V4L/DVB (11165): pvrusb2: Tie in debug register access to sub-devices
[linux-2.6.git] / virt / kvm / kvm_main.c
blob605697e9c4dd50570b04cba68d80219450055828
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
18 #include "iodev.h"
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/module.h>
23 #include <linux/errno.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/sysdev.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
45 #include <asm/processor.h>
46 #include <asm/io.h>
47 #include <asm/uaccess.h>
48 #include <asm/pgtable.h>
50 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
51 #include "coalesced_mmio.h"
52 #endif
54 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
55 #include <linux/pci.h>
56 #include <linux/interrupt.h>
57 #include "irq.h"
58 #endif
60 MODULE_AUTHOR("Qumranet");
61 MODULE_LICENSE("GPL");
63 static int msi2intx = 1;
64 module_param(msi2intx, bool, 0);
66 DEFINE_SPINLOCK(kvm_lock);
67 LIST_HEAD(vm_list);
69 static cpumask_var_t cpus_hardware_enabled;
71 struct kmem_cache *kvm_vcpu_cache;
72 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
74 static __read_mostly struct preempt_ops kvm_preempt_ops;
76 struct dentry *kvm_debugfs_dir;
78 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
79 unsigned long arg);
81 static bool kvm_rebooting;
83 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
84 static struct kvm_assigned_dev_kernel *kvm_find_assigned_dev(struct list_head *head,
85 int assigned_dev_id)
87 struct list_head *ptr;
88 struct kvm_assigned_dev_kernel *match;
90 list_for_each(ptr, head) {
91 match = list_entry(ptr, struct kvm_assigned_dev_kernel, list);
92 if (match->assigned_dev_id == assigned_dev_id)
93 return match;
95 return NULL;
98 static void kvm_assigned_dev_interrupt_work_handler(struct work_struct *work)
100 struct kvm_assigned_dev_kernel *assigned_dev;
102 assigned_dev = container_of(work, struct kvm_assigned_dev_kernel,
103 interrupt_work);
105 /* This is taken to safely inject irq inside the guest. When
106 * the interrupt injection (or the ioapic code) uses a
107 * finer-grained lock, update this
109 mutex_lock(&assigned_dev->kvm->lock);
110 kvm_set_irq(assigned_dev->kvm, assigned_dev->irq_source_id,
111 assigned_dev->guest_irq, 1);
113 if (assigned_dev->irq_requested_type & KVM_ASSIGNED_DEV_GUEST_MSI) {
114 enable_irq(assigned_dev->host_irq);
115 assigned_dev->host_irq_disabled = false;
117 mutex_unlock(&assigned_dev->kvm->lock);
120 static irqreturn_t kvm_assigned_dev_intr(int irq, void *dev_id)
122 struct kvm_assigned_dev_kernel *assigned_dev =
123 (struct kvm_assigned_dev_kernel *) dev_id;
125 schedule_work(&assigned_dev->interrupt_work);
127 disable_irq_nosync(irq);
128 assigned_dev->host_irq_disabled = true;
130 return IRQ_HANDLED;
133 /* Ack the irq line for an assigned device */
134 static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian)
136 struct kvm_assigned_dev_kernel *dev;
138 if (kian->gsi == -1)
139 return;
141 dev = container_of(kian, struct kvm_assigned_dev_kernel,
142 ack_notifier);
144 kvm_set_irq(dev->kvm, dev->irq_source_id, dev->guest_irq, 0);
146 /* The guest irq may be shared so this ack may be
147 * from another device.
149 if (dev->host_irq_disabled) {
150 enable_irq(dev->host_irq);
151 dev->host_irq_disabled = false;
155 /* The function implicit hold kvm->lock mutex due to cancel_work_sync() */
156 static void kvm_free_assigned_irq(struct kvm *kvm,
157 struct kvm_assigned_dev_kernel *assigned_dev)
159 if (!irqchip_in_kernel(kvm))
160 return;
162 kvm_unregister_irq_ack_notifier(&assigned_dev->ack_notifier);
164 if (assigned_dev->irq_source_id != -1)
165 kvm_free_irq_source_id(kvm, assigned_dev->irq_source_id);
166 assigned_dev->irq_source_id = -1;
168 if (!assigned_dev->irq_requested_type)
169 return;
172 * In kvm_free_device_irq, cancel_work_sync return true if:
173 * 1. work is scheduled, and then cancelled.
174 * 2. work callback is executed.
176 * The first one ensured that the irq is disabled and no more events
177 * would happen. But for the second one, the irq may be enabled (e.g.
178 * for MSI). So we disable irq here to prevent further events.
180 * Notice this maybe result in nested disable if the interrupt type is
181 * INTx, but it's OK for we are going to free it.
183 * If this function is a part of VM destroy, please ensure that till
184 * now, the kvm state is still legal for probably we also have to wait
185 * interrupt_work done.
187 disable_irq_nosync(assigned_dev->host_irq);
188 cancel_work_sync(&assigned_dev->interrupt_work);
190 free_irq(assigned_dev->host_irq, (void *)assigned_dev);
192 if (assigned_dev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_MSI)
193 pci_disable_msi(assigned_dev->dev);
195 assigned_dev->irq_requested_type = 0;
199 static void kvm_free_assigned_device(struct kvm *kvm,
200 struct kvm_assigned_dev_kernel
201 *assigned_dev)
203 kvm_free_assigned_irq(kvm, assigned_dev);
205 pci_reset_function(assigned_dev->dev);
207 pci_release_regions(assigned_dev->dev);
208 pci_disable_device(assigned_dev->dev);
209 pci_dev_put(assigned_dev->dev);
211 list_del(&assigned_dev->list);
212 kfree(assigned_dev);
215 void kvm_free_all_assigned_devices(struct kvm *kvm)
217 struct list_head *ptr, *ptr2;
218 struct kvm_assigned_dev_kernel *assigned_dev;
220 list_for_each_safe(ptr, ptr2, &kvm->arch.assigned_dev_head) {
221 assigned_dev = list_entry(ptr,
222 struct kvm_assigned_dev_kernel,
223 list);
225 kvm_free_assigned_device(kvm, assigned_dev);
229 static int assigned_device_update_intx(struct kvm *kvm,
230 struct kvm_assigned_dev_kernel *adev,
231 struct kvm_assigned_irq *airq)
233 adev->guest_irq = airq->guest_irq;
234 adev->ack_notifier.gsi = airq->guest_irq;
236 if (adev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_INTX)
237 return 0;
239 if (irqchip_in_kernel(kvm)) {
240 if (!msi2intx &&
241 (adev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_MSI)) {
242 free_irq(adev->host_irq, (void *)adev);
243 pci_disable_msi(adev->dev);
246 if (!capable(CAP_SYS_RAWIO))
247 return -EPERM;
249 if (airq->host_irq)
250 adev->host_irq = airq->host_irq;
251 else
252 adev->host_irq = adev->dev->irq;
254 /* Even though this is PCI, we don't want to use shared
255 * interrupts. Sharing host devices with guest-assigned devices
256 * on the same interrupt line is not a happy situation: there
257 * are going to be long delays in accepting, acking, etc.
259 if (request_irq(adev->host_irq, kvm_assigned_dev_intr,
260 0, "kvm_assigned_intx_device", (void *)adev))
261 return -EIO;
264 adev->irq_requested_type = KVM_ASSIGNED_DEV_GUEST_INTX |
265 KVM_ASSIGNED_DEV_HOST_INTX;
266 return 0;
269 #ifdef CONFIG_X86
270 static int assigned_device_update_msi(struct kvm *kvm,
271 struct kvm_assigned_dev_kernel *adev,
272 struct kvm_assigned_irq *airq)
274 int r;
276 adev->guest_irq = airq->guest_irq;
277 if (airq->flags & KVM_DEV_IRQ_ASSIGN_ENABLE_MSI) {
278 /* x86 don't care upper address of guest msi message addr */
279 adev->irq_requested_type |= KVM_ASSIGNED_DEV_GUEST_MSI;
280 adev->irq_requested_type &= ~KVM_ASSIGNED_DEV_GUEST_INTX;
281 adev->ack_notifier.gsi = -1;
282 } else if (msi2intx) {
283 adev->irq_requested_type |= KVM_ASSIGNED_DEV_GUEST_INTX;
284 adev->irq_requested_type &= ~KVM_ASSIGNED_DEV_GUEST_MSI;
285 adev->ack_notifier.gsi = airq->guest_irq;
286 } else {
288 * Guest require to disable device MSI, we disable MSI and
289 * re-enable INTx by default again. Notice it's only for
290 * non-msi2intx.
292 assigned_device_update_intx(kvm, adev, airq);
293 return 0;
296 if (adev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_MSI)
297 return 0;
299 if (irqchip_in_kernel(kvm)) {
300 if (!msi2intx) {
301 if (adev->irq_requested_type &
302 KVM_ASSIGNED_DEV_HOST_INTX)
303 free_irq(adev->host_irq, (void *)adev);
305 r = pci_enable_msi(adev->dev);
306 if (r)
307 return r;
310 adev->host_irq = adev->dev->irq;
311 if (request_irq(adev->host_irq, kvm_assigned_dev_intr, 0,
312 "kvm_assigned_msi_device", (void *)adev))
313 return -EIO;
316 if (!msi2intx)
317 adev->irq_requested_type = KVM_ASSIGNED_DEV_GUEST_MSI;
319 adev->irq_requested_type |= KVM_ASSIGNED_DEV_HOST_MSI;
320 return 0;
322 #endif
324 static int kvm_vm_ioctl_assign_irq(struct kvm *kvm,
325 struct kvm_assigned_irq
326 *assigned_irq)
328 int r = 0;
329 struct kvm_assigned_dev_kernel *match;
330 u32 current_flags = 0, changed_flags;
332 mutex_lock(&kvm->lock);
334 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
335 assigned_irq->assigned_dev_id);
336 if (!match) {
337 mutex_unlock(&kvm->lock);
338 return -EINVAL;
341 if (!match->irq_requested_type) {
342 INIT_WORK(&match->interrupt_work,
343 kvm_assigned_dev_interrupt_work_handler);
344 if (irqchip_in_kernel(kvm)) {
345 /* Register ack nofitier */
346 match->ack_notifier.gsi = -1;
347 match->ack_notifier.irq_acked =
348 kvm_assigned_dev_ack_irq;
349 kvm_register_irq_ack_notifier(kvm,
350 &match->ack_notifier);
352 /* Request IRQ source ID */
353 r = kvm_request_irq_source_id(kvm);
354 if (r < 0)
355 goto out_release;
356 else
357 match->irq_source_id = r;
359 #ifdef CONFIG_X86
360 /* Determine host device irq type, we can know the
361 * result from dev->msi_enabled */
362 if (msi2intx)
363 pci_enable_msi(match->dev);
364 #endif
368 if ((match->irq_requested_type & KVM_ASSIGNED_DEV_HOST_MSI) &&
369 (match->irq_requested_type & KVM_ASSIGNED_DEV_GUEST_MSI))
370 current_flags |= KVM_DEV_IRQ_ASSIGN_ENABLE_MSI;
372 changed_flags = assigned_irq->flags ^ current_flags;
374 if ((changed_flags & KVM_DEV_IRQ_ASSIGN_MSI_ACTION) ||
375 (msi2intx && match->dev->msi_enabled)) {
376 #ifdef CONFIG_X86
377 r = assigned_device_update_msi(kvm, match, assigned_irq);
378 if (r) {
379 printk(KERN_WARNING "kvm: failed to enable "
380 "MSI device!\n");
381 goto out_release;
383 #else
384 r = -ENOTTY;
385 #endif
386 } else if (assigned_irq->host_irq == 0 && match->dev->irq == 0) {
387 /* Host device IRQ 0 means don't support INTx */
388 if (!msi2intx) {
389 printk(KERN_WARNING
390 "kvm: wait device to enable MSI!\n");
391 r = 0;
392 } else {
393 printk(KERN_WARNING
394 "kvm: failed to enable MSI device!\n");
395 r = -ENOTTY;
396 goto out_release;
398 } else {
399 /* Non-sharing INTx mode */
400 r = assigned_device_update_intx(kvm, match, assigned_irq);
401 if (r) {
402 printk(KERN_WARNING "kvm: failed to enable "
403 "INTx device!\n");
404 goto out_release;
408 mutex_unlock(&kvm->lock);
409 return r;
410 out_release:
411 mutex_unlock(&kvm->lock);
412 kvm_free_assigned_device(kvm, match);
413 return r;
416 static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
417 struct kvm_assigned_pci_dev *assigned_dev)
419 int r = 0;
420 struct kvm_assigned_dev_kernel *match;
421 struct pci_dev *dev;
423 down_read(&kvm->slots_lock);
424 mutex_lock(&kvm->lock);
426 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
427 assigned_dev->assigned_dev_id);
428 if (match) {
429 /* device already assigned */
430 r = -EINVAL;
431 goto out;
434 match = kzalloc(sizeof(struct kvm_assigned_dev_kernel), GFP_KERNEL);
435 if (match == NULL) {
436 printk(KERN_INFO "%s: Couldn't allocate memory\n",
437 __func__);
438 r = -ENOMEM;
439 goto out;
441 dev = pci_get_bus_and_slot(assigned_dev->busnr,
442 assigned_dev->devfn);
443 if (!dev) {
444 printk(KERN_INFO "%s: host device not found\n", __func__);
445 r = -EINVAL;
446 goto out_free;
448 if (pci_enable_device(dev)) {
449 printk(KERN_INFO "%s: Could not enable PCI device\n", __func__);
450 r = -EBUSY;
451 goto out_put;
453 r = pci_request_regions(dev, "kvm_assigned_device");
454 if (r) {
455 printk(KERN_INFO "%s: Could not get access to device regions\n",
456 __func__);
457 goto out_disable;
460 pci_reset_function(dev);
462 match->assigned_dev_id = assigned_dev->assigned_dev_id;
463 match->host_busnr = assigned_dev->busnr;
464 match->host_devfn = assigned_dev->devfn;
465 match->flags = assigned_dev->flags;
466 match->dev = dev;
467 match->irq_source_id = -1;
468 match->kvm = kvm;
470 list_add(&match->list, &kvm->arch.assigned_dev_head);
472 if (assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU) {
473 if (!kvm->arch.iommu_domain) {
474 r = kvm_iommu_map_guest(kvm);
475 if (r)
476 goto out_list_del;
478 r = kvm_assign_device(kvm, match);
479 if (r)
480 goto out_list_del;
483 out:
484 mutex_unlock(&kvm->lock);
485 up_read(&kvm->slots_lock);
486 return r;
487 out_list_del:
488 list_del(&match->list);
489 pci_release_regions(dev);
490 out_disable:
491 pci_disable_device(dev);
492 out_put:
493 pci_dev_put(dev);
494 out_free:
495 kfree(match);
496 mutex_unlock(&kvm->lock);
497 up_read(&kvm->slots_lock);
498 return r;
500 #endif
502 #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
503 static int kvm_vm_ioctl_deassign_device(struct kvm *kvm,
504 struct kvm_assigned_pci_dev *assigned_dev)
506 int r = 0;
507 struct kvm_assigned_dev_kernel *match;
509 mutex_lock(&kvm->lock);
511 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
512 assigned_dev->assigned_dev_id);
513 if (!match) {
514 printk(KERN_INFO "%s: device hasn't been assigned before, "
515 "so cannot be deassigned\n", __func__);
516 r = -EINVAL;
517 goto out;
520 if (match->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU)
521 kvm_deassign_device(kvm, match);
523 kvm_free_assigned_device(kvm, match);
525 out:
526 mutex_unlock(&kvm->lock);
527 return r;
529 #endif
531 static inline int valid_vcpu(int n)
533 return likely(n >= 0 && n < KVM_MAX_VCPUS);
536 inline int kvm_is_mmio_pfn(pfn_t pfn)
538 if (pfn_valid(pfn)) {
539 struct page *page = compound_head(pfn_to_page(pfn));
540 return PageReserved(page);
543 return true;
547 * Switches to specified vcpu, until a matching vcpu_put()
549 void vcpu_load(struct kvm_vcpu *vcpu)
551 int cpu;
553 mutex_lock(&vcpu->mutex);
554 cpu = get_cpu();
555 preempt_notifier_register(&vcpu->preempt_notifier);
556 kvm_arch_vcpu_load(vcpu, cpu);
557 put_cpu();
560 void vcpu_put(struct kvm_vcpu *vcpu)
562 preempt_disable();
563 kvm_arch_vcpu_put(vcpu);
564 preempt_notifier_unregister(&vcpu->preempt_notifier);
565 preempt_enable();
566 mutex_unlock(&vcpu->mutex);
569 static void ack_flush(void *_completed)
573 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
575 int i, cpu, me;
576 cpumask_var_t cpus;
577 bool called = true;
578 struct kvm_vcpu *vcpu;
580 if (alloc_cpumask_var(&cpus, GFP_ATOMIC))
581 cpumask_clear(cpus);
583 me = get_cpu();
584 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
585 vcpu = kvm->vcpus[i];
586 if (!vcpu)
587 continue;
588 if (test_and_set_bit(req, &vcpu->requests))
589 continue;
590 cpu = vcpu->cpu;
591 if (cpus != NULL && cpu != -1 && cpu != me)
592 cpumask_set_cpu(cpu, cpus);
594 if (unlikely(cpus == NULL))
595 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
596 else if (!cpumask_empty(cpus))
597 smp_call_function_many(cpus, ack_flush, NULL, 1);
598 else
599 called = false;
600 put_cpu();
601 free_cpumask_var(cpus);
602 return called;
605 void kvm_flush_remote_tlbs(struct kvm *kvm)
607 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
608 ++kvm->stat.remote_tlb_flush;
611 void kvm_reload_remote_mmus(struct kvm *kvm)
613 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
616 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
618 struct page *page;
619 int r;
621 mutex_init(&vcpu->mutex);
622 vcpu->cpu = -1;
623 vcpu->kvm = kvm;
624 vcpu->vcpu_id = id;
625 init_waitqueue_head(&vcpu->wq);
627 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
628 if (!page) {
629 r = -ENOMEM;
630 goto fail;
632 vcpu->run = page_address(page);
634 r = kvm_arch_vcpu_init(vcpu);
635 if (r < 0)
636 goto fail_free_run;
637 return 0;
639 fail_free_run:
640 free_page((unsigned long)vcpu->run);
641 fail:
642 return r;
644 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
646 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
648 kvm_arch_vcpu_uninit(vcpu);
649 free_page((unsigned long)vcpu->run);
651 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
653 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
654 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
656 return container_of(mn, struct kvm, mmu_notifier);
659 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
660 struct mm_struct *mm,
661 unsigned long address)
663 struct kvm *kvm = mmu_notifier_to_kvm(mn);
664 int need_tlb_flush;
667 * When ->invalidate_page runs, the linux pte has been zapped
668 * already but the page is still allocated until
669 * ->invalidate_page returns. So if we increase the sequence
670 * here the kvm page fault will notice if the spte can't be
671 * established because the page is going to be freed. If
672 * instead the kvm page fault establishes the spte before
673 * ->invalidate_page runs, kvm_unmap_hva will release it
674 * before returning.
676 * The sequence increase only need to be seen at spin_unlock
677 * time, and not at spin_lock time.
679 * Increasing the sequence after the spin_unlock would be
680 * unsafe because the kvm page fault could then establish the
681 * pte after kvm_unmap_hva returned, without noticing the page
682 * is going to be freed.
684 spin_lock(&kvm->mmu_lock);
685 kvm->mmu_notifier_seq++;
686 need_tlb_flush = kvm_unmap_hva(kvm, address);
687 spin_unlock(&kvm->mmu_lock);
689 /* we've to flush the tlb before the pages can be freed */
690 if (need_tlb_flush)
691 kvm_flush_remote_tlbs(kvm);
695 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
696 struct mm_struct *mm,
697 unsigned long start,
698 unsigned long end)
700 struct kvm *kvm = mmu_notifier_to_kvm(mn);
701 int need_tlb_flush = 0;
703 spin_lock(&kvm->mmu_lock);
705 * The count increase must become visible at unlock time as no
706 * spte can be established without taking the mmu_lock and
707 * count is also read inside the mmu_lock critical section.
709 kvm->mmu_notifier_count++;
710 for (; start < end; start += PAGE_SIZE)
711 need_tlb_flush |= kvm_unmap_hva(kvm, start);
712 spin_unlock(&kvm->mmu_lock);
714 /* we've to flush the tlb before the pages can be freed */
715 if (need_tlb_flush)
716 kvm_flush_remote_tlbs(kvm);
719 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
720 struct mm_struct *mm,
721 unsigned long start,
722 unsigned long end)
724 struct kvm *kvm = mmu_notifier_to_kvm(mn);
726 spin_lock(&kvm->mmu_lock);
728 * This sequence increase will notify the kvm page fault that
729 * the page that is going to be mapped in the spte could have
730 * been freed.
732 kvm->mmu_notifier_seq++;
734 * The above sequence increase must be visible before the
735 * below count decrease but both values are read by the kvm
736 * page fault under mmu_lock spinlock so we don't need to add
737 * a smb_wmb() here in between the two.
739 kvm->mmu_notifier_count--;
740 spin_unlock(&kvm->mmu_lock);
742 BUG_ON(kvm->mmu_notifier_count < 0);
745 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
746 struct mm_struct *mm,
747 unsigned long address)
749 struct kvm *kvm = mmu_notifier_to_kvm(mn);
750 int young;
752 spin_lock(&kvm->mmu_lock);
753 young = kvm_age_hva(kvm, address);
754 spin_unlock(&kvm->mmu_lock);
756 if (young)
757 kvm_flush_remote_tlbs(kvm);
759 return young;
762 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
763 struct mm_struct *mm)
765 struct kvm *kvm = mmu_notifier_to_kvm(mn);
766 kvm_arch_flush_shadow(kvm);
769 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
770 .invalidate_page = kvm_mmu_notifier_invalidate_page,
771 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
772 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
773 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
774 .release = kvm_mmu_notifier_release,
776 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
778 static struct kvm *kvm_create_vm(void)
780 struct kvm *kvm = kvm_arch_create_vm();
781 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
782 struct page *page;
783 #endif
785 if (IS_ERR(kvm))
786 goto out;
787 #ifdef CONFIG_HAVE_KVM_IRQCHIP
788 INIT_LIST_HEAD(&kvm->irq_routing);
789 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
790 #endif
792 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
793 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
794 if (!page) {
795 kfree(kvm);
796 return ERR_PTR(-ENOMEM);
798 kvm->coalesced_mmio_ring =
799 (struct kvm_coalesced_mmio_ring *)page_address(page);
800 #endif
802 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
804 int err;
805 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
806 err = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
807 if (err) {
808 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
809 put_page(page);
810 #endif
811 kfree(kvm);
812 return ERR_PTR(err);
815 #endif
817 kvm->mm = current->mm;
818 atomic_inc(&kvm->mm->mm_count);
819 spin_lock_init(&kvm->mmu_lock);
820 kvm_io_bus_init(&kvm->pio_bus);
821 mutex_init(&kvm->lock);
822 kvm_io_bus_init(&kvm->mmio_bus);
823 init_rwsem(&kvm->slots_lock);
824 atomic_set(&kvm->users_count, 1);
825 spin_lock(&kvm_lock);
826 list_add(&kvm->vm_list, &vm_list);
827 spin_unlock(&kvm_lock);
828 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
829 kvm_coalesced_mmio_init(kvm);
830 #endif
831 out:
832 return kvm;
836 * Free any memory in @free but not in @dont.
838 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
839 struct kvm_memory_slot *dont)
841 if (!dont || free->rmap != dont->rmap)
842 vfree(free->rmap);
844 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
845 vfree(free->dirty_bitmap);
847 if (!dont || free->lpage_info != dont->lpage_info)
848 vfree(free->lpage_info);
850 free->npages = 0;
851 free->dirty_bitmap = NULL;
852 free->rmap = NULL;
853 free->lpage_info = NULL;
856 void kvm_free_physmem(struct kvm *kvm)
858 int i;
860 for (i = 0; i < kvm->nmemslots; ++i)
861 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
864 static void kvm_destroy_vm(struct kvm *kvm)
866 struct mm_struct *mm = kvm->mm;
868 kvm_arch_sync_events(kvm);
869 spin_lock(&kvm_lock);
870 list_del(&kvm->vm_list);
871 spin_unlock(&kvm_lock);
872 kvm_free_irq_routing(kvm);
873 kvm_io_bus_destroy(&kvm->pio_bus);
874 kvm_io_bus_destroy(&kvm->mmio_bus);
875 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
876 if (kvm->coalesced_mmio_ring != NULL)
877 free_page((unsigned long)kvm->coalesced_mmio_ring);
878 #endif
879 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
880 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
881 #endif
882 kvm_arch_destroy_vm(kvm);
883 mmdrop(mm);
886 void kvm_get_kvm(struct kvm *kvm)
888 atomic_inc(&kvm->users_count);
890 EXPORT_SYMBOL_GPL(kvm_get_kvm);
892 void kvm_put_kvm(struct kvm *kvm)
894 if (atomic_dec_and_test(&kvm->users_count))
895 kvm_destroy_vm(kvm);
897 EXPORT_SYMBOL_GPL(kvm_put_kvm);
900 static int kvm_vm_release(struct inode *inode, struct file *filp)
902 struct kvm *kvm = filp->private_data;
904 kvm_put_kvm(kvm);
905 return 0;
909 * Allocate some memory and give it an address in the guest physical address
910 * space.
912 * Discontiguous memory is allowed, mostly for framebuffers.
914 * Must be called holding mmap_sem for write.
916 int __kvm_set_memory_region(struct kvm *kvm,
917 struct kvm_userspace_memory_region *mem,
918 int user_alloc)
920 int r;
921 gfn_t base_gfn;
922 unsigned long npages;
923 unsigned long i;
924 struct kvm_memory_slot *memslot;
925 struct kvm_memory_slot old, new;
927 r = -EINVAL;
928 /* General sanity checks */
929 if (mem->memory_size & (PAGE_SIZE - 1))
930 goto out;
931 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
932 goto out;
933 if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
934 goto out;
935 if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
936 goto out;
937 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
938 goto out;
940 memslot = &kvm->memslots[mem->slot];
941 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
942 npages = mem->memory_size >> PAGE_SHIFT;
944 if (!npages)
945 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
947 new = old = *memslot;
949 new.base_gfn = base_gfn;
950 new.npages = npages;
951 new.flags = mem->flags;
953 /* Disallow changing a memory slot's size. */
954 r = -EINVAL;
955 if (npages && old.npages && npages != old.npages)
956 goto out_free;
958 /* Check for overlaps */
959 r = -EEXIST;
960 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
961 struct kvm_memory_slot *s = &kvm->memslots[i];
963 if (s == memslot)
964 continue;
965 if (!((base_gfn + npages <= s->base_gfn) ||
966 (base_gfn >= s->base_gfn + s->npages)))
967 goto out_free;
970 /* Free page dirty bitmap if unneeded */
971 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
972 new.dirty_bitmap = NULL;
974 r = -ENOMEM;
976 /* Allocate if a slot is being created */
977 #ifndef CONFIG_S390
978 if (npages && !new.rmap) {
979 new.rmap = vmalloc(npages * sizeof(struct page *));
981 if (!new.rmap)
982 goto out_free;
984 memset(new.rmap, 0, npages * sizeof(*new.rmap));
986 new.user_alloc = user_alloc;
988 * hva_to_rmmap() serialzies with the mmu_lock and to be
989 * safe it has to ignore memslots with !user_alloc &&
990 * !userspace_addr.
992 if (user_alloc)
993 new.userspace_addr = mem->userspace_addr;
994 else
995 new.userspace_addr = 0;
997 if (npages && !new.lpage_info) {
998 int largepages = npages / KVM_PAGES_PER_HPAGE;
999 if (npages % KVM_PAGES_PER_HPAGE)
1000 largepages++;
1001 if (base_gfn % KVM_PAGES_PER_HPAGE)
1002 largepages++;
1004 new.lpage_info = vmalloc(largepages * sizeof(*new.lpage_info));
1006 if (!new.lpage_info)
1007 goto out_free;
1009 memset(new.lpage_info, 0, largepages * sizeof(*new.lpage_info));
1011 if (base_gfn % KVM_PAGES_PER_HPAGE)
1012 new.lpage_info[0].write_count = 1;
1013 if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE)
1014 new.lpage_info[largepages-1].write_count = 1;
1017 /* Allocate page dirty bitmap if needed */
1018 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1019 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
1021 new.dirty_bitmap = vmalloc(dirty_bytes);
1022 if (!new.dirty_bitmap)
1023 goto out_free;
1024 memset(new.dirty_bitmap, 0, dirty_bytes);
1026 #endif /* not defined CONFIG_S390 */
1028 if (!npages)
1029 kvm_arch_flush_shadow(kvm);
1031 spin_lock(&kvm->mmu_lock);
1032 if (mem->slot >= kvm->nmemslots)
1033 kvm->nmemslots = mem->slot + 1;
1035 *memslot = new;
1036 spin_unlock(&kvm->mmu_lock);
1038 r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
1039 if (r) {
1040 spin_lock(&kvm->mmu_lock);
1041 *memslot = old;
1042 spin_unlock(&kvm->mmu_lock);
1043 goto out_free;
1046 kvm_free_physmem_slot(&old, npages ? &new : NULL);
1047 /* Slot deletion case: we have to update the current slot */
1048 if (!npages)
1049 *memslot = old;
1050 #ifdef CONFIG_DMAR
1051 /* map the pages in iommu page table */
1052 r = kvm_iommu_map_pages(kvm, base_gfn, npages);
1053 if (r)
1054 goto out;
1055 #endif
1056 return 0;
1058 out_free:
1059 kvm_free_physmem_slot(&new, &old);
1060 out:
1061 return r;
1064 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1066 int kvm_set_memory_region(struct kvm *kvm,
1067 struct kvm_userspace_memory_region *mem,
1068 int user_alloc)
1070 int r;
1072 down_write(&kvm->slots_lock);
1073 r = __kvm_set_memory_region(kvm, mem, user_alloc);
1074 up_write(&kvm->slots_lock);
1075 return r;
1077 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1079 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1080 struct
1081 kvm_userspace_memory_region *mem,
1082 int user_alloc)
1084 if (mem->slot >= KVM_MEMORY_SLOTS)
1085 return -EINVAL;
1086 return kvm_set_memory_region(kvm, mem, user_alloc);
1089 int kvm_get_dirty_log(struct kvm *kvm,
1090 struct kvm_dirty_log *log, int *is_dirty)
1092 struct kvm_memory_slot *memslot;
1093 int r, i;
1094 int n;
1095 unsigned long any = 0;
1097 r = -EINVAL;
1098 if (log->slot >= KVM_MEMORY_SLOTS)
1099 goto out;
1101 memslot = &kvm->memslots[log->slot];
1102 r = -ENOENT;
1103 if (!memslot->dirty_bitmap)
1104 goto out;
1106 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1108 for (i = 0; !any && i < n/sizeof(long); ++i)
1109 any = memslot->dirty_bitmap[i];
1111 r = -EFAULT;
1112 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1113 goto out;
1115 if (any)
1116 *is_dirty = 1;
1118 r = 0;
1119 out:
1120 return r;
1123 int is_error_page(struct page *page)
1125 return page == bad_page;
1127 EXPORT_SYMBOL_GPL(is_error_page);
1129 int is_error_pfn(pfn_t pfn)
1131 return pfn == bad_pfn;
1133 EXPORT_SYMBOL_GPL(is_error_pfn);
1135 static inline unsigned long bad_hva(void)
1137 return PAGE_OFFSET;
1140 int kvm_is_error_hva(unsigned long addr)
1142 return addr == bad_hva();
1144 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
1146 struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
1148 int i;
1150 for (i = 0; i < kvm->nmemslots; ++i) {
1151 struct kvm_memory_slot *memslot = &kvm->memslots[i];
1153 if (gfn >= memslot->base_gfn
1154 && gfn < memslot->base_gfn + memslot->npages)
1155 return memslot;
1157 return NULL;
1159 EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
1161 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1163 gfn = unalias_gfn(kvm, gfn);
1164 return gfn_to_memslot_unaliased(kvm, gfn);
1167 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1169 int i;
1171 gfn = unalias_gfn(kvm, gfn);
1172 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1173 struct kvm_memory_slot *memslot = &kvm->memslots[i];
1175 if (gfn >= memslot->base_gfn
1176 && gfn < memslot->base_gfn + memslot->npages)
1177 return 1;
1179 return 0;
1181 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1183 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1185 struct kvm_memory_slot *slot;
1187 gfn = unalias_gfn(kvm, gfn);
1188 slot = gfn_to_memslot_unaliased(kvm, gfn);
1189 if (!slot)
1190 return bad_hva();
1191 return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
1193 EXPORT_SYMBOL_GPL(gfn_to_hva);
1195 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1197 struct page *page[1];
1198 unsigned long addr;
1199 int npages;
1200 pfn_t pfn;
1202 might_sleep();
1204 addr = gfn_to_hva(kvm, gfn);
1205 if (kvm_is_error_hva(addr)) {
1206 get_page(bad_page);
1207 return page_to_pfn(bad_page);
1210 npages = get_user_pages_fast(addr, 1, 1, page);
1212 if (unlikely(npages != 1)) {
1213 struct vm_area_struct *vma;
1215 down_read(&current->mm->mmap_sem);
1216 vma = find_vma(current->mm, addr);
1218 if (vma == NULL || addr < vma->vm_start ||
1219 !(vma->vm_flags & VM_PFNMAP)) {
1220 up_read(&current->mm->mmap_sem);
1221 get_page(bad_page);
1222 return page_to_pfn(bad_page);
1225 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1226 up_read(&current->mm->mmap_sem);
1227 BUG_ON(!kvm_is_mmio_pfn(pfn));
1228 } else
1229 pfn = page_to_pfn(page[0]);
1231 return pfn;
1234 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1236 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1238 pfn_t pfn;
1240 pfn = gfn_to_pfn(kvm, gfn);
1241 if (!kvm_is_mmio_pfn(pfn))
1242 return pfn_to_page(pfn);
1244 WARN_ON(kvm_is_mmio_pfn(pfn));
1246 get_page(bad_page);
1247 return bad_page;
1250 EXPORT_SYMBOL_GPL(gfn_to_page);
1252 void kvm_release_page_clean(struct page *page)
1254 kvm_release_pfn_clean(page_to_pfn(page));
1256 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1258 void kvm_release_pfn_clean(pfn_t pfn)
1260 if (!kvm_is_mmio_pfn(pfn))
1261 put_page(pfn_to_page(pfn));
1263 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1265 void kvm_release_page_dirty(struct page *page)
1267 kvm_release_pfn_dirty(page_to_pfn(page));
1269 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1271 void kvm_release_pfn_dirty(pfn_t pfn)
1273 kvm_set_pfn_dirty(pfn);
1274 kvm_release_pfn_clean(pfn);
1276 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1278 void kvm_set_page_dirty(struct page *page)
1280 kvm_set_pfn_dirty(page_to_pfn(page));
1282 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1284 void kvm_set_pfn_dirty(pfn_t pfn)
1286 if (!kvm_is_mmio_pfn(pfn)) {
1287 struct page *page = pfn_to_page(pfn);
1288 if (!PageReserved(page))
1289 SetPageDirty(page);
1292 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1294 void kvm_set_pfn_accessed(pfn_t pfn)
1296 if (!kvm_is_mmio_pfn(pfn))
1297 mark_page_accessed(pfn_to_page(pfn));
1299 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1301 void kvm_get_pfn(pfn_t pfn)
1303 if (!kvm_is_mmio_pfn(pfn))
1304 get_page(pfn_to_page(pfn));
1306 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1308 static int next_segment(unsigned long len, int offset)
1310 if (len > PAGE_SIZE - offset)
1311 return PAGE_SIZE - offset;
1312 else
1313 return len;
1316 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1317 int len)
1319 int r;
1320 unsigned long addr;
1322 addr = gfn_to_hva(kvm, gfn);
1323 if (kvm_is_error_hva(addr))
1324 return -EFAULT;
1325 r = copy_from_user(data, (void __user *)addr + offset, len);
1326 if (r)
1327 return -EFAULT;
1328 return 0;
1330 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1332 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1334 gfn_t gfn = gpa >> PAGE_SHIFT;
1335 int seg;
1336 int offset = offset_in_page(gpa);
1337 int ret;
1339 while ((seg = next_segment(len, offset)) != 0) {
1340 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1341 if (ret < 0)
1342 return ret;
1343 offset = 0;
1344 len -= seg;
1345 data += seg;
1346 ++gfn;
1348 return 0;
1350 EXPORT_SYMBOL_GPL(kvm_read_guest);
1352 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1353 unsigned long len)
1355 int r;
1356 unsigned long addr;
1357 gfn_t gfn = gpa >> PAGE_SHIFT;
1358 int offset = offset_in_page(gpa);
1360 addr = gfn_to_hva(kvm, gfn);
1361 if (kvm_is_error_hva(addr))
1362 return -EFAULT;
1363 pagefault_disable();
1364 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1365 pagefault_enable();
1366 if (r)
1367 return -EFAULT;
1368 return 0;
1370 EXPORT_SYMBOL(kvm_read_guest_atomic);
1372 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1373 int offset, int len)
1375 int r;
1376 unsigned long addr;
1378 addr = gfn_to_hva(kvm, gfn);
1379 if (kvm_is_error_hva(addr))
1380 return -EFAULT;
1381 r = copy_to_user((void __user *)addr + offset, data, len);
1382 if (r)
1383 return -EFAULT;
1384 mark_page_dirty(kvm, gfn);
1385 return 0;
1387 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1389 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1390 unsigned long len)
1392 gfn_t gfn = gpa >> PAGE_SHIFT;
1393 int seg;
1394 int offset = offset_in_page(gpa);
1395 int ret;
1397 while ((seg = next_segment(len, offset)) != 0) {
1398 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1399 if (ret < 0)
1400 return ret;
1401 offset = 0;
1402 len -= seg;
1403 data += seg;
1404 ++gfn;
1406 return 0;
1409 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1411 return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
1413 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1415 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1417 gfn_t gfn = gpa >> PAGE_SHIFT;
1418 int seg;
1419 int offset = offset_in_page(gpa);
1420 int ret;
1422 while ((seg = next_segment(len, offset)) != 0) {
1423 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1424 if (ret < 0)
1425 return ret;
1426 offset = 0;
1427 len -= seg;
1428 ++gfn;
1430 return 0;
1432 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1434 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1436 struct kvm_memory_slot *memslot;
1438 gfn = unalias_gfn(kvm, gfn);
1439 memslot = gfn_to_memslot_unaliased(kvm, gfn);
1440 if (memslot && memslot->dirty_bitmap) {
1441 unsigned long rel_gfn = gfn - memslot->base_gfn;
1443 /* avoid RMW */
1444 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
1445 set_bit(rel_gfn, memslot->dirty_bitmap);
1450 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1452 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1454 DEFINE_WAIT(wait);
1456 for (;;) {
1457 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1459 if (kvm_cpu_has_interrupt(vcpu) ||
1460 kvm_cpu_has_pending_timer(vcpu) ||
1461 kvm_arch_vcpu_runnable(vcpu)) {
1462 set_bit(KVM_REQ_UNHALT, &vcpu->requests);
1463 break;
1465 if (signal_pending(current))
1466 break;
1468 vcpu_put(vcpu);
1469 schedule();
1470 vcpu_load(vcpu);
1473 finish_wait(&vcpu->wq, &wait);
1476 void kvm_resched(struct kvm_vcpu *vcpu)
1478 if (!need_resched())
1479 return;
1480 cond_resched();
1482 EXPORT_SYMBOL_GPL(kvm_resched);
1484 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1486 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1487 struct page *page;
1489 if (vmf->pgoff == 0)
1490 page = virt_to_page(vcpu->run);
1491 #ifdef CONFIG_X86
1492 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1493 page = virt_to_page(vcpu->arch.pio_data);
1494 #endif
1495 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1496 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1497 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1498 #endif
1499 else
1500 return VM_FAULT_SIGBUS;
1501 get_page(page);
1502 vmf->page = page;
1503 return 0;
1506 static struct vm_operations_struct kvm_vcpu_vm_ops = {
1507 .fault = kvm_vcpu_fault,
1510 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1512 vma->vm_ops = &kvm_vcpu_vm_ops;
1513 return 0;
1516 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1518 struct kvm_vcpu *vcpu = filp->private_data;
1520 kvm_put_kvm(vcpu->kvm);
1521 return 0;
1524 static struct file_operations kvm_vcpu_fops = {
1525 .release = kvm_vcpu_release,
1526 .unlocked_ioctl = kvm_vcpu_ioctl,
1527 .compat_ioctl = kvm_vcpu_ioctl,
1528 .mmap = kvm_vcpu_mmap,
1532 * Allocates an inode for the vcpu.
1534 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1536 int fd = anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0);
1537 if (fd < 0)
1538 kvm_put_kvm(vcpu->kvm);
1539 return fd;
1543 * Creates some virtual cpus. Good luck creating more than one.
1545 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
1547 int r;
1548 struct kvm_vcpu *vcpu;
1550 if (!valid_vcpu(n))
1551 return -EINVAL;
1553 vcpu = kvm_arch_vcpu_create(kvm, n);
1554 if (IS_ERR(vcpu))
1555 return PTR_ERR(vcpu);
1557 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1559 r = kvm_arch_vcpu_setup(vcpu);
1560 if (r)
1561 return r;
1563 mutex_lock(&kvm->lock);
1564 if (kvm->vcpus[n]) {
1565 r = -EEXIST;
1566 goto vcpu_destroy;
1568 kvm->vcpus[n] = vcpu;
1569 mutex_unlock(&kvm->lock);
1571 /* Now it's all set up, let userspace reach it */
1572 kvm_get_kvm(kvm);
1573 r = create_vcpu_fd(vcpu);
1574 if (r < 0)
1575 goto unlink;
1576 return r;
1578 unlink:
1579 mutex_lock(&kvm->lock);
1580 kvm->vcpus[n] = NULL;
1581 vcpu_destroy:
1582 mutex_unlock(&kvm->lock);
1583 kvm_arch_vcpu_destroy(vcpu);
1584 return r;
1587 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1589 if (sigset) {
1590 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1591 vcpu->sigset_active = 1;
1592 vcpu->sigset = *sigset;
1593 } else
1594 vcpu->sigset_active = 0;
1595 return 0;
1598 static long kvm_vcpu_ioctl(struct file *filp,
1599 unsigned int ioctl, unsigned long arg)
1601 struct kvm_vcpu *vcpu = filp->private_data;
1602 void __user *argp = (void __user *)arg;
1603 int r;
1604 struct kvm_fpu *fpu = NULL;
1605 struct kvm_sregs *kvm_sregs = NULL;
1607 if (vcpu->kvm->mm != current->mm)
1608 return -EIO;
1609 switch (ioctl) {
1610 case KVM_RUN:
1611 r = -EINVAL;
1612 if (arg)
1613 goto out;
1614 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1615 break;
1616 case KVM_GET_REGS: {
1617 struct kvm_regs *kvm_regs;
1619 r = -ENOMEM;
1620 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1621 if (!kvm_regs)
1622 goto out;
1623 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1624 if (r)
1625 goto out_free1;
1626 r = -EFAULT;
1627 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1628 goto out_free1;
1629 r = 0;
1630 out_free1:
1631 kfree(kvm_regs);
1632 break;
1634 case KVM_SET_REGS: {
1635 struct kvm_regs *kvm_regs;
1637 r = -ENOMEM;
1638 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1639 if (!kvm_regs)
1640 goto out;
1641 r = -EFAULT;
1642 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1643 goto out_free2;
1644 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1645 if (r)
1646 goto out_free2;
1647 r = 0;
1648 out_free2:
1649 kfree(kvm_regs);
1650 break;
1652 case KVM_GET_SREGS: {
1653 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1654 r = -ENOMEM;
1655 if (!kvm_sregs)
1656 goto out;
1657 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1658 if (r)
1659 goto out;
1660 r = -EFAULT;
1661 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1662 goto out;
1663 r = 0;
1664 break;
1666 case KVM_SET_SREGS: {
1667 kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1668 r = -ENOMEM;
1669 if (!kvm_sregs)
1670 goto out;
1671 r = -EFAULT;
1672 if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1673 goto out;
1674 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1675 if (r)
1676 goto out;
1677 r = 0;
1678 break;
1680 case KVM_GET_MP_STATE: {
1681 struct kvm_mp_state mp_state;
1683 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1684 if (r)
1685 goto out;
1686 r = -EFAULT;
1687 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1688 goto out;
1689 r = 0;
1690 break;
1692 case KVM_SET_MP_STATE: {
1693 struct kvm_mp_state mp_state;
1695 r = -EFAULT;
1696 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1697 goto out;
1698 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1699 if (r)
1700 goto out;
1701 r = 0;
1702 break;
1704 case KVM_TRANSLATE: {
1705 struct kvm_translation tr;
1707 r = -EFAULT;
1708 if (copy_from_user(&tr, argp, sizeof tr))
1709 goto out;
1710 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1711 if (r)
1712 goto out;
1713 r = -EFAULT;
1714 if (copy_to_user(argp, &tr, sizeof tr))
1715 goto out;
1716 r = 0;
1717 break;
1719 case KVM_SET_GUEST_DEBUG: {
1720 struct kvm_guest_debug dbg;
1722 r = -EFAULT;
1723 if (copy_from_user(&dbg, argp, sizeof dbg))
1724 goto out;
1725 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
1726 if (r)
1727 goto out;
1728 r = 0;
1729 break;
1731 case KVM_SET_SIGNAL_MASK: {
1732 struct kvm_signal_mask __user *sigmask_arg = argp;
1733 struct kvm_signal_mask kvm_sigmask;
1734 sigset_t sigset, *p;
1736 p = NULL;
1737 if (argp) {
1738 r = -EFAULT;
1739 if (copy_from_user(&kvm_sigmask, argp,
1740 sizeof kvm_sigmask))
1741 goto out;
1742 r = -EINVAL;
1743 if (kvm_sigmask.len != sizeof sigset)
1744 goto out;
1745 r = -EFAULT;
1746 if (copy_from_user(&sigset, sigmask_arg->sigset,
1747 sizeof sigset))
1748 goto out;
1749 p = &sigset;
1751 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
1752 break;
1754 case KVM_GET_FPU: {
1755 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1756 r = -ENOMEM;
1757 if (!fpu)
1758 goto out;
1759 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1760 if (r)
1761 goto out;
1762 r = -EFAULT;
1763 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1764 goto out;
1765 r = 0;
1766 break;
1768 case KVM_SET_FPU: {
1769 fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1770 r = -ENOMEM;
1771 if (!fpu)
1772 goto out;
1773 r = -EFAULT;
1774 if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
1775 goto out;
1776 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1777 if (r)
1778 goto out;
1779 r = 0;
1780 break;
1782 default:
1783 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1785 out:
1786 kfree(fpu);
1787 kfree(kvm_sregs);
1788 return r;
1791 static long kvm_vm_ioctl(struct file *filp,
1792 unsigned int ioctl, unsigned long arg)
1794 struct kvm *kvm = filp->private_data;
1795 void __user *argp = (void __user *)arg;
1796 int r;
1798 if (kvm->mm != current->mm)
1799 return -EIO;
1800 switch (ioctl) {
1801 case KVM_CREATE_VCPU:
1802 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1803 if (r < 0)
1804 goto out;
1805 break;
1806 case KVM_SET_USER_MEMORY_REGION: {
1807 struct kvm_userspace_memory_region kvm_userspace_mem;
1809 r = -EFAULT;
1810 if (copy_from_user(&kvm_userspace_mem, argp,
1811 sizeof kvm_userspace_mem))
1812 goto out;
1814 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
1815 if (r)
1816 goto out;
1817 break;
1819 case KVM_GET_DIRTY_LOG: {
1820 struct kvm_dirty_log log;
1822 r = -EFAULT;
1823 if (copy_from_user(&log, argp, sizeof log))
1824 goto out;
1825 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1826 if (r)
1827 goto out;
1828 break;
1830 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1831 case KVM_REGISTER_COALESCED_MMIO: {
1832 struct kvm_coalesced_mmio_zone zone;
1833 r = -EFAULT;
1834 if (copy_from_user(&zone, argp, sizeof zone))
1835 goto out;
1836 r = -ENXIO;
1837 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
1838 if (r)
1839 goto out;
1840 r = 0;
1841 break;
1843 case KVM_UNREGISTER_COALESCED_MMIO: {
1844 struct kvm_coalesced_mmio_zone zone;
1845 r = -EFAULT;
1846 if (copy_from_user(&zone, argp, sizeof zone))
1847 goto out;
1848 r = -ENXIO;
1849 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
1850 if (r)
1851 goto out;
1852 r = 0;
1853 break;
1855 #endif
1856 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
1857 case KVM_ASSIGN_PCI_DEVICE: {
1858 struct kvm_assigned_pci_dev assigned_dev;
1860 r = -EFAULT;
1861 if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
1862 goto out;
1863 r = kvm_vm_ioctl_assign_device(kvm, &assigned_dev);
1864 if (r)
1865 goto out;
1866 break;
1868 case KVM_ASSIGN_IRQ: {
1869 struct kvm_assigned_irq assigned_irq;
1871 r = -EFAULT;
1872 if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
1873 goto out;
1874 r = kvm_vm_ioctl_assign_irq(kvm, &assigned_irq);
1875 if (r)
1876 goto out;
1877 break;
1879 #endif
1880 #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
1881 case KVM_DEASSIGN_PCI_DEVICE: {
1882 struct kvm_assigned_pci_dev assigned_dev;
1884 r = -EFAULT;
1885 if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
1886 goto out;
1887 r = kvm_vm_ioctl_deassign_device(kvm, &assigned_dev);
1888 if (r)
1889 goto out;
1890 break;
1892 #endif
1893 #ifdef KVM_CAP_IRQ_ROUTING
1894 case KVM_SET_GSI_ROUTING: {
1895 struct kvm_irq_routing routing;
1896 struct kvm_irq_routing __user *urouting;
1897 struct kvm_irq_routing_entry *entries;
1899 r = -EFAULT;
1900 if (copy_from_user(&routing, argp, sizeof(routing)))
1901 goto out;
1902 r = -EINVAL;
1903 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
1904 goto out;
1905 if (routing.flags)
1906 goto out;
1907 r = -ENOMEM;
1908 entries = vmalloc(routing.nr * sizeof(*entries));
1909 if (!entries)
1910 goto out;
1911 r = -EFAULT;
1912 urouting = argp;
1913 if (copy_from_user(entries, urouting->entries,
1914 routing.nr * sizeof(*entries)))
1915 goto out_free_irq_routing;
1916 r = kvm_set_irq_routing(kvm, entries, routing.nr,
1917 routing.flags);
1918 out_free_irq_routing:
1919 vfree(entries);
1920 break;
1922 #endif
1923 default:
1924 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
1926 out:
1927 return r;
1930 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1932 struct page *page[1];
1933 unsigned long addr;
1934 int npages;
1935 gfn_t gfn = vmf->pgoff;
1936 struct kvm *kvm = vma->vm_file->private_data;
1938 addr = gfn_to_hva(kvm, gfn);
1939 if (kvm_is_error_hva(addr))
1940 return VM_FAULT_SIGBUS;
1942 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
1943 NULL);
1944 if (unlikely(npages != 1))
1945 return VM_FAULT_SIGBUS;
1947 vmf->page = page[0];
1948 return 0;
1951 static struct vm_operations_struct kvm_vm_vm_ops = {
1952 .fault = kvm_vm_fault,
1955 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
1957 vma->vm_ops = &kvm_vm_vm_ops;
1958 return 0;
1961 static struct file_operations kvm_vm_fops = {
1962 .release = kvm_vm_release,
1963 .unlocked_ioctl = kvm_vm_ioctl,
1964 .compat_ioctl = kvm_vm_ioctl,
1965 .mmap = kvm_vm_mmap,
1968 static int kvm_dev_ioctl_create_vm(void)
1970 int fd;
1971 struct kvm *kvm;
1973 kvm = kvm_create_vm();
1974 if (IS_ERR(kvm))
1975 return PTR_ERR(kvm);
1976 fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0);
1977 if (fd < 0)
1978 kvm_put_kvm(kvm);
1980 return fd;
1983 static long kvm_dev_ioctl_check_extension_generic(long arg)
1985 switch (arg) {
1986 case KVM_CAP_USER_MEMORY:
1987 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
1988 return 1;
1989 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1990 case KVM_CAP_IRQ_ROUTING:
1991 return KVM_MAX_IRQ_ROUTES;
1992 #endif
1993 default:
1994 break;
1996 return kvm_dev_ioctl_check_extension(arg);
1999 static long kvm_dev_ioctl(struct file *filp,
2000 unsigned int ioctl, unsigned long arg)
2002 long r = -EINVAL;
2004 switch (ioctl) {
2005 case KVM_GET_API_VERSION:
2006 r = -EINVAL;
2007 if (arg)
2008 goto out;
2009 r = KVM_API_VERSION;
2010 break;
2011 case KVM_CREATE_VM:
2012 r = -EINVAL;
2013 if (arg)
2014 goto out;
2015 r = kvm_dev_ioctl_create_vm();
2016 break;
2017 case KVM_CHECK_EXTENSION:
2018 r = kvm_dev_ioctl_check_extension_generic(arg);
2019 break;
2020 case KVM_GET_VCPU_MMAP_SIZE:
2021 r = -EINVAL;
2022 if (arg)
2023 goto out;
2024 r = PAGE_SIZE; /* struct kvm_run */
2025 #ifdef CONFIG_X86
2026 r += PAGE_SIZE; /* pio data page */
2027 #endif
2028 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2029 r += PAGE_SIZE; /* coalesced mmio ring page */
2030 #endif
2031 break;
2032 case KVM_TRACE_ENABLE:
2033 case KVM_TRACE_PAUSE:
2034 case KVM_TRACE_DISABLE:
2035 r = kvm_trace_ioctl(ioctl, arg);
2036 break;
2037 default:
2038 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2040 out:
2041 return r;
2044 static struct file_operations kvm_chardev_ops = {
2045 .unlocked_ioctl = kvm_dev_ioctl,
2046 .compat_ioctl = kvm_dev_ioctl,
2049 static struct miscdevice kvm_dev = {
2050 KVM_MINOR,
2051 "kvm",
2052 &kvm_chardev_ops,
2055 static void hardware_enable(void *junk)
2057 int cpu = raw_smp_processor_id();
2059 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2060 return;
2061 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2062 kvm_arch_hardware_enable(NULL);
2065 static void hardware_disable(void *junk)
2067 int cpu = raw_smp_processor_id();
2069 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2070 return;
2071 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2072 kvm_arch_hardware_disable(NULL);
2075 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2076 void *v)
2078 int cpu = (long)v;
2080 val &= ~CPU_TASKS_FROZEN;
2081 switch (val) {
2082 case CPU_DYING:
2083 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2084 cpu);
2085 hardware_disable(NULL);
2086 break;
2087 case CPU_UP_CANCELED:
2088 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2089 cpu);
2090 smp_call_function_single(cpu, hardware_disable, NULL, 1);
2091 break;
2092 case CPU_ONLINE:
2093 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2094 cpu);
2095 smp_call_function_single(cpu, hardware_enable, NULL, 1);
2096 break;
2098 return NOTIFY_OK;
2102 asmlinkage void kvm_handle_fault_on_reboot(void)
2104 if (kvm_rebooting)
2105 /* spin while reset goes on */
2106 while (true)
2108 /* Fault while not rebooting. We want the trace. */
2109 BUG();
2111 EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
2113 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2114 void *v)
2116 if (val == SYS_RESTART) {
2118 * Some (well, at least mine) BIOSes hang on reboot if
2119 * in vmx root mode.
2121 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2122 kvm_rebooting = true;
2123 on_each_cpu(hardware_disable, NULL, 1);
2125 return NOTIFY_OK;
2128 static struct notifier_block kvm_reboot_notifier = {
2129 .notifier_call = kvm_reboot,
2130 .priority = 0,
2133 void kvm_io_bus_init(struct kvm_io_bus *bus)
2135 memset(bus, 0, sizeof(*bus));
2138 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2140 int i;
2142 for (i = 0; i < bus->dev_count; i++) {
2143 struct kvm_io_device *pos = bus->devs[i];
2145 kvm_iodevice_destructor(pos);
2149 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus,
2150 gpa_t addr, int len, int is_write)
2152 int i;
2154 for (i = 0; i < bus->dev_count; i++) {
2155 struct kvm_io_device *pos = bus->devs[i];
2157 if (pos->in_range(pos, addr, len, is_write))
2158 return pos;
2161 return NULL;
2164 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
2166 BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
2168 bus->devs[bus->dev_count++] = dev;
2171 static struct notifier_block kvm_cpu_notifier = {
2172 .notifier_call = kvm_cpu_hotplug,
2173 .priority = 20, /* must be > scheduler priority */
2176 static int vm_stat_get(void *_offset, u64 *val)
2178 unsigned offset = (long)_offset;
2179 struct kvm *kvm;
2181 *val = 0;
2182 spin_lock(&kvm_lock);
2183 list_for_each_entry(kvm, &vm_list, vm_list)
2184 *val += *(u32 *)((void *)kvm + offset);
2185 spin_unlock(&kvm_lock);
2186 return 0;
2189 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2191 static int vcpu_stat_get(void *_offset, u64 *val)
2193 unsigned offset = (long)_offset;
2194 struct kvm *kvm;
2195 struct kvm_vcpu *vcpu;
2196 int i;
2198 *val = 0;
2199 spin_lock(&kvm_lock);
2200 list_for_each_entry(kvm, &vm_list, vm_list)
2201 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2202 vcpu = kvm->vcpus[i];
2203 if (vcpu)
2204 *val += *(u32 *)((void *)vcpu + offset);
2206 spin_unlock(&kvm_lock);
2207 return 0;
2210 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2212 static struct file_operations *stat_fops[] = {
2213 [KVM_STAT_VCPU] = &vcpu_stat_fops,
2214 [KVM_STAT_VM] = &vm_stat_fops,
2217 static void kvm_init_debug(void)
2219 struct kvm_stats_debugfs_item *p;
2221 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2222 for (p = debugfs_entries; p->name; ++p)
2223 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2224 (void *)(long)p->offset,
2225 stat_fops[p->kind]);
2228 static void kvm_exit_debug(void)
2230 struct kvm_stats_debugfs_item *p;
2232 for (p = debugfs_entries; p->name; ++p)
2233 debugfs_remove(p->dentry);
2234 debugfs_remove(kvm_debugfs_dir);
2237 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
2239 hardware_disable(NULL);
2240 return 0;
2243 static int kvm_resume(struct sys_device *dev)
2245 hardware_enable(NULL);
2246 return 0;
2249 static struct sysdev_class kvm_sysdev_class = {
2250 .name = "kvm",
2251 .suspend = kvm_suspend,
2252 .resume = kvm_resume,
2255 static struct sys_device kvm_sysdev = {
2256 .id = 0,
2257 .cls = &kvm_sysdev_class,
2260 struct page *bad_page;
2261 pfn_t bad_pfn;
2263 static inline
2264 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2266 return container_of(pn, struct kvm_vcpu, preempt_notifier);
2269 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2271 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2273 kvm_arch_vcpu_load(vcpu, cpu);
2276 static void kvm_sched_out(struct preempt_notifier *pn,
2277 struct task_struct *next)
2279 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2281 kvm_arch_vcpu_put(vcpu);
2284 int kvm_init(void *opaque, unsigned int vcpu_size,
2285 struct module *module)
2287 int r;
2288 int cpu;
2290 kvm_init_debug();
2292 r = kvm_arch_init(opaque);
2293 if (r)
2294 goto out_fail;
2296 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2298 if (bad_page == NULL) {
2299 r = -ENOMEM;
2300 goto out;
2303 bad_pfn = page_to_pfn(bad_page);
2305 if (!alloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2306 r = -ENOMEM;
2307 goto out_free_0;
2310 r = kvm_arch_hardware_setup();
2311 if (r < 0)
2312 goto out_free_0a;
2314 for_each_online_cpu(cpu) {
2315 smp_call_function_single(cpu,
2316 kvm_arch_check_processor_compat,
2317 &r, 1);
2318 if (r < 0)
2319 goto out_free_1;
2322 on_each_cpu(hardware_enable, NULL, 1);
2323 r = register_cpu_notifier(&kvm_cpu_notifier);
2324 if (r)
2325 goto out_free_2;
2326 register_reboot_notifier(&kvm_reboot_notifier);
2328 r = sysdev_class_register(&kvm_sysdev_class);
2329 if (r)
2330 goto out_free_3;
2332 r = sysdev_register(&kvm_sysdev);
2333 if (r)
2334 goto out_free_4;
2336 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2337 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
2338 __alignof__(struct kvm_vcpu),
2339 0, NULL);
2340 if (!kvm_vcpu_cache) {
2341 r = -ENOMEM;
2342 goto out_free_5;
2345 kvm_chardev_ops.owner = module;
2346 kvm_vm_fops.owner = module;
2347 kvm_vcpu_fops.owner = module;
2349 r = misc_register(&kvm_dev);
2350 if (r) {
2351 printk(KERN_ERR "kvm: misc device register failed\n");
2352 goto out_free;
2355 kvm_preempt_ops.sched_in = kvm_sched_in;
2356 kvm_preempt_ops.sched_out = kvm_sched_out;
2357 #ifndef CONFIG_X86
2358 msi2intx = 0;
2359 #endif
2361 return 0;
2363 out_free:
2364 kmem_cache_destroy(kvm_vcpu_cache);
2365 out_free_5:
2366 sysdev_unregister(&kvm_sysdev);
2367 out_free_4:
2368 sysdev_class_unregister(&kvm_sysdev_class);
2369 out_free_3:
2370 unregister_reboot_notifier(&kvm_reboot_notifier);
2371 unregister_cpu_notifier(&kvm_cpu_notifier);
2372 out_free_2:
2373 on_each_cpu(hardware_disable, NULL, 1);
2374 out_free_1:
2375 kvm_arch_hardware_unsetup();
2376 out_free_0a:
2377 free_cpumask_var(cpus_hardware_enabled);
2378 out_free_0:
2379 __free_page(bad_page);
2380 out:
2381 kvm_arch_exit();
2382 kvm_exit_debug();
2383 out_fail:
2384 return r;
2386 EXPORT_SYMBOL_GPL(kvm_init);
2388 void kvm_exit(void)
2390 kvm_trace_cleanup();
2391 misc_deregister(&kvm_dev);
2392 kmem_cache_destroy(kvm_vcpu_cache);
2393 sysdev_unregister(&kvm_sysdev);
2394 sysdev_class_unregister(&kvm_sysdev_class);
2395 unregister_reboot_notifier(&kvm_reboot_notifier);
2396 unregister_cpu_notifier(&kvm_cpu_notifier);
2397 on_each_cpu(hardware_disable, NULL, 1);
2398 kvm_arch_hardware_unsetup();
2399 kvm_arch_exit();
2400 kvm_exit_debug();
2401 free_cpumask_var(cpus_hardware_enabled);
2402 __free_page(bad_page);
2404 EXPORT_SYMBOL_GPL(kvm_exit);