[SCSI] bfa: FDMI enhancements
[linux-2.6.git] / mm / slub.c
blob57707f01bcfb72395fd7414de8059dcb341cbdbd
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kmemcheck.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
37 #include <trace/events/kmem.h>
39 #include "internal.h"
42 * Lock order:
43 * 1. slab_mutex (Global Mutex)
44 * 2. node->list_lock
45 * 3. slab_lock(page) (Only on some arches and for debugging)
47 * slab_mutex
49 * The role of the slab_mutex is to protect the list of all the slabs
50 * and to synchronize major metadata changes to slab cache structures.
52 * The slab_lock is only used for debugging and on arches that do not
53 * have the ability to do a cmpxchg_double. It only protects the second
54 * double word in the page struct. Meaning
55 * A. page->freelist -> List of object free in a page
56 * B. page->counters -> Counters of objects
57 * C. page->frozen -> frozen state
59 * If a slab is frozen then it is exempt from list management. It is not
60 * on any list. The processor that froze the slab is the one who can
61 * perform list operations on the page. Other processors may put objects
62 * onto the freelist but the processor that froze the slab is the only
63 * one that can retrieve the objects from the page's freelist.
65 * The list_lock protects the partial and full list on each node and
66 * the partial slab counter. If taken then no new slabs may be added or
67 * removed from the lists nor make the number of partial slabs be modified.
68 * (Note that the total number of slabs is an atomic value that may be
69 * modified without taking the list lock).
71 * The list_lock is a centralized lock and thus we avoid taking it as
72 * much as possible. As long as SLUB does not have to handle partial
73 * slabs, operations can continue without any centralized lock. F.e.
74 * allocating a long series of objects that fill up slabs does not require
75 * the list lock.
76 * Interrupts are disabled during allocation and deallocation in order to
77 * make the slab allocator safe to use in the context of an irq. In addition
78 * interrupts are disabled to ensure that the processor does not change
79 * while handling per_cpu slabs, due to kernel preemption.
81 * SLUB assigns one slab for allocation to each processor.
82 * Allocations only occur from these slabs called cpu slabs.
84 * Slabs with free elements are kept on a partial list and during regular
85 * operations no list for full slabs is used. If an object in a full slab is
86 * freed then the slab will show up again on the partial lists.
87 * We track full slabs for debugging purposes though because otherwise we
88 * cannot scan all objects.
90 * Slabs are freed when they become empty. Teardown and setup is
91 * minimal so we rely on the page allocators per cpu caches for
92 * fast frees and allocs.
94 * Overloading of page flags that are otherwise used for LRU management.
96 * PageActive The slab is frozen and exempt from list processing.
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
108 * freelist that allows lockless access to
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
112 * PageError Slab requires special handling due to debug
113 * options set. This moves slab handling out of
114 * the fast path and disables lockless freelists.
117 static inline int kmem_cache_debug(struct kmem_cache *s)
119 #ifdef CONFIG_SLUB_DEBUG
120 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
121 #else
122 return 0;
123 #endif
127 * Issues still to be resolved:
129 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
131 * - Variable sizing of the per node arrays
134 /* Enable to test recovery from slab corruption on boot */
135 #undef SLUB_RESILIENCY_TEST
137 /* Enable to log cmpxchg failures */
138 #undef SLUB_DEBUG_CMPXCHG
141 * Mininum number of partial slabs. These will be left on the partial
142 * lists even if they are empty. kmem_cache_shrink may reclaim them.
144 #define MIN_PARTIAL 5
147 * Maximum number of desirable partial slabs.
148 * The existence of more partial slabs makes kmem_cache_shrink
149 * sort the partial list by the number of objects in the.
151 #define MAX_PARTIAL 10
153 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
154 SLAB_POISON | SLAB_STORE_USER)
157 * Debugging flags that require metadata to be stored in the slab. These get
158 * disabled when slub_debug=O is used and a cache's min order increases with
159 * metadata.
161 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
164 * Set of flags that will prevent slab merging
166 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
167 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
168 SLAB_FAILSLAB)
170 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
171 SLAB_CACHE_DMA | SLAB_NOTRACK)
173 #define OO_SHIFT 16
174 #define OO_MASK ((1 << OO_SHIFT) - 1)
175 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
177 /* Internal SLUB flags */
178 #define __OBJECT_POISON 0x80000000UL /* Poison object */
179 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
181 #ifdef CONFIG_SMP
182 static struct notifier_block slab_notifier;
183 #endif
186 * Tracking user of a slab.
188 #define TRACK_ADDRS_COUNT 16
189 struct track {
190 unsigned long addr; /* Called from address */
191 #ifdef CONFIG_STACKTRACE
192 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
193 #endif
194 int cpu; /* Was running on cpu */
195 int pid; /* Pid context */
196 unsigned long when; /* When did the operation occur */
199 enum track_item { TRACK_ALLOC, TRACK_FREE };
201 #ifdef CONFIG_SYSFS
202 static int sysfs_slab_add(struct kmem_cache *);
203 static int sysfs_slab_alias(struct kmem_cache *, const char *);
204 static void sysfs_slab_remove(struct kmem_cache *);
205 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
206 #else
207 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
208 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
209 { return 0; }
210 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
212 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
213 #endif
215 static inline void stat(const struct kmem_cache *s, enum stat_item si)
217 #ifdef CONFIG_SLUB_STATS
218 __this_cpu_inc(s->cpu_slab->stat[si]);
219 #endif
222 /********************************************************************
223 * Core slab cache functions
224 *******************************************************************/
226 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
228 return s->node[node];
231 /* Verify that a pointer has an address that is valid within a slab page */
232 static inline int check_valid_pointer(struct kmem_cache *s,
233 struct page *page, const void *object)
235 void *base;
237 if (!object)
238 return 1;
240 base = page_address(page);
241 if (object < base || object >= base + page->objects * s->size ||
242 (object - base) % s->size) {
243 return 0;
246 return 1;
249 static inline void *get_freepointer(struct kmem_cache *s, void *object)
251 return *(void **)(object + s->offset);
254 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
256 prefetch(object + s->offset);
259 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
261 void *p;
263 #ifdef CONFIG_DEBUG_PAGEALLOC
264 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
265 #else
266 p = get_freepointer(s, object);
267 #endif
268 return p;
271 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
273 *(void **)(object + s->offset) = fp;
276 /* Loop over all objects in a slab */
277 #define for_each_object(__p, __s, __addr, __objects) \
278 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
279 __p += (__s)->size)
281 /* Determine object index from a given position */
282 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
284 return (p - addr) / s->size;
287 static inline size_t slab_ksize(const struct kmem_cache *s)
289 #ifdef CONFIG_SLUB_DEBUG
291 * Debugging requires use of the padding between object
292 * and whatever may come after it.
294 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
295 return s->object_size;
297 #endif
299 * If we have the need to store the freelist pointer
300 * back there or track user information then we can
301 * only use the space before that information.
303 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
304 return s->inuse;
306 * Else we can use all the padding etc for the allocation
308 return s->size;
311 static inline int order_objects(int order, unsigned long size, int reserved)
313 return ((PAGE_SIZE << order) - reserved) / size;
316 static inline struct kmem_cache_order_objects oo_make(int order,
317 unsigned long size, int reserved)
319 struct kmem_cache_order_objects x = {
320 (order << OO_SHIFT) + order_objects(order, size, reserved)
323 return x;
326 static inline int oo_order(struct kmem_cache_order_objects x)
328 return x.x >> OO_SHIFT;
331 static inline int oo_objects(struct kmem_cache_order_objects x)
333 return x.x & OO_MASK;
337 * Per slab locking using the pagelock
339 static __always_inline void slab_lock(struct page *page)
341 bit_spin_lock(PG_locked, &page->flags);
344 static __always_inline void slab_unlock(struct page *page)
346 __bit_spin_unlock(PG_locked, &page->flags);
349 /* Interrupts must be disabled (for the fallback code to work right) */
350 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
351 void *freelist_old, unsigned long counters_old,
352 void *freelist_new, unsigned long counters_new,
353 const char *n)
355 VM_BUG_ON(!irqs_disabled());
356 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
357 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
358 if (s->flags & __CMPXCHG_DOUBLE) {
359 if (cmpxchg_double(&page->freelist, &page->counters,
360 freelist_old, counters_old,
361 freelist_new, counters_new))
362 return 1;
363 } else
364 #endif
366 slab_lock(page);
367 if (page->freelist == freelist_old && page->counters == counters_old) {
368 page->freelist = freelist_new;
369 page->counters = counters_new;
370 slab_unlock(page);
371 return 1;
373 slab_unlock(page);
376 cpu_relax();
377 stat(s, CMPXCHG_DOUBLE_FAIL);
379 #ifdef SLUB_DEBUG_CMPXCHG
380 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
381 #endif
383 return 0;
386 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
387 void *freelist_old, unsigned long counters_old,
388 void *freelist_new, unsigned long counters_new,
389 const char *n)
391 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
392 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
393 if (s->flags & __CMPXCHG_DOUBLE) {
394 if (cmpxchg_double(&page->freelist, &page->counters,
395 freelist_old, counters_old,
396 freelist_new, counters_new))
397 return 1;
398 } else
399 #endif
401 unsigned long flags;
403 local_irq_save(flags);
404 slab_lock(page);
405 if (page->freelist == freelist_old && page->counters == counters_old) {
406 page->freelist = freelist_new;
407 page->counters = counters_new;
408 slab_unlock(page);
409 local_irq_restore(flags);
410 return 1;
412 slab_unlock(page);
413 local_irq_restore(flags);
416 cpu_relax();
417 stat(s, CMPXCHG_DOUBLE_FAIL);
419 #ifdef SLUB_DEBUG_CMPXCHG
420 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
421 #endif
423 return 0;
426 #ifdef CONFIG_SLUB_DEBUG
428 * Determine a map of object in use on a page.
430 * Node listlock must be held to guarantee that the page does
431 * not vanish from under us.
433 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
435 void *p;
436 void *addr = page_address(page);
438 for (p = page->freelist; p; p = get_freepointer(s, p))
439 set_bit(slab_index(p, s, addr), map);
443 * Debug settings:
445 #ifdef CONFIG_SLUB_DEBUG_ON
446 static int slub_debug = DEBUG_DEFAULT_FLAGS;
447 #else
448 static int slub_debug;
449 #endif
451 static char *slub_debug_slabs;
452 static int disable_higher_order_debug;
455 * Object debugging
457 static void print_section(char *text, u8 *addr, unsigned int length)
459 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
460 length, 1);
463 static struct track *get_track(struct kmem_cache *s, void *object,
464 enum track_item alloc)
466 struct track *p;
468 if (s->offset)
469 p = object + s->offset + sizeof(void *);
470 else
471 p = object + s->inuse;
473 return p + alloc;
476 static void set_track(struct kmem_cache *s, void *object,
477 enum track_item alloc, unsigned long addr)
479 struct track *p = get_track(s, object, alloc);
481 if (addr) {
482 #ifdef CONFIG_STACKTRACE
483 struct stack_trace trace;
484 int i;
486 trace.nr_entries = 0;
487 trace.max_entries = TRACK_ADDRS_COUNT;
488 trace.entries = p->addrs;
489 trace.skip = 3;
490 save_stack_trace(&trace);
492 /* See rant in lockdep.c */
493 if (trace.nr_entries != 0 &&
494 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
495 trace.nr_entries--;
497 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
498 p->addrs[i] = 0;
499 #endif
500 p->addr = addr;
501 p->cpu = smp_processor_id();
502 p->pid = current->pid;
503 p->when = jiffies;
504 } else
505 memset(p, 0, sizeof(struct track));
508 static void init_tracking(struct kmem_cache *s, void *object)
510 if (!(s->flags & SLAB_STORE_USER))
511 return;
513 set_track(s, object, TRACK_FREE, 0UL);
514 set_track(s, object, TRACK_ALLOC, 0UL);
517 static void print_track(const char *s, struct track *t)
519 if (!t->addr)
520 return;
522 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
523 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
524 #ifdef CONFIG_STACKTRACE
526 int i;
527 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
528 if (t->addrs[i])
529 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
530 else
531 break;
533 #endif
536 static void print_tracking(struct kmem_cache *s, void *object)
538 if (!(s->flags & SLAB_STORE_USER))
539 return;
541 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
542 print_track("Freed", get_track(s, object, TRACK_FREE));
545 static void print_page_info(struct page *page)
547 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
548 page, page->objects, page->inuse, page->freelist, page->flags);
552 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
554 va_list args;
555 char buf[100];
557 va_start(args, fmt);
558 vsnprintf(buf, sizeof(buf), fmt, args);
559 va_end(args);
560 printk(KERN_ERR "========================================"
561 "=====================================\n");
562 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
563 printk(KERN_ERR "----------------------------------------"
564 "-------------------------------------\n\n");
566 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
569 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
571 va_list args;
572 char buf[100];
574 va_start(args, fmt);
575 vsnprintf(buf, sizeof(buf), fmt, args);
576 va_end(args);
577 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
580 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
582 unsigned int off; /* Offset of last byte */
583 u8 *addr = page_address(page);
585 print_tracking(s, p);
587 print_page_info(page);
589 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
590 p, p - addr, get_freepointer(s, p));
592 if (p > addr + 16)
593 print_section("Bytes b4 ", p - 16, 16);
595 print_section("Object ", p, min_t(unsigned long, s->object_size,
596 PAGE_SIZE));
597 if (s->flags & SLAB_RED_ZONE)
598 print_section("Redzone ", p + s->object_size,
599 s->inuse - s->object_size);
601 if (s->offset)
602 off = s->offset + sizeof(void *);
603 else
604 off = s->inuse;
606 if (s->flags & SLAB_STORE_USER)
607 off += 2 * sizeof(struct track);
609 if (off != s->size)
610 /* Beginning of the filler is the free pointer */
611 print_section("Padding ", p + off, s->size - off);
613 dump_stack();
616 static void object_err(struct kmem_cache *s, struct page *page,
617 u8 *object, char *reason)
619 slab_bug(s, "%s", reason);
620 print_trailer(s, page, object);
623 static void slab_err(struct kmem_cache *s, struct page *page, const char *fmt, ...)
625 va_list args;
626 char buf[100];
628 va_start(args, fmt);
629 vsnprintf(buf, sizeof(buf), fmt, args);
630 va_end(args);
631 slab_bug(s, "%s", buf);
632 print_page_info(page);
633 dump_stack();
636 static void init_object(struct kmem_cache *s, void *object, u8 val)
638 u8 *p = object;
640 if (s->flags & __OBJECT_POISON) {
641 memset(p, POISON_FREE, s->object_size - 1);
642 p[s->object_size - 1] = POISON_END;
645 if (s->flags & SLAB_RED_ZONE)
646 memset(p + s->object_size, val, s->inuse - s->object_size);
649 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
650 void *from, void *to)
652 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
653 memset(from, data, to - from);
656 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
657 u8 *object, char *what,
658 u8 *start, unsigned int value, unsigned int bytes)
660 u8 *fault;
661 u8 *end;
663 fault = memchr_inv(start, value, bytes);
664 if (!fault)
665 return 1;
667 end = start + bytes;
668 while (end > fault && end[-1] == value)
669 end--;
671 slab_bug(s, "%s overwritten", what);
672 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
673 fault, end - 1, fault[0], value);
674 print_trailer(s, page, object);
676 restore_bytes(s, what, value, fault, end);
677 return 0;
681 * Object layout:
683 * object address
684 * Bytes of the object to be managed.
685 * If the freepointer may overlay the object then the free
686 * pointer is the first word of the object.
688 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
689 * 0xa5 (POISON_END)
691 * object + s->object_size
692 * Padding to reach word boundary. This is also used for Redzoning.
693 * Padding is extended by another word if Redzoning is enabled and
694 * object_size == inuse.
696 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
697 * 0xcc (RED_ACTIVE) for objects in use.
699 * object + s->inuse
700 * Meta data starts here.
702 * A. Free pointer (if we cannot overwrite object on free)
703 * B. Tracking data for SLAB_STORE_USER
704 * C. Padding to reach required alignment boundary or at mininum
705 * one word if debugging is on to be able to detect writes
706 * before the word boundary.
708 * Padding is done using 0x5a (POISON_INUSE)
710 * object + s->size
711 * Nothing is used beyond s->size.
713 * If slabcaches are merged then the object_size and inuse boundaries are mostly
714 * ignored. And therefore no slab options that rely on these boundaries
715 * may be used with merged slabcaches.
718 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
720 unsigned long off = s->inuse; /* The end of info */
722 if (s->offset)
723 /* Freepointer is placed after the object. */
724 off += sizeof(void *);
726 if (s->flags & SLAB_STORE_USER)
727 /* We also have user information there */
728 off += 2 * sizeof(struct track);
730 if (s->size == off)
731 return 1;
733 return check_bytes_and_report(s, page, p, "Object padding",
734 p + off, POISON_INUSE, s->size - off);
737 /* Check the pad bytes at the end of a slab page */
738 static int slab_pad_check(struct kmem_cache *s, struct page *page)
740 u8 *start;
741 u8 *fault;
742 u8 *end;
743 int length;
744 int remainder;
746 if (!(s->flags & SLAB_POISON))
747 return 1;
749 start = page_address(page);
750 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
751 end = start + length;
752 remainder = length % s->size;
753 if (!remainder)
754 return 1;
756 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
757 if (!fault)
758 return 1;
759 while (end > fault && end[-1] == POISON_INUSE)
760 end--;
762 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
763 print_section("Padding ", end - remainder, remainder);
765 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
766 return 0;
769 static int check_object(struct kmem_cache *s, struct page *page,
770 void *object, u8 val)
772 u8 *p = object;
773 u8 *endobject = object + s->object_size;
775 if (s->flags & SLAB_RED_ZONE) {
776 if (!check_bytes_and_report(s, page, object, "Redzone",
777 endobject, val, s->inuse - s->object_size))
778 return 0;
779 } else {
780 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
781 check_bytes_and_report(s, page, p, "Alignment padding",
782 endobject, POISON_INUSE, s->inuse - s->object_size);
786 if (s->flags & SLAB_POISON) {
787 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
788 (!check_bytes_and_report(s, page, p, "Poison", p,
789 POISON_FREE, s->object_size - 1) ||
790 !check_bytes_and_report(s, page, p, "Poison",
791 p + s->object_size - 1, POISON_END, 1)))
792 return 0;
794 * check_pad_bytes cleans up on its own.
796 check_pad_bytes(s, page, p);
799 if (!s->offset && val == SLUB_RED_ACTIVE)
801 * Object and freepointer overlap. Cannot check
802 * freepointer while object is allocated.
804 return 1;
806 /* Check free pointer validity */
807 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
808 object_err(s, page, p, "Freepointer corrupt");
810 * No choice but to zap it and thus lose the remainder
811 * of the free objects in this slab. May cause
812 * another error because the object count is now wrong.
814 set_freepointer(s, p, NULL);
815 return 0;
817 return 1;
820 static int check_slab(struct kmem_cache *s, struct page *page)
822 int maxobj;
824 VM_BUG_ON(!irqs_disabled());
826 if (!PageSlab(page)) {
827 slab_err(s, page, "Not a valid slab page");
828 return 0;
831 maxobj = order_objects(compound_order(page), s->size, s->reserved);
832 if (page->objects > maxobj) {
833 slab_err(s, page, "objects %u > max %u",
834 s->name, page->objects, maxobj);
835 return 0;
837 if (page->inuse > page->objects) {
838 slab_err(s, page, "inuse %u > max %u",
839 s->name, page->inuse, page->objects);
840 return 0;
842 /* Slab_pad_check fixes things up after itself */
843 slab_pad_check(s, page);
844 return 1;
848 * Determine if a certain object on a page is on the freelist. Must hold the
849 * slab lock to guarantee that the chains are in a consistent state.
851 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
853 int nr = 0;
854 void *fp;
855 void *object = NULL;
856 unsigned long max_objects;
858 fp = page->freelist;
859 while (fp && nr <= page->objects) {
860 if (fp == search)
861 return 1;
862 if (!check_valid_pointer(s, page, fp)) {
863 if (object) {
864 object_err(s, page, object,
865 "Freechain corrupt");
866 set_freepointer(s, object, NULL);
867 break;
868 } else {
869 slab_err(s, page, "Freepointer corrupt");
870 page->freelist = NULL;
871 page->inuse = page->objects;
872 slab_fix(s, "Freelist cleared");
873 return 0;
875 break;
877 object = fp;
878 fp = get_freepointer(s, object);
879 nr++;
882 max_objects = order_objects(compound_order(page), s->size, s->reserved);
883 if (max_objects > MAX_OBJS_PER_PAGE)
884 max_objects = MAX_OBJS_PER_PAGE;
886 if (page->objects != max_objects) {
887 slab_err(s, page, "Wrong number of objects. Found %d but "
888 "should be %d", page->objects, max_objects);
889 page->objects = max_objects;
890 slab_fix(s, "Number of objects adjusted.");
892 if (page->inuse != page->objects - nr) {
893 slab_err(s, page, "Wrong object count. Counter is %d but "
894 "counted were %d", page->inuse, page->objects - nr);
895 page->inuse = page->objects - nr;
896 slab_fix(s, "Object count adjusted.");
898 return search == NULL;
901 static void trace(struct kmem_cache *s, struct page *page, void *object,
902 int alloc)
904 if (s->flags & SLAB_TRACE) {
905 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
906 s->name,
907 alloc ? "alloc" : "free",
908 object, page->inuse,
909 page->freelist);
911 if (!alloc)
912 print_section("Object ", (void *)object, s->object_size);
914 dump_stack();
919 * Hooks for other subsystems that check memory allocations. In a typical
920 * production configuration these hooks all should produce no code at all.
922 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
924 flags &= gfp_allowed_mask;
925 lockdep_trace_alloc(flags);
926 might_sleep_if(flags & __GFP_WAIT);
928 return should_failslab(s->object_size, flags, s->flags);
931 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
933 flags &= gfp_allowed_mask;
934 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
935 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
938 static inline void slab_free_hook(struct kmem_cache *s, void *x)
940 kmemleak_free_recursive(x, s->flags);
943 * Trouble is that we may no longer disable interupts in the fast path
944 * So in order to make the debug calls that expect irqs to be
945 * disabled we need to disable interrupts temporarily.
947 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
949 unsigned long flags;
951 local_irq_save(flags);
952 kmemcheck_slab_free(s, x, s->object_size);
953 debug_check_no_locks_freed(x, s->object_size);
954 local_irq_restore(flags);
956 #endif
957 if (!(s->flags & SLAB_DEBUG_OBJECTS))
958 debug_check_no_obj_freed(x, s->object_size);
962 * Tracking of fully allocated slabs for debugging purposes.
964 * list_lock must be held.
966 static void add_full(struct kmem_cache *s,
967 struct kmem_cache_node *n, struct page *page)
969 if (!(s->flags & SLAB_STORE_USER))
970 return;
972 list_add(&page->lru, &n->full);
976 * list_lock must be held.
978 static void remove_full(struct kmem_cache *s, struct page *page)
980 if (!(s->flags & SLAB_STORE_USER))
981 return;
983 list_del(&page->lru);
986 /* Tracking of the number of slabs for debugging purposes */
987 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
989 struct kmem_cache_node *n = get_node(s, node);
991 return atomic_long_read(&n->nr_slabs);
994 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
996 return atomic_long_read(&n->nr_slabs);
999 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1001 struct kmem_cache_node *n = get_node(s, node);
1004 * May be called early in order to allocate a slab for the
1005 * kmem_cache_node structure. Solve the chicken-egg
1006 * dilemma by deferring the increment of the count during
1007 * bootstrap (see early_kmem_cache_node_alloc).
1009 if (likely(n)) {
1010 atomic_long_inc(&n->nr_slabs);
1011 atomic_long_add(objects, &n->total_objects);
1014 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1016 struct kmem_cache_node *n = get_node(s, node);
1018 atomic_long_dec(&n->nr_slabs);
1019 atomic_long_sub(objects, &n->total_objects);
1022 /* Object debug checks for alloc/free paths */
1023 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1024 void *object)
1026 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1027 return;
1029 init_object(s, object, SLUB_RED_INACTIVE);
1030 init_tracking(s, object);
1033 static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
1034 void *object, unsigned long addr)
1036 if (!check_slab(s, page))
1037 goto bad;
1039 if (!check_valid_pointer(s, page, object)) {
1040 object_err(s, page, object, "Freelist Pointer check fails");
1041 goto bad;
1044 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1045 goto bad;
1047 /* Success perform special debug activities for allocs */
1048 if (s->flags & SLAB_STORE_USER)
1049 set_track(s, object, TRACK_ALLOC, addr);
1050 trace(s, page, object, 1);
1051 init_object(s, object, SLUB_RED_ACTIVE);
1052 return 1;
1054 bad:
1055 if (PageSlab(page)) {
1057 * If this is a slab page then lets do the best we can
1058 * to avoid issues in the future. Marking all objects
1059 * as used avoids touching the remaining objects.
1061 slab_fix(s, "Marking all objects used");
1062 page->inuse = page->objects;
1063 page->freelist = NULL;
1065 return 0;
1068 static noinline struct kmem_cache_node *free_debug_processing(
1069 struct kmem_cache *s, struct page *page, void *object,
1070 unsigned long addr, unsigned long *flags)
1072 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1074 spin_lock_irqsave(&n->list_lock, *flags);
1075 slab_lock(page);
1077 if (!check_slab(s, page))
1078 goto fail;
1080 if (!check_valid_pointer(s, page, object)) {
1081 slab_err(s, page, "Invalid object pointer 0x%p", object);
1082 goto fail;
1085 if (on_freelist(s, page, object)) {
1086 object_err(s, page, object, "Object already free");
1087 goto fail;
1090 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1091 goto out;
1093 if (unlikely(s != page->slab_cache)) {
1094 if (!PageSlab(page)) {
1095 slab_err(s, page, "Attempt to free object(0x%p) "
1096 "outside of slab", object);
1097 } else if (!page->slab_cache) {
1098 printk(KERN_ERR
1099 "SLUB <none>: no slab for object 0x%p.\n",
1100 object);
1101 dump_stack();
1102 } else
1103 object_err(s, page, object,
1104 "page slab pointer corrupt.");
1105 goto fail;
1108 if (s->flags & SLAB_STORE_USER)
1109 set_track(s, object, TRACK_FREE, addr);
1110 trace(s, page, object, 0);
1111 init_object(s, object, SLUB_RED_INACTIVE);
1112 out:
1113 slab_unlock(page);
1115 * Keep node_lock to preserve integrity
1116 * until the object is actually freed
1118 return n;
1120 fail:
1121 slab_unlock(page);
1122 spin_unlock_irqrestore(&n->list_lock, *flags);
1123 slab_fix(s, "Object at 0x%p not freed", object);
1124 return NULL;
1127 static int __init setup_slub_debug(char *str)
1129 slub_debug = DEBUG_DEFAULT_FLAGS;
1130 if (*str++ != '=' || !*str)
1132 * No options specified. Switch on full debugging.
1134 goto out;
1136 if (*str == ',')
1138 * No options but restriction on slabs. This means full
1139 * debugging for slabs matching a pattern.
1141 goto check_slabs;
1143 if (tolower(*str) == 'o') {
1145 * Avoid enabling debugging on caches if its minimum order
1146 * would increase as a result.
1148 disable_higher_order_debug = 1;
1149 goto out;
1152 slub_debug = 0;
1153 if (*str == '-')
1155 * Switch off all debugging measures.
1157 goto out;
1160 * Determine which debug features should be switched on
1162 for (; *str && *str != ','; str++) {
1163 switch (tolower(*str)) {
1164 case 'f':
1165 slub_debug |= SLAB_DEBUG_FREE;
1166 break;
1167 case 'z':
1168 slub_debug |= SLAB_RED_ZONE;
1169 break;
1170 case 'p':
1171 slub_debug |= SLAB_POISON;
1172 break;
1173 case 'u':
1174 slub_debug |= SLAB_STORE_USER;
1175 break;
1176 case 't':
1177 slub_debug |= SLAB_TRACE;
1178 break;
1179 case 'a':
1180 slub_debug |= SLAB_FAILSLAB;
1181 break;
1182 default:
1183 printk(KERN_ERR "slub_debug option '%c' "
1184 "unknown. skipped\n", *str);
1188 check_slabs:
1189 if (*str == ',')
1190 slub_debug_slabs = str + 1;
1191 out:
1192 return 1;
1195 __setup("slub_debug", setup_slub_debug);
1197 static unsigned long kmem_cache_flags(unsigned long object_size,
1198 unsigned long flags, const char *name,
1199 void (*ctor)(void *))
1202 * Enable debugging if selected on the kernel commandline.
1204 if (slub_debug && (!slub_debug_slabs ||
1205 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1206 flags |= slub_debug;
1208 return flags;
1210 #else
1211 static inline void setup_object_debug(struct kmem_cache *s,
1212 struct page *page, void *object) {}
1214 static inline int alloc_debug_processing(struct kmem_cache *s,
1215 struct page *page, void *object, unsigned long addr) { return 0; }
1217 static inline struct kmem_cache_node *free_debug_processing(
1218 struct kmem_cache *s, struct page *page, void *object,
1219 unsigned long addr, unsigned long *flags) { return NULL; }
1221 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1222 { return 1; }
1223 static inline int check_object(struct kmem_cache *s, struct page *page,
1224 void *object, u8 val) { return 1; }
1225 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1226 struct page *page) {}
1227 static inline void remove_full(struct kmem_cache *s, struct page *page) {}
1228 static inline unsigned long kmem_cache_flags(unsigned long object_size,
1229 unsigned long flags, const char *name,
1230 void (*ctor)(void *))
1232 return flags;
1234 #define slub_debug 0
1236 #define disable_higher_order_debug 0
1238 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1239 { return 0; }
1240 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1241 { return 0; }
1242 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1243 int objects) {}
1244 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1245 int objects) {}
1247 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1248 { return 0; }
1250 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1251 void *object) {}
1253 static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1255 #endif /* CONFIG_SLUB_DEBUG */
1258 * Slab allocation and freeing
1260 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1261 struct kmem_cache_order_objects oo)
1263 int order = oo_order(oo);
1265 flags |= __GFP_NOTRACK;
1267 if (node == NUMA_NO_NODE)
1268 return alloc_pages(flags, order);
1269 else
1270 return alloc_pages_exact_node(node, flags, order);
1273 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1275 struct page *page;
1276 struct kmem_cache_order_objects oo = s->oo;
1277 gfp_t alloc_gfp;
1279 flags &= gfp_allowed_mask;
1281 if (flags & __GFP_WAIT)
1282 local_irq_enable();
1284 flags |= s->allocflags;
1287 * Let the initial higher-order allocation fail under memory pressure
1288 * so we fall-back to the minimum order allocation.
1290 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1292 page = alloc_slab_page(alloc_gfp, node, oo);
1293 if (unlikely(!page)) {
1294 oo = s->min;
1296 * Allocation may have failed due to fragmentation.
1297 * Try a lower order alloc if possible
1299 page = alloc_slab_page(flags, node, oo);
1301 if (page)
1302 stat(s, ORDER_FALLBACK);
1305 if (kmemcheck_enabled && page
1306 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1307 int pages = 1 << oo_order(oo);
1309 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1312 * Objects from caches that have a constructor don't get
1313 * cleared when they're allocated, so we need to do it here.
1315 if (s->ctor)
1316 kmemcheck_mark_uninitialized_pages(page, pages);
1317 else
1318 kmemcheck_mark_unallocated_pages(page, pages);
1321 if (flags & __GFP_WAIT)
1322 local_irq_disable();
1323 if (!page)
1324 return NULL;
1326 page->objects = oo_objects(oo);
1327 mod_zone_page_state(page_zone(page),
1328 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1329 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1330 1 << oo_order(oo));
1332 return page;
1335 static void setup_object(struct kmem_cache *s, struct page *page,
1336 void *object)
1338 setup_object_debug(s, page, object);
1339 if (unlikely(s->ctor))
1340 s->ctor(object);
1343 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1345 struct page *page;
1346 void *start;
1347 void *last;
1348 void *p;
1349 int order;
1351 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1353 page = allocate_slab(s,
1354 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1355 if (!page)
1356 goto out;
1358 order = compound_order(page);
1359 inc_slabs_node(s, page_to_nid(page), page->objects);
1360 memcg_bind_pages(s, order);
1361 page->slab_cache = s;
1362 __SetPageSlab(page);
1363 if (page->pfmemalloc)
1364 SetPageSlabPfmemalloc(page);
1366 start = page_address(page);
1368 if (unlikely(s->flags & SLAB_POISON))
1369 memset(start, POISON_INUSE, PAGE_SIZE << order);
1371 last = start;
1372 for_each_object(p, s, start, page->objects) {
1373 setup_object(s, page, last);
1374 set_freepointer(s, last, p);
1375 last = p;
1377 setup_object(s, page, last);
1378 set_freepointer(s, last, NULL);
1380 page->freelist = start;
1381 page->inuse = page->objects;
1382 page->frozen = 1;
1383 out:
1384 return page;
1387 static void __free_slab(struct kmem_cache *s, struct page *page)
1389 int order = compound_order(page);
1390 int pages = 1 << order;
1392 if (kmem_cache_debug(s)) {
1393 void *p;
1395 slab_pad_check(s, page);
1396 for_each_object(p, s, page_address(page),
1397 page->objects)
1398 check_object(s, page, p, SLUB_RED_INACTIVE);
1401 kmemcheck_free_shadow(page, compound_order(page));
1403 mod_zone_page_state(page_zone(page),
1404 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1405 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1406 -pages);
1408 __ClearPageSlabPfmemalloc(page);
1409 __ClearPageSlab(page);
1411 memcg_release_pages(s, order);
1412 page_mapcount_reset(page);
1413 if (current->reclaim_state)
1414 current->reclaim_state->reclaimed_slab += pages;
1415 __free_memcg_kmem_pages(page, order);
1418 #define need_reserve_slab_rcu \
1419 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1421 static void rcu_free_slab(struct rcu_head *h)
1423 struct page *page;
1425 if (need_reserve_slab_rcu)
1426 page = virt_to_head_page(h);
1427 else
1428 page = container_of((struct list_head *)h, struct page, lru);
1430 __free_slab(page->slab_cache, page);
1433 static void free_slab(struct kmem_cache *s, struct page *page)
1435 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1436 struct rcu_head *head;
1438 if (need_reserve_slab_rcu) {
1439 int order = compound_order(page);
1440 int offset = (PAGE_SIZE << order) - s->reserved;
1442 VM_BUG_ON(s->reserved != sizeof(*head));
1443 head = page_address(page) + offset;
1444 } else {
1446 * RCU free overloads the RCU head over the LRU
1448 head = (void *)&page->lru;
1451 call_rcu(head, rcu_free_slab);
1452 } else
1453 __free_slab(s, page);
1456 static void discard_slab(struct kmem_cache *s, struct page *page)
1458 dec_slabs_node(s, page_to_nid(page), page->objects);
1459 free_slab(s, page);
1463 * Management of partially allocated slabs.
1465 * list_lock must be held.
1467 static inline void add_partial(struct kmem_cache_node *n,
1468 struct page *page, int tail)
1470 n->nr_partial++;
1471 if (tail == DEACTIVATE_TO_TAIL)
1472 list_add_tail(&page->lru, &n->partial);
1473 else
1474 list_add(&page->lru, &n->partial);
1478 * list_lock must be held.
1480 static inline void remove_partial(struct kmem_cache_node *n,
1481 struct page *page)
1483 list_del(&page->lru);
1484 n->nr_partial--;
1488 * Remove slab from the partial list, freeze it and
1489 * return the pointer to the freelist.
1491 * Returns a list of objects or NULL if it fails.
1493 * Must hold list_lock since we modify the partial list.
1495 static inline void *acquire_slab(struct kmem_cache *s,
1496 struct kmem_cache_node *n, struct page *page,
1497 int mode, int *objects)
1499 void *freelist;
1500 unsigned long counters;
1501 struct page new;
1504 * Zap the freelist and set the frozen bit.
1505 * The old freelist is the list of objects for the
1506 * per cpu allocation list.
1508 freelist = page->freelist;
1509 counters = page->counters;
1510 new.counters = counters;
1511 *objects = new.objects - new.inuse;
1512 if (mode) {
1513 new.inuse = page->objects;
1514 new.freelist = NULL;
1515 } else {
1516 new.freelist = freelist;
1519 VM_BUG_ON(new.frozen);
1520 new.frozen = 1;
1522 if (!__cmpxchg_double_slab(s, page,
1523 freelist, counters,
1524 new.freelist, new.counters,
1525 "acquire_slab"))
1526 return NULL;
1528 remove_partial(n, page);
1529 WARN_ON(!freelist);
1530 return freelist;
1533 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1534 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1537 * Try to allocate a partial slab from a specific node.
1539 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1540 struct kmem_cache_cpu *c, gfp_t flags)
1542 struct page *page, *page2;
1543 void *object = NULL;
1544 int available = 0;
1545 int objects;
1548 * Racy check. If we mistakenly see no partial slabs then we
1549 * just allocate an empty slab. If we mistakenly try to get a
1550 * partial slab and there is none available then get_partials()
1551 * will return NULL.
1553 if (!n || !n->nr_partial)
1554 return NULL;
1556 spin_lock(&n->list_lock);
1557 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1558 void *t;
1560 if (!pfmemalloc_match(page, flags))
1561 continue;
1563 t = acquire_slab(s, n, page, object == NULL, &objects);
1564 if (!t)
1565 break;
1567 available += objects;
1568 if (!object) {
1569 c->page = page;
1570 stat(s, ALLOC_FROM_PARTIAL);
1571 object = t;
1572 } else {
1573 put_cpu_partial(s, page, 0);
1574 stat(s, CPU_PARTIAL_NODE);
1576 if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
1577 break;
1580 spin_unlock(&n->list_lock);
1581 return object;
1585 * Get a page from somewhere. Search in increasing NUMA distances.
1587 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1588 struct kmem_cache_cpu *c)
1590 #ifdef CONFIG_NUMA
1591 struct zonelist *zonelist;
1592 struct zoneref *z;
1593 struct zone *zone;
1594 enum zone_type high_zoneidx = gfp_zone(flags);
1595 void *object;
1596 unsigned int cpuset_mems_cookie;
1599 * The defrag ratio allows a configuration of the tradeoffs between
1600 * inter node defragmentation and node local allocations. A lower
1601 * defrag_ratio increases the tendency to do local allocations
1602 * instead of attempting to obtain partial slabs from other nodes.
1604 * If the defrag_ratio is set to 0 then kmalloc() always
1605 * returns node local objects. If the ratio is higher then kmalloc()
1606 * may return off node objects because partial slabs are obtained
1607 * from other nodes and filled up.
1609 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1610 * defrag_ratio = 1000) then every (well almost) allocation will
1611 * first attempt to defrag slab caches on other nodes. This means
1612 * scanning over all nodes to look for partial slabs which may be
1613 * expensive if we do it every time we are trying to find a slab
1614 * with available objects.
1616 if (!s->remote_node_defrag_ratio ||
1617 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1618 return NULL;
1620 do {
1621 cpuset_mems_cookie = get_mems_allowed();
1622 zonelist = node_zonelist(slab_node(), flags);
1623 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1624 struct kmem_cache_node *n;
1626 n = get_node(s, zone_to_nid(zone));
1628 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1629 n->nr_partial > s->min_partial) {
1630 object = get_partial_node(s, n, c, flags);
1631 if (object) {
1633 * Return the object even if
1634 * put_mems_allowed indicated that
1635 * the cpuset mems_allowed was
1636 * updated in parallel. It's a
1637 * harmless race between the alloc
1638 * and the cpuset update.
1640 put_mems_allowed(cpuset_mems_cookie);
1641 return object;
1645 } while (!put_mems_allowed(cpuset_mems_cookie));
1646 #endif
1647 return NULL;
1651 * Get a partial page, lock it and return it.
1653 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1654 struct kmem_cache_cpu *c)
1656 void *object;
1657 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1659 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1660 if (object || node != NUMA_NO_NODE)
1661 return object;
1663 return get_any_partial(s, flags, c);
1666 #ifdef CONFIG_PREEMPT
1668 * Calculate the next globally unique transaction for disambiguiation
1669 * during cmpxchg. The transactions start with the cpu number and are then
1670 * incremented by CONFIG_NR_CPUS.
1672 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1673 #else
1675 * No preemption supported therefore also no need to check for
1676 * different cpus.
1678 #define TID_STEP 1
1679 #endif
1681 static inline unsigned long next_tid(unsigned long tid)
1683 return tid + TID_STEP;
1686 static inline unsigned int tid_to_cpu(unsigned long tid)
1688 return tid % TID_STEP;
1691 static inline unsigned long tid_to_event(unsigned long tid)
1693 return tid / TID_STEP;
1696 static inline unsigned int init_tid(int cpu)
1698 return cpu;
1701 static inline void note_cmpxchg_failure(const char *n,
1702 const struct kmem_cache *s, unsigned long tid)
1704 #ifdef SLUB_DEBUG_CMPXCHG
1705 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1707 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1709 #ifdef CONFIG_PREEMPT
1710 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1711 printk("due to cpu change %d -> %d\n",
1712 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1713 else
1714 #endif
1715 if (tid_to_event(tid) != tid_to_event(actual_tid))
1716 printk("due to cpu running other code. Event %ld->%ld\n",
1717 tid_to_event(tid), tid_to_event(actual_tid));
1718 else
1719 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1720 actual_tid, tid, next_tid(tid));
1721 #endif
1722 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1725 static void init_kmem_cache_cpus(struct kmem_cache *s)
1727 int cpu;
1729 for_each_possible_cpu(cpu)
1730 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1734 * Remove the cpu slab
1736 static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist)
1738 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1739 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1740 int lock = 0;
1741 enum slab_modes l = M_NONE, m = M_NONE;
1742 void *nextfree;
1743 int tail = DEACTIVATE_TO_HEAD;
1744 struct page new;
1745 struct page old;
1747 if (page->freelist) {
1748 stat(s, DEACTIVATE_REMOTE_FREES);
1749 tail = DEACTIVATE_TO_TAIL;
1753 * Stage one: Free all available per cpu objects back
1754 * to the page freelist while it is still frozen. Leave the
1755 * last one.
1757 * There is no need to take the list->lock because the page
1758 * is still frozen.
1760 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1761 void *prior;
1762 unsigned long counters;
1764 do {
1765 prior = page->freelist;
1766 counters = page->counters;
1767 set_freepointer(s, freelist, prior);
1768 new.counters = counters;
1769 new.inuse--;
1770 VM_BUG_ON(!new.frozen);
1772 } while (!__cmpxchg_double_slab(s, page,
1773 prior, counters,
1774 freelist, new.counters,
1775 "drain percpu freelist"));
1777 freelist = nextfree;
1781 * Stage two: Ensure that the page is unfrozen while the
1782 * list presence reflects the actual number of objects
1783 * during unfreeze.
1785 * We setup the list membership and then perform a cmpxchg
1786 * with the count. If there is a mismatch then the page
1787 * is not unfrozen but the page is on the wrong list.
1789 * Then we restart the process which may have to remove
1790 * the page from the list that we just put it on again
1791 * because the number of objects in the slab may have
1792 * changed.
1794 redo:
1796 old.freelist = page->freelist;
1797 old.counters = page->counters;
1798 VM_BUG_ON(!old.frozen);
1800 /* Determine target state of the slab */
1801 new.counters = old.counters;
1802 if (freelist) {
1803 new.inuse--;
1804 set_freepointer(s, freelist, old.freelist);
1805 new.freelist = freelist;
1806 } else
1807 new.freelist = old.freelist;
1809 new.frozen = 0;
1811 if (!new.inuse && n->nr_partial > s->min_partial)
1812 m = M_FREE;
1813 else if (new.freelist) {
1814 m = M_PARTIAL;
1815 if (!lock) {
1816 lock = 1;
1818 * Taking the spinlock removes the possiblity
1819 * that acquire_slab() will see a slab page that
1820 * is frozen
1822 spin_lock(&n->list_lock);
1824 } else {
1825 m = M_FULL;
1826 if (kmem_cache_debug(s) && !lock) {
1827 lock = 1;
1829 * This also ensures that the scanning of full
1830 * slabs from diagnostic functions will not see
1831 * any frozen slabs.
1833 spin_lock(&n->list_lock);
1837 if (l != m) {
1839 if (l == M_PARTIAL)
1841 remove_partial(n, page);
1843 else if (l == M_FULL)
1845 remove_full(s, page);
1847 if (m == M_PARTIAL) {
1849 add_partial(n, page, tail);
1850 stat(s, tail);
1852 } else if (m == M_FULL) {
1854 stat(s, DEACTIVATE_FULL);
1855 add_full(s, n, page);
1860 l = m;
1861 if (!__cmpxchg_double_slab(s, page,
1862 old.freelist, old.counters,
1863 new.freelist, new.counters,
1864 "unfreezing slab"))
1865 goto redo;
1867 if (lock)
1868 spin_unlock(&n->list_lock);
1870 if (m == M_FREE) {
1871 stat(s, DEACTIVATE_EMPTY);
1872 discard_slab(s, page);
1873 stat(s, FREE_SLAB);
1878 * Unfreeze all the cpu partial slabs.
1880 * This function must be called with interrupts disabled
1881 * for the cpu using c (or some other guarantee must be there
1882 * to guarantee no concurrent accesses).
1884 static void unfreeze_partials(struct kmem_cache *s,
1885 struct kmem_cache_cpu *c)
1887 struct kmem_cache_node *n = NULL, *n2 = NULL;
1888 struct page *page, *discard_page = NULL;
1890 while ((page = c->partial)) {
1891 struct page new;
1892 struct page old;
1894 c->partial = page->next;
1896 n2 = get_node(s, page_to_nid(page));
1897 if (n != n2) {
1898 if (n)
1899 spin_unlock(&n->list_lock);
1901 n = n2;
1902 spin_lock(&n->list_lock);
1905 do {
1907 old.freelist = page->freelist;
1908 old.counters = page->counters;
1909 VM_BUG_ON(!old.frozen);
1911 new.counters = old.counters;
1912 new.freelist = old.freelist;
1914 new.frozen = 0;
1916 } while (!__cmpxchg_double_slab(s, page,
1917 old.freelist, old.counters,
1918 new.freelist, new.counters,
1919 "unfreezing slab"));
1921 if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
1922 page->next = discard_page;
1923 discard_page = page;
1924 } else {
1925 add_partial(n, page, DEACTIVATE_TO_TAIL);
1926 stat(s, FREE_ADD_PARTIAL);
1930 if (n)
1931 spin_unlock(&n->list_lock);
1933 while (discard_page) {
1934 page = discard_page;
1935 discard_page = discard_page->next;
1937 stat(s, DEACTIVATE_EMPTY);
1938 discard_slab(s, page);
1939 stat(s, FREE_SLAB);
1944 * Put a page that was just frozen (in __slab_free) into a partial page
1945 * slot if available. This is done without interrupts disabled and without
1946 * preemption disabled. The cmpxchg is racy and may put the partial page
1947 * onto a random cpus partial slot.
1949 * If we did not find a slot then simply move all the partials to the
1950 * per node partial list.
1952 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1954 struct page *oldpage;
1955 int pages;
1956 int pobjects;
1958 do {
1959 pages = 0;
1960 pobjects = 0;
1961 oldpage = this_cpu_read(s->cpu_slab->partial);
1963 if (oldpage) {
1964 pobjects = oldpage->pobjects;
1965 pages = oldpage->pages;
1966 if (drain && pobjects > s->cpu_partial) {
1967 unsigned long flags;
1969 * partial array is full. Move the existing
1970 * set to the per node partial list.
1972 local_irq_save(flags);
1973 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
1974 local_irq_restore(flags);
1975 oldpage = NULL;
1976 pobjects = 0;
1977 pages = 0;
1978 stat(s, CPU_PARTIAL_DRAIN);
1982 pages++;
1983 pobjects += page->objects - page->inuse;
1985 page->pages = pages;
1986 page->pobjects = pobjects;
1987 page->next = oldpage;
1989 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
1992 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1994 stat(s, CPUSLAB_FLUSH);
1995 deactivate_slab(s, c->page, c->freelist);
1997 c->tid = next_tid(c->tid);
1998 c->page = NULL;
1999 c->freelist = NULL;
2003 * Flush cpu slab.
2005 * Called from IPI handler with interrupts disabled.
2007 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2009 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2011 if (likely(c)) {
2012 if (c->page)
2013 flush_slab(s, c);
2015 unfreeze_partials(s, c);
2019 static void flush_cpu_slab(void *d)
2021 struct kmem_cache *s = d;
2023 __flush_cpu_slab(s, smp_processor_id());
2026 static bool has_cpu_slab(int cpu, void *info)
2028 struct kmem_cache *s = info;
2029 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2031 return c->page || c->partial;
2034 static void flush_all(struct kmem_cache *s)
2036 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2040 * Check if the objects in a per cpu structure fit numa
2041 * locality expectations.
2043 static inline int node_match(struct page *page, int node)
2045 #ifdef CONFIG_NUMA
2046 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2047 return 0;
2048 #endif
2049 return 1;
2052 static int count_free(struct page *page)
2054 return page->objects - page->inuse;
2057 static unsigned long count_partial(struct kmem_cache_node *n,
2058 int (*get_count)(struct page *))
2060 unsigned long flags;
2061 unsigned long x = 0;
2062 struct page *page;
2064 spin_lock_irqsave(&n->list_lock, flags);
2065 list_for_each_entry(page, &n->partial, lru)
2066 x += get_count(page);
2067 spin_unlock_irqrestore(&n->list_lock, flags);
2068 return x;
2071 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2073 #ifdef CONFIG_SLUB_DEBUG
2074 return atomic_long_read(&n->total_objects);
2075 #else
2076 return 0;
2077 #endif
2080 static noinline void
2081 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2083 int node;
2085 printk(KERN_WARNING
2086 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2087 nid, gfpflags);
2088 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
2089 "default order: %d, min order: %d\n", s->name, s->object_size,
2090 s->size, oo_order(s->oo), oo_order(s->min));
2092 if (oo_order(s->min) > get_order(s->object_size))
2093 printk(KERN_WARNING " %s debugging increased min order, use "
2094 "slub_debug=O to disable.\n", s->name);
2096 for_each_online_node(node) {
2097 struct kmem_cache_node *n = get_node(s, node);
2098 unsigned long nr_slabs;
2099 unsigned long nr_objs;
2100 unsigned long nr_free;
2102 if (!n)
2103 continue;
2105 nr_free = count_partial(n, count_free);
2106 nr_slabs = node_nr_slabs(n);
2107 nr_objs = node_nr_objs(n);
2109 printk(KERN_WARNING
2110 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2111 node, nr_slabs, nr_objs, nr_free);
2115 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2116 int node, struct kmem_cache_cpu **pc)
2118 void *freelist;
2119 struct kmem_cache_cpu *c = *pc;
2120 struct page *page;
2122 freelist = get_partial(s, flags, node, c);
2124 if (freelist)
2125 return freelist;
2127 page = new_slab(s, flags, node);
2128 if (page) {
2129 c = __this_cpu_ptr(s->cpu_slab);
2130 if (c->page)
2131 flush_slab(s, c);
2134 * No other reference to the page yet so we can
2135 * muck around with it freely without cmpxchg
2137 freelist = page->freelist;
2138 page->freelist = NULL;
2140 stat(s, ALLOC_SLAB);
2141 c->page = page;
2142 *pc = c;
2143 } else
2144 freelist = NULL;
2146 return freelist;
2149 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2151 if (unlikely(PageSlabPfmemalloc(page)))
2152 return gfp_pfmemalloc_allowed(gfpflags);
2154 return true;
2158 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
2159 * or deactivate the page.
2161 * The page is still frozen if the return value is not NULL.
2163 * If this function returns NULL then the page has been unfrozen.
2165 * This function must be called with interrupt disabled.
2167 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2169 struct page new;
2170 unsigned long counters;
2171 void *freelist;
2173 do {
2174 freelist = page->freelist;
2175 counters = page->counters;
2177 new.counters = counters;
2178 VM_BUG_ON(!new.frozen);
2180 new.inuse = page->objects;
2181 new.frozen = freelist != NULL;
2183 } while (!__cmpxchg_double_slab(s, page,
2184 freelist, counters,
2185 NULL, new.counters,
2186 "get_freelist"));
2188 return freelist;
2192 * Slow path. The lockless freelist is empty or we need to perform
2193 * debugging duties.
2195 * Processing is still very fast if new objects have been freed to the
2196 * regular freelist. In that case we simply take over the regular freelist
2197 * as the lockless freelist and zap the regular freelist.
2199 * If that is not working then we fall back to the partial lists. We take the
2200 * first element of the freelist as the object to allocate now and move the
2201 * rest of the freelist to the lockless freelist.
2203 * And if we were unable to get a new slab from the partial slab lists then
2204 * we need to allocate a new slab. This is the slowest path since it involves
2205 * a call to the page allocator and the setup of a new slab.
2207 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2208 unsigned long addr, struct kmem_cache_cpu *c)
2210 void *freelist;
2211 struct page *page;
2212 unsigned long flags;
2214 local_irq_save(flags);
2215 #ifdef CONFIG_PREEMPT
2217 * We may have been preempted and rescheduled on a different
2218 * cpu before disabling interrupts. Need to reload cpu area
2219 * pointer.
2221 c = this_cpu_ptr(s->cpu_slab);
2222 #endif
2224 page = c->page;
2225 if (!page)
2226 goto new_slab;
2227 redo:
2229 if (unlikely(!node_match(page, node))) {
2230 stat(s, ALLOC_NODE_MISMATCH);
2231 deactivate_slab(s, page, c->freelist);
2232 c->page = NULL;
2233 c->freelist = NULL;
2234 goto new_slab;
2238 * By rights, we should be searching for a slab page that was
2239 * PFMEMALLOC but right now, we are losing the pfmemalloc
2240 * information when the page leaves the per-cpu allocator
2242 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2243 deactivate_slab(s, page, c->freelist);
2244 c->page = NULL;
2245 c->freelist = NULL;
2246 goto new_slab;
2249 /* must check again c->freelist in case of cpu migration or IRQ */
2250 freelist = c->freelist;
2251 if (freelist)
2252 goto load_freelist;
2254 stat(s, ALLOC_SLOWPATH);
2256 freelist = get_freelist(s, page);
2258 if (!freelist) {
2259 c->page = NULL;
2260 stat(s, DEACTIVATE_BYPASS);
2261 goto new_slab;
2264 stat(s, ALLOC_REFILL);
2266 load_freelist:
2268 * freelist is pointing to the list of objects to be used.
2269 * page is pointing to the page from which the objects are obtained.
2270 * That page must be frozen for per cpu allocations to work.
2272 VM_BUG_ON(!c->page->frozen);
2273 c->freelist = get_freepointer(s, freelist);
2274 c->tid = next_tid(c->tid);
2275 local_irq_restore(flags);
2276 return freelist;
2278 new_slab:
2280 if (c->partial) {
2281 page = c->page = c->partial;
2282 c->partial = page->next;
2283 stat(s, CPU_PARTIAL_ALLOC);
2284 c->freelist = NULL;
2285 goto redo;
2288 freelist = new_slab_objects(s, gfpflags, node, &c);
2290 if (unlikely(!freelist)) {
2291 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2292 slab_out_of_memory(s, gfpflags, node);
2294 local_irq_restore(flags);
2295 return NULL;
2298 page = c->page;
2299 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2300 goto load_freelist;
2302 /* Only entered in the debug case */
2303 if (kmem_cache_debug(s) && !alloc_debug_processing(s, page, freelist, addr))
2304 goto new_slab; /* Slab failed checks. Next slab needed */
2306 deactivate_slab(s, page, get_freepointer(s, freelist));
2307 c->page = NULL;
2308 c->freelist = NULL;
2309 local_irq_restore(flags);
2310 return freelist;
2314 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2315 * have the fastpath folded into their functions. So no function call
2316 * overhead for requests that can be satisfied on the fastpath.
2318 * The fastpath works by first checking if the lockless freelist can be used.
2319 * If not then __slab_alloc is called for slow processing.
2321 * Otherwise we can simply pick the next object from the lockless free list.
2323 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2324 gfp_t gfpflags, int node, unsigned long addr)
2326 void **object;
2327 struct kmem_cache_cpu *c;
2328 struct page *page;
2329 unsigned long tid;
2331 if (slab_pre_alloc_hook(s, gfpflags))
2332 return NULL;
2334 s = memcg_kmem_get_cache(s, gfpflags);
2335 redo:
2337 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2338 * enabled. We may switch back and forth between cpus while
2339 * reading from one cpu area. That does not matter as long
2340 * as we end up on the original cpu again when doing the cmpxchg.
2342 * Preemption is disabled for the retrieval of the tid because that
2343 * must occur from the current processor. We cannot allow rescheduling
2344 * on a different processor between the determination of the pointer
2345 * and the retrieval of the tid.
2347 preempt_disable();
2348 c = __this_cpu_ptr(s->cpu_slab);
2351 * The transaction ids are globally unique per cpu and per operation on
2352 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2353 * occurs on the right processor and that there was no operation on the
2354 * linked list in between.
2356 tid = c->tid;
2357 preempt_enable();
2359 object = c->freelist;
2360 page = c->page;
2361 if (unlikely(!object || !node_match(page, node)))
2362 object = __slab_alloc(s, gfpflags, node, addr, c);
2364 else {
2365 void *next_object = get_freepointer_safe(s, object);
2368 * The cmpxchg will only match if there was no additional
2369 * operation and if we are on the right processor.
2371 * The cmpxchg does the following atomically (without lock semantics!)
2372 * 1. Relocate first pointer to the current per cpu area.
2373 * 2. Verify that tid and freelist have not been changed
2374 * 3. If they were not changed replace tid and freelist
2376 * Since this is without lock semantics the protection is only against
2377 * code executing on this cpu *not* from access by other cpus.
2379 if (unlikely(!this_cpu_cmpxchg_double(
2380 s->cpu_slab->freelist, s->cpu_slab->tid,
2381 object, tid,
2382 next_object, next_tid(tid)))) {
2384 note_cmpxchg_failure("slab_alloc", s, tid);
2385 goto redo;
2387 prefetch_freepointer(s, next_object);
2388 stat(s, ALLOC_FASTPATH);
2391 if (unlikely(gfpflags & __GFP_ZERO) && object)
2392 memset(object, 0, s->object_size);
2394 slab_post_alloc_hook(s, gfpflags, object);
2396 return object;
2399 static __always_inline void *slab_alloc(struct kmem_cache *s,
2400 gfp_t gfpflags, unsigned long addr)
2402 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2405 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2407 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2409 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags);
2411 return ret;
2413 EXPORT_SYMBOL(kmem_cache_alloc);
2415 #ifdef CONFIG_TRACING
2416 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2418 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2419 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2420 return ret;
2422 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2424 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
2426 void *ret = kmalloc_order(size, flags, order);
2427 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2428 return ret;
2430 EXPORT_SYMBOL(kmalloc_order_trace);
2431 #endif
2433 #ifdef CONFIG_NUMA
2434 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2436 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2438 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2439 s->object_size, s->size, gfpflags, node);
2441 return ret;
2443 EXPORT_SYMBOL(kmem_cache_alloc_node);
2445 #ifdef CONFIG_TRACING
2446 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2447 gfp_t gfpflags,
2448 int node, size_t size)
2450 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2452 trace_kmalloc_node(_RET_IP_, ret,
2453 size, s->size, gfpflags, node);
2454 return ret;
2456 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2457 #endif
2458 #endif
2461 * Slow patch handling. This may still be called frequently since objects
2462 * have a longer lifetime than the cpu slabs in most processing loads.
2464 * So we still attempt to reduce cache line usage. Just take the slab
2465 * lock and free the item. If there is no additional partial page
2466 * handling required then we can return immediately.
2468 static void __slab_free(struct kmem_cache *s, struct page *page,
2469 void *x, unsigned long addr)
2471 void *prior;
2472 void **object = (void *)x;
2473 int was_frozen;
2474 struct page new;
2475 unsigned long counters;
2476 struct kmem_cache_node *n = NULL;
2477 unsigned long uninitialized_var(flags);
2479 stat(s, FREE_SLOWPATH);
2481 if (kmem_cache_debug(s) &&
2482 !(n = free_debug_processing(s, page, x, addr, &flags)))
2483 return;
2485 do {
2486 if (unlikely(n)) {
2487 spin_unlock_irqrestore(&n->list_lock, flags);
2488 n = NULL;
2490 prior = page->freelist;
2491 counters = page->counters;
2492 set_freepointer(s, object, prior);
2493 new.counters = counters;
2494 was_frozen = new.frozen;
2495 new.inuse--;
2496 if ((!new.inuse || !prior) && !was_frozen) {
2498 if (!kmem_cache_debug(s) && !prior)
2501 * Slab was on no list before and will be partially empty
2502 * We can defer the list move and instead freeze it.
2504 new.frozen = 1;
2506 else { /* Needs to be taken off a list */
2508 n = get_node(s, page_to_nid(page));
2510 * Speculatively acquire the list_lock.
2511 * If the cmpxchg does not succeed then we may
2512 * drop the list_lock without any processing.
2514 * Otherwise the list_lock will synchronize with
2515 * other processors updating the list of slabs.
2517 spin_lock_irqsave(&n->list_lock, flags);
2522 } while (!cmpxchg_double_slab(s, page,
2523 prior, counters,
2524 object, new.counters,
2525 "__slab_free"));
2527 if (likely(!n)) {
2530 * If we just froze the page then put it onto the
2531 * per cpu partial list.
2533 if (new.frozen && !was_frozen) {
2534 put_cpu_partial(s, page, 1);
2535 stat(s, CPU_PARTIAL_FREE);
2538 * The list lock was not taken therefore no list
2539 * activity can be necessary.
2541 if (was_frozen)
2542 stat(s, FREE_FROZEN);
2543 return;
2546 if (unlikely(!new.inuse && n->nr_partial > s->min_partial))
2547 goto slab_empty;
2550 * Objects left in the slab. If it was not on the partial list before
2551 * then add it.
2553 if (kmem_cache_debug(s) && unlikely(!prior)) {
2554 remove_full(s, page);
2555 add_partial(n, page, DEACTIVATE_TO_TAIL);
2556 stat(s, FREE_ADD_PARTIAL);
2558 spin_unlock_irqrestore(&n->list_lock, flags);
2559 return;
2561 slab_empty:
2562 if (prior) {
2564 * Slab on the partial list.
2566 remove_partial(n, page);
2567 stat(s, FREE_REMOVE_PARTIAL);
2568 } else
2569 /* Slab must be on the full list */
2570 remove_full(s, page);
2572 spin_unlock_irqrestore(&n->list_lock, flags);
2573 stat(s, FREE_SLAB);
2574 discard_slab(s, page);
2578 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2579 * can perform fastpath freeing without additional function calls.
2581 * The fastpath is only possible if we are freeing to the current cpu slab
2582 * of this processor. This typically the case if we have just allocated
2583 * the item before.
2585 * If fastpath is not possible then fall back to __slab_free where we deal
2586 * with all sorts of special processing.
2588 static __always_inline void slab_free(struct kmem_cache *s,
2589 struct page *page, void *x, unsigned long addr)
2591 void **object = (void *)x;
2592 struct kmem_cache_cpu *c;
2593 unsigned long tid;
2595 slab_free_hook(s, x);
2597 redo:
2599 * Determine the currently cpus per cpu slab.
2600 * The cpu may change afterward. However that does not matter since
2601 * data is retrieved via this pointer. If we are on the same cpu
2602 * during the cmpxchg then the free will succedd.
2604 preempt_disable();
2605 c = __this_cpu_ptr(s->cpu_slab);
2607 tid = c->tid;
2608 preempt_enable();
2610 if (likely(page == c->page)) {
2611 set_freepointer(s, object, c->freelist);
2613 if (unlikely(!this_cpu_cmpxchg_double(
2614 s->cpu_slab->freelist, s->cpu_slab->tid,
2615 c->freelist, tid,
2616 object, next_tid(tid)))) {
2618 note_cmpxchg_failure("slab_free", s, tid);
2619 goto redo;
2621 stat(s, FREE_FASTPATH);
2622 } else
2623 __slab_free(s, page, x, addr);
2627 void kmem_cache_free(struct kmem_cache *s, void *x)
2629 s = cache_from_obj(s, x);
2630 if (!s)
2631 return;
2632 slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2633 trace_kmem_cache_free(_RET_IP_, x);
2635 EXPORT_SYMBOL(kmem_cache_free);
2638 * Object placement in a slab is made very easy because we always start at
2639 * offset 0. If we tune the size of the object to the alignment then we can
2640 * get the required alignment by putting one properly sized object after
2641 * another.
2643 * Notice that the allocation order determines the sizes of the per cpu
2644 * caches. Each processor has always one slab available for allocations.
2645 * Increasing the allocation order reduces the number of times that slabs
2646 * must be moved on and off the partial lists and is therefore a factor in
2647 * locking overhead.
2651 * Mininum / Maximum order of slab pages. This influences locking overhead
2652 * and slab fragmentation. A higher order reduces the number of partial slabs
2653 * and increases the number of allocations possible without having to
2654 * take the list_lock.
2656 static int slub_min_order;
2657 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2658 static int slub_min_objects;
2661 * Merge control. If this is set then no merging of slab caches will occur.
2662 * (Could be removed. This was introduced to pacify the merge skeptics.)
2664 static int slub_nomerge;
2667 * Calculate the order of allocation given an slab object size.
2669 * The order of allocation has significant impact on performance and other
2670 * system components. Generally order 0 allocations should be preferred since
2671 * order 0 does not cause fragmentation in the page allocator. Larger objects
2672 * be problematic to put into order 0 slabs because there may be too much
2673 * unused space left. We go to a higher order if more than 1/16th of the slab
2674 * would be wasted.
2676 * In order to reach satisfactory performance we must ensure that a minimum
2677 * number of objects is in one slab. Otherwise we may generate too much
2678 * activity on the partial lists which requires taking the list_lock. This is
2679 * less a concern for large slabs though which are rarely used.
2681 * slub_max_order specifies the order where we begin to stop considering the
2682 * number of objects in a slab as critical. If we reach slub_max_order then
2683 * we try to keep the page order as low as possible. So we accept more waste
2684 * of space in favor of a small page order.
2686 * Higher order allocations also allow the placement of more objects in a
2687 * slab and thereby reduce object handling overhead. If the user has
2688 * requested a higher mininum order then we start with that one instead of
2689 * the smallest order which will fit the object.
2691 static inline int slab_order(int size, int min_objects,
2692 int max_order, int fract_leftover, int reserved)
2694 int order;
2695 int rem;
2696 int min_order = slub_min_order;
2698 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2699 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2701 for (order = max(min_order,
2702 fls(min_objects * size - 1) - PAGE_SHIFT);
2703 order <= max_order; order++) {
2705 unsigned long slab_size = PAGE_SIZE << order;
2707 if (slab_size < min_objects * size + reserved)
2708 continue;
2710 rem = (slab_size - reserved) % size;
2712 if (rem <= slab_size / fract_leftover)
2713 break;
2717 return order;
2720 static inline int calculate_order(int size, int reserved)
2722 int order;
2723 int min_objects;
2724 int fraction;
2725 int max_objects;
2728 * Attempt to find best configuration for a slab. This
2729 * works by first attempting to generate a layout with
2730 * the best configuration and backing off gradually.
2732 * First we reduce the acceptable waste in a slab. Then
2733 * we reduce the minimum objects required in a slab.
2735 min_objects = slub_min_objects;
2736 if (!min_objects)
2737 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2738 max_objects = order_objects(slub_max_order, size, reserved);
2739 min_objects = min(min_objects, max_objects);
2741 while (min_objects > 1) {
2742 fraction = 16;
2743 while (fraction >= 4) {
2744 order = slab_order(size, min_objects,
2745 slub_max_order, fraction, reserved);
2746 if (order <= slub_max_order)
2747 return order;
2748 fraction /= 2;
2750 min_objects--;
2754 * We were unable to place multiple objects in a slab. Now
2755 * lets see if we can place a single object there.
2757 order = slab_order(size, 1, slub_max_order, 1, reserved);
2758 if (order <= slub_max_order)
2759 return order;
2762 * Doh this slab cannot be placed using slub_max_order.
2764 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2765 if (order < MAX_ORDER)
2766 return order;
2767 return -ENOSYS;
2770 static void
2771 init_kmem_cache_node(struct kmem_cache_node *n)
2773 n->nr_partial = 0;
2774 spin_lock_init(&n->list_lock);
2775 INIT_LIST_HEAD(&n->partial);
2776 #ifdef CONFIG_SLUB_DEBUG
2777 atomic_long_set(&n->nr_slabs, 0);
2778 atomic_long_set(&n->total_objects, 0);
2779 INIT_LIST_HEAD(&n->full);
2780 #endif
2783 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2785 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2786 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
2789 * Must align to double word boundary for the double cmpxchg
2790 * instructions to work; see __pcpu_double_call_return_bool().
2792 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2793 2 * sizeof(void *));
2795 if (!s->cpu_slab)
2796 return 0;
2798 init_kmem_cache_cpus(s);
2800 return 1;
2803 static struct kmem_cache *kmem_cache_node;
2806 * No kmalloc_node yet so do it by hand. We know that this is the first
2807 * slab on the node for this slabcache. There are no concurrent accesses
2808 * possible.
2810 * Note that this function only works on the kmalloc_node_cache
2811 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2812 * memory on a fresh node that has no slab structures yet.
2814 static void early_kmem_cache_node_alloc(int node)
2816 struct page *page;
2817 struct kmem_cache_node *n;
2819 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2821 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2823 BUG_ON(!page);
2824 if (page_to_nid(page) != node) {
2825 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2826 "node %d\n", node);
2827 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2828 "in order to be able to continue\n");
2831 n = page->freelist;
2832 BUG_ON(!n);
2833 page->freelist = get_freepointer(kmem_cache_node, n);
2834 page->inuse = 1;
2835 page->frozen = 0;
2836 kmem_cache_node->node[node] = n;
2837 #ifdef CONFIG_SLUB_DEBUG
2838 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2839 init_tracking(kmem_cache_node, n);
2840 #endif
2841 init_kmem_cache_node(n);
2842 inc_slabs_node(kmem_cache_node, node, page->objects);
2844 add_partial(n, page, DEACTIVATE_TO_HEAD);
2847 static void free_kmem_cache_nodes(struct kmem_cache *s)
2849 int node;
2851 for_each_node_state(node, N_NORMAL_MEMORY) {
2852 struct kmem_cache_node *n = s->node[node];
2854 if (n)
2855 kmem_cache_free(kmem_cache_node, n);
2857 s->node[node] = NULL;
2861 static int init_kmem_cache_nodes(struct kmem_cache *s)
2863 int node;
2865 for_each_node_state(node, N_NORMAL_MEMORY) {
2866 struct kmem_cache_node *n;
2868 if (slab_state == DOWN) {
2869 early_kmem_cache_node_alloc(node);
2870 continue;
2872 n = kmem_cache_alloc_node(kmem_cache_node,
2873 GFP_KERNEL, node);
2875 if (!n) {
2876 free_kmem_cache_nodes(s);
2877 return 0;
2880 s->node[node] = n;
2881 init_kmem_cache_node(n);
2883 return 1;
2886 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2888 if (min < MIN_PARTIAL)
2889 min = MIN_PARTIAL;
2890 else if (min > MAX_PARTIAL)
2891 min = MAX_PARTIAL;
2892 s->min_partial = min;
2896 * calculate_sizes() determines the order and the distribution of data within
2897 * a slab object.
2899 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2901 unsigned long flags = s->flags;
2902 unsigned long size = s->object_size;
2903 int order;
2906 * Round up object size to the next word boundary. We can only
2907 * place the free pointer at word boundaries and this determines
2908 * the possible location of the free pointer.
2910 size = ALIGN(size, sizeof(void *));
2912 #ifdef CONFIG_SLUB_DEBUG
2914 * Determine if we can poison the object itself. If the user of
2915 * the slab may touch the object after free or before allocation
2916 * then we should never poison the object itself.
2918 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2919 !s->ctor)
2920 s->flags |= __OBJECT_POISON;
2921 else
2922 s->flags &= ~__OBJECT_POISON;
2926 * If we are Redzoning then check if there is some space between the
2927 * end of the object and the free pointer. If not then add an
2928 * additional word to have some bytes to store Redzone information.
2930 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
2931 size += sizeof(void *);
2932 #endif
2935 * With that we have determined the number of bytes in actual use
2936 * by the object. This is the potential offset to the free pointer.
2938 s->inuse = size;
2940 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2941 s->ctor)) {
2943 * Relocate free pointer after the object if it is not
2944 * permitted to overwrite the first word of the object on
2945 * kmem_cache_free.
2947 * This is the case if we do RCU, have a constructor or
2948 * destructor or are poisoning the objects.
2950 s->offset = size;
2951 size += sizeof(void *);
2954 #ifdef CONFIG_SLUB_DEBUG
2955 if (flags & SLAB_STORE_USER)
2957 * Need to store information about allocs and frees after
2958 * the object.
2960 size += 2 * sizeof(struct track);
2962 if (flags & SLAB_RED_ZONE)
2964 * Add some empty padding so that we can catch
2965 * overwrites from earlier objects rather than let
2966 * tracking information or the free pointer be
2967 * corrupted if a user writes before the start
2968 * of the object.
2970 size += sizeof(void *);
2971 #endif
2974 * SLUB stores one object immediately after another beginning from
2975 * offset 0. In order to align the objects we have to simply size
2976 * each object to conform to the alignment.
2978 size = ALIGN(size, s->align);
2979 s->size = size;
2980 if (forced_order >= 0)
2981 order = forced_order;
2982 else
2983 order = calculate_order(size, s->reserved);
2985 if (order < 0)
2986 return 0;
2988 s->allocflags = 0;
2989 if (order)
2990 s->allocflags |= __GFP_COMP;
2992 if (s->flags & SLAB_CACHE_DMA)
2993 s->allocflags |= GFP_DMA;
2995 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2996 s->allocflags |= __GFP_RECLAIMABLE;
2999 * Determine the number of objects per slab
3001 s->oo = oo_make(order, size, s->reserved);
3002 s->min = oo_make(get_order(size), size, s->reserved);
3003 if (oo_objects(s->oo) > oo_objects(s->max))
3004 s->max = s->oo;
3006 return !!oo_objects(s->oo);
3009 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3011 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3012 s->reserved = 0;
3014 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3015 s->reserved = sizeof(struct rcu_head);
3017 if (!calculate_sizes(s, -1))
3018 goto error;
3019 if (disable_higher_order_debug) {
3021 * Disable debugging flags that store metadata if the min slab
3022 * order increased.
3024 if (get_order(s->size) > get_order(s->object_size)) {
3025 s->flags &= ~DEBUG_METADATA_FLAGS;
3026 s->offset = 0;
3027 if (!calculate_sizes(s, -1))
3028 goto error;
3032 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3033 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3034 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3035 /* Enable fast mode */
3036 s->flags |= __CMPXCHG_DOUBLE;
3037 #endif
3040 * The larger the object size is, the more pages we want on the partial
3041 * list to avoid pounding the page allocator excessively.
3043 set_min_partial(s, ilog2(s->size) / 2);
3046 * cpu_partial determined the maximum number of objects kept in the
3047 * per cpu partial lists of a processor.
3049 * Per cpu partial lists mainly contain slabs that just have one
3050 * object freed. If they are used for allocation then they can be
3051 * filled up again with minimal effort. The slab will never hit the
3052 * per node partial lists and therefore no locking will be required.
3054 * This setting also determines
3056 * A) The number of objects from per cpu partial slabs dumped to the
3057 * per node list when we reach the limit.
3058 * B) The number of objects in cpu partial slabs to extract from the
3059 * per node list when we run out of per cpu objects. We only fetch 50%
3060 * to keep some capacity around for frees.
3062 if (kmem_cache_debug(s))
3063 s->cpu_partial = 0;
3064 else if (s->size >= PAGE_SIZE)
3065 s->cpu_partial = 2;
3066 else if (s->size >= 1024)
3067 s->cpu_partial = 6;
3068 else if (s->size >= 256)
3069 s->cpu_partial = 13;
3070 else
3071 s->cpu_partial = 30;
3073 #ifdef CONFIG_NUMA
3074 s->remote_node_defrag_ratio = 1000;
3075 #endif
3076 if (!init_kmem_cache_nodes(s))
3077 goto error;
3079 if (alloc_kmem_cache_cpus(s))
3080 return 0;
3082 free_kmem_cache_nodes(s);
3083 error:
3084 if (flags & SLAB_PANIC)
3085 panic("Cannot create slab %s size=%lu realsize=%u "
3086 "order=%u offset=%u flags=%lx\n",
3087 s->name, (unsigned long)s->size, s->size, oo_order(s->oo),
3088 s->offset, flags);
3089 return -EINVAL;
3092 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3093 const char *text)
3095 #ifdef CONFIG_SLUB_DEBUG
3096 void *addr = page_address(page);
3097 void *p;
3098 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3099 sizeof(long), GFP_ATOMIC);
3100 if (!map)
3101 return;
3102 slab_err(s, page, text, s->name);
3103 slab_lock(page);
3105 get_map(s, page, map);
3106 for_each_object(p, s, addr, page->objects) {
3108 if (!test_bit(slab_index(p, s, addr), map)) {
3109 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3110 p, p - addr);
3111 print_tracking(s, p);
3114 slab_unlock(page);
3115 kfree(map);
3116 #endif
3120 * Attempt to free all partial slabs on a node.
3121 * This is called from kmem_cache_close(). We must be the last thread
3122 * using the cache and therefore we do not need to lock anymore.
3124 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3126 struct page *page, *h;
3128 list_for_each_entry_safe(page, h, &n->partial, lru) {
3129 if (!page->inuse) {
3130 remove_partial(n, page);
3131 discard_slab(s, page);
3132 } else {
3133 list_slab_objects(s, page,
3134 "Objects remaining in %s on kmem_cache_close()");
3140 * Release all resources used by a slab cache.
3142 static inline int kmem_cache_close(struct kmem_cache *s)
3144 int node;
3146 flush_all(s);
3147 /* Attempt to free all objects */
3148 for_each_node_state(node, N_NORMAL_MEMORY) {
3149 struct kmem_cache_node *n = get_node(s, node);
3151 free_partial(s, n);
3152 if (n->nr_partial || slabs_node(s, node))
3153 return 1;
3155 free_percpu(s->cpu_slab);
3156 free_kmem_cache_nodes(s);
3157 return 0;
3160 int __kmem_cache_shutdown(struct kmem_cache *s)
3162 int rc = kmem_cache_close(s);
3164 if (!rc) {
3166 * We do the same lock strategy around sysfs_slab_add, see
3167 * __kmem_cache_create. Because this is pretty much the last
3168 * operation we do and the lock will be released shortly after
3169 * that in slab_common.c, we could just move sysfs_slab_remove
3170 * to a later point in common code. We should do that when we
3171 * have a common sysfs framework for all allocators.
3173 mutex_unlock(&slab_mutex);
3174 sysfs_slab_remove(s);
3175 mutex_lock(&slab_mutex);
3178 return rc;
3181 /********************************************************************
3182 * Kmalloc subsystem
3183 *******************************************************************/
3185 static int __init setup_slub_min_order(char *str)
3187 get_option(&str, &slub_min_order);
3189 return 1;
3192 __setup("slub_min_order=", setup_slub_min_order);
3194 static int __init setup_slub_max_order(char *str)
3196 get_option(&str, &slub_max_order);
3197 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3199 return 1;
3202 __setup("slub_max_order=", setup_slub_max_order);
3204 static int __init setup_slub_min_objects(char *str)
3206 get_option(&str, &slub_min_objects);
3208 return 1;
3211 __setup("slub_min_objects=", setup_slub_min_objects);
3213 static int __init setup_slub_nomerge(char *str)
3215 slub_nomerge = 1;
3216 return 1;
3219 __setup("slub_nomerge", setup_slub_nomerge);
3221 void *__kmalloc(size_t size, gfp_t flags)
3223 struct kmem_cache *s;
3224 void *ret;
3226 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3227 return kmalloc_large(size, flags);
3229 s = kmalloc_slab(size, flags);
3231 if (unlikely(ZERO_OR_NULL_PTR(s)))
3232 return s;
3234 ret = slab_alloc(s, flags, _RET_IP_);
3236 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3238 return ret;
3240 EXPORT_SYMBOL(__kmalloc);
3242 #ifdef CONFIG_NUMA
3243 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3245 struct page *page;
3246 void *ptr = NULL;
3248 flags |= __GFP_COMP | __GFP_NOTRACK | __GFP_KMEMCG;
3249 page = alloc_pages_node(node, flags, get_order(size));
3250 if (page)
3251 ptr = page_address(page);
3253 kmemleak_alloc(ptr, size, 1, flags);
3254 return ptr;
3257 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3259 struct kmem_cache *s;
3260 void *ret;
3262 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3263 ret = kmalloc_large_node(size, flags, node);
3265 trace_kmalloc_node(_RET_IP_, ret,
3266 size, PAGE_SIZE << get_order(size),
3267 flags, node);
3269 return ret;
3272 s = kmalloc_slab(size, flags);
3274 if (unlikely(ZERO_OR_NULL_PTR(s)))
3275 return s;
3277 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3279 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3281 return ret;
3283 EXPORT_SYMBOL(__kmalloc_node);
3284 #endif
3286 size_t ksize(const void *object)
3288 struct page *page;
3290 if (unlikely(object == ZERO_SIZE_PTR))
3291 return 0;
3293 page = virt_to_head_page(object);
3295 if (unlikely(!PageSlab(page))) {
3296 WARN_ON(!PageCompound(page));
3297 return PAGE_SIZE << compound_order(page);
3300 return slab_ksize(page->slab_cache);
3302 EXPORT_SYMBOL(ksize);
3304 #ifdef CONFIG_SLUB_DEBUG
3305 bool verify_mem_not_deleted(const void *x)
3307 struct page *page;
3308 void *object = (void *)x;
3309 unsigned long flags;
3310 bool rv;
3312 if (unlikely(ZERO_OR_NULL_PTR(x)))
3313 return false;
3315 local_irq_save(flags);
3317 page = virt_to_head_page(x);
3318 if (unlikely(!PageSlab(page))) {
3319 /* maybe it was from stack? */
3320 rv = true;
3321 goto out_unlock;
3324 slab_lock(page);
3325 if (on_freelist(page->slab_cache, page, object)) {
3326 object_err(page->slab_cache, page, object, "Object is on free-list");
3327 rv = false;
3328 } else {
3329 rv = true;
3331 slab_unlock(page);
3333 out_unlock:
3334 local_irq_restore(flags);
3335 return rv;
3337 EXPORT_SYMBOL(verify_mem_not_deleted);
3338 #endif
3340 void kfree(const void *x)
3342 struct page *page;
3343 void *object = (void *)x;
3345 trace_kfree(_RET_IP_, x);
3347 if (unlikely(ZERO_OR_NULL_PTR(x)))
3348 return;
3350 page = virt_to_head_page(x);
3351 if (unlikely(!PageSlab(page))) {
3352 BUG_ON(!PageCompound(page));
3353 kmemleak_free(x);
3354 __free_memcg_kmem_pages(page, compound_order(page));
3355 return;
3357 slab_free(page->slab_cache, page, object, _RET_IP_);
3359 EXPORT_SYMBOL(kfree);
3362 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3363 * the remaining slabs by the number of items in use. The slabs with the
3364 * most items in use come first. New allocations will then fill those up
3365 * and thus they can be removed from the partial lists.
3367 * The slabs with the least items are placed last. This results in them
3368 * being allocated from last increasing the chance that the last objects
3369 * are freed in them.
3371 int kmem_cache_shrink(struct kmem_cache *s)
3373 int node;
3374 int i;
3375 struct kmem_cache_node *n;
3376 struct page *page;
3377 struct page *t;
3378 int objects = oo_objects(s->max);
3379 struct list_head *slabs_by_inuse =
3380 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3381 unsigned long flags;
3383 if (!slabs_by_inuse)
3384 return -ENOMEM;
3386 flush_all(s);
3387 for_each_node_state(node, N_NORMAL_MEMORY) {
3388 n = get_node(s, node);
3390 if (!n->nr_partial)
3391 continue;
3393 for (i = 0; i < objects; i++)
3394 INIT_LIST_HEAD(slabs_by_inuse + i);
3396 spin_lock_irqsave(&n->list_lock, flags);
3399 * Build lists indexed by the items in use in each slab.
3401 * Note that concurrent frees may occur while we hold the
3402 * list_lock. page->inuse here is the upper limit.
3404 list_for_each_entry_safe(page, t, &n->partial, lru) {
3405 list_move(&page->lru, slabs_by_inuse + page->inuse);
3406 if (!page->inuse)
3407 n->nr_partial--;
3411 * Rebuild the partial list with the slabs filled up most
3412 * first and the least used slabs at the end.
3414 for (i = objects - 1; i > 0; i--)
3415 list_splice(slabs_by_inuse + i, n->partial.prev);
3417 spin_unlock_irqrestore(&n->list_lock, flags);
3419 /* Release empty slabs */
3420 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3421 discard_slab(s, page);
3424 kfree(slabs_by_inuse);
3425 return 0;
3427 EXPORT_SYMBOL(kmem_cache_shrink);
3429 static int slab_mem_going_offline_callback(void *arg)
3431 struct kmem_cache *s;
3433 mutex_lock(&slab_mutex);
3434 list_for_each_entry(s, &slab_caches, list)
3435 kmem_cache_shrink(s);
3436 mutex_unlock(&slab_mutex);
3438 return 0;
3441 static void slab_mem_offline_callback(void *arg)
3443 struct kmem_cache_node *n;
3444 struct kmem_cache *s;
3445 struct memory_notify *marg = arg;
3446 int offline_node;
3448 offline_node = marg->status_change_nid_normal;
3451 * If the node still has available memory. we need kmem_cache_node
3452 * for it yet.
3454 if (offline_node < 0)
3455 return;
3457 mutex_lock(&slab_mutex);
3458 list_for_each_entry(s, &slab_caches, list) {
3459 n = get_node(s, offline_node);
3460 if (n) {
3462 * if n->nr_slabs > 0, slabs still exist on the node
3463 * that is going down. We were unable to free them,
3464 * and offline_pages() function shouldn't call this
3465 * callback. So, we must fail.
3467 BUG_ON(slabs_node(s, offline_node));
3469 s->node[offline_node] = NULL;
3470 kmem_cache_free(kmem_cache_node, n);
3473 mutex_unlock(&slab_mutex);
3476 static int slab_mem_going_online_callback(void *arg)
3478 struct kmem_cache_node *n;
3479 struct kmem_cache *s;
3480 struct memory_notify *marg = arg;
3481 int nid = marg->status_change_nid_normal;
3482 int ret = 0;
3485 * If the node's memory is already available, then kmem_cache_node is
3486 * already created. Nothing to do.
3488 if (nid < 0)
3489 return 0;
3492 * We are bringing a node online. No memory is available yet. We must
3493 * allocate a kmem_cache_node structure in order to bring the node
3494 * online.
3496 mutex_lock(&slab_mutex);
3497 list_for_each_entry(s, &slab_caches, list) {
3499 * XXX: kmem_cache_alloc_node will fallback to other nodes
3500 * since memory is not yet available from the node that
3501 * is brought up.
3503 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3504 if (!n) {
3505 ret = -ENOMEM;
3506 goto out;
3508 init_kmem_cache_node(n);
3509 s->node[nid] = n;
3511 out:
3512 mutex_unlock(&slab_mutex);
3513 return ret;
3516 static int slab_memory_callback(struct notifier_block *self,
3517 unsigned long action, void *arg)
3519 int ret = 0;
3521 switch (action) {
3522 case MEM_GOING_ONLINE:
3523 ret = slab_mem_going_online_callback(arg);
3524 break;
3525 case MEM_GOING_OFFLINE:
3526 ret = slab_mem_going_offline_callback(arg);
3527 break;
3528 case MEM_OFFLINE:
3529 case MEM_CANCEL_ONLINE:
3530 slab_mem_offline_callback(arg);
3531 break;
3532 case MEM_ONLINE:
3533 case MEM_CANCEL_OFFLINE:
3534 break;
3536 if (ret)
3537 ret = notifier_from_errno(ret);
3538 else
3539 ret = NOTIFY_OK;
3540 return ret;
3543 static struct notifier_block slab_memory_callback_nb = {
3544 .notifier_call = slab_memory_callback,
3545 .priority = SLAB_CALLBACK_PRI,
3548 /********************************************************************
3549 * Basic setup of slabs
3550 *******************************************************************/
3553 * Used for early kmem_cache structures that were allocated using
3554 * the page allocator. Allocate them properly then fix up the pointers
3555 * that may be pointing to the wrong kmem_cache structure.
3558 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3560 int node;
3561 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3563 memcpy(s, static_cache, kmem_cache->object_size);
3566 * This runs very early, and only the boot processor is supposed to be
3567 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3568 * IPIs around.
3570 __flush_cpu_slab(s, smp_processor_id());
3571 for_each_node_state(node, N_NORMAL_MEMORY) {
3572 struct kmem_cache_node *n = get_node(s, node);
3573 struct page *p;
3575 if (n) {
3576 list_for_each_entry(p, &n->partial, lru)
3577 p->slab_cache = s;
3579 #ifdef CONFIG_SLUB_DEBUG
3580 list_for_each_entry(p, &n->full, lru)
3581 p->slab_cache = s;
3582 #endif
3585 list_add(&s->list, &slab_caches);
3586 return s;
3589 void __init kmem_cache_init(void)
3591 static __initdata struct kmem_cache boot_kmem_cache,
3592 boot_kmem_cache_node;
3594 if (debug_guardpage_minorder())
3595 slub_max_order = 0;
3597 kmem_cache_node = &boot_kmem_cache_node;
3598 kmem_cache = &boot_kmem_cache;
3600 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3601 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3603 register_hotmemory_notifier(&slab_memory_callback_nb);
3605 /* Able to allocate the per node structures */
3606 slab_state = PARTIAL;
3608 create_boot_cache(kmem_cache, "kmem_cache",
3609 offsetof(struct kmem_cache, node) +
3610 nr_node_ids * sizeof(struct kmem_cache_node *),
3611 SLAB_HWCACHE_ALIGN);
3613 kmem_cache = bootstrap(&boot_kmem_cache);
3616 * Allocate kmem_cache_node properly from the kmem_cache slab.
3617 * kmem_cache_node is separately allocated so no need to
3618 * update any list pointers.
3620 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3622 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3623 create_kmalloc_caches(0);
3625 #ifdef CONFIG_SMP
3626 register_cpu_notifier(&slab_notifier);
3627 #endif
3629 printk(KERN_INFO
3630 "SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d,"
3631 " CPUs=%d, Nodes=%d\n",
3632 cache_line_size(),
3633 slub_min_order, slub_max_order, slub_min_objects,
3634 nr_cpu_ids, nr_node_ids);
3637 void __init kmem_cache_init_late(void)
3642 * Find a mergeable slab cache
3644 static int slab_unmergeable(struct kmem_cache *s)
3646 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3647 return 1;
3649 if (s->ctor)
3650 return 1;
3653 * We may have set a slab to be unmergeable during bootstrap.
3655 if (s->refcount < 0)
3656 return 1;
3658 return 0;
3661 static struct kmem_cache *find_mergeable(struct mem_cgroup *memcg, size_t size,
3662 size_t align, unsigned long flags, const char *name,
3663 void (*ctor)(void *))
3665 struct kmem_cache *s;
3667 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3668 return NULL;
3670 if (ctor)
3671 return NULL;
3673 size = ALIGN(size, sizeof(void *));
3674 align = calculate_alignment(flags, align, size);
3675 size = ALIGN(size, align);
3676 flags = kmem_cache_flags(size, flags, name, NULL);
3678 list_for_each_entry(s, &slab_caches, list) {
3679 if (slab_unmergeable(s))
3680 continue;
3682 if (size > s->size)
3683 continue;
3685 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3686 continue;
3688 * Check if alignment is compatible.
3689 * Courtesy of Adrian Drzewiecki
3691 if ((s->size & ~(align - 1)) != s->size)
3692 continue;
3694 if (s->size - size >= sizeof(void *))
3695 continue;
3697 if (!cache_match_memcg(s, memcg))
3698 continue;
3700 return s;
3702 return NULL;
3705 struct kmem_cache *
3706 __kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size,
3707 size_t align, unsigned long flags, void (*ctor)(void *))
3709 struct kmem_cache *s;
3711 s = find_mergeable(memcg, size, align, flags, name, ctor);
3712 if (s) {
3713 s->refcount++;
3715 * Adjust the object sizes so that we clear
3716 * the complete object on kzalloc.
3718 s->object_size = max(s->object_size, (int)size);
3719 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3721 if (sysfs_slab_alias(s, name)) {
3722 s->refcount--;
3723 s = NULL;
3727 return s;
3730 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3732 int err;
3734 err = kmem_cache_open(s, flags);
3735 if (err)
3736 return err;
3738 /* Mutex is not taken during early boot */
3739 if (slab_state <= UP)
3740 return 0;
3742 memcg_propagate_slab_attrs(s);
3743 mutex_unlock(&slab_mutex);
3744 err = sysfs_slab_add(s);
3745 mutex_lock(&slab_mutex);
3747 if (err)
3748 kmem_cache_close(s);
3750 return err;
3753 #ifdef CONFIG_SMP
3755 * Use the cpu notifier to insure that the cpu slabs are flushed when
3756 * necessary.
3758 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3759 unsigned long action, void *hcpu)
3761 long cpu = (long)hcpu;
3762 struct kmem_cache *s;
3763 unsigned long flags;
3765 switch (action) {
3766 case CPU_UP_CANCELED:
3767 case CPU_UP_CANCELED_FROZEN:
3768 case CPU_DEAD:
3769 case CPU_DEAD_FROZEN:
3770 mutex_lock(&slab_mutex);
3771 list_for_each_entry(s, &slab_caches, list) {
3772 local_irq_save(flags);
3773 __flush_cpu_slab(s, cpu);
3774 local_irq_restore(flags);
3776 mutex_unlock(&slab_mutex);
3777 break;
3778 default:
3779 break;
3781 return NOTIFY_OK;
3784 static struct notifier_block __cpuinitdata slab_notifier = {
3785 .notifier_call = slab_cpuup_callback
3788 #endif
3790 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3792 struct kmem_cache *s;
3793 void *ret;
3795 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3796 return kmalloc_large(size, gfpflags);
3798 s = kmalloc_slab(size, gfpflags);
3800 if (unlikely(ZERO_OR_NULL_PTR(s)))
3801 return s;
3803 ret = slab_alloc(s, gfpflags, caller);
3805 /* Honor the call site pointer we received. */
3806 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3808 return ret;
3811 #ifdef CONFIG_NUMA
3812 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3813 int node, unsigned long caller)
3815 struct kmem_cache *s;
3816 void *ret;
3818 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3819 ret = kmalloc_large_node(size, gfpflags, node);
3821 trace_kmalloc_node(caller, ret,
3822 size, PAGE_SIZE << get_order(size),
3823 gfpflags, node);
3825 return ret;
3828 s = kmalloc_slab(size, gfpflags);
3830 if (unlikely(ZERO_OR_NULL_PTR(s)))
3831 return s;
3833 ret = slab_alloc_node(s, gfpflags, node, caller);
3835 /* Honor the call site pointer we received. */
3836 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3838 return ret;
3840 #endif
3842 #ifdef CONFIG_SYSFS
3843 static int count_inuse(struct page *page)
3845 return page->inuse;
3848 static int count_total(struct page *page)
3850 return page->objects;
3852 #endif
3854 #ifdef CONFIG_SLUB_DEBUG
3855 static int validate_slab(struct kmem_cache *s, struct page *page,
3856 unsigned long *map)
3858 void *p;
3859 void *addr = page_address(page);
3861 if (!check_slab(s, page) ||
3862 !on_freelist(s, page, NULL))
3863 return 0;
3865 /* Now we know that a valid freelist exists */
3866 bitmap_zero(map, page->objects);
3868 get_map(s, page, map);
3869 for_each_object(p, s, addr, page->objects) {
3870 if (test_bit(slab_index(p, s, addr), map))
3871 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3872 return 0;
3875 for_each_object(p, s, addr, page->objects)
3876 if (!test_bit(slab_index(p, s, addr), map))
3877 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3878 return 0;
3879 return 1;
3882 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3883 unsigned long *map)
3885 slab_lock(page);
3886 validate_slab(s, page, map);
3887 slab_unlock(page);
3890 static int validate_slab_node(struct kmem_cache *s,
3891 struct kmem_cache_node *n, unsigned long *map)
3893 unsigned long count = 0;
3894 struct page *page;
3895 unsigned long flags;
3897 spin_lock_irqsave(&n->list_lock, flags);
3899 list_for_each_entry(page, &n->partial, lru) {
3900 validate_slab_slab(s, page, map);
3901 count++;
3903 if (count != n->nr_partial)
3904 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3905 "counter=%ld\n", s->name, count, n->nr_partial);
3907 if (!(s->flags & SLAB_STORE_USER))
3908 goto out;
3910 list_for_each_entry(page, &n->full, lru) {
3911 validate_slab_slab(s, page, map);
3912 count++;
3914 if (count != atomic_long_read(&n->nr_slabs))
3915 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3916 "counter=%ld\n", s->name, count,
3917 atomic_long_read(&n->nr_slabs));
3919 out:
3920 spin_unlock_irqrestore(&n->list_lock, flags);
3921 return count;
3924 static long validate_slab_cache(struct kmem_cache *s)
3926 int node;
3927 unsigned long count = 0;
3928 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3929 sizeof(unsigned long), GFP_KERNEL);
3931 if (!map)
3932 return -ENOMEM;
3934 flush_all(s);
3935 for_each_node_state(node, N_NORMAL_MEMORY) {
3936 struct kmem_cache_node *n = get_node(s, node);
3938 count += validate_slab_node(s, n, map);
3940 kfree(map);
3941 return count;
3944 * Generate lists of code addresses where slabcache objects are allocated
3945 * and freed.
3948 struct location {
3949 unsigned long count;
3950 unsigned long addr;
3951 long long sum_time;
3952 long min_time;
3953 long max_time;
3954 long min_pid;
3955 long max_pid;
3956 DECLARE_BITMAP(cpus, NR_CPUS);
3957 nodemask_t nodes;
3960 struct loc_track {
3961 unsigned long max;
3962 unsigned long count;
3963 struct location *loc;
3966 static void free_loc_track(struct loc_track *t)
3968 if (t->max)
3969 free_pages((unsigned long)t->loc,
3970 get_order(sizeof(struct location) * t->max));
3973 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3975 struct location *l;
3976 int order;
3978 order = get_order(sizeof(struct location) * max);
3980 l = (void *)__get_free_pages(flags, order);
3981 if (!l)
3982 return 0;
3984 if (t->count) {
3985 memcpy(l, t->loc, sizeof(struct location) * t->count);
3986 free_loc_track(t);
3988 t->max = max;
3989 t->loc = l;
3990 return 1;
3993 static int add_location(struct loc_track *t, struct kmem_cache *s,
3994 const struct track *track)
3996 long start, end, pos;
3997 struct location *l;
3998 unsigned long caddr;
3999 unsigned long age = jiffies - track->when;
4001 start = -1;
4002 end = t->count;
4004 for ( ; ; ) {
4005 pos = start + (end - start + 1) / 2;
4008 * There is nothing at "end". If we end up there
4009 * we need to add something to before end.
4011 if (pos == end)
4012 break;
4014 caddr = t->loc[pos].addr;
4015 if (track->addr == caddr) {
4017 l = &t->loc[pos];
4018 l->count++;
4019 if (track->when) {
4020 l->sum_time += age;
4021 if (age < l->min_time)
4022 l->min_time = age;
4023 if (age > l->max_time)
4024 l->max_time = age;
4026 if (track->pid < l->min_pid)
4027 l->min_pid = track->pid;
4028 if (track->pid > l->max_pid)
4029 l->max_pid = track->pid;
4031 cpumask_set_cpu(track->cpu,
4032 to_cpumask(l->cpus));
4034 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4035 return 1;
4038 if (track->addr < caddr)
4039 end = pos;
4040 else
4041 start = pos;
4045 * Not found. Insert new tracking element.
4047 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4048 return 0;
4050 l = t->loc + pos;
4051 if (pos < t->count)
4052 memmove(l + 1, l,
4053 (t->count - pos) * sizeof(struct location));
4054 t->count++;
4055 l->count = 1;
4056 l->addr = track->addr;
4057 l->sum_time = age;
4058 l->min_time = age;
4059 l->max_time = age;
4060 l->min_pid = track->pid;
4061 l->max_pid = track->pid;
4062 cpumask_clear(to_cpumask(l->cpus));
4063 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4064 nodes_clear(l->nodes);
4065 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4066 return 1;
4069 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4070 struct page *page, enum track_item alloc,
4071 unsigned long *map)
4073 void *addr = page_address(page);
4074 void *p;
4076 bitmap_zero(map, page->objects);
4077 get_map(s, page, map);
4079 for_each_object(p, s, addr, page->objects)
4080 if (!test_bit(slab_index(p, s, addr), map))
4081 add_location(t, s, get_track(s, p, alloc));
4084 static int list_locations(struct kmem_cache *s, char *buf,
4085 enum track_item alloc)
4087 int len = 0;
4088 unsigned long i;
4089 struct loc_track t = { 0, 0, NULL };
4090 int node;
4091 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4092 sizeof(unsigned long), GFP_KERNEL);
4094 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4095 GFP_TEMPORARY)) {
4096 kfree(map);
4097 return sprintf(buf, "Out of memory\n");
4099 /* Push back cpu slabs */
4100 flush_all(s);
4102 for_each_node_state(node, N_NORMAL_MEMORY) {
4103 struct kmem_cache_node *n = get_node(s, node);
4104 unsigned long flags;
4105 struct page *page;
4107 if (!atomic_long_read(&n->nr_slabs))
4108 continue;
4110 spin_lock_irqsave(&n->list_lock, flags);
4111 list_for_each_entry(page, &n->partial, lru)
4112 process_slab(&t, s, page, alloc, map);
4113 list_for_each_entry(page, &n->full, lru)
4114 process_slab(&t, s, page, alloc, map);
4115 spin_unlock_irqrestore(&n->list_lock, flags);
4118 for (i = 0; i < t.count; i++) {
4119 struct location *l = &t.loc[i];
4121 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4122 break;
4123 len += sprintf(buf + len, "%7ld ", l->count);
4125 if (l->addr)
4126 len += sprintf(buf + len, "%pS", (void *)l->addr);
4127 else
4128 len += sprintf(buf + len, "<not-available>");
4130 if (l->sum_time != l->min_time) {
4131 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4132 l->min_time,
4133 (long)div_u64(l->sum_time, l->count),
4134 l->max_time);
4135 } else
4136 len += sprintf(buf + len, " age=%ld",
4137 l->min_time);
4139 if (l->min_pid != l->max_pid)
4140 len += sprintf(buf + len, " pid=%ld-%ld",
4141 l->min_pid, l->max_pid);
4142 else
4143 len += sprintf(buf + len, " pid=%ld",
4144 l->min_pid);
4146 if (num_online_cpus() > 1 &&
4147 !cpumask_empty(to_cpumask(l->cpus)) &&
4148 len < PAGE_SIZE - 60) {
4149 len += sprintf(buf + len, " cpus=");
4150 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4151 to_cpumask(l->cpus));
4154 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4155 len < PAGE_SIZE - 60) {
4156 len += sprintf(buf + len, " nodes=");
4157 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4158 l->nodes);
4161 len += sprintf(buf + len, "\n");
4164 free_loc_track(&t);
4165 kfree(map);
4166 if (!t.count)
4167 len += sprintf(buf, "No data\n");
4168 return len;
4170 #endif
4172 #ifdef SLUB_RESILIENCY_TEST
4173 static void resiliency_test(void)
4175 u8 *p;
4177 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4179 printk(KERN_ERR "SLUB resiliency testing\n");
4180 printk(KERN_ERR "-----------------------\n");
4181 printk(KERN_ERR "A. Corruption after allocation\n");
4183 p = kzalloc(16, GFP_KERNEL);
4184 p[16] = 0x12;
4185 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4186 " 0x12->0x%p\n\n", p + 16);
4188 validate_slab_cache(kmalloc_caches[4]);
4190 /* Hmmm... The next two are dangerous */
4191 p = kzalloc(32, GFP_KERNEL);
4192 p[32 + sizeof(void *)] = 0x34;
4193 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4194 " 0x34 -> -0x%p\n", p);
4195 printk(KERN_ERR
4196 "If allocated object is overwritten then not detectable\n\n");
4198 validate_slab_cache(kmalloc_caches[5]);
4199 p = kzalloc(64, GFP_KERNEL);
4200 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4201 *p = 0x56;
4202 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4204 printk(KERN_ERR
4205 "If allocated object is overwritten then not detectable\n\n");
4206 validate_slab_cache(kmalloc_caches[6]);
4208 printk(KERN_ERR "\nB. Corruption after free\n");
4209 p = kzalloc(128, GFP_KERNEL);
4210 kfree(p);
4211 *p = 0x78;
4212 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4213 validate_slab_cache(kmalloc_caches[7]);
4215 p = kzalloc(256, GFP_KERNEL);
4216 kfree(p);
4217 p[50] = 0x9a;
4218 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4220 validate_slab_cache(kmalloc_caches[8]);
4222 p = kzalloc(512, GFP_KERNEL);
4223 kfree(p);
4224 p[512] = 0xab;
4225 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4226 validate_slab_cache(kmalloc_caches[9]);
4228 #else
4229 #ifdef CONFIG_SYSFS
4230 static void resiliency_test(void) {};
4231 #endif
4232 #endif
4234 #ifdef CONFIG_SYSFS
4235 enum slab_stat_type {
4236 SL_ALL, /* All slabs */
4237 SL_PARTIAL, /* Only partially allocated slabs */
4238 SL_CPU, /* Only slabs used for cpu caches */
4239 SL_OBJECTS, /* Determine allocated objects not slabs */
4240 SL_TOTAL /* Determine object capacity not slabs */
4243 #define SO_ALL (1 << SL_ALL)
4244 #define SO_PARTIAL (1 << SL_PARTIAL)
4245 #define SO_CPU (1 << SL_CPU)
4246 #define SO_OBJECTS (1 << SL_OBJECTS)
4247 #define SO_TOTAL (1 << SL_TOTAL)
4249 static ssize_t show_slab_objects(struct kmem_cache *s,
4250 char *buf, unsigned long flags)
4252 unsigned long total = 0;
4253 int node;
4254 int x;
4255 unsigned long *nodes;
4256 unsigned long *per_cpu;
4258 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4259 if (!nodes)
4260 return -ENOMEM;
4261 per_cpu = nodes + nr_node_ids;
4263 if (flags & SO_CPU) {
4264 int cpu;
4266 for_each_possible_cpu(cpu) {
4267 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
4268 int node;
4269 struct page *page;
4271 page = ACCESS_ONCE(c->page);
4272 if (!page)
4273 continue;
4275 node = page_to_nid(page);
4276 if (flags & SO_TOTAL)
4277 x = page->objects;
4278 else if (flags & SO_OBJECTS)
4279 x = page->inuse;
4280 else
4281 x = 1;
4283 total += x;
4284 nodes[node] += x;
4286 page = ACCESS_ONCE(c->partial);
4287 if (page) {
4288 x = page->pobjects;
4289 total += x;
4290 nodes[node] += x;
4293 per_cpu[node]++;
4297 lock_memory_hotplug();
4298 #ifdef CONFIG_SLUB_DEBUG
4299 if (flags & SO_ALL) {
4300 for_each_node_state(node, N_NORMAL_MEMORY) {
4301 struct kmem_cache_node *n = get_node(s, node);
4303 if (flags & SO_TOTAL)
4304 x = atomic_long_read(&n->total_objects);
4305 else if (flags & SO_OBJECTS)
4306 x = atomic_long_read(&n->total_objects) -
4307 count_partial(n, count_free);
4309 else
4310 x = atomic_long_read(&n->nr_slabs);
4311 total += x;
4312 nodes[node] += x;
4315 } else
4316 #endif
4317 if (flags & SO_PARTIAL) {
4318 for_each_node_state(node, N_NORMAL_MEMORY) {
4319 struct kmem_cache_node *n = get_node(s, node);
4321 if (flags & SO_TOTAL)
4322 x = count_partial(n, count_total);
4323 else if (flags & SO_OBJECTS)
4324 x = count_partial(n, count_inuse);
4325 else
4326 x = n->nr_partial;
4327 total += x;
4328 nodes[node] += x;
4331 x = sprintf(buf, "%lu", total);
4332 #ifdef CONFIG_NUMA
4333 for_each_node_state(node, N_NORMAL_MEMORY)
4334 if (nodes[node])
4335 x += sprintf(buf + x, " N%d=%lu",
4336 node, nodes[node]);
4337 #endif
4338 unlock_memory_hotplug();
4339 kfree(nodes);
4340 return x + sprintf(buf + x, "\n");
4343 #ifdef CONFIG_SLUB_DEBUG
4344 static int any_slab_objects(struct kmem_cache *s)
4346 int node;
4348 for_each_online_node(node) {
4349 struct kmem_cache_node *n = get_node(s, node);
4351 if (!n)
4352 continue;
4354 if (atomic_long_read(&n->total_objects))
4355 return 1;
4357 return 0;
4359 #endif
4361 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4362 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4364 struct slab_attribute {
4365 struct attribute attr;
4366 ssize_t (*show)(struct kmem_cache *s, char *buf);
4367 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4370 #define SLAB_ATTR_RO(_name) \
4371 static struct slab_attribute _name##_attr = \
4372 __ATTR(_name, 0400, _name##_show, NULL)
4374 #define SLAB_ATTR(_name) \
4375 static struct slab_attribute _name##_attr = \
4376 __ATTR(_name, 0600, _name##_show, _name##_store)
4378 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4380 return sprintf(buf, "%d\n", s->size);
4382 SLAB_ATTR_RO(slab_size);
4384 static ssize_t align_show(struct kmem_cache *s, char *buf)
4386 return sprintf(buf, "%d\n", s->align);
4388 SLAB_ATTR_RO(align);
4390 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4392 return sprintf(buf, "%d\n", s->object_size);
4394 SLAB_ATTR_RO(object_size);
4396 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4398 return sprintf(buf, "%d\n", oo_objects(s->oo));
4400 SLAB_ATTR_RO(objs_per_slab);
4402 static ssize_t order_store(struct kmem_cache *s,
4403 const char *buf, size_t length)
4405 unsigned long order;
4406 int err;
4408 err = strict_strtoul(buf, 10, &order);
4409 if (err)
4410 return err;
4412 if (order > slub_max_order || order < slub_min_order)
4413 return -EINVAL;
4415 calculate_sizes(s, order);
4416 return length;
4419 static ssize_t order_show(struct kmem_cache *s, char *buf)
4421 return sprintf(buf, "%d\n", oo_order(s->oo));
4423 SLAB_ATTR(order);
4425 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4427 return sprintf(buf, "%lu\n", s->min_partial);
4430 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4431 size_t length)
4433 unsigned long min;
4434 int err;
4436 err = strict_strtoul(buf, 10, &min);
4437 if (err)
4438 return err;
4440 set_min_partial(s, min);
4441 return length;
4443 SLAB_ATTR(min_partial);
4445 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4447 return sprintf(buf, "%u\n", s->cpu_partial);
4450 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4451 size_t length)
4453 unsigned long objects;
4454 int err;
4456 err = strict_strtoul(buf, 10, &objects);
4457 if (err)
4458 return err;
4459 if (objects && kmem_cache_debug(s))
4460 return -EINVAL;
4462 s->cpu_partial = objects;
4463 flush_all(s);
4464 return length;
4466 SLAB_ATTR(cpu_partial);
4468 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4470 if (!s->ctor)
4471 return 0;
4472 return sprintf(buf, "%pS\n", s->ctor);
4474 SLAB_ATTR_RO(ctor);
4476 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4478 return sprintf(buf, "%d\n", s->refcount - 1);
4480 SLAB_ATTR_RO(aliases);
4482 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4484 return show_slab_objects(s, buf, SO_PARTIAL);
4486 SLAB_ATTR_RO(partial);
4488 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4490 return show_slab_objects(s, buf, SO_CPU);
4492 SLAB_ATTR_RO(cpu_slabs);
4494 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4496 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4498 SLAB_ATTR_RO(objects);
4500 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4502 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4504 SLAB_ATTR_RO(objects_partial);
4506 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4508 int objects = 0;
4509 int pages = 0;
4510 int cpu;
4511 int len;
4513 for_each_online_cpu(cpu) {
4514 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4516 if (page) {
4517 pages += page->pages;
4518 objects += page->pobjects;
4522 len = sprintf(buf, "%d(%d)", objects, pages);
4524 #ifdef CONFIG_SMP
4525 for_each_online_cpu(cpu) {
4526 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4528 if (page && len < PAGE_SIZE - 20)
4529 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4530 page->pobjects, page->pages);
4532 #endif
4533 return len + sprintf(buf + len, "\n");
4535 SLAB_ATTR_RO(slabs_cpu_partial);
4537 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4539 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4542 static ssize_t reclaim_account_store(struct kmem_cache *s,
4543 const char *buf, size_t length)
4545 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4546 if (buf[0] == '1')
4547 s->flags |= SLAB_RECLAIM_ACCOUNT;
4548 return length;
4550 SLAB_ATTR(reclaim_account);
4552 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4554 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4556 SLAB_ATTR_RO(hwcache_align);
4558 #ifdef CONFIG_ZONE_DMA
4559 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4561 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4563 SLAB_ATTR_RO(cache_dma);
4564 #endif
4566 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4568 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4570 SLAB_ATTR_RO(destroy_by_rcu);
4572 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4574 return sprintf(buf, "%d\n", s->reserved);
4576 SLAB_ATTR_RO(reserved);
4578 #ifdef CONFIG_SLUB_DEBUG
4579 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4581 return show_slab_objects(s, buf, SO_ALL);
4583 SLAB_ATTR_RO(slabs);
4585 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4587 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4589 SLAB_ATTR_RO(total_objects);
4591 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4593 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4596 static ssize_t sanity_checks_store(struct kmem_cache *s,
4597 const char *buf, size_t length)
4599 s->flags &= ~SLAB_DEBUG_FREE;
4600 if (buf[0] == '1') {
4601 s->flags &= ~__CMPXCHG_DOUBLE;
4602 s->flags |= SLAB_DEBUG_FREE;
4604 return length;
4606 SLAB_ATTR(sanity_checks);
4608 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4610 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4613 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4614 size_t length)
4616 s->flags &= ~SLAB_TRACE;
4617 if (buf[0] == '1') {
4618 s->flags &= ~__CMPXCHG_DOUBLE;
4619 s->flags |= SLAB_TRACE;
4621 return length;
4623 SLAB_ATTR(trace);
4625 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4627 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4630 static ssize_t red_zone_store(struct kmem_cache *s,
4631 const char *buf, size_t length)
4633 if (any_slab_objects(s))
4634 return -EBUSY;
4636 s->flags &= ~SLAB_RED_ZONE;
4637 if (buf[0] == '1') {
4638 s->flags &= ~__CMPXCHG_DOUBLE;
4639 s->flags |= SLAB_RED_ZONE;
4641 calculate_sizes(s, -1);
4642 return length;
4644 SLAB_ATTR(red_zone);
4646 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4648 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4651 static ssize_t poison_store(struct kmem_cache *s,
4652 const char *buf, size_t length)
4654 if (any_slab_objects(s))
4655 return -EBUSY;
4657 s->flags &= ~SLAB_POISON;
4658 if (buf[0] == '1') {
4659 s->flags &= ~__CMPXCHG_DOUBLE;
4660 s->flags |= SLAB_POISON;
4662 calculate_sizes(s, -1);
4663 return length;
4665 SLAB_ATTR(poison);
4667 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4669 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4672 static ssize_t store_user_store(struct kmem_cache *s,
4673 const char *buf, size_t length)
4675 if (any_slab_objects(s))
4676 return -EBUSY;
4678 s->flags &= ~SLAB_STORE_USER;
4679 if (buf[0] == '1') {
4680 s->flags &= ~__CMPXCHG_DOUBLE;
4681 s->flags |= SLAB_STORE_USER;
4683 calculate_sizes(s, -1);
4684 return length;
4686 SLAB_ATTR(store_user);
4688 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4690 return 0;
4693 static ssize_t validate_store(struct kmem_cache *s,
4694 const char *buf, size_t length)
4696 int ret = -EINVAL;
4698 if (buf[0] == '1') {
4699 ret = validate_slab_cache(s);
4700 if (ret >= 0)
4701 ret = length;
4703 return ret;
4705 SLAB_ATTR(validate);
4707 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4709 if (!(s->flags & SLAB_STORE_USER))
4710 return -ENOSYS;
4711 return list_locations(s, buf, TRACK_ALLOC);
4713 SLAB_ATTR_RO(alloc_calls);
4715 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4717 if (!(s->flags & SLAB_STORE_USER))
4718 return -ENOSYS;
4719 return list_locations(s, buf, TRACK_FREE);
4721 SLAB_ATTR_RO(free_calls);
4722 #endif /* CONFIG_SLUB_DEBUG */
4724 #ifdef CONFIG_FAILSLAB
4725 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4727 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4730 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4731 size_t length)
4733 s->flags &= ~SLAB_FAILSLAB;
4734 if (buf[0] == '1')
4735 s->flags |= SLAB_FAILSLAB;
4736 return length;
4738 SLAB_ATTR(failslab);
4739 #endif
4741 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4743 return 0;
4746 static ssize_t shrink_store(struct kmem_cache *s,
4747 const char *buf, size_t length)
4749 if (buf[0] == '1') {
4750 int rc = kmem_cache_shrink(s);
4752 if (rc)
4753 return rc;
4754 } else
4755 return -EINVAL;
4756 return length;
4758 SLAB_ATTR(shrink);
4760 #ifdef CONFIG_NUMA
4761 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4763 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4766 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4767 const char *buf, size_t length)
4769 unsigned long ratio;
4770 int err;
4772 err = strict_strtoul(buf, 10, &ratio);
4773 if (err)
4774 return err;
4776 if (ratio <= 100)
4777 s->remote_node_defrag_ratio = ratio * 10;
4779 return length;
4781 SLAB_ATTR(remote_node_defrag_ratio);
4782 #endif
4784 #ifdef CONFIG_SLUB_STATS
4785 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4787 unsigned long sum = 0;
4788 int cpu;
4789 int len;
4790 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4792 if (!data)
4793 return -ENOMEM;
4795 for_each_online_cpu(cpu) {
4796 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4798 data[cpu] = x;
4799 sum += x;
4802 len = sprintf(buf, "%lu", sum);
4804 #ifdef CONFIG_SMP
4805 for_each_online_cpu(cpu) {
4806 if (data[cpu] && len < PAGE_SIZE - 20)
4807 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4809 #endif
4810 kfree(data);
4811 return len + sprintf(buf + len, "\n");
4814 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4816 int cpu;
4818 for_each_online_cpu(cpu)
4819 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4822 #define STAT_ATTR(si, text) \
4823 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4825 return show_stat(s, buf, si); \
4827 static ssize_t text##_store(struct kmem_cache *s, \
4828 const char *buf, size_t length) \
4830 if (buf[0] != '0') \
4831 return -EINVAL; \
4832 clear_stat(s, si); \
4833 return length; \
4835 SLAB_ATTR(text); \
4837 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4838 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4839 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4840 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4841 STAT_ATTR(FREE_FROZEN, free_frozen);
4842 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4843 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4844 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4845 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4846 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4847 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4848 STAT_ATTR(FREE_SLAB, free_slab);
4849 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4850 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4851 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4852 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4853 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4854 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4855 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4856 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4857 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4858 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4859 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4860 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4861 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4862 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4863 #endif
4865 static struct attribute *slab_attrs[] = {
4866 &slab_size_attr.attr,
4867 &object_size_attr.attr,
4868 &objs_per_slab_attr.attr,
4869 &order_attr.attr,
4870 &min_partial_attr.attr,
4871 &cpu_partial_attr.attr,
4872 &objects_attr.attr,
4873 &objects_partial_attr.attr,
4874 &partial_attr.attr,
4875 &cpu_slabs_attr.attr,
4876 &ctor_attr.attr,
4877 &aliases_attr.attr,
4878 &align_attr.attr,
4879 &hwcache_align_attr.attr,
4880 &reclaim_account_attr.attr,
4881 &destroy_by_rcu_attr.attr,
4882 &shrink_attr.attr,
4883 &reserved_attr.attr,
4884 &slabs_cpu_partial_attr.attr,
4885 #ifdef CONFIG_SLUB_DEBUG
4886 &total_objects_attr.attr,
4887 &slabs_attr.attr,
4888 &sanity_checks_attr.attr,
4889 &trace_attr.attr,
4890 &red_zone_attr.attr,
4891 &poison_attr.attr,
4892 &store_user_attr.attr,
4893 &validate_attr.attr,
4894 &alloc_calls_attr.attr,
4895 &free_calls_attr.attr,
4896 #endif
4897 #ifdef CONFIG_ZONE_DMA
4898 &cache_dma_attr.attr,
4899 #endif
4900 #ifdef CONFIG_NUMA
4901 &remote_node_defrag_ratio_attr.attr,
4902 #endif
4903 #ifdef CONFIG_SLUB_STATS
4904 &alloc_fastpath_attr.attr,
4905 &alloc_slowpath_attr.attr,
4906 &free_fastpath_attr.attr,
4907 &free_slowpath_attr.attr,
4908 &free_frozen_attr.attr,
4909 &free_add_partial_attr.attr,
4910 &free_remove_partial_attr.attr,
4911 &alloc_from_partial_attr.attr,
4912 &alloc_slab_attr.attr,
4913 &alloc_refill_attr.attr,
4914 &alloc_node_mismatch_attr.attr,
4915 &free_slab_attr.attr,
4916 &cpuslab_flush_attr.attr,
4917 &deactivate_full_attr.attr,
4918 &deactivate_empty_attr.attr,
4919 &deactivate_to_head_attr.attr,
4920 &deactivate_to_tail_attr.attr,
4921 &deactivate_remote_frees_attr.attr,
4922 &deactivate_bypass_attr.attr,
4923 &order_fallback_attr.attr,
4924 &cmpxchg_double_fail_attr.attr,
4925 &cmpxchg_double_cpu_fail_attr.attr,
4926 &cpu_partial_alloc_attr.attr,
4927 &cpu_partial_free_attr.attr,
4928 &cpu_partial_node_attr.attr,
4929 &cpu_partial_drain_attr.attr,
4930 #endif
4931 #ifdef CONFIG_FAILSLAB
4932 &failslab_attr.attr,
4933 #endif
4935 NULL
4938 static struct attribute_group slab_attr_group = {
4939 .attrs = slab_attrs,
4942 static ssize_t slab_attr_show(struct kobject *kobj,
4943 struct attribute *attr,
4944 char *buf)
4946 struct slab_attribute *attribute;
4947 struct kmem_cache *s;
4948 int err;
4950 attribute = to_slab_attr(attr);
4951 s = to_slab(kobj);
4953 if (!attribute->show)
4954 return -EIO;
4956 err = attribute->show(s, buf);
4958 return err;
4961 static ssize_t slab_attr_store(struct kobject *kobj,
4962 struct attribute *attr,
4963 const char *buf, size_t len)
4965 struct slab_attribute *attribute;
4966 struct kmem_cache *s;
4967 int err;
4969 attribute = to_slab_attr(attr);
4970 s = to_slab(kobj);
4972 if (!attribute->store)
4973 return -EIO;
4975 err = attribute->store(s, buf, len);
4976 #ifdef CONFIG_MEMCG_KMEM
4977 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
4978 int i;
4980 mutex_lock(&slab_mutex);
4981 if (s->max_attr_size < len)
4982 s->max_attr_size = len;
4985 * This is a best effort propagation, so this function's return
4986 * value will be determined by the parent cache only. This is
4987 * basically because not all attributes will have a well
4988 * defined semantics for rollbacks - most of the actions will
4989 * have permanent effects.
4991 * Returning the error value of any of the children that fail
4992 * is not 100 % defined, in the sense that users seeing the
4993 * error code won't be able to know anything about the state of
4994 * the cache.
4996 * Only returning the error code for the parent cache at least
4997 * has well defined semantics. The cache being written to
4998 * directly either failed or succeeded, in which case we loop
4999 * through the descendants with best-effort propagation.
5001 for_each_memcg_cache_index(i) {
5002 struct kmem_cache *c = cache_from_memcg(s, i);
5003 if (c)
5004 attribute->store(c, buf, len);
5006 mutex_unlock(&slab_mutex);
5008 #endif
5009 return err;
5012 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5014 #ifdef CONFIG_MEMCG_KMEM
5015 int i;
5016 char *buffer = NULL;
5018 if (!is_root_cache(s))
5019 return;
5022 * This mean this cache had no attribute written. Therefore, no point
5023 * in copying default values around
5025 if (!s->max_attr_size)
5026 return;
5028 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5029 char mbuf[64];
5030 char *buf;
5031 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5033 if (!attr || !attr->store || !attr->show)
5034 continue;
5037 * It is really bad that we have to allocate here, so we will
5038 * do it only as a fallback. If we actually allocate, though,
5039 * we can just use the allocated buffer until the end.
5041 * Most of the slub attributes will tend to be very small in
5042 * size, but sysfs allows buffers up to a page, so they can
5043 * theoretically happen.
5045 if (buffer)
5046 buf = buffer;
5047 else if (s->max_attr_size < ARRAY_SIZE(mbuf))
5048 buf = mbuf;
5049 else {
5050 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5051 if (WARN_ON(!buffer))
5052 continue;
5053 buf = buffer;
5056 attr->show(s->memcg_params->root_cache, buf);
5057 attr->store(s, buf, strlen(buf));
5060 if (buffer)
5061 free_page((unsigned long)buffer);
5062 #endif
5065 static const struct sysfs_ops slab_sysfs_ops = {
5066 .show = slab_attr_show,
5067 .store = slab_attr_store,
5070 static struct kobj_type slab_ktype = {
5071 .sysfs_ops = &slab_sysfs_ops,
5074 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5076 struct kobj_type *ktype = get_ktype(kobj);
5078 if (ktype == &slab_ktype)
5079 return 1;
5080 return 0;
5083 static const struct kset_uevent_ops slab_uevent_ops = {
5084 .filter = uevent_filter,
5087 static struct kset *slab_kset;
5089 #define ID_STR_LENGTH 64
5091 /* Create a unique string id for a slab cache:
5093 * Format :[flags-]size
5095 static char *create_unique_id(struct kmem_cache *s)
5097 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5098 char *p = name;
5100 BUG_ON(!name);
5102 *p++ = ':';
5104 * First flags affecting slabcache operations. We will only
5105 * get here for aliasable slabs so we do not need to support
5106 * too many flags. The flags here must cover all flags that
5107 * are matched during merging to guarantee that the id is
5108 * unique.
5110 if (s->flags & SLAB_CACHE_DMA)
5111 *p++ = 'd';
5112 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5113 *p++ = 'a';
5114 if (s->flags & SLAB_DEBUG_FREE)
5115 *p++ = 'F';
5116 if (!(s->flags & SLAB_NOTRACK))
5117 *p++ = 't';
5118 if (p != name + 1)
5119 *p++ = '-';
5120 p += sprintf(p, "%07d", s->size);
5122 #ifdef CONFIG_MEMCG_KMEM
5123 if (!is_root_cache(s))
5124 p += sprintf(p, "-%08d", memcg_cache_id(s->memcg_params->memcg));
5125 #endif
5127 BUG_ON(p > name + ID_STR_LENGTH - 1);
5128 return name;
5131 static int sysfs_slab_add(struct kmem_cache *s)
5133 int err;
5134 const char *name;
5135 int unmergeable = slab_unmergeable(s);
5137 if (unmergeable) {
5139 * Slabcache can never be merged so we can use the name proper.
5140 * This is typically the case for debug situations. In that
5141 * case we can catch duplicate names easily.
5143 sysfs_remove_link(&slab_kset->kobj, s->name);
5144 name = s->name;
5145 } else {
5147 * Create a unique name for the slab as a target
5148 * for the symlinks.
5150 name = create_unique_id(s);
5153 s->kobj.kset = slab_kset;
5154 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5155 if (err) {
5156 kobject_put(&s->kobj);
5157 return err;
5160 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5161 if (err) {
5162 kobject_del(&s->kobj);
5163 kobject_put(&s->kobj);
5164 return err;
5166 kobject_uevent(&s->kobj, KOBJ_ADD);
5167 if (!unmergeable) {
5168 /* Setup first alias */
5169 sysfs_slab_alias(s, s->name);
5170 kfree(name);
5172 return 0;
5175 static void sysfs_slab_remove(struct kmem_cache *s)
5177 if (slab_state < FULL)
5179 * Sysfs has not been setup yet so no need to remove the
5180 * cache from sysfs.
5182 return;
5184 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5185 kobject_del(&s->kobj);
5186 kobject_put(&s->kobj);
5190 * Need to buffer aliases during bootup until sysfs becomes
5191 * available lest we lose that information.
5193 struct saved_alias {
5194 struct kmem_cache *s;
5195 const char *name;
5196 struct saved_alias *next;
5199 static struct saved_alias *alias_list;
5201 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5203 struct saved_alias *al;
5205 if (slab_state == FULL) {
5207 * If we have a leftover link then remove it.
5209 sysfs_remove_link(&slab_kset->kobj, name);
5210 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5213 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5214 if (!al)
5215 return -ENOMEM;
5217 al->s = s;
5218 al->name = name;
5219 al->next = alias_list;
5220 alias_list = al;
5221 return 0;
5224 static int __init slab_sysfs_init(void)
5226 struct kmem_cache *s;
5227 int err;
5229 mutex_lock(&slab_mutex);
5231 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5232 if (!slab_kset) {
5233 mutex_unlock(&slab_mutex);
5234 printk(KERN_ERR "Cannot register slab subsystem.\n");
5235 return -ENOSYS;
5238 slab_state = FULL;
5240 list_for_each_entry(s, &slab_caches, list) {
5241 err = sysfs_slab_add(s);
5242 if (err)
5243 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5244 " to sysfs\n", s->name);
5247 while (alias_list) {
5248 struct saved_alias *al = alias_list;
5250 alias_list = alias_list->next;
5251 err = sysfs_slab_alias(al->s, al->name);
5252 if (err)
5253 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5254 " %s to sysfs\n", al->name);
5255 kfree(al);
5258 mutex_unlock(&slab_mutex);
5259 resiliency_test();
5260 return 0;
5263 __initcall(slab_sysfs_init);
5264 #endif /* CONFIG_SYSFS */
5267 * The /proc/slabinfo ABI
5269 #ifdef CONFIG_SLABINFO
5270 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5272 unsigned long nr_partials = 0;
5273 unsigned long nr_slabs = 0;
5274 unsigned long nr_objs = 0;
5275 unsigned long nr_free = 0;
5276 int node;
5278 for_each_online_node(node) {
5279 struct kmem_cache_node *n = get_node(s, node);
5281 if (!n)
5282 continue;
5284 nr_partials += n->nr_partial;
5285 nr_slabs += atomic_long_read(&n->nr_slabs);
5286 nr_objs += atomic_long_read(&n->total_objects);
5287 nr_free += count_partial(n, count_free);
5290 sinfo->active_objs = nr_objs - nr_free;
5291 sinfo->num_objs = nr_objs;
5292 sinfo->active_slabs = nr_slabs;
5293 sinfo->num_slabs = nr_slabs;
5294 sinfo->objects_per_slab = oo_objects(s->oo);
5295 sinfo->cache_order = oo_order(s->oo);
5298 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5302 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5303 size_t count, loff_t *ppos)
5305 return -EIO;
5307 #endif /* CONFIG_SLABINFO */