cfg80211: do not kzalloc() again for a new request on __regulatory_hint
[linux-2.6.git] / net / wireless / reg.c
blob6152a7ac9b901d0acb485081f00a7aebdac71d0c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008 Luis R. Rodriguez <lrodriguz@atheros.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 /**
13 * DOC: Wireless regulatory infrastructure
15 * The usual implementation is for a driver to read a device EEPROM to
16 * determine which regulatory domain it should be operating under, then
17 * looking up the allowable channels in a driver-local table and finally
18 * registering those channels in the wiphy structure.
20 * Another set of compliance enforcement is for drivers to use their
21 * own compliance limits which can be stored on the EEPROM. The host
22 * driver or firmware may ensure these are used.
24 * In addition to all this we provide an extra layer of regulatory
25 * conformance. For drivers which do not have any regulatory
26 * information CRDA provides the complete regulatory solution.
27 * For others it provides a community effort on further restrictions
28 * to enhance compliance.
30 * Note: When number of rules --> infinity we will not be able to
31 * index on alpha2 any more, instead we'll probably have to
32 * rely on some SHA1 checksum of the regdomain for example.
35 #include <linux/kernel.h>
36 #include <linux/list.h>
37 #include <linux/random.h>
38 #include <linux/nl80211.h>
39 #include <linux/platform_device.h>
40 #include <net/wireless.h>
41 #include <net/cfg80211.h>
42 #include "core.h"
43 #include "reg.h"
45 /* Receipt of information from last regulatory request */
46 static struct regulatory_request *last_request;
48 /* To trigger userspace events */
49 static struct platform_device *reg_pdev;
51 /* Keep the ordering from large to small */
52 static u32 supported_bandwidths[] = {
53 MHZ_TO_KHZ(40),
54 MHZ_TO_KHZ(20),
58 * Central wireless core regulatory domains, we only need two,
59 * the current one and a world regulatory domain in case we have no
60 * information to give us an alpha2
62 const struct ieee80211_regdomain *cfg80211_regdomain;
65 * We use this as a place for the rd structure built from the
66 * last parsed country IE to rest until CRDA gets back to us with
67 * what it thinks should apply for the same country
69 static const struct ieee80211_regdomain *country_ie_regdomain;
71 /* Used to queue up regulatory hints */
72 static LIST_HEAD(reg_requests_list);
73 static spinlock_t reg_requests_lock;
75 /* Used to queue up beacon hints for review */
76 static LIST_HEAD(reg_pending_beacons);
77 static spinlock_t reg_pending_beacons_lock;
79 /* Used to keep track of processed beacon hints */
80 static LIST_HEAD(reg_beacon_list);
82 struct reg_beacon {
83 struct list_head list;
84 struct ieee80211_channel chan;
87 /* We keep a static world regulatory domain in case of the absence of CRDA */
88 static const struct ieee80211_regdomain world_regdom = {
89 .n_reg_rules = 3,
90 .alpha2 = "00",
91 .reg_rules = {
92 /* IEEE 802.11b/g, channels 1..11 */
93 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
94 /* IEEE 802.11a, channel 36..48 */
95 REG_RULE(5180-10, 5240+10, 40, 6, 23,
96 NL80211_RRF_PASSIVE_SCAN |
97 NL80211_RRF_NO_IBSS),
99 /* NB: 5260 MHz - 5700 MHz requies DFS */
101 /* IEEE 802.11a, channel 149..165 */
102 REG_RULE(5745-10, 5825+10, 40, 6, 23,
103 NL80211_RRF_PASSIVE_SCAN |
104 NL80211_RRF_NO_IBSS),
108 static const struct ieee80211_regdomain *cfg80211_world_regdom =
109 &world_regdom;
111 #ifdef CONFIG_WIRELESS_OLD_REGULATORY
112 static char *ieee80211_regdom = "US";
113 module_param(ieee80211_regdom, charp, 0444);
114 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
117 * We assume 40 MHz bandwidth for the old regulatory work.
118 * We make emphasis we are using the exact same frequencies
119 * as before
122 static const struct ieee80211_regdomain us_regdom = {
123 .n_reg_rules = 6,
124 .alpha2 = "US",
125 .reg_rules = {
126 /* IEEE 802.11b/g, channels 1..11 */
127 REG_RULE(2412-10, 2462+10, 40, 6, 27, 0),
128 /* IEEE 802.11a, channel 36 */
129 REG_RULE(5180-10, 5180+10, 40, 6, 23, 0),
130 /* IEEE 802.11a, channel 40 */
131 REG_RULE(5200-10, 5200+10, 40, 6, 23, 0),
132 /* IEEE 802.11a, channel 44 */
133 REG_RULE(5220-10, 5220+10, 40, 6, 23, 0),
134 /* IEEE 802.11a, channels 48..64 */
135 REG_RULE(5240-10, 5320+10, 40, 6, 23, 0),
136 /* IEEE 802.11a, channels 149..165, outdoor */
137 REG_RULE(5745-10, 5825+10, 40, 6, 30, 0),
141 static const struct ieee80211_regdomain jp_regdom = {
142 .n_reg_rules = 3,
143 .alpha2 = "JP",
144 .reg_rules = {
145 /* IEEE 802.11b/g, channels 1..14 */
146 REG_RULE(2412-10, 2484+10, 40, 6, 20, 0),
147 /* IEEE 802.11a, channels 34..48 */
148 REG_RULE(5170-10, 5240+10, 40, 6, 20,
149 NL80211_RRF_PASSIVE_SCAN),
150 /* IEEE 802.11a, channels 52..64 */
151 REG_RULE(5260-10, 5320+10, 40, 6, 20,
152 NL80211_RRF_NO_IBSS |
153 NL80211_RRF_DFS),
157 static const struct ieee80211_regdomain eu_regdom = {
158 .n_reg_rules = 6,
160 * This alpha2 is bogus, we leave it here just for stupid
161 * backward compatibility
163 .alpha2 = "EU",
164 .reg_rules = {
165 /* IEEE 802.11b/g, channels 1..13 */
166 REG_RULE(2412-10, 2472+10, 40, 6, 20, 0),
167 /* IEEE 802.11a, channel 36 */
168 REG_RULE(5180-10, 5180+10, 40, 6, 23,
169 NL80211_RRF_PASSIVE_SCAN),
170 /* IEEE 802.11a, channel 40 */
171 REG_RULE(5200-10, 5200+10, 40, 6, 23,
172 NL80211_RRF_PASSIVE_SCAN),
173 /* IEEE 802.11a, channel 44 */
174 REG_RULE(5220-10, 5220+10, 40, 6, 23,
175 NL80211_RRF_PASSIVE_SCAN),
176 /* IEEE 802.11a, channels 48..64 */
177 REG_RULE(5240-10, 5320+10, 40, 6, 20,
178 NL80211_RRF_NO_IBSS |
179 NL80211_RRF_DFS),
180 /* IEEE 802.11a, channels 100..140 */
181 REG_RULE(5500-10, 5700+10, 40, 6, 30,
182 NL80211_RRF_NO_IBSS |
183 NL80211_RRF_DFS),
187 static const struct ieee80211_regdomain *static_regdom(char *alpha2)
189 if (alpha2[0] == 'U' && alpha2[1] == 'S')
190 return &us_regdom;
191 if (alpha2[0] == 'J' && alpha2[1] == 'P')
192 return &jp_regdom;
193 if (alpha2[0] == 'E' && alpha2[1] == 'U')
194 return &eu_regdom;
195 /* Default, as per the old rules */
196 return &us_regdom;
199 static bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
201 if (rd == &us_regdom || rd == &jp_regdom || rd == &eu_regdom)
202 return true;
203 return false;
205 #else
206 static inline bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
208 return false;
210 #endif
212 static void reset_regdomains(void)
214 /* avoid freeing static information or freeing something twice */
215 if (cfg80211_regdomain == cfg80211_world_regdom)
216 cfg80211_regdomain = NULL;
217 if (cfg80211_world_regdom == &world_regdom)
218 cfg80211_world_regdom = NULL;
219 if (cfg80211_regdomain == &world_regdom)
220 cfg80211_regdomain = NULL;
221 if (is_old_static_regdom(cfg80211_regdomain))
222 cfg80211_regdomain = NULL;
224 kfree(cfg80211_regdomain);
225 kfree(cfg80211_world_regdom);
227 cfg80211_world_regdom = &world_regdom;
228 cfg80211_regdomain = NULL;
232 * Dynamic world regulatory domain requested by the wireless
233 * core upon initialization
235 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
237 BUG_ON(!last_request);
239 reset_regdomains();
241 cfg80211_world_regdom = rd;
242 cfg80211_regdomain = rd;
245 bool is_world_regdom(const char *alpha2)
247 if (!alpha2)
248 return false;
249 if (alpha2[0] == '0' && alpha2[1] == '0')
250 return true;
251 return false;
254 static bool is_alpha2_set(const char *alpha2)
256 if (!alpha2)
257 return false;
258 if (alpha2[0] != 0 && alpha2[1] != 0)
259 return true;
260 return false;
263 static bool is_alpha_upper(char letter)
265 /* ASCII A - Z */
266 if (letter >= 65 && letter <= 90)
267 return true;
268 return false;
271 static bool is_unknown_alpha2(const char *alpha2)
273 if (!alpha2)
274 return false;
276 * Special case where regulatory domain was built by driver
277 * but a specific alpha2 cannot be determined
279 if (alpha2[0] == '9' && alpha2[1] == '9')
280 return true;
281 return false;
284 static bool is_intersected_alpha2(const char *alpha2)
286 if (!alpha2)
287 return false;
289 * Special case where regulatory domain is the
290 * result of an intersection between two regulatory domain
291 * structures
293 if (alpha2[0] == '9' && alpha2[1] == '8')
294 return true;
295 return false;
298 static bool is_an_alpha2(const char *alpha2)
300 if (!alpha2)
301 return false;
302 if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1]))
303 return true;
304 return false;
307 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
309 if (!alpha2_x || !alpha2_y)
310 return false;
311 if (alpha2_x[0] == alpha2_y[0] &&
312 alpha2_x[1] == alpha2_y[1])
313 return true;
314 return false;
317 static bool regdom_changes(const char *alpha2)
319 assert_cfg80211_lock();
321 if (!cfg80211_regdomain)
322 return true;
323 if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
324 return false;
325 return true;
329 * country_ie_integrity_changes - tells us if the country IE has changed
330 * @checksum: checksum of country IE of fields we are interested in
332 * If the country IE has not changed you can ignore it safely. This is
333 * useful to determine if two devices are seeing two different country IEs
334 * even on the same alpha2. Note that this will return false if no IE has
335 * been set on the wireless core yet.
337 static bool country_ie_integrity_changes(u32 checksum)
339 /* If no IE has been set then the checksum doesn't change */
340 if (unlikely(!last_request->country_ie_checksum))
341 return false;
342 if (unlikely(last_request->country_ie_checksum != checksum))
343 return true;
344 return false;
348 * This lets us keep regulatory code which is updated on a regulatory
349 * basis in userspace.
351 static int call_crda(const char *alpha2)
353 char country_env[9 + 2] = "COUNTRY=";
354 char *envp[] = {
355 country_env,
356 NULL
359 if (!is_world_regdom((char *) alpha2))
360 printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
361 alpha2[0], alpha2[1]);
362 else
363 printk(KERN_INFO "cfg80211: Calling CRDA to update world "
364 "regulatory domain\n");
366 country_env[8] = alpha2[0];
367 country_env[9] = alpha2[1];
369 return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
372 /* Used by nl80211 before kmalloc'ing our regulatory domain */
373 bool reg_is_valid_request(const char *alpha2)
375 if (!last_request)
376 return false;
378 return alpha2_equal(last_request->alpha2, alpha2);
381 /* Sanity check on a regulatory rule */
382 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
384 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
385 u32 freq_diff;
387 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
388 return false;
390 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
391 return false;
393 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
395 if (freq_diff <= 0 || freq_range->max_bandwidth_khz > freq_diff)
396 return false;
398 return true;
401 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
403 const struct ieee80211_reg_rule *reg_rule = NULL;
404 unsigned int i;
406 if (!rd->n_reg_rules)
407 return false;
409 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
410 return false;
412 for (i = 0; i < rd->n_reg_rules; i++) {
413 reg_rule = &rd->reg_rules[i];
414 if (!is_valid_reg_rule(reg_rule))
415 return false;
418 return true;
421 /* Returns value in KHz */
422 static u32 freq_max_bandwidth(const struct ieee80211_freq_range *freq_range,
423 u32 freq)
425 unsigned int i;
426 for (i = 0; i < ARRAY_SIZE(supported_bandwidths); i++) {
427 u32 start_freq_khz = freq - supported_bandwidths[i]/2;
428 u32 end_freq_khz = freq + supported_bandwidths[i]/2;
429 if (start_freq_khz >= freq_range->start_freq_khz &&
430 end_freq_khz <= freq_range->end_freq_khz)
431 return supported_bandwidths[i];
433 return 0;
437 * freq_in_rule_band - tells us if a frequency is in a frequency band
438 * @freq_range: frequency rule we want to query
439 * @freq_khz: frequency we are inquiring about
441 * This lets us know if a specific frequency rule is or is not relevant to
442 * a specific frequency's band. Bands are device specific and artificial
443 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
444 * safe for now to assume that a frequency rule should not be part of a
445 * frequency's band if the start freq or end freq are off by more than 2 GHz.
446 * This resolution can be lowered and should be considered as we add
447 * regulatory rule support for other "bands".
449 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
450 u32 freq_khz)
452 #define ONE_GHZ_IN_KHZ 1000000
453 if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
454 return true;
455 if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
456 return true;
457 return false;
458 #undef ONE_GHZ_IN_KHZ
462 * Converts a country IE to a regulatory domain. A regulatory domain
463 * structure has a lot of information which the IE doesn't yet have,
464 * so for the other values we use upper max values as we will intersect
465 * with our userspace regulatory agent to get lower bounds.
467 static struct ieee80211_regdomain *country_ie_2_rd(
468 u8 *country_ie,
469 u8 country_ie_len,
470 u32 *checksum)
472 struct ieee80211_regdomain *rd = NULL;
473 unsigned int i = 0;
474 char alpha2[2];
475 u32 flags = 0;
476 u32 num_rules = 0, size_of_regd = 0;
477 u8 *triplets_start = NULL;
478 u8 len_at_triplet = 0;
479 /* the last channel we have registered in a subband (triplet) */
480 int last_sub_max_channel = 0;
482 *checksum = 0xDEADBEEF;
484 /* Country IE requirements */
485 BUG_ON(country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN ||
486 country_ie_len & 0x01);
488 alpha2[0] = country_ie[0];
489 alpha2[1] = country_ie[1];
492 * Third octet can be:
493 * 'I' - Indoor
494 * 'O' - Outdoor
496 * anything else we assume is no restrictions
498 if (country_ie[2] == 'I')
499 flags = NL80211_RRF_NO_OUTDOOR;
500 else if (country_ie[2] == 'O')
501 flags = NL80211_RRF_NO_INDOOR;
503 country_ie += 3;
504 country_ie_len -= 3;
506 triplets_start = country_ie;
507 len_at_triplet = country_ie_len;
509 *checksum ^= ((flags ^ alpha2[0] ^ alpha2[1]) << 8);
512 * We need to build a reg rule for each triplet, but first we must
513 * calculate the number of reg rules we will need. We will need one
514 * for each channel subband
516 while (country_ie_len >= 3) {
517 int end_channel = 0;
518 struct ieee80211_country_ie_triplet *triplet =
519 (struct ieee80211_country_ie_triplet *) country_ie;
520 int cur_sub_max_channel = 0, cur_channel = 0;
522 if (triplet->ext.reg_extension_id >=
523 IEEE80211_COUNTRY_EXTENSION_ID) {
524 country_ie += 3;
525 country_ie_len -= 3;
526 continue;
529 /* 2 GHz */
530 if (triplet->chans.first_channel <= 14)
531 end_channel = triplet->chans.first_channel +
532 triplet->chans.num_channels;
533 else
535 * 5 GHz -- For example in country IEs if the first
536 * channel given is 36 and the number of channels is 4
537 * then the individual channel numbers defined for the
538 * 5 GHz PHY by these parameters are: 36, 40, 44, and 48
539 * and not 36, 37, 38, 39.
541 * See: http://tinyurl.com/11d-clarification
543 end_channel = triplet->chans.first_channel +
544 (4 * (triplet->chans.num_channels - 1));
546 cur_channel = triplet->chans.first_channel;
547 cur_sub_max_channel = end_channel;
549 /* Basic sanity check */
550 if (cur_sub_max_channel < cur_channel)
551 return NULL;
554 * Do not allow overlapping channels. Also channels
555 * passed in each subband must be monotonically
556 * increasing
558 if (last_sub_max_channel) {
559 if (cur_channel <= last_sub_max_channel)
560 return NULL;
561 if (cur_sub_max_channel <= last_sub_max_channel)
562 return NULL;
566 * When dot11RegulatoryClassesRequired is supported
567 * we can throw ext triplets as part of this soup,
568 * for now we don't care when those change as we
569 * don't support them
571 *checksum ^= ((cur_channel ^ cur_sub_max_channel) << 8) |
572 ((cur_sub_max_channel ^ cur_sub_max_channel) << 16) |
573 ((triplet->chans.max_power ^ cur_sub_max_channel) << 24);
575 last_sub_max_channel = cur_sub_max_channel;
577 country_ie += 3;
578 country_ie_len -= 3;
579 num_rules++;
582 * Note: this is not a IEEE requirement but
583 * simply a memory requirement
585 if (num_rules > NL80211_MAX_SUPP_REG_RULES)
586 return NULL;
589 country_ie = triplets_start;
590 country_ie_len = len_at_triplet;
592 size_of_regd = sizeof(struct ieee80211_regdomain) +
593 (num_rules * sizeof(struct ieee80211_reg_rule));
595 rd = kzalloc(size_of_regd, GFP_KERNEL);
596 if (!rd)
597 return NULL;
599 rd->n_reg_rules = num_rules;
600 rd->alpha2[0] = alpha2[0];
601 rd->alpha2[1] = alpha2[1];
603 /* This time around we fill in the rd */
604 while (country_ie_len >= 3) {
605 int end_channel = 0;
606 struct ieee80211_country_ie_triplet *triplet =
607 (struct ieee80211_country_ie_triplet *) country_ie;
608 struct ieee80211_reg_rule *reg_rule = NULL;
609 struct ieee80211_freq_range *freq_range = NULL;
610 struct ieee80211_power_rule *power_rule = NULL;
613 * Must parse if dot11RegulatoryClassesRequired is true,
614 * we don't support this yet
616 if (triplet->ext.reg_extension_id >=
617 IEEE80211_COUNTRY_EXTENSION_ID) {
618 country_ie += 3;
619 country_ie_len -= 3;
620 continue;
623 reg_rule = &rd->reg_rules[i];
624 freq_range = &reg_rule->freq_range;
625 power_rule = &reg_rule->power_rule;
627 reg_rule->flags = flags;
629 /* 2 GHz */
630 if (triplet->chans.first_channel <= 14)
631 end_channel = triplet->chans.first_channel +
632 triplet->chans.num_channels;
633 else
634 end_channel = triplet->chans.first_channel +
635 (4 * (triplet->chans.num_channels - 1));
638 * The +10 is since the regulatory domain expects
639 * the actual band edge, not the center of freq for
640 * its start and end freqs, assuming 20 MHz bandwidth on
641 * the channels passed
643 freq_range->start_freq_khz =
644 MHZ_TO_KHZ(ieee80211_channel_to_frequency(
645 triplet->chans.first_channel) - 10);
646 freq_range->end_freq_khz =
647 MHZ_TO_KHZ(ieee80211_channel_to_frequency(
648 end_channel) + 10);
651 * These are large arbitrary values we use to intersect later.
652 * Increment this if we ever support >= 40 MHz channels
653 * in IEEE 802.11
655 freq_range->max_bandwidth_khz = MHZ_TO_KHZ(40);
656 power_rule->max_antenna_gain = DBI_TO_MBI(100);
657 power_rule->max_eirp = DBM_TO_MBM(100);
659 country_ie += 3;
660 country_ie_len -= 3;
661 i++;
663 BUG_ON(i > NL80211_MAX_SUPP_REG_RULES);
666 return rd;
671 * Helper for regdom_intersect(), this does the real
672 * mathematical intersection fun
674 static int reg_rules_intersect(
675 const struct ieee80211_reg_rule *rule1,
676 const struct ieee80211_reg_rule *rule2,
677 struct ieee80211_reg_rule *intersected_rule)
679 const struct ieee80211_freq_range *freq_range1, *freq_range2;
680 struct ieee80211_freq_range *freq_range;
681 const struct ieee80211_power_rule *power_rule1, *power_rule2;
682 struct ieee80211_power_rule *power_rule;
683 u32 freq_diff;
685 freq_range1 = &rule1->freq_range;
686 freq_range2 = &rule2->freq_range;
687 freq_range = &intersected_rule->freq_range;
689 power_rule1 = &rule1->power_rule;
690 power_rule2 = &rule2->power_rule;
691 power_rule = &intersected_rule->power_rule;
693 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
694 freq_range2->start_freq_khz);
695 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
696 freq_range2->end_freq_khz);
697 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
698 freq_range2->max_bandwidth_khz);
700 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
701 if (freq_range->max_bandwidth_khz > freq_diff)
702 freq_range->max_bandwidth_khz = freq_diff;
704 power_rule->max_eirp = min(power_rule1->max_eirp,
705 power_rule2->max_eirp);
706 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
707 power_rule2->max_antenna_gain);
709 intersected_rule->flags = (rule1->flags | rule2->flags);
711 if (!is_valid_reg_rule(intersected_rule))
712 return -EINVAL;
714 return 0;
718 * regdom_intersect - do the intersection between two regulatory domains
719 * @rd1: first regulatory domain
720 * @rd2: second regulatory domain
722 * Use this function to get the intersection between two regulatory domains.
723 * Once completed we will mark the alpha2 for the rd as intersected, "98",
724 * as no one single alpha2 can represent this regulatory domain.
726 * Returns a pointer to the regulatory domain structure which will hold the
727 * resulting intersection of rules between rd1 and rd2. We will
728 * kzalloc() this structure for you.
730 static struct ieee80211_regdomain *regdom_intersect(
731 const struct ieee80211_regdomain *rd1,
732 const struct ieee80211_regdomain *rd2)
734 int r, size_of_regd;
735 unsigned int x, y;
736 unsigned int num_rules = 0, rule_idx = 0;
737 const struct ieee80211_reg_rule *rule1, *rule2;
738 struct ieee80211_reg_rule *intersected_rule;
739 struct ieee80211_regdomain *rd;
740 /* This is just a dummy holder to help us count */
741 struct ieee80211_reg_rule irule;
743 /* Uses the stack temporarily for counter arithmetic */
744 intersected_rule = &irule;
746 memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
748 if (!rd1 || !rd2)
749 return NULL;
752 * First we get a count of the rules we'll need, then we actually
753 * build them. This is to so we can malloc() and free() a
754 * regdomain once. The reason we use reg_rules_intersect() here
755 * is it will return -EINVAL if the rule computed makes no sense.
756 * All rules that do check out OK are valid.
759 for (x = 0; x < rd1->n_reg_rules; x++) {
760 rule1 = &rd1->reg_rules[x];
761 for (y = 0; y < rd2->n_reg_rules; y++) {
762 rule2 = &rd2->reg_rules[y];
763 if (!reg_rules_intersect(rule1, rule2,
764 intersected_rule))
765 num_rules++;
766 memset(intersected_rule, 0,
767 sizeof(struct ieee80211_reg_rule));
771 if (!num_rules)
772 return NULL;
774 size_of_regd = sizeof(struct ieee80211_regdomain) +
775 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
777 rd = kzalloc(size_of_regd, GFP_KERNEL);
778 if (!rd)
779 return NULL;
781 for (x = 0; x < rd1->n_reg_rules; x++) {
782 rule1 = &rd1->reg_rules[x];
783 for (y = 0; y < rd2->n_reg_rules; y++) {
784 rule2 = &rd2->reg_rules[y];
786 * This time around instead of using the stack lets
787 * write to the target rule directly saving ourselves
788 * a memcpy()
790 intersected_rule = &rd->reg_rules[rule_idx];
791 r = reg_rules_intersect(rule1, rule2,
792 intersected_rule);
794 * No need to memset here the intersected rule here as
795 * we're not using the stack anymore
797 if (r)
798 continue;
799 rule_idx++;
803 if (rule_idx != num_rules) {
804 kfree(rd);
805 return NULL;
808 rd->n_reg_rules = num_rules;
809 rd->alpha2[0] = '9';
810 rd->alpha2[1] = '8';
812 return rd;
816 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
817 * want to just have the channel structure use these
819 static u32 map_regdom_flags(u32 rd_flags)
821 u32 channel_flags = 0;
822 if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
823 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
824 if (rd_flags & NL80211_RRF_NO_IBSS)
825 channel_flags |= IEEE80211_CHAN_NO_IBSS;
826 if (rd_flags & NL80211_RRF_DFS)
827 channel_flags |= IEEE80211_CHAN_RADAR;
828 return channel_flags;
831 static int freq_reg_info_regd(struct wiphy *wiphy,
832 u32 center_freq,
833 u32 *bandwidth,
834 const struct ieee80211_reg_rule **reg_rule,
835 const struct ieee80211_regdomain *custom_regd)
837 int i;
838 bool band_rule_found = false;
839 const struct ieee80211_regdomain *regd;
840 u32 max_bandwidth = 0;
842 regd = custom_regd ? custom_regd : cfg80211_regdomain;
845 * Follow the driver's regulatory domain, if present, unless a country
846 * IE has been processed or a user wants to help complaince further
848 if (last_request->initiator != REGDOM_SET_BY_COUNTRY_IE &&
849 last_request->initiator != REGDOM_SET_BY_USER &&
850 wiphy->regd)
851 regd = wiphy->regd;
853 if (!regd)
854 return -EINVAL;
856 for (i = 0; i < regd->n_reg_rules; i++) {
857 const struct ieee80211_reg_rule *rr;
858 const struct ieee80211_freq_range *fr = NULL;
859 const struct ieee80211_power_rule *pr = NULL;
861 rr = &regd->reg_rules[i];
862 fr = &rr->freq_range;
863 pr = &rr->power_rule;
866 * We only need to know if one frequency rule was
867 * was in center_freq's band, that's enough, so lets
868 * not overwrite it once found
870 if (!band_rule_found)
871 band_rule_found = freq_in_rule_band(fr, center_freq);
873 max_bandwidth = freq_max_bandwidth(fr, center_freq);
875 if (max_bandwidth && *bandwidth <= max_bandwidth) {
876 *reg_rule = rr;
877 *bandwidth = max_bandwidth;
878 break;
882 if (!band_rule_found)
883 return -ERANGE;
885 return !max_bandwidth;
887 EXPORT_SYMBOL(freq_reg_info);
889 int freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 *bandwidth,
890 const struct ieee80211_reg_rule **reg_rule)
892 return freq_reg_info_regd(wiphy, center_freq,
893 bandwidth, reg_rule, NULL);
896 static void handle_channel(struct wiphy *wiphy, enum ieee80211_band band,
897 unsigned int chan_idx)
899 int r;
900 u32 flags;
901 u32 max_bandwidth = 0;
902 const struct ieee80211_reg_rule *reg_rule = NULL;
903 const struct ieee80211_power_rule *power_rule = NULL;
904 struct ieee80211_supported_band *sband;
905 struct ieee80211_channel *chan;
906 struct wiphy *request_wiphy = NULL;
908 assert_cfg80211_lock();
910 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
912 sband = wiphy->bands[band];
913 BUG_ON(chan_idx >= sband->n_channels);
914 chan = &sband->channels[chan_idx];
916 flags = chan->orig_flags;
918 r = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq),
919 &max_bandwidth, &reg_rule);
921 if (r) {
923 * This means no regulatory rule was found in the country IE
924 * with a frequency range on the center_freq's band, since
925 * IEEE-802.11 allows for a country IE to have a subset of the
926 * regulatory information provided in a country we ignore
927 * disabling the channel unless at least one reg rule was
928 * found on the center_freq's band. For details see this
929 * clarification:
931 * http://tinyurl.com/11d-clarification
933 if (r == -ERANGE &&
934 last_request->initiator == REGDOM_SET_BY_COUNTRY_IE) {
935 #ifdef CONFIG_CFG80211_REG_DEBUG
936 printk(KERN_DEBUG "cfg80211: Leaving channel %d MHz "
937 "intact on %s - no rule found in band on "
938 "Country IE\n",
939 chan->center_freq, wiphy_name(wiphy));
940 #endif
941 } else {
943 * In this case we know the country IE has at least one reg rule
944 * for the band so we respect its band definitions
946 #ifdef CONFIG_CFG80211_REG_DEBUG
947 if (last_request->initiator == REGDOM_SET_BY_COUNTRY_IE)
948 printk(KERN_DEBUG "cfg80211: Disabling "
949 "channel %d MHz on %s due to "
950 "Country IE\n",
951 chan->center_freq, wiphy_name(wiphy));
952 #endif
953 flags |= IEEE80211_CHAN_DISABLED;
954 chan->flags = flags;
956 return;
959 power_rule = &reg_rule->power_rule;
961 if (last_request->initiator == REGDOM_SET_BY_DRIVER &&
962 request_wiphy && request_wiphy == wiphy &&
963 request_wiphy->strict_regulatory) {
965 * This gaurantees the driver's requested regulatory domain
966 * will always be used as a base for further regulatory
967 * settings
969 chan->flags = chan->orig_flags =
970 map_regdom_flags(reg_rule->flags);
971 chan->max_antenna_gain = chan->orig_mag =
972 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
973 chan->max_bandwidth = KHZ_TO_MHZ(max_bandwidth);
974 chan->max_power = chan->orig_mpwr =
975 (int) MBM_TO_DBM(power_rule->max_eirp);
976 return;
979 chan->flags = flags | map_regdom_flags(reg_rule->flags);
980 chan->max_antenna_gain = min(chan->orig_mag,
981 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
982 chan->max_bandwidth = KHZ_TO_MHZ(max_bandwidth);
983 if (chan->orig_mpwr)
984 chan->max_power = min(chan->orig_mpwr,
985 (int) MBM_TO_DBM(power_rule->max_eirp));
986 else
987 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
990 static void handle_band(struct wiphy *wiphy, enum ieee80211_band band)
992 unsigned int i;
993 struct ieee80211_supported_band *sband;
995 BUG_ON(!wiphy->bands[band]);
996 sband = wiphy->bands[band];
998 for (i = 0; i < sband->n_channels; i++)
999 handle_channel(wiphy, band, i);
1002 static bool ignore_reg_update(struct wiphy *wiphy, enum reg_set_by setby)
1004 if (!last_request)
1005 return true;
1006 if (setby == REGDOM_SET_BY_CORE &&
1007 wiphy->custom_regulatory)
1008 return true;
1010 * wiphy->regd will be set once the device has its own
1011 * desired regulatory domain set
1013 if (wiphy->strict_regulatory && !wiphy->regd &&
1014 !is_world_regdom(last_request->alpha2))
1015 return true;
1016 return false;
1019 static void update_all_wiphy_regulatory(enum reg_set_by setby)
1021 struct cfg80211_registered_device *drv;
1023 list_for_each_entry(drv, &cfg80211_drv_list, list)
1024 wiphy_update_regulatory(&drv->wiphy, setby);
1027 static void handle_reg_beacon(struct wiphy *wiphy,
1028 unsigned int chan_idx,
1029 struct reg_beacon *reg_beacon)
1031 #ifdef CONFIG_CFG80211_REG_DEBUG
1032 #define REG_DEBUG_BEACON_FLAG(desc) \
1033 printk(KERN_DEBUG "cfg80211: Enabling " desc " on " \
1034 "frequency: %d MHz (Ch %d) on %s\n", \
1035 reg_beacon->chan.center_freq, \
1036 ieee80211_frequency_to_channel(reg_beacon->chan.center_freq), \
1037 wiphy_name(wiphy));
1038 #else
1039 #define REG_DEBUG_BEACON_FLAG(desc) do {} while (0)
1040 #endif
1041 struct ieee80211_supported_band *sband;
1042 struct ieee80211_channel *chan;
1044 assert_cfg80211_lock();
1046 sband = wiphy->bands[reg_beacon->chan.band];
1047 chan = &sband->channels[chan_idx];
1049 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1050 return;
1052 if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
1053 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1054 REG_DEBUG_BEACON_FLAG("active scanning");
1057 if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
1058 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1059 REG_DEBUG_BEACON_FLAG("beaconing");
1062 chan->beacon_found = true;
1063 #undef REG_DEBUG_BEACON_FLAG
1067 * Called when a scan on a wiphy finds a beacon on
1068 * new channel
1070 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1071 struct reg_beacon *reg_beacon)
1073 unsigned int i;
1074 struct ieee80211_supported_band *sband;
1076 assert_cfg80211_lock();
1078 if (!wiphy->bands[reg_beacon->chan.band])
1079 return;
1081 sband = wiphy->bands[reg_beacon->chan.band];
1083 for (i = 0; i < sband->n_channels; i++)
1084 handle_reg_beacon(wiphy, i, reg_beacon);
1088 * Called upon reg changes or a new wiphy is added
1090 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1092 unsigned int i;
1093 struct ieee80211_supported_band *sband;
1094 struct reg_beacon *reg_beacon;
1096 assert_cfg80211_lock();
1098 if (list_empty(&reg_beacon_list))
1099 return;
1101 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1102 if (!wiphy->bands[reg_beacon->chan.band])
1103 continue;
1104 sband = wiphy->bands[reg_beacon->chan.band];
1105 for (i = 0; i < sband->n_channels; i++)
1106 handle_reg_beacon(wiphy, i, reg_beacon);
1110 static bool reg_is_world_roaming(struct wiphy *wiphy)
1112 if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1113 (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1114 return true;
1115 if (last_request->initiator != REGDOM_SET_BY_COUNTRY_IE &&
1116 wiphy->custom_regulatory)
1117 return true;
1118 return false;
1121 /* Reap the advantages of previously found beacons */
1122 static void reg_process_beacons(struct wiphy *wiphy)
1124 if (!reg_is_world_roaming(wiphy))
1125 return;
1126 wiphy_update_beacon_reg(wiphy);
1129 void wiphy_update_regulatory(struct wiphy *wiphy, enum reg_set_by setby)
1131 enum ieee80211_band band;
1133 if (ignore_reg_update(wiphy, setby))
1134 goto out;
1135 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1136 if (wiphy->bands[band])
1137 handle_band(wiphy, band);
1139 out:
1140 reg_process_beacons(wiphy);
1141 if (wiphy->reg_notifier)
1142 wiphy->reg_notifier(wiphy, last_request);
1145 static void handle_channel_custom(struct wiphy *wiphy,
1146 enum ieee80211_band band,
1147 unsigned int chan_idx,
1148 const struct ieee80211_regdomain *regd)
1150 int r;
1151 u32 max_bandwidth = 0;
1152 const struct ieee80211_reg_rule *reg_rule = NULL;
1153 const struct ieee80211_power_rule *power_rule = NULL;
1154 struct ieee80211_supported_band *sband;
1155 struct ieee80211_channel *chan;
1157 sband = wiphy->bands[band];
1158 BUG_ON(chan_idx >= sband->n_channels);
1159 chan = &sband->channels[chan_idx];
1161 r = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
1162 &max_bandwidth, &reg_rule, regd);
1164 if (r) {
1165 chan->flags = IEEE80211_CHAN_DISABLED;
1166 return;
1169 power_rule = &reg_rule->power_rule;
1171 chan->flags |= map_regdom_flags(reg_rule->flags);
1172 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1173 chan->max_bandwidth = KHZ_TO_MHZ(max_bandwidth);
1174 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1177 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1178 const struct ieee80211_regdomain *regd)
1180 unsigned int i;
1181 struct ieee80211_supported_band *sband;
1183 BUG_ON(!wiphy->bands[band]);
1184 sband = wiphy->bands[band];
1186 for (i = 0; i < sband->n_channels; i++)
1187 handle_channel_custom(wiphy, band, i, regd);
1190 /* Used by drivers prior to wiphy registration */
1191 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1192 const struct ieee80211_regdomain *regd)
1194 enum ieee80211_band band;
1195 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1196 if (wiphy->bands[band])
1197 handle_band_custom(wiphy, band, regd);
1200 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1202 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
1203 const struct ieee80211_regdomain *src_regd)
1205 struct ieee80211_regdomain *regd;
1206 int size_of_regd = 0;
1207 unsigned int i;
1209 size_of_regd = sizeof(struct ieee80211_regdomain) +
1210 ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
1212 regd = kzalloc(size_of_regd, GFP_KERNEL);
1213 if (!regd)
1214 return -ENOMEM;
1216 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
1218 for (i = 0; i < src_regd->n_reg_rules; i++)
1219 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
1220 sizeof(struct ieee80211_reg_rule));
1222 *dst_regd = regd;
1223 return 0;
1227 * Return value which can be used by ignore_request() to indicate
1228 * it has been determined we should intersect two regulatory domains
1230 #define REG_INTERSECT 1
1232 /* This has the logic which determines when a new request
1233 * should be ignored. */
1234 static int ignore_request(struct wiphy *wiphy, enum reg_set_by set_by,
1235 const char *alpha2)
1237 struct wiphy *last_wiphy = NULL;
1239 assert_cfg80211_lock();
1241 /* All initial requests are respected */
1242 if (!last_request)
1243 return 0;
1245 switch (set_by) {
1246 case REGDOM_SET_BY_INIT:
1247 return -EINVAL;
1248 case REGDOM_SET_BY_CORE:
1249 return -EINVAL;
1250 case REGDOM_SET_BY_COUNTRY_IE:
1252 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1254 if (unlikely(!is_an_alpha2(alpha2)))
1255 return -EINVAL;
1256 if (last_request->initiator == REGDOM_SET_BY_COUNTRY_IE) {
1257 if (last_wiphy != wiphy) {
1259 * Two cards with two APs claiming different
1260 * different Country IE alpha2s. We could
1261 * intersect them, but that seems unlikely
1262 * to be correct. Reject second one for now.
1264 if (regdom_changes(alpha2))
1265 return -EOPNOTSUPP;
1266 return -EALREADY;
1269 * Two consecutive Country IE hints on the same wiphy.
1270 * This should be picked up early by the driver/stack
1272 if (WARN_ON(regdom_changes(alpha2)))
1273 return 0;
1274 return -EALREADY;
1276 return REG_INTERSECT;
1277 case REGDOM_SET_BY_DRIVER:
1278 if (last_request->initiator == REGDOM_SET_BY_CORE) {
1279 if (is_old_static_regdom(cfg80211_regdomain))
1280 return 0;
1281 if (regdom_changes(alpha2))
1282 return 0;
1283 return -EALREADY;
1287 * This would happen if you unplug and plug your card
1288 * back in or if you add a new device for which the previously
1289 * loaded card also agrees on the regulatory domain.
1291 if (last_request->initiator == REGDOM_SET_BY_DRIVER &&
1292 !regdom_changes(alpha2))
1293 return -EALREADY;
1295 return REG_INTERSECT;
1296 case REGDOM_SET_BY_USER:
1297 if (last_request->initiator == REGDOM_SET_BY_COUNTRY_IE)
1298 return REG_INTERSECT;
1300 * If the user knows better the user should set the regdom
1301 * to their country before the IE is picked up
1303 if (last_request->initiator == REGDOM_SET_BY_USER &&
1304 last_request->intersect)
1305 return -EOPNOTSUPP;
1307 * Process user requests only after previous user/driver/core
1308 * requests have been processed
1310 if (last_request->initiator == REGDOM_SET_BY_CORE ||
1311 last_request->initiator == REGDOM_SET_BY_DRIVER ||
1312 last_request->initiator == REGDOM_SET_BY_USER) {
1313 if (regdom_changes(last_request->alpha2))
1314 return -EAGAIN;
1317 if (!is_old_static_regdom(cfg80211_regdomain) &&
1318 !regdom_changes(alpha2))
1319 return -EALREADY;
1321 return 0;
1324 return -EINVAL;
1328 * __regulatory_hint - hint to the wireless core a regulatory domain
1329 * @wiphy: if the hint comes from country information from an AP, this
1330 * is required to be set to the wiphy that received the information
1331 * @pending_request: the regulatory request currently being processed
1333 * The Wireless subsystem can use this function to hint to the wireless core
1334 * what it believes should be the current regulatory domain.
1336 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1337 * already been set or other standard error codes.
1339 * Caller must hold &cfg80211_mutex
1341 static int __regulatory_hint(struct wiphy *wiphy,
1342 struct regulatory_request *pending_request)
1344 bool intersect = false;
1345 int r = 0;
1347 assert_cfg80211_lock();
1349 r = ignore_request(wiphy,
1350 pending_request->initiator,
1351 pending_request->alpha2);
1353 if (r == REG_INTERSECT) {
1354 if (pending_request->initiator == REGDOM_SET_BY_DRIVER) {
1355 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1356 if (r) {
1357 kfree(pending_request);
1358 return r;
1361 intersect = true;
1362 } else if (r) {
1364 * If the regulatory domain being requested by the
1365 * driver has already been set just copy it to the
1366 * wiphy
1368 if (r == -EALREADY &&
1369 pending_request->initiator == REGDOM_SET_BY_DRIVER) {
1370 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1371 if (r) {
1372 kfree(pending_request);
1373 return r;
1375 r = -EALREADY;
1376 goto new_request;
1378 kfree(pending_request);
1379 return r;
1382 new_request:
1383 kfree(last_request);
1385 last_request = pending_request;
1386 last_request->intersect = intersect;
1388 pending_request = NULL;
1390 /* When r == REG_INTERSECT we do need to call CRDA */
1391 if (r < 0)
1392 return r;
1395 * Note: When CONFIG_WIRELESS_OLD_REGULATORY is enabled
1396 * AND if CRDA is NOT present nothing will happen, if someone
1397 * wants to bother with 11d with OLD_REG you can add a timer.
1398 * If after x amount of time nothing happens you can call:
1400 * return set_regdom(country_ie_regdomain);
1402 * to intersect with the static rd
1404 return call_crda(last_request->alpha2);
1407 /* This currently only processes user and driver regulatory hints */
1408 static void reg_process_hint(struct regulatory_request *reg_request)
1410 int r = 0;
1411 struct wiphy *wiphy = NULL;
1413 BUG_ON(!reg_request->alpha2);
1415 mutex_lock(&cfg80211_mutex);
1417 if (wiphy_idx_valid(reg_request->wiphy_idx))
1418 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1420 if (reg_request->initiator == REGDOM_SET_BY_DRIVER &&
1421 !wiphy) {
1422 kfree(reg_request);
1423 goto out;
1426 r = __regulatory_hint(wiphy, reg_request);
1427 /* This is required so that the orig_* parameters are saved */
1428 if (r == -EALREADY && wiphy && wiphy->strict_regulatory)
1429 wiphy_update_regulatory(wiphy, reg_request->initiator);
1430 out:
1431 mutex_unlock(&cfg80211_mutex);
1434 /* Processes regulatory hints, this is all the REGDOM_SET_BY_* */
1435 static void reg_process_pending_hints(void)
1437 struct regulatory_request *reg_request;
1439 spin_lock(&reg_requests_lock);
1440 while (!list_empty(&reg_requests_list)) {
1441 reg_request = list_first_entry(&reg_requests_list,
1442 struct regulatory_request,
1443 list);
1444 list_del_init(&reg_request->list);
1446 spin_unlock(&reg_requests_lock);
1447 reg_process_hint(reg_request);
1448 spin_lock(&reg_requests_lock);
1450 spin_unlock(&reg_requests_lock);
1453 /* Processes beacon hints -- this has nothing to do with country IEs */
1454 static void reg_process_pending_beacon_hints(void)
1456 struct cfg80211_registered_device *drv;
1457 struct reg_beacon *pending_beacon, *tmp;
1459 mutex_lock(&cfg80211_mutex);
1461 /* This goes through the _pending_ beacon list */
1462 spin_lock_bh(&reg_pending_beacons_lock);
1464 if (list_empty(&reg_pending_beacons)) {
1465 spin_unlock_bh(&reg_pending_beacons_lock);
1466 goto out;
1469 list_for_each_entry_safe(pending_beacon, tmp,
1470 &reg_pending_beacons, list) {
1472 list_del_init(&pending_beacon->list);
1474 /* Applies the beacon hint to current wiphys */
1475 list_for_each_entry(drv, &cfg80211_drv_list, list)
1476 wiphy_update_new_beacon(&drv->wiphy, pending_beacon);
1478 /* Remembers the beacon hint for new wiphys or reg changes */
1479 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1482 spin_unlock_bh(&reg_pending_beacons_lock);
1483 out:
1484 mutex_unlock(&cfg80211_mutex);
1487 static void reg_todo(struct work_struct *work)
1489 reg_process_pending_hints();
1490 reg_process_pending_beacon_hints();
1493 static DECLARE_WORK(reg_work, reg_todo);
1495 static void queue_regulatory_request(struct regulatory_request *request)
1497 spin_lock(&reg_requests_lock);
1498 list_add_tail(&request->list, &reg_requests_list);
1499 spin_unlock(&reg_requests_lock);
1501 schedule_work(&reg_work);
1504 /* Core regulatory hint -- happens once during cfg80211_init() */
1505 static int regulatory_hint_core(const char *alpha2)
1507 struct regulatory_request *request;
1509 BUG_ON(last_request);
1511 request = kzalloc(sizeof(struct regulatory_request),
1512 GFP_KERNEL);
1513 if (!request)
1514 return -ENOMEM;
1516 request->alpha2[0] = alpha2[0];
1517 request->alpha2[1] = alpha2[1];
1518 request->initiator = REGDOM_SET_BY_CORE;
1520 queue_regulatory_request(request);
1522 return 0;
1525 /* User hints */
1526 int regulatory_hint_user(const char *alpha2)
1528 struct regulatory_request *request;
1530 BUG_ON(!alpha2);
1532 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1533 if (!request)
1534 return -ENOMEM;
1536 request->wiphy_idx = WIPHY_IDX_STALE;
1537 request->alpha2[0] = alpha2[0];
1538 request->alpha2[1] = alpha2[1];
1539 request->initiator = REGDOM_SET_BY_USER,
1541 queue_regulatory_request(request);
1543 return 0;
1546 /* Driver hints */
1547 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1549 struct regulatory_request *request;
1551 BUG_ON(!alpha2);
1552 BUG_ON(!wiphy);
1554 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1555 if (!request)
1556 return -ENOMEM;
1558 request->wiphy_idx = get_wiphy_idx(wiphy);
1560 /* Must have registered wiphy first */
1561 BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1563 request->alpha2[0] = alpha2[0];
1564 request->alpha2[1] = alpha2[1];
1565 request->initiator = REGDOM_SET_BY_DRIVER;
1567 queue_regulatory_request(request);
1569 return 0;
1571 EXPORT_SYMBOL(regulatory_hint);
1573 static bool reg_same_country_ie_hint(struct wiphy *wiphy,
1574 u32 country_ie_checksum)
1576 struct wiphy *request_wiphy;
1578 assert_cfg80211_lock();
1580 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1582 if (!request_wiphy)
1583 return false;
1585 if (likely(request_wiphy != wiphy))
1586 return !country_ie_integrity_changes(country_ie_checksum);
1588 * We should not have let these through at this point, they
1589 * should have been picked up earlier by the first alpha2 check
1590 * on the device
1592 if (WARN_ON(!country_ie_integrity_changes(country_ie_checksum)))
1593 return true;
1594 return false;
1597 void regulatory_hint_11d(struct wiphy *wiphy,
1598 u8 *country_ie,
1599 u8 country_ie_len)
1601 struct ieee80211_regdomain *rd = NULL;
1602 char alpha2[2];
1603 u32 checksum = 0;
1604 enum environment_cap env = ENVIRON_ANY;
1605 struct regulatory_request *request;
1607 mutex_lock(&cfg80211_mutex);
1609 if (unlikely(!last_request)) {
1610 mutex_unlock(&cfg80211_mutex);
1611 return;
1614 /* IE len must be evenly divisible by 2 */
1615 if (country_ie_len & 0x01)
1616 goto out;
1618 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1619 goto out;
1622 * Pending country IE processing, this can happen after we
1623 * call CRDA and wait for a response if a beacon was received before
1624 * we were able to process the last regulatory_hint_11d() call
1626 if (country_ie_regdomain)
1627 goto out;
1629 alpha2[0] = country_ie[0];
1630 alpha2[1] = country_ie[1];
1632 if (country_ie[2] == 'I')
1633 env = ENVIRON_INDOOR;
1634 else if (country_ie[2] == 'O')
1635 env = ENVIRON_OUTDOOR;
1638 * We will run this for *every* beacon processed for the BSSID, so
1639 * we optimize an early check to exit out early if we don't have to
1640 * do anything
1642 if (likely(wiphy_idx_valid(last_request->wiphy_idx))) {
1643 struct cfg80211_registered_device *drv_last_ie;
1645 drv_last_ie =
1646 cfg80211_drv_by_wiphy_idx(last_request->wiphy_idx);
1649 * Lets keep this simple -- we trust the first AP
1650 * after we intersect with CRDA
1652 if (likely(&drv_last_ie->wiphy == wiphy)) {
1654 * Ignore IEs coming in on this wiphy with
1655 * the same alpha2 and environment cap
1657 if (likely(alpha2_equal(drv_last_ie->country_ie_alpha2,
1658 alpha2) &&
1659 env == drv_last_ie->env)) {
1660 goto out;
1663 * the wiphy moved on to another BSSID or the AP
1664 * was reconfigured. XXX: We need to deal with the
1665 * case where the user suspends and goes to goes
1666 * to another country, and then gets IEs from an
1667 * AP with different settings
1669 goto out;
1670 } else {
1672 * Ignore IEs coming in on two separate wiphys with
1673 * the same alpha2 and environment cap
1675 if (likely(alpha2_equal(drv_last_ie->country_ie_alpha2,
1676 alpha2) &&
1677 env == drv_last_ie->env)) {
1678 goto out;
1680 /* We could potentially intersect though */
1681 goto out;
1685 rd = country_ie_2_rd(country_ie, country_ie_len, &checksum);
1686 if (!rd)
1687 goto out;
1690 * This will not happen right now but we leave it here for the
1691 * the future when we want to add suspend/resume support and having
1692 * the user move to another country after doing so, or having the user
1693 * move to another AP. Right now we just trust the first AP.
1695 * If we hit this before we add this support we want to be informed of
1696 * it as it would indicate a mistake in the current design
1698 if (WARN_ON(reg_same_country_ie_hint(wiphy, checksum)))
1699 goto free_rd_out;
1701 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1702 if (!request)
1703 goto free_rd_out;
1706 * We keep this around for when CRDA comes back with a response so
1707 * we can intersect with that
1709 country_ie_regdomain = rd;
1711 request->wiphy_idx = get_wiphy_idx(wiphy);
1712 request->alpha2[0] = rd->alpha2[0];
1713 request->alpha2[1] = rd->alpha2[1];
1714 request->initiator = REGDOM_SET_BY_COUNTRY_IE;
1715 request->country_ie_checksum = checksum;
1716 request->country_ie_env = env;
1718 mutex_unlock(&cfg80211_mutex);
1720 queue_regulatory_request(request);
1722 return;
1724 free_rd_out:
1725 kfree(rd);
1726 out:
1727 mutex_unlock(&cfg80211_mutex);
1729 EXPORT_SYMBOL(regulatory_hint_11d);
1731 static bool freq_is_chan_12_13_14(u16 freq)
1733 if (freq == ieee80211_channel_to_frequency(12) ||
1734 freq == ieee80211_channel_to_frequency(13) ||
1735 freq == ieee80211_channel_to_frequency(14))
1736 return true;
1737 return false;
1740 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1741 struct ieee80211_channel *beacon_chan,
1742 gfp_t gfp)
1744 struct reg_beacon *reg_beacon;
1746 if (likely((beacon_chan->beacon_found ||
1747 (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1748 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1749 !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1750 return 0;
1752 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1753 if (!reg_beacon)
1754 return -ENOMEM;
1756 #ifdef CONFIG_CFG80211_REG_DEBUG
1757 printk(KERN_DEBUG "cfg80211: Found new beacon on "
1758 "frequency: %d MHz (Ch %d) on %s\n",
1759 beacon_chan->center_freq,
1760 ieee80211_frequency_to_channel(beacon_chan->center_freq),
1761 wiphy_name(wiphy));
1762 #endif
1763 memcpy(&reg_beacon->chan, beacon_chan,
1764 sizeof(struct ieee80211_channel));
1768 * Since we can be called from BH or and non-BH context
1769 * we must use spin_lock_bh()
1771 spin_lock_bh(&reg_pending_beacons_lock);
1772 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1773 spin_unlock_bh(&reg_pending_beacons_lock);
1775 schedule_work(&reg_work);
1777 return 0;
1780 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1782 unsigned int i;
1783 const struct ieee80211_reg_rule *reg_rule = NULL;
1784 const struct ieee80211_freq_range *freq_range = NULL;
1785 const struct ieee80211_power_rule *power_rule = NULL;
1787 printk(KERN_INFO "\t(start_freq - end_freq @ bandwidth), "
1788 "(max_antenna_gain, max_eirp)\n");
1790 for (i = 0; i < rd->n_reg_rules; i++) {
1791 reg_rule = &rd->reg_rules[i];
1792 freq_range = &reg_rule->freq_range;
1793 power_rule = &reg_rule->power_rule;
1796 * There may not be documentation for max antenna gain
1797 * in certain regions
1799 if (power_rule->max_antenna_gain)
1800 printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
1801 "(%d mBi, %d mBm)\n",
1802 freq_range->start_freq_khz,
1803 freq_range->end_freq_khz,
1804 freq_range->max_bandwidth_khz,
1805 power_rule->max_antenna_gain,
1806 power_rule->max_eirp);
1807 else
1808 printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
1809 "(N/A, %d mBm)\n",
1810 freq_range->start_freq_khz,
1811 freq_range->end_freq_khz,
1812 freq_range->max_bandwidth_khz,
1813 power_rule->max_eirp);
1817 static void print_regdomain(const struct ieee80211_regdomain *rd)
1820 if (is_intersected_alpha2(rd->alpha2)) {
1822 if (last_request->initiator == REGDOM_SET_BY_COUNTRY_IE) {
1823 struct cfg80211_registered_device *drv;
1824 drv = cfg80211_drv_by_wiphy_idx(
1825 last_request->wiphy_idx);
1826 if (drv) {
1827 printk(KERN_INFO "cfg80211: Current regulatory "
1828 "domain updated by AP to: %c%c\n",
1829 drv->country_ie_alpha2[0],
1830 drv->country_ie_alpha2[1]);
1831 } else
1832 printk(KERN_INFO "cfg80211: Current regulatory "
1833 "domain intersected: \n");
1834 } else
1835 printk(KERN_INFO "cfg80211: Current regulatory "
1836 "domain intersected: \n");
1837 } else if (is_world_regdom(rd->alpha2))
1838 printk(KERN_INFO "cfg80211: World regulatory "
1839 "domain updated:\n");
1840 else {
1841 if (is_unknown_alpha2(rd->alpha2))
1842 printk(KERN_INFO "cfg80211: Regulatory domain "
1843 "changed to driver built-in settings "
1844 "(unknown country)\n");
1845 else
1846 printk(KERN_INFO "cfg80211: Regulatory domain "
1847 "changed to country: %c%c\n",
1848 rd->alpha2[0], rd->alpha2[1]);
1850 print_rd_rules(rd);
1853 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1855 printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
1856 rd->alpha2[0], rd->alpha2[1]);
1857 print_rd_rules(rd);
1860 #ifdef CONFIG_CFG80211_REG_DEBUG
1861 static void reg_country_ie_process_debug(
1862 const struct ieee80211_regdomain *rd,
1863 const struct ieee80211_regdomain *country_ie_regdomain,
1864 const struct ieee80211_regdomain *intersected_rd)
1866 printk(KERN_DEBUG "cfg80211: Received country IE:\n");
1867 print_regdomain_info(country_ie_regdomain);
1868 printk(KERN_DEBUG "cfg80211: CRDA thinks this should applied:\n");
1869 print_regdomain_info(rd);
1870 if (intersected_rd) {
1871 printk(KERN_DEBUG "cfg80211: We intersect both of these "
1872 "and get:\n");
1873 print_regdomain_info(intersected_rd);
1874 return;
1876 printk(KERN_DEBUG "cfg80211: Intersection between both failed\n");
1878 #else
1879 static inline void reg_country_ie_process_debug(
1880 const struct ieee80211_regdomain *rd,
1881 const struct ieee80211_regdomain *country_ie_regdomain,
1882 const struct ieee80211_regdomain *intersected_rd)
1885 #endif
1887 /* Takes ownership of rd only if it doesn't fail */
1888 static int __set_regdom(const struct ieee80211_regdomain *rd)
1890 const struct ieee80211_regdomain *intersected_rd = NULL;
1891 struct cfg80211_registered_device *drv = NULL;
1892 struct wiphy *request_wiphy;
1893 /* Some basic sanity checks first */
1895 if (is_world_regdom(rd->alpha2)) {
1896 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1897 return -EINVAL;
1898 update_world_regdomain(rd);
1899 return 0;
1902 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
1903 !is_unknown_alpha2(rd->alpha2))
1904 return -EINVAL;
1906 if (!last_request)
1907 return -EINVAL;
1910 * Lets only bother proceeding on the same alpha2 if the current
1911 * rd is non static (it means CRDA was present and was used last)
1912 * and the pending request came in from a country IE
1914 if (last_request->initiator != REGDOM_SET_BY_COUNTRY_IE) {
1916 * If someone else asked us to change the rd lets only bother
1917 * checking if the alpha2 changes if CRDA was already called
1919 if (!is_old_static_regdom(cfg80211_regdomain) &&
1920 !regdom_changes(rd->alpha2))
1921 return -EINVAL;
1925 * Now lets set the regulatory domain, update all driver channels
1926 * and finally inform them of what we have done, in case they want
1927 * to review or adjust their own settings based on their own
1928 * internal EEPROM data
1931 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1932 return -EINVAL;
1934 if (!is_valid_rd(rd)) {
1935 printk(KERN_ERR "cfg80211: Invalid "
1936 "regulatory domain detected:\n");
1937 print_regdomain_info(rd);
1938 return -EINVAL;
1941 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1943 if (!last_request->intersect) {
1944 int r;
1946 if (last_request->initiator != REGDOM_SET_BY_DRIVER) {
1947 reset_regdomains();
1948 cfg80211_regdomain = rd;
1949 return 0;
1953 * For a driver hint, lets copy the regulatory domain the
1954 * driver wanted to the wiphy to deal with conflicts
1957 BUG_ON(request_wiphy->regd);
1959 r = reg_copy_regd(&request_wiphy->regd, rd);
1960 if (r)
1961 return r;
1963 reset_regdomains();
1964 cfg80211_regdomain = rd;
1965 return 0;
1968 /* Intersection requires a bit more work */
1970 if (last_request->initiator != REGDOM_SET_BY_COUNTRY_IE) {
1972 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
1973 if (!intersected_rd)
1974 return -EINVAL;
1977 * We can trash what CRDA provided now.
1978 * However if a driver requested this specific regulatory
1979 * domain we keep it for its private use
1981 if (last_request->initiator == REGDOM_SET_BY_DRIVER)
1982 request_wiphy->regd = rd;
1983 else
1984 kfree(rd);
1986 rd = NULL;
1988 reset_regdomains();
1989 cfg80211_regdomain = intersected_rd;
1991 return 0;
1995 * Country IE requests are handled a bit differently, we intersect
1996 * the country IE rd with what CRDA believes that country should have
1999 BUG_ON(!country_ie_regdomain);
2001 if (rd != country_ie_regdomain) {
2003 * Intersect what CRDA returned and our what we
2004 * had built from the Country IE received
2007 intersected_rd = regdom_intersect(rd, country_ie_regdomain);
2009 reg_country_ie_process_debug(rd, country_ie_regdomain,
2010 intersected_rd);
2012 kfree(country_ie_regdomain);
2013 country_ie_regdomain = NULL;
2014 } else {
2016 * This would happen when CRDA was not present and
2017 * OLD_REGULATORY was enabled. We intersect our Country
2018 * IE rd and what was set on cfg80211 originally
2020 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2023 if (!intersected_rd)
2024 return -EINVAL;
2026 drv = wiphy_to_dev(request_wiphy);
2028 drv->country_ie_alpha2[0] = rd->alpha2[0];
2029 drv->country_ie_alpha2[1] = rd->alpha2[1];
2030 drv->env = last_request->country_ie_env;
2032 BUG_ON(intersected_rd == rd);
2034 kfree(rd);
2035 rd = NULL;
2037 reset_regdomains();
2038 cfg80211_regdomain = intersected_rd;
2040 return 0;
2045 * Use this call to set the current regulatory domain. Conflicts with
2046 * multiple drivers can be ironed out later. Caller must've already
2047 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2049 int set_regdom(const struct ieee80211_regdomain *rd)
2051 int r;
2053 assert_cfg80211_lock();
2055 /* Note that this doesn't update the wiphys, this is done below */
2056 r = __set_regdom(rd);
2057 if (r) {
2058 kfree(rd);
2059 return r;
2062 /* This would make this whole thing pointless */
2063 if (!last_request->intersect)
2064 BUG_ON(rd != cfg80211_regdomain);
2066 /* update all wiphys now with the new established regulatory domain */
2067 update_all_wiphy_regulatory(last_request->initiator);
2069 print_regdomain(cfg80211_regdomain);
2071 return r;
2074 /* Caller must hold cfg80211_mutex */
2075 void reg_device_remove(struct wiphy *wiphy)
2077 struct wiphy *request_wiphy;
2079 assert_cfg80211_lock();
2081 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2083 kfree(wiphy->regd);
2084 if (!last_request || !request_wiphy)
2085 return;
2086 if (request_wiphy != wiphy)
2087 return;
2088 last_request->wiphy_idx = WIPHY_IDX_STALE;
2089 last_request->country_ie_env = ENVIRON_ANY;
2092 int regulatory_init(void)
2094 int err = 0;
2096 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2097 if (IS_ERR(reg_pdev))
2098 return PTR_ERR(reg_pdev);
2100 spin_lock_init(&reg_requests_lock);
2101 spin_lock_init(&reg_pending_beacons_lock);
2103 #ifdef CONFIG_WIRELESS_OLD_REGULATORY
2104 cfg80211_regdomain = static_regdom(ieee80211_regdom);
2106 printk(KERN_INFO "cfg80211: Using static regulatory domain info\n");
2107 print_regdomain_info(cfg80211_regdomain);
2109 * The old code still requests for a new regdomain and if
2110 * you have CRDA you get it updated, otherwise you get
2111 * stuck with the static values. We ignore "EU" code as
2112 * that is not a valid ISO / IEC 3166 alpha2
2114 if (ieee80211_regdom[0] != 'E' || ieee80211_regdom[1] != 'U')
2115 err = regulatory_hint_core(ieee80211_regdom);
2116 #else
2117 cfg80211_regdomain = cfg80211_world_regdom;
2119 err = regulatory_hint_core("00");
2120 #endif
2121 if (err) {
2122 if (err == -ENOMEM)
2123 return err;
2125 * N.B. kobject_uevent_env() can fail mainly for when we're out
2126 * memory which is handled and propagated appropriately above
2127 * but it can also fail during a netlink_broadcast() or during
2128 * early boot for call_usermodehelper(). For now treat these
2129 * errors as non-fatal.
2131 printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
2132 "to call CRDA during init");
2133 #ifdef CONFIG_CFG80211_REG_DEBUG
2134 /* We want to find out exactly why when debugging */
2135 WARN_ON(err);
2136 #endif
2139 return 0;
2142 void regulatory_exit(void)
2144 struct regulatory_request *reg_request, *tmp;
2145 struct reg_beacon *reg_beacon, *btmp;
2147 cancel_work_sync(&reg_work);
2149 mutex_lock(&cfg80211_mutex);
2151 reset_regdomains();
2153 kfree(country_ie_regdomain);
2154 country_ie_regdomain = NULL;
2156 kfree(last_request);
2158 platform_device_unregister(reg_pdev);
2160 spin_lock_bh(&reg_pending_beacons_lock);
2161 if (!list_empty(&reg_pending_beacons)) {
2162 list_for_each_entry_safe(reg_beacon, btmp,
2163 &reg_pending_beacons, list) {
2164 list_del(&reg_beacon->list);
2165 kfree(reg_beacon);
2168 spin_unlock_bh(&reg_pending_beacons_lock);
2170 if (!list_empty(&reg_beacon_list)) {
2171 list_for_each_entry_safe(reg_beacon, btmp,
2172 &reg_beacon_list, list) {
2173 list_del(&reg_beacon->list);
2174 kfree(reg_beacon);
2178 spin_lock(&reg_requests_lock);
2179 if (!list_empty(&reg_requests_list)) {
2180 list_for_each_entry_safe(reg_request, tmp,
2181 &reg_requests_list, list) {
2182 list_del(&reg_request->list);
2183 kfree(reg_request);
2186 spin_unlock(&reg_requests_lock);
2188 mutex_unlock(&cfg80211_mutex);