1000_RECEIVE_ERROR_COUNTER 21
59 #define E1000_RECEIVE_ERROR_MAX 0xFFFF
61 #define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */
63 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
64 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
65 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
66 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
67 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
68 u16 words, u16 *data);
69 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
70 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
71 static s32 e1000_setup_link_82571(struct e1000_hw *hw);
72 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
73 static void e1000_clear_vfta_82571(struct e1000_hw *hw);
74 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
75 static s32 e1000_led_on_82574(struct e1000_hw *hw);
76 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
77 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
78 static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw);
79 static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw);
80 static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw);
82 /**
83 * e1000_init_phy_params_82571 - Init PHY func ptrs.
84 * @hw: pointer to the HW structure
85 **/
86 static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
88 struct e1000_phy_info *phy = &hw->phy;
89 s32 ret_val;
91 if (hw->phy.media_type != e1000_media_type_copper) {
92 phy->type = e1000_phy_none;
93 return 0;
96 phy->addr = 1;
97 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
98 phy->reset_delay_us = 100;
100 phy->ops.power_up = e1000_power_up_phy_copper;
101 phy->ops.power_down = e1000_power_down_phy_copper_82571;
103 switch (hw->mac.type) {
104 case e1000_82571:
105 case e1000_82572:
106 phy->type = e1000_phy_igp_2;
107 break;
108 case e1000_82573:
109 phy->type = e1000_phy_m88;
110 break;
111 case e1000_82574:
112 case e1000_82583:
113 phy->type = e1000_phy_bm;
114 phy->ops.acquire = e1000_get_hw_semaphore_82574;
115 phy->ops.release = e1000_put_hw_semaphore_82574;
116 break;
117 default:
118 return -E1000_ERR_PHY;
119 break;
122 /* This can only be done after all function pointers are setup. */
123 ret_val = e1000_get_phy_id_82571(hw);
125 /* Verify phy id */
126 switch (hw->mac.type) {
127 case e1000_82571:
128 case e1000_82572:
129 if (phy->id != IGP01E1000_I_PHY_ID)
130 return -E1000_ERR_PHY;
131 break;
132 case e1000_82573:
133 if (phy->id != M88E1111_I_PHY_ID)
134 return -E1000_ERR_PHY;
135 break;
136 case e1000_82574:
137 case e1000_82583:
138 if (phy->id != BME1000_E_PHY_ID_R2)
139 return -E1000_ERR_PHY;
140 break;
141 default:
142 return -E1000_ERR_PHY;
143 break;
146 return 0;
150 * e1000_init_nvm_params_82571 - Init NVM func ptrs.
151 * @hw: pointer to the HW structure
153 static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
155 struct e1000_nvm_info *nvm = &hw->nvm;
156 u32 eecd = er32(EECD);
157 u16 size;
159 nvm->opcode_bits = 8;
160 nvm->delay_usec = 1;
161 switch (nvm->override) {
162 case e1000_nvm_override_spi_large:
163 nvm->page_size = 32;
164 nvm->address_bits = 16;
165 break;
166 case e1000_nvm_override_spi_small:
167 nvm->page_size = 8;
168 nvm->address_bits = 8;
169 break;
170 default:
171 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
172 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
173 break;
176 switch (hw->mac.type) {
177 case e1000_82573:
178 case e1000_82574:
179 case e1000_82583:
180 if (((eecd >> 15) & 0x3) == 0x3) {
181 nvm->type = e1000_nvm_flash_hw;
182 nvm->word_size = 2048;
184 * Autonomous Flash update bit must be cleared due
185 * to Flash update issue.
187 eecd &= ~E1000_EECD_AUPDEN;
188 ew32(EECD, eecd);
189 break;
191 /* Fall Through */
192 default:
193 nvm->type = e1000_nvm_eeprom_spi;
194 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
195 E1000_EECD_SIZE_EX_SHIFT);
197 * Added to a constant, "size" becomes the left-shift value
198 * for setting word_size.
200 size += NVM_WORD_SIZE_BASE_SHIFT;
202 /* EEPROM access above 16k is unsupported */
203 if (size > 14)
204 size = 14;
205 nvm->word_size = 1 << size;
206 break;
209 /* Function Pointers */
210 switch (hw->mac.type) {
211 case e1000_82574:
212 case e1000_82583:
213 nvm->ops.acquire = e1000_get_hw_semaphore_82574;
214 nvm->ops.release = e1000_put_hw_semaphore_82574;
215 break;
216 default:
217 break;
220 return 0;
224 * e1000_init_mac_params_82571 - Init MAC func ptrs.
225 * @hw: pointer to the HW structure
227 static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter)
229 struct e1000_hw *hw = &adapter->hw;
230 struct e1000_mac_info *mac = &hw->mac;
231 struct e1000_mac_operations *func = &mac->ops;
232 u32 swsm = 0;
233 u32 swsm2 = 0;
234 bool force_clear_smbi = false;
236 /* Set media type */
237 switch (adapter->pdev->device) {
238 case E1000_DEV_ID_82571EB_FIBER:
239 case E1000_DEV_ID_82572EI_FIBER:
240 case E1000_DEV_ID_82571EB_QUAD_FIBER:
241 hw->phy.media_type = e1000_media_type_fiber;
242 break;
243 case E1000_DEV_ID_82571EB_SERDES:
244 case E1000_DEV_ID_82572EI_SERDES:
245 case E1000_DEV_ID_82571EB_SERDES_DUAL:
246 case E1000_DEV_ID_82571EB_SERDES_QUAD:
247 hw->phy.media_type = e1000_media_type_internal_serdes;
248 break;
249 default:
250 hw->phy.media_type = e1000_media_type_copper;
251 break;
254 /* Set mta register count */
255 mac->mta_reg_count = 128;
256 /* Set rar entry count */
257 mac->rar_entry_count = E1000_RAR_ENTRIES;
258 /* Adaptive IFS supported */
259 mac->adaptive_ifs = true;
261 /* check for link */
262 switch (hw->phy.media_type) {
263 case e1000_media_type_copper:
264 func->setup_physical_interface = e1000_setup_copper_link_82571;
265 func->check_for_link = e1000e_check_for_copper_link;
266 func->get_link_up_info = e1000e_get_speed_and_duplex_copper;
267 break;
268 case e1000_media_type_fiber:
269 func->setup_physical_interface =
270 e1000_setup_fiber_serdes_link_82571;
271 func->check_for_link = e1000e_check_for_fiber_link;
272 func->get_link_up_info =
273 e1000e_get_speed_and_duplex_fiber_serdes;
274 break;
275 case e1000_media_type_internal_serdes:
276 func->setup_physical_interface =
277 e1000_setup_fiber_serdes_link_82571;
278 func->check_for_link = e1000_check_for_serdes_link_82571;
279 func->get_link_up_info =
280 e1000e_get_speed_and_duplex_fiber_serdes;
281 break;
282 default:
283 return -E1000_ERR_CONFIG;
284 break;
287 switch (hw->mac.type) {
288 case e1000_82573:
289 func->set_lan_id = e1000_set_lan_id_single_port;
290 func->check_mng_mode = e1000e_check_mng_mode_generic;
291 func->led_on = e1000e_led_on_generic;
293 /* FWSM register */
294 mac->has_fwsm = true;
296 * ARC supported; valid only if manageability features are
297 * enabled.
299 mac->arc_subsystem_valid =
300 (er32(FWSM) & E1000_FWSM_MODE_MASK)
301 ? true : false;
302 break;
303 case e1000_82574:
304 case e1000_82583:
305 func->set_lan_id = e1000_set_lan_id_single_port;
306 func->check_mng_mode = e1000_check_mng_mode_82574;
307 func->led_on = e1000_led_on_82574;
308 break;
309 default:
310 func->check_mng_mode = e1000e_check_mng_mode_generic;
311 func->led_on = e1000e_led_on_generic;
313 /* FWSM register */
314 mac->has_fwsm = true;
315 break;
319 * Ensure that the inter-port SWSM.SMBI lock bit is clear before
320 * first NVM or PHY acess. This should be done for single-port
321 * devices, and for one port only on dual-port devices so that
322 * for those devices we can still use the SMBI lock to synchronize
323 * inter-port accesses to the PHY & NVM.
325 switch (hw->mac.type) {
326 case e1000_82571:
327 case e1000_82572:
328 swsm2 = er32(SWSM2);
330 if (!(swsm2 & E1000_SWSM2_LOCK)) {
331 /* Only do this for the first interface on this card */
332 ew32(SWSM2,
333 swsm2 | E1000_SWSM2_LOCK);
334 force_clear_smbi = true;
335 } else
336 force_clear_smbi = false;
337 break;
338 default:
339 force_clear_smbi = true;
340 break;
343 if (force_clear_smbi) {
344 /* Make sure SWSM.SMBI is clear */
345 swsm = er32(SWSM);
346 if (swsm & E1000_SWSM_SMBI) {
347 /* This bit should not be set on a first interface, and
348 * indicates that the bootagent or EFI code has
349 * improperly left this bit enabled
351 e_dbg("Please update your 82571 Bootagent\n");
353 ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
357 * Initialize device specific counter of SMBI acquisition
358 * timeouts.
360 hw->dev_spec.e82571.smb_counter = 0;
362 return 0;
365 static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
367 struct e1000_hw *hw = &adapter->hw;
368 static int global_quad_port_a; /* global port a indication */
369 struct pci_dev *pdev = adapter->pdev;
370 int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
371 s32 rc;
373 rc = e1000_init_mac_params_82571(adapter);
374 if (rc)
375 return rc;
377 rc = e1000_init_nvm_params_82571(hw);
378 if (rc)
379 return rc;
381 rc = e1000_init_phy_params_82571(hw);
382 if (rc)
383 return rc;
385 /* tag quad port adapters first, it's used below */
386 switch (pdev->device) {
387 case E1000_DEV_ID_82571EB_QUAD_COPPER:
388 case E1000_DEV_ID_82571EB_QUAD_FIBER:
389 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
390 case E1000_DEV_ID_82571PT_QUAD_COPPER:
391 adapter->flags |= FLAG_IS_QUAD_PORT;
392 /* mark the first port */
393 if (global_quad_port_a == 0)
394 adapter->flags |= FLAG_IS_QUAD_PORT_A;
395 /* Reset for multiple quad port adapters */
396 global_quad_port_a++;
397 if (global_quad_port_a == 4)
398 global_quad_port_a = 0;
399 break;
400 default:
401 break;
404 switch (adapter->hw.mac.type) {
405 case e1000_82571:
406 /* these dual ports don't have WoL on port B at all */
407 if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
408 (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
409 (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
410 (is_port_b))
411 adapter->flags &= ~FLAG_HAS_WOL;
412 /* quad ports only support WoL on port A */
413 if (adapter->flags & FLAG_IS_QUAD_PORT &&
414 (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
415 adapter->flags &= ~FLAG_HAS_WOL;
416 /* Does not support WoL on any port */
417 if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
418 adapter->flags &= ~FLAG_HAS_WOL;
419 break;
420 case e1000_82573:
421 case e1000_82574:
422 case e1000_82583:
423 /* Disable ASPM L0s due to hardware errata */
424 e1000e_disable_aspm(adapter->pdev, PCIE_LINK_STATE_L0S);
426 if (pdev->device == E1000_DEV_ID_82573L) {
427 adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
428 adapter->max_hw_frame_size = DEFAULT_JUMBO;
430 break;
431 default:
432 break;
435 return 0;
439 * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
440 * @hw: pointer to the HW structure
442 * Reads the PHY registers and stores the PHY ID and possibly the PHY
443 * revision in the hardware structure.
445 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
447 struct e1000_phy_info *phy = &hw->phy;
448 s32 ret_val;
449 u16 phy_id = 0;
451 switch (hw->mac.type) {
452 case e1000_82571:
453 case e1000_82572:
455 * The 82571 firmware may still be configuring the PHY.
456 * In this case, we cannot access the PHY until the
457 * configuration is done. So we explicitly set the
458 * PHY ID.
460 phy->id = IGP01E1000_I_PHY_ID;
461 break;
462 case e1000_82573:
463 return e1000e_get_phy_id(hw);
464 break;
465 case e1000_82574:
466 case e1000_82583:
467 ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
468 if (ret_val)
469 return ret_val;
471 phy->id = (u32)(phy_id << 16);
472 udelay(20);
473 ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
474 if (ret_val)
475 return ret_val;
477 phy->id |= (u32)(phy_id);
478 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
479 break;
480 default:
481 return -E1000_ERR_PHY;
482 break;
485 return 0;
489 * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
490 * @hw: pointer to the HW structure
492 * Acquire the HW semaphore to access the PHY or NVM
494 static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
496 u32 swsm;
497 s32 sw_timeout = hw->nvm.word_size + 1;
498 s32 fw_timeout = hw->nvm.word_size + 1;
499 s32 i = 0;
502 * If we have timedout 3 times on trying to acquire
503 * the inter-port SMBI semaphore, there is old code
504 * operating on the other port, and it is not
505 * releasing SMBI. Modify the number of times that
506 * we try for the semaphore to interwork with this
507 * older code.
509 if (hw->dev_spec.e82571.smb_counter > 2)
510 sw_timeout = 1;
512 /* Get the SW semaphore */
513 while (i < sw_timeout) {
514 swsm = er32(SWSM);
515 if (!(swsm & E1000_SWSM_SMBI))
516 break;
518 udelay(50);
519 i++;
522 if (i == sw_timeout) {
523 e_dbg("Driver can't access device - SMBI bit is set.\n");
524 hw->dev_spec.e82571.smb_counter++;
526 /* Get the FW semaphore. */
527 for (i = 0; i < fw_timeout; i++) {
528 swsm = er32(SWSM);
529 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
531 /* Semaphore acquired if bit latched */
532 if (er32(SWSM) & E1000_SWSM_SWESMBI)
533 break;
535 udelay(50);
538 if (i == fw_timeout) {
539 /* Release semaphores */
540 e1000_put_hw_semaphore_82571(hw);
541 e_dbg("Driver can't access the NVM\n");
542 return -E1000_ERR_NVM;
545 return 0;
549 * e1000_put_hw_semaphore_82571 - Release hardware semaphore
550 * @hw: pointer to the HW structure
552 * Release hardware semaphore used to access the PHY or NVM
554 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
556 u32 swsm;
558 swsm = er32(SWSM);
559 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
560 ew32(SWSM, swsm);
563 * e1000_get_hw_semaphore_82573 - Acquire hardware semaphore
564 * @hw: pointer to the HW structure
566 * Acquire the HW semaphore during reset.
569 static s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw)
571 u32 extcnf_ctrl;
572 s32 ret_val = 0;
573 s32 i = 0;
575 extcnf_ctrl = er32(EXTCNF_CTRL);
576 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
577 do {
578 ew32(EXTCNF_CTRL, extcnf_ctrl);
579 extcnf_ctrl = er32(EXTCNF_CTRL);
581 if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
582 break;
584 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
586 msleep(2);
587 i++;
588 } while (i < MDIO_OWNERSHIP_TIMEOUT);
590 if (i == MDIO_OWNERSHIP_TIMEOUT) {
591 /* Release semaphores */
592 e1000_put_hw_semaphore_82573(hw);
593 e_dbg("Driver can't access the PHY\n");
594 ret_val = -E1000_ERR_PHY;
595 goto out;
598 out:
599 return ret_val;
603 * e1000_put_hw_semaphore_82573 - Release hardware semaphore
604 * @hw: pointer to the HW structure
606 * Release hardware semaphore used during reset.
609 static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw)
611 u32 extcnf_ctrl;
613 extcnf_ctrl = er32(EXTCNF_CTRL);
614 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
615 ew32(EXTCNF_CTRL, extcnf_ctrl);
618 static DEFINE_MUTEX(swflag_mutex);
621 * e1000_get_hw_semaphore_82574 - Acquire hardware semaphore
622 * @hw: pointer to the HW structure
624 * Acquire the HW semaphore to access the PHY or NVM.
627 static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw)
629 s32 ret_val;
631 mutex_lock(&swflag_mutex);
632 ret_val = e1000_get_hw_semaphore_82573(hw);
633 if (ret_val)
634 mutex_unlock(&swflag_mutex);
635 return ret_val;
639 * e1000_put_hw_semaphore_82574 - Release hardware semaphore
640 * @hw: pointer to the HW structure
642 * Release hardware semaphore used to access the PHY or NVM
645 static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw)
647 e1000_put_hw_semaphore_82573(hw);
648 mutex_unlock(&swflag_mutex);
652 * e1000_acquire_nvm_82571 - Request for access to the EEPROM
653 * @hw: pointer to the HW structure
655 * To gain access to the EEPROM, first we must obtain a hardware semaphore.
656 * Then for non-82573 hardware, set the EEPROM access request bit and wait
657 * for EEPROM access grant bit. If the access grant bit is not set, release
658 * hardware semaphore.
660 static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
662 s32 ret_val;
664 ret_val = e1000_get_hw_semaphore_82571(hw);
665 if (ret_val)
666 return ret_val;
668 switch (hw->mac.type) {
669 case e1000_82573:
670 break;
671 default:
672 ret_val = e1000e_acquire_nvm(hw);
673 break;
676 if (ret_val)
677 e1000_put_hw_semaphore_82571(hw);
679 return ret_val;
683 * e1000_release_nvm_82571 - Release exclusive access to EEPROM
684 * @hw: pointer to the HW structure
686 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
688 static void e1000_release_nvm_82571(struct e1000_hw *hw)
690 e1000e_release_nvm(hw);
691 e1000_put_hw_semaphore_82571(hw);
695 * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
696 * @hw: pointer to the HW structure
697 * @offset: offset within the EEPROM to be written to
698 * @words: number of words to write
699 * @data: 16 bit word(s) to be written to the EEPROM
701 * For non-82573 silicon, write data to EEPROM at offset using SPI interface.
703 * If e1000e_update_nvm_checksum is not called after this function, the
704 * EEPROM will most likely contain an invalid checksum.
706 static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
707 u16 *data)
709 s32 ret_val;
711 switch (hw->mac.type) {
712 case e1000_82573:
713 case e1000_82574:
714 case e1000_82583:
715 ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
716 break;
717 case e1000_82571:
718 case e1000_82572:
719 ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
720 break;
721 default:
722 ret_val = -E1000_ERR_NVM;
723 break;
726 return ret_val;
730 * e1000_update_nvm_checksum_82571 - Update EEPROM checksum
731 * @hw: pointer to the HW structure
733 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
734 * up to the checksum. Then calculates the EEPROM checksum and writes the
735 * value to the EEPROM.
737 static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
739 u32 eecd;
740 s32 ret_val;
741 u16 i;
743 ret_val = e1000e_update_nvm_checksum_generic(hw);
744 if (ret_val)
745 return ret_val;
748 * If our nvm is an EEPROM, then we're done
749 * otherwise, commit the checksum to the flash NVM.
751 if (hw->nvm.type != e1000_nvm_flash_hw)
752 return ret_val;
754 /* Check for pending operations. */
755 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
756 msleep(1);
757 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
758 break;
761 if (i == E1000_FLASH_UPDATES)
762 return -E1000_ERR_NVM;
764 /* Reset the firmware if using STM opcode. */
765 if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
767 * The enabling of and the actual reset must be done
768 * in two write cycles.
770 ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
771 e1e_flush();
772 ew32(HICR, E1000_HICR_FW_RESET);
775 /* Commit the write to flash */
776 eecd = er32(EECD) | E1000_EECD_FLUPD;
777 ew32(EECD, eecd);
779 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
780 msleep(1);
781 if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
782 break;
785 if (i == E1000_FLASH_UPDATES)
786 return -E1000_ERR_NVM;
788 return 0;
792 * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
793 * @hw: pointer to the HW structure
795 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
796 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
798 static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
800 if (hw->nvm.type == e1000_nvm_flash_hw)
801 e1000_fix_nvm_checksum_82571(hw);
803 return e1000e_validate_nvm_checksum_generic(hw);
807 * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
808 * @hw: pointer to the HW structure
809 * @offset: offset within the EEPROM to be written to
810 * @words: number of words to write
811 * @data: 16 bit word(s) to be written to the EEPROM
813 * After checking for invalid values, poll the EEPROM to ensure the previous
814 * command has completed before trying to write the next word. After write
815 * poll for completion.
817 * If e1000e_update_nvm_checksum is not called after this function, the
818 * EEPROM will most likely contain an invalid checksum.
820 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
821 u16 words, u16 *data)
823 struct e1000_nvm_info *nvm = &hw->nvm;
824 u32 i, eewr = 0;
825 s32 ret_val = 0;
828 * A check for invalid values: offset too large, too many words,
829 * and not enough words.
831 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
832 (words == 0)) {
833 e_dbg("nvm parameter(s) out of bounds\n");
834 return -E1000_ERR_NVM;
837 for (i = 0; i < words; i++) {
838 eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
839 ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
840 E1000_NVM_RW_REG_START;
842 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
843 if (ret_val)
844 break;
846 ew32(EEWR, eewr);
848 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
849 if (ret_val)
850 break;
853 return ret_val;
857 * e1000_get_cfg_done_82571 - Poll for configuration done
858 * @hw: pointer to the HW structure
860 * Reads the management control register for the config done bit to be set.
862 static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
864 s32 timeout = PHY_CFG_TIMEOUT;
866 while (timeout) {
867 if (er32(EEMNGCTL) &
868 E1000_NVM_CFG_DONE_PORT_0)
869 break;
870 msleep(1);
871 timeout--;
873 if (!timeout) {
874 e_dbg("MNG configuration cycle has not completed.\n");
875 return -E1000_ERR_RESET;
878 return 0;
882 * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
883 * @hw: pointer to the HW structure
884 * @active: true to enable LPLU, false to disable
886 * Sets the LPLU D0 state according to the active flag. When activating LPLU
887 * this function also disables smart speed and vice versa. LPLU will not be
888 * activated unless the device autonegotiation advertisement meets standards
889 * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function
890 * pointer entry point only called by PHY setup routines.
892 static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
894 struct e1000_phy_info *phy = &hw->phy;
895 s32 ret_val;
896 u16 data;
898 ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
899 if (ret_val)
900 return ret_val;
902 if (active) {
903 data |= IGP02E1000_PM_D0_LPLU;
904 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
905 if (ret_val)
906 return ret_val;
908 /* When LPLU is enabled, we should disable SmartSpeed */
909 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
910 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
911 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
912 if (ret_val)
913 return ret_val;
914 } else {
915 data &= ~IGP02E1000_PM_D0_LPLU;
916 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
918 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
919 * during Dx states where the power conservation is most
920 * important. During driver activity we should enable
921 * SmartSpeed, so performance is maintained.
923 if (phy->smart_speed == e1000_smart_speed_on) {
924 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
925 &data);
926 if (ret_val)
927 return ret_val;
929 data |= IGP01E1000_PSCFR_SMART_SPEED;
930 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
931 data);
932 if (ret_val)
933 return ret_val;
934 } else if (phy->smart_speed == e1000_smart_speed_off) {
935 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
936 &data);
937 if (ret_val)
938 return ret_val;
940 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
941 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
942 data);
943 if (ret_val)
944 return ret_val;
948 return 0;
952 * e1000_reset_hw_82571 - Reset hardware
953 * @hw: pointer to the HW structure
955 * This resets the hardware into a known state.
957 static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
959 u32 ctrl, ctrl_ext, icr;
960 s32 ret_val;
963 * Prevent the PCI-E bus from sticking if there is no TLP connection
964 * on the last TLP read/write transaction when MAC is reset.
966 ret_val = e1000e_disable_pcie_master(hw);
967 if (ret_val)
968 e_dbg("PCI-E Master disable polling has failed.\n");
970 e_dbg("Masking off all interrupts\n");
971 ew32(IMC, 0xffffffff);
973 ew32(RCTL, 0);
974 ew32(TCTL, E1000_TCTL_PSP);
975 e1e_flush();
977 msleep(10);
980 * Must acquire the MDIO ownership before MAC reset.
981 * Ownership defaults to firmware after a reset.
983 switch (hw->mac.type) {
984 case e1000_82573:
985 ret_val = e1000_get_hw_semaphore_82573(hw);
986 break;
987 case e1000_82574:
988 case e1000_82583:
989 ret_val = e1000_get_hw_semaphore_82574(hw);
990 break;
991 default:
992 break;
994 if (ret_val)
995 e_dbg("Cannot acquire MDIO ownership\n");
997 ctrl = er32(CTRL);
999 e_dbg("Issuing a global reset to MAC\n");
1000 ew32(CTRL, ctrl | E1000_CTRL_RST);
1002 /* Must release MDIO ownership and mutex after MAC reset. */
1003 switch (hw->mac.type) {
1004 case e1000_82574:
1005 case e1000_82583:
1006 e1000_put_hw_semaphore_82574(hw);
1007 break;
1008 default:
1009 break;
1012 if (hw->nvm.type == e1000_nvm_flash_hw) {
1013 udelay(10);
1014 ctrl_ext = er32(CTRL_EXT);
1015 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1016 ew32(CTRL_EXT, ctrl_ext);
1017 e1e_flush();
1020 ret_val = e1000e_get_auto_rd_done(hw);
1021 if (ret_val)
1022 /* We don't want to continue accessing MAC registers. */
1023 return ret_val;
1026 * Phy configuration from NVM just starts after EECD_AUTO_RD is set.
1027 * Need to wait for Phy configuration completion before accessing
1028 * NVM and Phy.
1031 switch (hw->mac.type) {
1032 case e1000_82573:
1033 case e1000_82574:
1034 case e1000_82583:
1035 msleep(25);
1036 break;
1037 default:
1038 break;
1041 /* Clear any pending interrupt events. */
1042 ew32(IMC, 0xffffffff);
1043 icr = er32(ICR);
1045 if (hw->mac.type == e1000_82571) {
1046 /* Install any alternate MAC address into RAR0 */
1047 ret_val = e1000_check_alt_mac_addr_generic(hw);
1048 if (ret_val)
1049 return ret_val;
1051 e1000e_set_laa_state_82571(hw, true);
1054 /* Reinitialize the 82571 serdes link state machine */
1055 if (hw->phy.media_type == e1000_media_type_internal_serdes)
1056 hw->mac.serdes_link_state = e1000_serdes_link_down;
1058 return 0;
1062 * e1000_init_hw_82571 - Initialize hardware
1063 * @hw: pointer to the HW structure
1065 * This inits the hardware readying it for operation.
1067 static s32 e1000_init_hw_82571(struct e1000_hw *hw)
1069 struct e1000_mac_info *mac = &hw->mac;
1070 u32 reg_data;
1071 s32 ret_val;
1072 u16 i, rar_count = mac->rar_entry_count;
1074 e1000_initialize_hw_bits_82571(hw);
1076 /* Initialize identification LED */
1077 ret_val = e1000e_id_led_init(hw);
1078 if (ret_val)
1079 e_dbg("Error initializing identification LED\n");
1080 /* This is not fatal and we should not stop init due to this */
1082 /* Disabling VLAN filtering */
1083 e_dbg("Initializing the IEEE VLAN\n");
1084 mac->ops.clear_vfta(hw);
1086 /* Setup the receive address. */
1088 * If, however, a locally administered address was assigned to the
1089 * 82571, we must reserve a RAR for it to work around an issue where
1090 * resetting one port will reload the MAC on the other port.
1092 if (e1000e_get_laa_state_82571(hw))
1093 rar_count--;
1094 e1000e_init_rx_addrs(hw, rar_count);
1096 /* Zero out the Multicast HASH table */
1097 e_dbg("Zeroing the MTA\n");
1098 for (i = 0; i < mac->mta_reg_count; i++)
1099 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
1101 /* Setup link and flow control */
1102 ret_val = e1000_setup_link_82571(hw);
1104 /* Set the transmit descriptor write-back policy */
1105 reg_data = er32(TXDCTL(0));
1106 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
1107 E1000_TXDCTL_FULL_TX_DESC_WB |
1108 E1000_TXDCTL_COUNT_DESC;
1109 ew32(TXDCTL(0), reg_data);
1111 /* ...for both queues. */
1112 switch (mac->type) {
1113 case e1000_82573:
1114 e1000e_enable_tx_pkt_filtering(hw);
1115 /* fall through */
1116 case e1000_82574:
1117 case e1000_82583:
1118 reg_data = er32(GCR);
1119 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1120 ew32(GCR, reg_data);
1121 break;
1122 default:
1123 reg_data = er32(TXDCTL(1));
1124 reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
1125 E1000_TXDCTL_FULL_TX_DESC_WB |
1126 E1000_TXDCTL_COUNT_DESC;
1127 ew32(TXDCTL(1), reg_data);
1128 break;
1132 * Clear all of the statistics registers (clear on read). It is
1133 * important that we do this after we have tried to establish link
1134 * because the symbol error count will increment wildly if there
1135 * is no link.
1137 e1000_clear_hw_cntrs_82571(hw);
1139 return ret_val;
1143 * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
1144 * @hw: pointer to the HW structure
1146 * Initializes required hardware-dependent bits needed for normal operation.
1148 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
1150 u32 reg;
1152 /* Transmit Descriptor Control 0 */
1153 reg = er32(TXDCTL(0));
1154 reg |= (1 << 22);
1155 ew32(TXDCTL(0), reg);
1157 /* Transmit Descriptor Control 1 */
1158 reg = er32(TXDCTL(1));
1159 reg |= (1 << 22);
1160 ew32(TXDCTL(1), reg);
1162 /* Transmit Arbitration Control 0 */
1163 reg = er32(TARC(0));
1164 reg &= ~(0xF << 27); /* 30:27 */
1165 switch (hw->mac.type) {
1166 case e1000_82571:
1167 case e1000_82572:
1168 reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
1169 break;
1170 default:
1171 break;
1173 ew32(TARC(0), reg);
1175 /* Transmit Arbitration Control 1 */
1176 reg = er32(TARC(1));
1177 switch (hw->mac.type) {
1178 case e1000_82571:
1179 case e1000_82572:
1180 reg &= ~((1 << 29) | (1 << 30));
1181 reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
1182 if (er32(TCTL) & E1000_TCTL_MULR)
1183 reg &= ~(1 << 28);
1184 else
1185 reg |= (1 << 28);
1186 ew32(TARC(1), reg);
1187 break;
1188 default:
1189 break;
1192 /* Device Control */
1193 switch (hw->mac.type) {
1194 case e1000_82573:
1195 case e1000_82574:
1196 case e1000_82583:
1197 reg = er32(CTRL);
1198 reg &= ~(1 << 29);
1199 ew32(CTRL, reg);
1200 break;
1201 default:
1202 break;
1205 /* Extended Device Control */
1206 switch (hw->mac.type) {
1207 case e1000_82573:
1208 case e1000_82574:
1209 case e1000_82583:
1210 reg = er32(CTRL_EXT);
1211 reg &= ~(1 << 23);
1212 reg |= (1 << 22);
1213 ew32(CTRL_EXT, reg);
1214 break;
1215 default:
1216 break;
1219 if (hw->mac.type == e1000_82571) {
1220 reg = er32(PBA_ECC);
1221 reg |= E1000_PBA_ECC_CORR_EN;
1222 ew32(PBA_ECC, reg);
1225 * Workaround for hardware errata.
1226 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1229 if ((hw->mac.type == e1000_82571) ||
1230 (hw->mac.type == e1000_82572)) {
1231 reg = er32(CTRL_EXT);
1232 reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
1233 ew32(CTRL_EXT, reg);
1237 /* PCI-Ex Control Registers */
1238 switch (hw->mac.type) {
1239 case e1000_82574:
1240 case e1000_82583:
1241 reg = er32(GCR);
1242 reg |= (1 << 22);
1243 ew32(GCR, reg);
1246 * Workaround for hardware errata.
1247 * apply workaround for hardware errata documented in errata
1248 * docs Fixes issue where some error prone or unreliable PCIe
1249 * completions are occurring, particularly with ASPM enabled.
1250 * Without fix, issue can cause tx timeouts.
1252 reg = er32(GCR2);
1253 reg |= 1;
1254 ew32(GCR2, reg);
1255 break;
1256 default:
1257 break;
1262 * e1000_clear_vfta_82571 - Clear VLAN filter table
1263 * @hw: pointer to the HW structure
1265 * Clears the register array which contains the VLAN filter table by
1266 * setting all the values to 0.
1268 static void e1000_clear_vfta_82571(struct e1000_hw *hw)
1270 u32 offset;
1271 u32 vfta_value = 0;
1272 u32 vfta_offset = 0;
1273 u32 vfta_bit_in_reg = 0;
1275 switch (hw->mac.type) {
1276 case e1000_82573:
1277 case e1000_82574:
1278 case e1000_82583:
1279 if (hw->mng_cookie.vlan_id != 0) {
1281 * The VFTA is a 4096b bit-field, each identifying
1282 * a single VLAN ID. The following operations
1283 * determine which 32b entry (i.e. offset) into the
1284 * array we want to set the VLAN ID (i.e. bit) of
1285 * the manageability unit.
1287 vfta_offset = (hw->mng_cookie.vlan_id >>
1288 E1000_VFTA_ENTRY_SHIFT) &
1289 E1000_VFTA_ENTRY_MASK;
1290 vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
1291 E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
1293 break;
1294 default:
1295 break;
1297 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
1299 * If the offset we want to clear is the same offset of the
1300 * manageability VLAN ID, then clear all bits except that of
1301 * the manageability unit.
1303 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
1304 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
1305 e1e_flush();
1310 * e1000_check_mng_mode_82574 - Check manageability is enabled
1311 * @hw: pointer to the HW structure
1313 * Reads the NVM Initialization Control Word 2 and returns true
1314 * (>0) if any manageability is enabled, else false (0).
1316 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
1318 u16 data;
1320 e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1321 return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
1325 * e1000_led_on_82574 - Turn LED on
1326 * @hw: pointer to the HW structure
1328 * Turn LED on.
1330 static s32 e1000_led_on_82574(struct e1000_hw *hw)
1332 u32 ctrl;
1333 u32 i;
1335 ctrl = hw->mac.ledctl_mode2;
1336 if (!(E1000_STATUS_LU & er32(STATUS))) {
1338 * If no link, then turn LED on by setting the invert bit
1339 * for each LED that's "on" (0x0E) in ledctl_mode2.
1341 for (i = 0; i < 4; i++)
1342 if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1343 E1000_LEDCTL_MODE_LED_ON)
1344 ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
1346 ew32(LEDCTL, ctrl);
1348 return 0;
1352 * e1000_check_phy_82574 - check 82574 phy hung state
1353 * @hw: pointer to the HW structure
1355 * Returns whether phy is hung or not
1357 bool e1000_check_phy_82574(struct e1000_hw *hw)
1359 u16 status_1kbt = 0;
1360 u16 receive_errors = 0;
1361 bool phy_hung = false;
1362 s32 ret_val = 0;
1365 * Read PHY Receive Error counter first, if its is max - all F's then
1366 * read the Base1000T status register If both are max then PHY is hung.
1368 ret_val = e1e_rphy(hw, E1000_RECEIVE_ERROR_COUNTER, &receive_errors);
1370 if (ret_val)
1371 goto out;
1372 if (receive_errors == E1000_RECEIVE_ERROR_MAX) {
1373 ret_val = e1e_rphy(hw, E1000_BASE1000T_STATUS, &status_1kbt);
1374 if (ret_val)
1375 goto out;
1376 if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) ==
1377 E1000_IDLE_ERROR_COUNT_MASK)
1378 phy_hung = true;
1380 out:
1381 return phy_hung;
1385 * e1000_setup_link_82571 - Setup flow control and link settings
1386 * @hw: pointer to the HW structure
1388 * Determines which flow control settings to use, then configures flow
1389 * control. Calls the appropriate media-specific link configuration
1390 * function. Assuming the adapter has a valid link partner, a valid link
1391 * should be established. Assumes the hardware has previously been reset
1392 * and the transmitter and receiver are not enabled.
1394 static s32 e1000_setup_link_82571(struct e1000_hw *hw)
1397 * 82573 does not have a word in the NVM to determine
1398 * the default flow control setting, so we explicitly
1399 * set it to full.
1401 switch (hw->mac.type) {
1402 case e1000_82573:
1403 case e1000_82574:
1404 case e1000_82583:
1405 if (hw->fc.requested_mode == e1000_fc_default)
1406 hw->fc.requested_mode = e1000_fc_full;
1407 break;
1408 default:
1409 break;
1412 return e1000e_setup_link(hw);
1416 * e1000_setup_copper_link_82571 - Configure copper link settings
1417 * @hw: pointer to the HW structure
1419 * Configures the link for auto-neg or forced speed and duplex. Then we check
1420 * for link, once link is established calls to configure collision distance
1421 * and flow control are called.
1423 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1425 u32 ctrl;
1426 s32 ret_val;
1428 ctrl = er32(CTRL);
1429 ctrl |= E1000_CTRL_SLU;
1430 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1431 ew32(CTRL, ctrl);
1433 switch (hw->phy.type) {
1434 case e1000_phy_m88:
1435 case e1000_phy_bm:
1436 ret_val = e1000e_copper_link_setup_m88(hw);
1437 break;
1438 case e1000_phy_igp_2:
1439 ret_val = e1000e_copper_link_setup_igp(hw);
1440 break;
1441 default:
1442 return -E1000_ERR_PHY;
1443 break;
1446 if (ret_val)
1447 return ret_val;
1449 ret_val = e1000e_setup_copper_link(hw);
1451 return ret_val;
1455 * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1456 * @hw: pointer to the HW structure
1458 * Configures collision distance and flow control for fiber and serdes links.
1459 * Upon successful setup, poll for link.
1461 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1463 switch (hw->mac.type) {
1464 case e1000_82571:
1465 case e1000_82572:
1467 * If SerDes loopback mode is entered, there is no form
1468 * of reset to take the adapter out of that mode. So we
1469 * have to explicitly take the adapter out of loopback
1470 * mode. This prevents drivers from twiddling their thumbs
1471 * if another tool failed to take it out of loopback mode.
1473 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1474 break;
1475 default:
1476 break;
1479 return e1000e_setup_fiber_serdes_link(hw);
1483 * e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1484 * @hw: pointer to the HW structure
1486 * Reports the link state as up or down.
1488 * If autonegotiation is supported by the link partner, the link state is
1489 * determined by the result of autonegotiation. This is the most likely case.
1490 * If autonegotiation is not supported by the link partner, and the link
1491 * has a valid signal, force the link up.
1493 * The link state is represented internally here by 4 states:
1495 * 1) down
1496 * 2) autoneg_progress
1497 * 3) autoneg_complete (the link successfully autonegotiated)
1498 * 4) forced_up (the link has been forced up, it did not autonegotiate)
1501 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
1503 struct e1000_mac_info *mac = &hw->mac;
1504 u32 rxcw;
1505 u32 ctrl;
1506 u32 status;
1507 u32 txcw;
1508 u32 i;
1509 s32 ret_val = 0;
1511 ctrl = er32(CTRL);
1512 status = er32(STATUS);
1513 rxcw = er32(RXCW);
1515 if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
1517 /* Receiver is synchronized with no invalid bits. */
1518 switch (mac->serdes_link_state) {
1519 case e1000_serdes_link_autoneg_complete:
1520 if (!(status & E1000_STATUS_LU)) {
1522 * We have lost link, retry autoneg before
1523 * reporting link failure
1525 mac->serdes_link_state =
1526 e1000_serdes_link_autoneg_progress;
1527 mac->serdes_has_link = false;
1528 e_dbg("AN_UP -> AN_PROG\n");
1529 } else {
1530 mac->serdes_has_link = true;
1532 break;
1534 case e1000_serdes_link_forced_up:
1536 * If we are receiving /C/ ordered sets, re-enable
1537 * auto-negotiation in the TXCW register and disable
1538 * forced link in the Device Control register in an
1539 * attempt to auto-negotiate with our link partner.
1540 * If the partner code word is null, stop forcing
1541 * and restart auto negotiation.
1543 if ((rxcw & E1000_RXCW_C) || !(rxcw & E1000_RXCW_CW)) {
1544 /* Enable autoneg, and unforce link up */
1545 ew32(TXCW, mac->txcw);
1546 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1547 mac->serdes_link_state =
1548 e1000_serdes_link_autoneg_progress;
1549 mac->serdes_has_link = false;
1550 e_dbg("FORCED_UP -> AN_PROG\n");
1551 } else {
1552 mac->serdes_has_link = true;
1554 break;
1556 case e1000_serdes_link_autoneg_progress:
1557 if (rxcw & E1000_RXCW_C) {
1559 * We received /C/ ordered sets, meaning the
1560 * link partner has autonegotiated, and we can
1561 * trust the Link Up (LU) status bit.
1563 if (status & E1000_STATUS_LU) {
1564 mac->serdes_link_state =
1565 e1000_serdes_link_autoneg_complete;
1566 e_dbg("AN_PROG -> AN_UP\n");
1567 mac->serdes_has_link = true;
1568 } else {
1569 /* Autoneg completed, but failed. */
1570 mac->serdes_link_state =
1571 e1000_serdes_link_down;
1572 e_dbg("AN_PROG -> DOWN\n");
1574 } else {
1576 * The link partner did not autoneg.
1577 * Force link up and full duplex, and change
1578 * state to forced.
1580 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
1581 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1582 ew32(CTRL, ctrl);
1584 /* Configure Flow Control after link up. */
1585 ret_val = e1000e_config_fc_after_link_up(hw);
1586 if (ret_val) {
1587 e_dbg("Error config flow control\n");
1588 break;
1590 mac->serdes_link_state =
1591 e1000_serdes_link_forced_up;
1592 mac->serdes_has_link = true;
1593 e_dbg("AN_PROG -> FORCED_UP\n");
1595 break;
1597 case e1000_serdes_link_down:
1598 default:
1600 * The link was down but the receiver has now gained
1601 * valid sync, so lets see if we can bring the link
1602 * up.
1604 ew32(TXCW, mac->txcw);
1605 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1606 mac->serdes_link_state =
1607 e1000_serdes_link_autoneg_progress;
1608 mac->serdes_has_link = false;
1609 e_dbg("DOWN -> AN_PROG\n");
1610 break;
1612 } else {
1613 if (!(rxcw & E1000_RXCW_SYNCH)) {
1614 mac->serdes_has_link = false;
1615 mac->serdes_link_state = e1000_serdes_link_down;
1616 e_dbg("ANYSTATE -> DOWN\n");
1617 } else {
1619 * Check several times, if Sync and Config
1620 * both are consistently 1 then simply ignore
1621 * the Invalid bit and restart Autoneg
1623 for (i = 0; i < AN_RETRY_COUNT; i++) {
1624 udelay(10);
1625 rxcw = er32(RXCW);
1626 if ((rxcw & E1000_RXCW_IV) &&
1627 !((rxcw & E1000_RXCW_SYNCH) &&
1628 (rxcw & E1000_RXCW_C))) {
1629 mac->serdes_has_link = false;
1630 mac->serdes_link_state =
1631 e1000_serdes_link_down;
1632 e_dbg("ANYSTATE -> DOWN\n");
1633 break;
1637 if (i == AN_RETRY_COUNT) {
1638 txcw = er32(TXCW);
1639 txcw |= E1000_TXCW_ANE;
1640 ew32(TXCW, txcw);
1641 mac->serdes_link_state =
1642 e1000_serdes_link_autoneg_progress;
1643 mac->serdes_has_link = false;
1644 e_dbg("ANYSTATE -> AN_PROG\n");
1649 return ret_val;
1653 * e1000_valid_led_default_82571 - Verify a valid default LED config
1654 * @hw: pointer to the HW structure
1655 * @data: pointer to the NVM (EEPROM)
1657 * Read the EEPROM for the current default LED configuration. If the
1658 * LED configuration is not valid, set to a valid LED configuration.
1660 static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1662 s32 ret_val;
1664 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1665 if (ret_val) {
1666 e_dbg("NVM Read Error\n");
1667 return ret_val;
1670 switch (hw->mac.type) {
1671 case e1000_82573:
1672 case e1000_82574:
1673 case e1000_82583:
1674 if (*data == ID_LED_RESERVED_F746)
1675 *data = ID_LED_DEFAULT_82573;
1676 break;
1677 default:
1678 if (*data == ID_LED_RESERVED_0000 ||
1679 *data == ID_LED_RESERVED_FFFF)
1680 *data = ID_LED_DEFAULT;
1681 break;
1684 return 0;
1688 * e1000e_get_laa_state_82571 - Get locally administered address state
1689 * @hw: pointer to the HW structure
1691 * Retrieve and return the current locally administered address state.
1693 bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1695 if (hw->mac.type != e1000_82571)
1696 return false;
1698 return hw->dev_spec.e82571.laa_is_present;
1702 * e1000e_set_laa_state_82571 - Set locally administered address state
1703 * @hw: pointer to the HW structure
1704 * @state: enable/disable locally administered address
1706 * Enable/Disable the current locally administered address state.
1708 void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1710 if (hw->mac.type != e1000_82571)
1711 return;
1713 hw->dev_spec.e82571.laa_is_present = state;
1715 /* If workaround is activated... */
1716 if (state)
1718 * Hold a copy of the LAA in RAR[14] This is done so that
1719 * between the time RAR[0] gets clobbered and the time it
1720 * gets fixed, the actual LAA is in one of the RARs and no
1721 * incoming packets directed to this port are dropped.
1722 * Eventually the LAA will be in RAR[0] and RAR[14].
1724 e1000e_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1);
1728 * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1729 * @hw: pointer to the HW structure
1731 * Verifies that the EEPROM has completed the update. After updating the
1732 * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If
1733 * the checksum fix is not implemented, we need to set the bit and update
1734 * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect,
1735 * we need to return bad checksum.
1737 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1739 struct e1000_nvm_info *nvm = &hw->nvm;
1740 s32 ret_val;
1741 u16 data;
1743 if (nvm->type != e1000_nvm_flash_hw)
1744 return 0;
1747 * Check bit 4 of word 10h. If it is 0, firmware is done updating
1748 * 10h-12h. Checksum may need to be fixed.
1750 ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1751 if (ret_val)
1752 return ret_val;
1754 if (!(data & 0x10)) {
1756 * Read 0x23 and check bit 15. This bit is a 1
1757 * when the checksum has already been fixed. If
1758 * the checksum is still wrong and this bit is a
1759 * 1, we need to return bad checksum. Otherwise,
1760 * we need to set this bit to a 1 and update the
1761 * checksum.
1763 ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1764 if (ret_val)
1765 return ret_val;
1767 if (!(data & 0x8000)) {
1768 data |= 0x8000;
1769 ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1770 if (ret_val)
1771 return ret_val;
1772 ret_val = e1000e_update_nvm_checksum(hw);
1776 return 0;
1780 * e1000_read_mac_addr_82571 - Read device MAC address
1781 * @hw: pointer to the HW structure
1783 static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
1785 s32 ret_val = 0;
1787 if (hw->mac.type == e1000_82571) {
1789 * If there's an alternate MAC address place it in RAR0
1790 * so that it will override the Si installed default perm
1791 * address.
1793 ret_val = e1000_check_alt_mac_addr_generic(hw);
1794 if (ret_val)
1795 goto out;
1798 ret_val = e1000_read_mac_addr_generic(hw);
1800 out:
1801 return ret_val;
1805 * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
1806 * @hw: pointer to the HW structure
1808 * In the case of a PHY power down to save power, or to turn off link during a
1809 * driver unload, or wake on lan is not enabled, remove the link.
1811 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
1813 struct e1000_phy_info *phy = &hw->phy;
1814 struct e1000_mac_info *mac = &hw->mac;
1816 if (!(phy->ops.check_reset_block))
1817 return;
1819 /* If the management interface is not enabled, then power down */
1820 if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
1821 e1000_power_down_phy_copper(hw);
1825 * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1826 * @hw: pointer to the HW structure
1828 * Clears the hardware counters by reading the counter registers.
1830 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1832 e1000e_clear_hw_cntrs_base(hw);
1834 er32(PRC64);
1835 er32(PRC127);
1836 er32(PRC255);
1837 er32(PRC511);
1838 er32(PRC1023);
1839 er32(PRC1522);
1840 er32(PTC64);
1841 er32(PTC127);
1842 er32(PTC255);
1843 er32(PTC511);
1844 er32(PTC1023);
1845 er32(PTC1522);
1847 er32(ALGNERRC);
1848 er32(RXERRC);
1849 er32(TNCRS);
1850 er32(CEXTERR);
1851 er32(TSCTC);
1852 er32(TSCTFC);
1854 er32(MGTPRC);
1855 er32(MGTPDC);
1856 er32(MGTPTC);
1858 er32(IAC);
1859 er32(ICRXOC);
1861 er32(ICRXPTC);
1862 er32(ICRXATC);
1863 er32(ICTXPTC);
1864 er32(ICTXATC);
1865 er32(ICTXQEC);
1866 er32(ICTXQMTC);
1867 er32(ICRXDMTC);
1870 static struct e1000_mac_operations e82571_mac_ops = {
1871 /* .check_mng_mode: mac type dependent */
1872 /* .check_for_link: media type dependent */
1873 .id_led_init = e1000e_id_led_init,
1874 .cleanup_led = e1000e_cleanup_led_generic,
1875 .clear_hw_cntrs = e1000_clear_hw_cntrs_82571,
1876 .get_bus_info = e1000e_get_bus_info_pcie,
1877 .set_lan_id = e1000_set_lan_id_multi_port_pcie,
1878 /* .get_link_up_info: media type dependent */
1879 /* .led_on: mac type dependent */
1880 .led_off = e1000e_led_off_generic,
1881 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
1882 .write_vfta = e1000_write_vfta_generic,
1883 .clear_vfta = e1000_clear_vfta_82571,
1884 .reset_hw = e1000_reset_hw_82571,
1885 .init_hw = e1000_init_hw_82571,
1886 .setup_link = e1000_setup_link_82571,
1887 /* .setup_physical_interface: media type dependent */
1888 .setup_led = e1000e_setup_led_generic,
1889 .read_mac_addr = e1000_read_mac_addr_82571,
1892 static struct e1000_phy_operations e82_phy_ops_igp = {
1893 .acquire = e1000_get_hw_semaphore_82571,
1894 .check_polarity = e1000_check_polarity_igp,
1895 .check_reset_block = e1000e_check_reset_block_generic,
1896 .commit = NULL,
1897 .force_speed_duplex = e1000e_phy_force_speed_duplex_igp,
1898 .get_cfg_done = e1000_get_cfg_done_82571,
1899 .get_cable_length = e1000e_get_cable_length_igp_2,
1900 .get_info = e1000e_get_phy_info_igp,
1901 .read_reg = e1000e_read_phy_reg_igp,
1902 .release = e1000_put_hw_semaphore_82571,
1903 .reset = e1000e_phy_hw_reset_generic,
1904 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1905 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1906 .write_reg = e1000e_write_phy_reg_igp,
1907 .cfg_on_link_up = NULL,
1910 static struct e1000_phy_operations e82_phy_ops_m88 = {
1911 .acquire = e1000_get_hw_semaphore_82571,
1912 .check_polarity = e1000_check_polarity_m88,
1913 .check_reset_block = e1000e_check_reset_block_generic,
1914 .commit = e1000e_phy_sw_reset,
1915 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
1916 .get_cfg_done = e1000e_get_cfg_done,
1917 .get_cable_length = e1000e_get_cable_length_m88,
1918 .get_info = e1000e_get_phy_info_m88,
1919 .read_reg = e1000e_read_phy_reg_m88,
1920 .release = e1000_put_hw_semaphore_82571,
1921 .reset = e1000e_phy_hw_reset_generic,
1922 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1923 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1924 .write_reg = e1000e_write_phy_reg_m88,
1925 .cfg_on_link_up = NULL,
1928 static struct e1000_phy_operations e82_phy_ops_bm = {
1929 .acquire = e1000_get_hw_semaphore_82571,
1930 .check_polarity = e1000_check_polarity_m88,
1931 .check_reset_block = e1000e_check_reset_block_generic,
1932 .commit = e1000e_phy_sw_reset,
1933 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
1934 .get_cfg_done = e1000e_get_cfg_done,
1935 .get_cable_length = e1000e_get_cable_length_m88,
1936 .get_info = e1000e_get_phy_info_m88,
1937 .read_reg = e1000e_read_phy_reg_bm2,
1938 .release = e1000_put_hw_semaphore_82571,
1939 .reset = e1000e_phy_hw_reset_generic,
1940 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1941 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1942 .write_reg = e1000e_write_phy_reg_bm2,
1943 .cfg_on_link_up = NULL,
1946 static struct e1000_nvm_operations e82571_nvm_ops = {
1947 .acquire = e1000_acquire_nvm_82571,
1948 .read = e1000e_read_nvm_eerd,
1949 .release = e1000_release_nvm_82571,
1950 .update = e1000_update_nvm_checksum_82571,
1951 .valid_led_default = e1000_valid_led_default_82571,
1952 .validate = e1000_validate_nvm_checksum_82571,
1953 .write = e1000_write_nvm_82571,
1956 struct e1000_info e1000_82571_info = {
1957 .mac = e1000_82571,
1958 .flags = FLAG_HAS_HW_VLAN_FILTER
1959 | FLAG_HAS_JUMBO_FRAMES
1960 | FLAG_HAS_WOL
1961 | FLAG_APME_IN_CTRL3
1962 | FLAG_RX_CSUM_ENABLED
1963 | FLAG_HAS_CTRLEXT_ON_LOAD
1964 | FLAG_HAS_SMART_POWER_DOWN
1965 | FLAG_RESET_OVERWRITES_LAA /* errata */
1966 | FLAG_TARC_SPEED_MODE_BIT /* errata */
1967 | FLAG_APME_CHECK_PORT_B,
1968 .flags2 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
1969 | FLAG2_DMA_BURST,
1970 .pba = 38,
1971 .max_hw_frame_size = DEFAULT_JUMBO,
1972 .get_variants = e1000_get_variants_82571,
1973 .mac_ops = &e82571_mac_ops,
1974 .phy_ops = &e82_phy_ops_igp,
1975 .nvm_ops = &e82571_nvm_ops,
1978 struct e1000_info e1000_82572_info = {
1979 .mac = e1000_82572,
1980 .flags = FLAG_HAS_HW_VLAN_FILTER
1981 | FLAG_HAS_JUMBO_FRAMES
1982 | FLAG_HAS_WOL
1983 | FLAG_APME_IN_CTRL3
1984 | FLAG_RX_CSUM_ENABLED
1985 | FLAG_HAS_CTRLEXT_ON_LOAD
1986 | FLAG_TARC_SPEED_MODE_BIT, /* errata */
1987 .flags2 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
1988 | FLAG2_DMA_BURST,
1989 .pba = 38,
1990 .max_hw_frame_size = DEFAULT_JUMBO,
1991 .get_variants = e1000_get_variants_82571,
1992 .mac_ops = &e82571_mac_ops,
1993 .phy_ops = &e82_phy_ops_igp,
1994 .nvm_ops = &e82571_nvm_ops,
1997 struct e1000_info e1000_82573_info = {
1998 .mac = e1000_82573,
1999 .flags = FLAG_HAS_HW_VLAN_FILTER
2000 | FLAG_HAS_WOL
2001 | FLAG_APME_IN_CTRL3
2002 | FLAG_RX_CSUM_ENABLED
2003 | FLAG_HAS_SMART_POWER_DOWN
2004 | FLAG_HAS_AMT
2005 | FLAG_HAS_SWSM_ON_LOAD,
2006 .flags2 = FLAG2_DISABLE_ASPM_L1,
2007 .pba = 20,
2008 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
2009 .get_variants = e1000_get_variants_82571,
2010 .mac_ops = &e82571_mac_ops,
2011 .phy_ops = &e82_phy_ops_m88,
2012 .nvm_ops = &e82571_nvm_ops,
2015 struct e1000_info e1000_82574_info = {
2016 .mac = e1000_82574,
2017 .flags = FLAG_HAS_HW_VLAN_FILTER
2018 | FLAG_HAS_MSIX
2019 | FLAG_HAS_JUMBO_FRAMES
2020 | FLAG_HAS_WOL
2021 | FLAG_APME_IN_CTRL3
2022 | FLAG_RX_CSUM_ENABLED
2023 | FLAG_HAS_SMART_POWER_DOWN
2024 | FLAG_HAS_AMT
2025 | FLAG_HAS_CTRLEXT_ON_LOAD,
2026 .flags2 = FLAG2_CHECK_PHY_HANG,
2027 .pba = 32,
2028 .max_hw_frame_size = DEFAULT_JUMBO,
2029 .get_variants = e1000_get_variants_82571,
2030 .mac_ops = &e82571_mac_ops,
2031 .phy_ops = &e82_phy_ops_bm,
2032 .nvm_ops = &e82571_nvm_ops,
2035 struct e1000_info e1000_82583_info = {
2036 .mac = e1000_82583,
2037 .flags = FLAG_HAS_HW_VLAN_FILTER
2038 | FLAG_HAS_WOL
2039 | FLAG_APME_IN_CTRL3
2040 | FLAG_RX_CSUM_ENABLED
2041 | FLAG_HAS_SMART_POWER_DOWN
2042 | FLAG_HAS_AMT
2043 | FLAG_HAS_CTRLEXT_ON_LOAD,
2044 .pba = 32,
2045 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
2046 .get_variants = e1000_get_variants_82571,
2047 .mac_ops = &e82571_mac_ops,
2048 .phy_ops = &e82_phy_ops_bm,
2049 .nvm_ops = &e82571_nvm_ops,