4 * Copyright (C) 1991, 1992 Linus Torvalds
7 #include <linux/config.h>
8 #include <linux/module.h>
10 #include <linux/utsname.h>
11 #include <linux/mman.h>
12 #include <linux/smp_lock.h>
13 #include <linux/notifier.h>
14 #include <linux/reboot.h>
15 #include <linux/prctl.h>
16 #include <linux/init.h>
17 #include <linux/highuid.h>
19 #include <linux/kernel.h>
20 #include <linux/kexec.h>
21 #include <linux/workqueue.h>
22 #include <linux/capability.h>
23 #include <linux/device.h>
24 #include <linux/key.h>
25 #include <linux/times.h>
26 #include <linux/posix-timers.h>
27 #include <linux/security.h>
28 #include <linux/dcookies.h>
29 #include <linux/suspend.h>
30 #include <linux/tty.h>
31 #include <linux/signal.h>
32 #include <linux/cn_proc.h>
34 #include <linux/compat.h>
35 #include <linux/syscalls.h>
36 #include <linux/kprobes.h>
38 #include <asm/uaccess.h>
40 #include <asm/unistd.h>
42 #ifndef SET_UNALIGN_CTL
43 # define SET_UNALIGN_CTL(a,b) (-EINVAL)
45 #ifndef GET_UNALIGN_CTL
46 # define GET_UNALIGN_CTL(a,b) (-EINVAL)
49 # define SET_FPEMU_CTL(a,b) (-EINVAL)
52 # define GET_FPEMU_CTL(a,b) (-EINVAL)
55 # define SET_FPEXC_CTL(a,b) (-EINVAL)
58 # define GET_FPEXC_CTL(a,b) (-EINVAL)
62 * this is where the system-wide overflow UID and GID are defined, for
63 * architectures that now have 32-bit UID/GID but didn't in the past
66 int overflowuid
= DEFAULT_OVERFLOWUID
;
67 int overflowgid
= DEFAULT_OVERFLOWGID
;
70 EXPORT_SYMBOL(overflowuid
);
71 EXPORT_SYMBOL(overflowgid
);
75 * the same as above, but for filesystems which can only store a 16-bit
76 * UID and GID. as such, this is needed on all architectures
79 int fs_overflowuid
= DEFAULT_FS_OVERFLOWUID
;
80 int fs_overflowgid
= DEFAULT_FS_OVERFLOWUID
;
82 EXPORT_SYMBOL(fs_overflowuid
);
83 EXPORT_SYMBOL(fs_overflowgid
);
86 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
93 * Notifier list for kernel code which wants to be called
94 * at shutdown. This is used to stop any idling DMA operations
98 static struct notifier_block
*reboot_notifier_list
;
99 static DEFINE_RWLOCK(notifier_lock
);
102 * notifier_chain_register - Add notifier to a notifier chain
103 * @list: Pointer to root list pointer
104 * @n: New entry in notifier chain
106 * Adds a notifier to a notifier chain.
108 * Currently always returns zero.
111 int notifier_chain_register(struct notifier_block
**list
, struct notifier_block
*n
)
113 write_lock(¬ifier_lock
);
116 if(n
->priority
> (*list
)->priority
)
118 list
= &((*list
)->next
);
122 write_unlock(¬ifier_lock
);
126 EXPORT_SYMBOL(notifier_chain_register
);
129 * notifier_chain_unregister - Remove notifier from a notifier chain
130 * @nl: Pointer to root list pointer
131 * @n: New entry in notifier chain
133 * Removes a notifier from a notifier chain.
135 * Returns zero on success, or %-ENOENT on failure.
138 int notifier_chain_unregister(struct notifier_block
**nl
, struct notifier_block
*n
)
140 write_lock(¬ifier_lock
);
146 write_unlock(¬ifier_lock
);
151 write_unlock(¬ifier_lock
);
155 EXPORT_SYMBOL(notifier_chain_unregister
);
158 * notifier_call_chain - Call functions in a notifier chain
159 * @n: Pointer to root pointer of notifier chain
160 * @val: Value passed unmodified to notifier function
161 * @v: Pointer passed unmodified to notifier function
163 * Calls each function in a notifier chain in turn.
165 * If the return value of the notifier can be and'd
166 * with %NOTIFY_STOP_MASK, then notifier_call_chain
167 * will return immediately, with the return value of
168 * the notifier function which halted execution.
169 * Otherwise, the return value is the return value
170 * of the last notifier function called.
173 int __kprobes
notifier_call_chain(struct notifier_block
**n
, unsigned long val
, void *v
)
176 struct notifier_block
*nb
= *n
;
180 ret
=nb
->notifier_call(nb
,val
,v
);
181 if(ret
&NOTIFY_STOP_MASK
)
190 EXPORT_SYMBOL(notifier_call_chain
);
193 * register_reboot_notifier - Register function to be called at reboot time
194 * @nb: Info about notifier function to be called
196 * Registers a function with the list of functions
197 * to be called at reboot time.
199 * Currently always returns zero, as notifier_chain_register
200 * always returns zero.
203 int register_reboot_notifier(struct notifier_block
* nb
)
205 return notifier_chain_register(&reboot_notifier_list
, nb
);
208 EXPORT_SYMBOL(register_reboot_notifier
);
211 * unregister_reboot_notifier - Unregister previously registered reboot notifier
212 * @nb: Hook to be unregistered
214 * Unregisters a previously registered reboot
217 * Returns zero on success, or %-ENOENT on failure.
220 int unregister_reboot_notifier(struct notifier_block
* nb
)
222 return notifier_chain_unregister(&reboot_notifier_list
, nb
);
225 EXPORT_SYMBOL(unregister_reboot_notifier
);
227 static int set_one_prio(struct task_struct
*p
, int niceval
, int error
)
231 if (p
->uid
!= current
->euid
&&
232 p
->euid
!= current
->euid
&& !capable(CAP_SYS_NICE
)) {
236 if (niceval
< task_nice(p
) && !can_nice(p
, niceval
)) {
240 no_nice
= security_task_setnice(p
, niceval
);
247 set_user_nice(p
, niceval
);
252 asmlinkage
long sys_setpriority(int which
, int who
, int niceval
)
254 struct task_struct
*g
, *p
;
255 struct user_struct
*user
;
258 if (which
> 2 || which
< 0)
261 /* normalize: avoid signed division (rounding problems) */
268 read_lock(&tasklist_lock
);
273 p
= find_task_by_pid(who
);
275 error
= set_one_prio(p
, niceval
, error
);
279 who
= process_group(current
);
280 do_each_task_pid(who
, PIDTYPE_PGID
, p
) {
281 error
= set_one_prio(p
, niceval
, error
);
282 } while_each_task_pid(who
, PIDTYPE_PGID
, p
);
285 user
= current
->user
;
289 if ((who
!= current
->uid
) && !(user
= find_user(who
)))
290 goto out_unlock
; /* No processes for this user */
294 error
= set_one_prio(p
, niceval
, error
);
295 while_each_thread(g
, p
);
296 if (who
!= current
->uid
)
297 free_uid(user
); /* For find_user() */
301 read_unlock(&tasklist_lock
);
307 * Ugh. To avoid negative return values, "getpriority()" will
308 * not return the normal nice-value, but a negated value that
309 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
310 * to stay compatible.
312 asmlinkage
long sys_getpriority(int which
, int who
)
314 struct task_struct
*g
, *p
;
315 struct user_struct
*user
;
316 long niceval
, retval
= -ESRCH
;
318 if (which
> 2 || which
< 0)
321 read_lock(&tasklist_lock
);
326 p
= find_task_by_pid(who
);
328 niceval
= 20 - task_nice(p
);
329 if (niceval
> retval
)
335 who
= process_group(current
);
336 do_each_task_pid(who
, PIDTYPE_PGID
, p
) {
337 niceval
= 20 - task_nice(p
);
338 if (niceval
> retval
)
340 } while_each_task_pid(who
, PIDTYPE_PGID
, p
);
343 user
= current
->user
;
347 if ((who
!= current
->uid
) && !(user
= find_user(who
)))
348 goto out_unlock
; /* No processes for this user */
352 niceval
= 20 - task_nice(p
);
353 if (niceval
> retval
)
356 while_each_thread(g
, p
);
357 if (who
!= current
->uid
)
358 free_uid(user
); /* for find_user() */
362 read_unlock(&tasklist_lock
);
368 * emergency_restart - reboot the system
370 * Without shutting down any hardware or taking any locks
371 * reboot the system. This is called when we know we are in
372 * trouble so this is our best effort to reboot. This is
373 * safe to call in interrupt context.
375 void emergency_restart(void)
377 machine_emergency_restart();
379 EXPORT_SYMBOL_GPL(emergency_restart
);
381 void kernel_restart_prepare(char *cmd
)
383 notifier_call_chain(&reboot_notifier_list
, SYS_RESTART
, cmd
);
384 system_state
= SYSTEM_RESTART
;
389 * kernel_restart - reboot the system
390 * @cmd: pointer to buffer containing command to execute for restart
393 * Shutdown everything and perform a clean reboot.
394 * This is not safe to call in interrupt context.
396 void kernel_restart(char *cmd
)
398 kernel_restart_prepare(cmd
);
400 printk(KERN_EMERG
"Restarting system.\n");
402 printk(KERN_EMERG
"Restarting system with command '%s'.\n", cmd
);
405 machine_restart(cmd
);
407 EXPORT_SYMBOL_GPL(kernel_restart
);
410 * kernel_kexec - reboot the system
412 * Move into place and start executing a preloaded standalone
413 * executable. If nothing was preloaded return an error.
415 void kernel_kexec(void)
418 struct kimage
*image
;
419 image
= xchg(&kexec_image
, NULL
);
423 kernel_restart_prepare(NULL
);
424 printk(KERN_EMERG
"Starting new kernel\n");
426 machine_kexec(image
);
429 EXPORT_SYMBOL_GPL(kernel_kexec
);
431 void kernel_shutdown_prepare(enum system_states state
)
433 notifier_call_chain(&reboot_notifier_list
,
434 (state
== SYSTEM_HALT
)?SYS_HALT
:SYS_POWER_OFF
, NULL
);
435 system_state
= state
;
439 * kernel_halt - halt the system
441 * Shutdown everything and perform a clean system halt.
443 void kernel_halt(void)
445 kernel_shutdown_prepare(SYSTEM_HALT
);
446 printk(KERN_EMERG
"System halted.\n");
450 EXPORT_SYMBOL_GPL(kernel_halt
);
453 * kernel_power_off - power_off the system
455 * Shutdown everything and perform a clean system power_off.
457 void kernel_power_off(void)
459 kernel_shutdown_prepare(SYSTEM_POWER_OFF
);
460 printk(KERN_EMERG
"Power down.\n");
463 EXPORT_SYMBOL_GPL(kernel_power_off
);
465 * Reboot system call: for obvious reasons only root may call it,
466 * and even root needs to set up some magic numbers in the registers
467 * so that some mistake won't make this reboot the whole machine.
468 * You can also set the meaning of the ctrl-alt-del-key here.
470 * reboot doesn't sync: do that yourself before calling this.
472 asmlinkage
long sys_reboot(int magic1
, int magic2
, unsigned int cmd
, void __user
* arg
)
476 /* We only trust the superuser with rebooting the system. */
477 if (!capable(CAP_SYS_BOOT
))
480 /* For safety, we require "magic" arguments. */
481 if (magic1
!= LINUX_REBOOT_MAGIC1
||
482 (magic2
!= LINUX_REBOOT_MAGIC2
&&
483 magic2
!= LINUX_REBOOT_MAGIC2A
&&
484 magic2
!= LINUX_REBOOT_MAGIC2B
&&
485 magic2
!= LINUX_REBOOT_MAGIC2C
))
488 /* Instead of trying to make the power_off code look like
489 * halt when pm_power_off is not set do it the easy way.
491 if ((cmd
== LINUX_REBOOT_CMD_POWER_OFF
) && !pm_power_off
)
492 cmd
= LINUX_REBOOT_CMD_HALT
;
496 case LINUX_REBOOT_CMD_RESTART
:
497 kernel_restart(NULL
);
500 case LINUX_REBOOT_CMD_CAD_ON
:
504 case LINUX_REBOOT_CMD_CAD_OFF
:
508 case LINUX_REBOOT_CMD_HALT
:
514 case LINUX_REBOOT_CMD_POWER_OFF
:
520 case LINUX_REBOOT_CMD_RESTART2
:
521 if (strncpy_from_user(&buffer
[0], arg
, sizeof(buffer
) - 1) < 0) {
525 buffer
[sizeof(buffer
) - 1] = '\0';
527 kernel_restart(buffer
);
530 case LINUX_REBOOT_CMD_KEXEC
:
535 #ifdef CONFIG_SOFTWARE_SUSPEND
536 case LINUX_REBOOT_CMD_SW_SUSPEND
:
538 int ret
= software_suspend();
552 static void deferred_cad(void *dummy
)
554 kernel_restart(NULL
);
558 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
559 * As it's called within an interrupt, it may NOT sync: the only choice
560 * is whether to reboot at once, or just ignore the ctrl-alt-del.
562 void ctrl_alt_del(void)
564 static DECLARE_WORK(cad_work
, deferred_cad
, NULL
);
567 schedule_work(&cad_work
);
569 kill_proc(cad_pid
, SIGINT
, 1);
574 * Unprivileged users may change the real gid to the effective gid
575 * or vice versa. (BSD-style)
577 * If you set the real gid at all, or set the effective gid to a value not
578 * equal to the real gid, then the saved gid is set to the new effective gid.
580 * This makes it possible for a setgid program to completely drop its
581 * privileges, which is often a useful assertion to make when you are doing
582 * a security audit over a program.
584 * The general idea is that a program which uses just setregid() will be
585 * 100% compatible with BSD. A program which uses just setgid() will be
586 * 100% compatible with POSIX with saved IDs.
588 * SMP: There are not races, the GIDs are checked only by filesystem
589 * operations (as far as semantic preservation is concerned).
591 asmlinkage
long sys_setregid(gid_t rgid
, gid_t egid
)
593 int old_rgid
= current
->gid
;
594 int old_egid
= current
->egid
;
595 int new_rgid
= old_rgid
;
596 int new_egid
= old_egid
;
599 retval
= security_task_setgid(rgid
, egid
, (gid_t
)-1, LSM_SETID_RE
);
603 if (rgid
!= (gid_t
) -1) {
604 if ((old_rgid
== rgid
) ||
605 (current
->egid
==rgid
) ||
611 if (egid
!= (gid_t
) -1) {
612 if ((old_rgid
== egid
) ||
613 (current
->egid
== egid
) ||
614 (current
->sgid
== egid
) ||
621 if (new_egid
!= old_egid
)
623 current
->mm
->dumpable
= suid_dumpable
;
626 if (rgid
!= (gid_t
) -1 ||
627 (egid
!= (gid_t
) -1 && egid
!= old_rgid
))
628 current
->sgid
= new_egid
;
629 current
->fsgid
= new_egid
;
630 current
->egid
= new_egid
;
631 current
->gid
= new_rgid
;
632 key_fsgid_changed(current
);
633 proc_id_connector(current
, PROC_EVENT_GID
);
638 * setgid() is implemented like SysV w/ SAVED_IDS
640 * SMP: Same implicit races as above.
642 asmlinkage
long sys_setgid(gid_t gid
)
644 int old_egid
= current
->egid
;
647 retval
= security_task_setgid(gid
, (gid_t
)-1, (gid_t
)-1, LSM_SETID_ID
);
651 if (capable(CAP_SETGID
))
655 current
->mm
->dumpable
= suid_dumpable
;
658 current
->gid
= current
->egid
= current
->sgid
= current
->fsgid
= gid
;
660 else if ((gid
== current
->gid
) || (gid
== current
->sgid
))
664 current
->mm
->dumpable
= suid_dumpable
;
667 current
->egid
= current
->fsgid
= gid
;
672 key_fsgid_changed(current
);
673 proc_id_connector(current
, PROC_EVENT_GID
);
677 static int set_user(uid_t new_ruid
, int dumpclear
)
679 struct user_struct
*new_user
;
681 new_user
= alloc_uid(new_ruid
);
685 if (atomic_read(&new_user
->processes
) >=
686 current
->signal
->rlim
[RLIMIT_NPROC
].rlim_cur
&&
687 new_user
!= &root_user
) {
692 switch_uid(new_user
);
696 current
->mm
->dumpable
= suid_dumpable
;
699 current
->uid
= new_ruid
;
704 * Unprivileged users may change the real uid to the effective uid
705 * or vice versa. (BSD-style)
707 * If you set the real uid at all, or set the effective uid to a value not
708 * equal to the real uid, then the saved uid is set to the new effective uid.
710 * This makes it possible for a setuid program to completely drop its
711 * privileges, which is often a useful assertion to make when you are doing
712 * a security audit over a program.
714 * The general idea is that a program which uses just setreuid() will be
715 * 100% compatible with BSD. A program which uses just setuid() will be
716 * 100% compatible with POSIX with saved IDs.
718 asmlinkage
long sys_setreuid(uid_t ruid
, uid_t euid
)
720 int old_ruid
, old_euid
, old_suid
, new_ruid
, new_euid
;
723 retval
= security_task_setuid(ruid
, euid
, (uid_t
)-1, LSM_SETID_RE
);
727 new_ruid
= old_ruid
= current
->uid
;
728 new_euid
= old_euid
= current
->euid
;
729 old_suid
= current
->suid
;
731 if (ruid
!= (uid_t
) -1) {
733 if ((old_ruid
!= ruid
) &&
734 (current
->euid
!= ruid
) &&
735 !capable(CAP_SETUID
))
739 if (euid
!= (uid_t
) -1) {
741 if ((old_ruid
!= euid
) &&
742 (current
->euid
!= euid
) &&
743 (current
->suid
!= euid
) &&
744 !capable(CAP_SETUID
))
748 if (new_ruid
!= old_ruid
&& set_user(new_ruid
, new_euid
!= old_euid
) < 0)
751 if (new_euid
!= old_euid
)
753 current
->mm
->dumpable
= suid_dumpable
;
756 current
->fsuid
= current
->euid
= new_euid
;
757 if (ruid
!= (uid_t
) -1 ||
758 (euid
!= (uid_t
) -1 && euid
!= old_ruid
))
759 current
->suid
= current
->euid
;
760 current
->fsuid
= current
->euid
;
762 key_fsuid_changed(current
);
763 proc_id_connector(current
, PROC_EVENT_UID
);
765 return security_task_post_setuid(old_ruid
, old_euid
, old_suid
, LSM_SETID_RE
);
771 * setuid() is implemented like SysV with SAVED_IDS
773 * Note that SAVED_ID's is deficient in that a setuid root program
774 * like sendmail, for example, cannot set its uid to be a normal
775 * user and then switch back, because if you're root, setuid() sets
776 * the saved uid too. If you don't like this, blame the bright people
777 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
778 * will allow a root program to temporarily drop privileges and be able to
779 * regain them by swapping the real and effective uid.
781 asmlinkage
long sys_setuid(uid_t uid
)
783 int old_euid
= current
->euid
;
784 int old_ruid
, old_suid
, new_ruid
, new_suid
;
787 retval
= security_task_setuid(uid
, (uid_t
)-1, (uid_t
)-1, LSM_SETID_ID
);
791 old_ruid
= new_ruid
= current
->uid
;
792 old_suid
= current
->suid
;
795 if (capable(CAP_SETUID
)) {
796 if (uid
!= old_ruid
&& set_user(uid
, old_euid
!= uid
) < 0)
799 } else if ((uid
!= current
->uid
) && (uid
!= new_suid
))
804 current
->mm
->dumpable
= suid_dumpable
;
807 current
->fsuid
= current
->euid
= uid
;
808 current
->suid
= new_suid
;
810 key_fsuid_changed(current
);
811 proc_id_connector(current
, PROC_EVENT_UID
);
813 return security_task_post_setuid(old_ruid
, old_euid
, old_suid
, LSM_SETID_ID
);
818 * This function implements a generic ability to update ruid, euid,
819 * and suid. This allows you to implement the 4.4 compatible seteuid().
821 asmlinkage
long sys_setresuid(uid_t ruid
, uid_t euid
, uid_t suid
)
823 int old_ruid
= current
->uid
;
824 int old_euid
= current
->euid
;
825 int old_suid
= current
->suid
;
828 retval
= security_task_setuid(ruid
, euid
, suid
, LSM_SETID_RES
);
832 if (!capable(CAP_SETUID
)) {
833 if ((ruid
!= (uid_t
) -1) && (ruid
!= current
->uid
) &&
834 (ruid
!= current
->euid
) && (ruid
!= current
->suid
))
836 if ((euid
!= (uid_t
) -1) && (euid
!= current
->uid
) &&
837 (euid
!= current
->euid
) && (euid
!= current
->suid
))
839 if ((suid
!= (uid_t
) -1) && (suid
!= current
->uid
) &&
840 (suid
!= current
->euid
) && (suid
!= current
->suid
))
843 if (ruid
!= (uid_t
) -1) {
844 if (ruid
!= current
->uid
&& set_user(ruid
, euid
!= current
->euid
) < 0)
847 if (euid
!= (uid_t
) -1) {
848 if (euid
!= current
->euid
)
850 current
->mm
->dumpable
= suid_dumpable
;
853 current
->euid
= euid
;
855 current
->fsuid
= current
->euid
;
856 if (suid
!= (uid_t
) -1)
857 current
->suid
= suid
;
859 key_fsuid_changed(current
);
860 proc_id_connector(current
, PROC_EVENT_UID
);
862 return security_task_post_setuid(old_ruid
, old_euid
, old_suid
, LSM_SETID_RES
);
865 asmlinkage
long sys_getresuid(uid_t __user
*ruid
, uid_t __user
*euid
, uid_t __user
*suid
)
869 if (!(retval
= put_user(current
->uid
, ruid
)) &&
870 !(retval
= put_user(current
->euid
, euid
)))
871 retval
= put_user(current
->suid
, suid
);
877 * Same as above, but for rgid, egid, sgid.
879 asmlinkage
long sys_setresgid(gid_t rgid
, gid_t egid
, gid_t sgid
)
883 retval
= security_task_setgid(rgid
, egid
, sgid
, LSM_SETID_RES
);
887 if (!capable(CAP_SETGID
)) {
888 if ((rgid
!= (gid_t
) -1) && (rgid
!= current
->gid
) &&
889 (rgid
!= current
->egid
) && (rgid
!= current
->sgid
))
891 if ((egid
!= (gid_t
) -1) && (egid
!= current
->gid
) &&
892 (egid
!= current
->egid
) && (egid
!= current
->sgid
))
894 if ((sgid
!= (gid_t
) -1) && (sgid
!= current
->gid
) &&
895 (sgid
!= current
->egid
) && (sgid
!= current
->sgid
))
898 if (egid
!= (gid_t
) -1) {
899 if (egid
!= current
->egid
)
901 current
->mm
->dumpable
= suid_dumpable
;
904 current
->egid
= egid
;
906 current
->fsgid
= current
->egid
;
907 if (rgid
!= (gid_t
) -1)
909 if (sgid
!= (gid_t
) -1)
910 current
->sgid
= sgid
;
912 key_fsgid_changed(current
);
913 proc_id_connector(current
, PROC_EVENT_GID
);
917 asmlinkage
long sys_getresgid(gid_t __user
*rgid
, gid_t __user
*egid
, gid_t __user
*sgid
)
921 if (!(retval
= put_user(current
->gid
, rgid
)) &&
922 !(retval
= put_user(current
->egid
, egid
)))
923 retval
= put_user(current
->sgid
, sgid
);
930 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
931 * is used for "access()" and for the NFS daemon (letting nfsd stay at
932 * whatever uid it wants to). It normally shadows "euid", except when
933 * explicitly set by setfsuid() or for access..
935 asmlinkage
long sys_setfsuid(uid_t uid
)
939 old_fsuid
= current
->fsuid
;
940 if (security_task_setuid(uid
, (uid_t
)-1, (uid_t
)-1, LSM_SETID_FS
))
943 if (uid
== current
->uid
|| uid
== current
->euid
||
944 uid
== current
->suid
|| uid
== current
->fsuid
||
947 if (uid
!= old_fsuid
)
949 current
->mm
->dumpable
= suid_dumpable
;
952 current
->fsuid
= uid
;
955 key_fsuid_changed(current
);
956 proc_id_connector(current
, PROC_EVENT_UID
);
958 security_task_post_setuid(old_fsuid
, (uid_t
)-1, (uid_t
)-1, LSM_SETID_FS
);
964 * Samma på svenska..
966 asmlinkage
long sys_setfsgid(gid_t gid
)
970 old_fsgid
= current
->fsgid
;
971 if (security_task_setgid(gid
, (gid_t
)-1, (gid_t
)-1, LSM_SETID_FS
))
974 if (gid
== current
->gid
|| gid
== current
->egid
||
975 gid
== current
->sgid
|| gid
== current
->fsgid
||
978 if (gid
!= old_fsgid
)
980 current
->mm
->dumpable
= suid_dumpable
;
983 current
->fsgid
= gid
;
984 key_fsgid_changed(current
);
985 proc_id_connector(current
, PROC_EVENT_GID
);
990 asmlinkage
long sys_times(struct tms __user
* tbuf
)
993 * In the SMP world we might just be unlucky and have one of
994 * the times increment as we use it. Since the value is an
995 * atomically safe type this is just fine. Conceptually its
996 * as if the syscall took an instant longer to occur.
1000 cputime_t utime
, stime
, cutime
, cstime
;
1003 if (thread_group_empty(current
)) {
1005 * Single thread case without the use of any locks.
1007 * We may race with release_task if two threads are
1008 * executing. However, release task first adds up the
1009 * counters (__exit_signal) before removing the task
1010 * from the process tasklist (__unhash_process).
1011 * __exit_signal also acquires and releases the
1012 * siglock which results in the proper memory ordering
1013 * so that the list modifications are always visible
1014 * after the counters have been updated.
1016 * If the counters have been updated by the second thread
1017 * but the thread has not yet been removed from the list
1018 * then the other branch will be executing which will
1019 * block on tasklist_lock until the exit handling of the
1020 * other task is finished.
1022 * This also implies that the sighand->siglock cannot
1023 * be held by another processor. So we can also
1024 * skip acquiring that lock.
1026 utime
= cputime_add(current
->signal
->utime
, current
->utime
);
1027 stime
= cputime_add(current
->signal
->utime
, current
->stime
);
1028 cutime
= current
->signal
->cutime
;
1029 cstime
= current
->signal
->cstime
;
1034 /* Process with multiple threads */
1035 struct task_struct
*tsk
= current
;
1036 struct task_struct
*t
;
1038 read_lock(&tasklist_lock
);
1039 utime
= tsk
->signal
->utime
;
1040 stime
= tsk
->signal
->stime
;
1043 utime
= cputime_add(utime
, t
->utime
);
1044 stime
= cputime_add(stime
, t
->stime
);
1049 * While we have tasklist_lock read-locked, no dying thread
1050 * can be updating current->signal->[us]time. Instead,
1051 * we got their counts included in the live thread loop.
1052 * However, another thread can come in right now and
1053 * do a wait call that updates current->signal->c[us]time.
1054 * To make sure we always see that pair updated atomically,
1055 * we take the siglock around fetching them.
1057 spin_lock_irq(&tsk
->sighand
->siglock
);
1058 cutime
= tsk
->signal
->cutime
;
1059 cstime
= tsk
->signal
->cstime
;
1060 spin_unlock_irq(&tsk
->sighand
->siglock
);
1061 read_unlock(&tasklist_lock
);
1063 tmp
.tms_utime
= cputime_to_clock_t(utime
);
1064 tmp
.tms_stime
= cputime_to_clock_t(stime
);
1065 tmp
.tms_cutime
= cputime_to_clock_t(cutime
);
1066 tmp
.tms_cstime
= cputime_to_clock_t(cstime
);
1067 if (copy_to_user(tbuf
, &tmp
, sizeof(struct tms
)))
1070 return (long) jiffies_64_to_clock_t(get_jiffies_64());
1074 * This needs some heavy checking ...
1075 * I just haven't the stomach for it. I also don't fully
1076 * understand sessions/pgrp etc. Let somebody who does explain it.
1078 * OK, I think I have the protection semantics right.... this is really
1079 * only important on a multi-user system anyway, to make sure one user
1080 * can't send a signal to a process owned by another. -TYT, 12/12/91
1082 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
1086 asmlinkage
long sys_setpgid(pid_t pid
, pid_t pgid
)
1088 struct task_struct
*p
;
1089 struct task_struct
*group_leader
= current
->group_leader
;
1093 pid
= group_leader
->pid
;
1099 /* From this point forward we keep holding onto the tasklist lock
1100 * so that our parent does not change from under us. -DaveM
1102 write_lock_irq(&tasklist_lock
);
1105 p
= find_task_by_pid(pid
);
1110 if (!thread_group_leader(p
))
1113 if (p
->real_parent
== group_leader
) {
1115 if (p
->signal
->session
!= group_leader
->signal
->session
)
1122 if (p
!= group_leader
)
1127 if (p
->signal
->leader
)
1131 struct task_struct
*p
;
1133 do_each_task_pid(pgid
, PIDTYPE_PGID
, p
) {
1134 if (p
->signal
->session
== group_leader
->signal
->session
)
1136 } while_each_task_pid(pgid
, PIDTYPE_PGID
, p
);
1141 err
= security_task_setpgid(p
, pgid
);
1145 if (process_group(p
) != pgid
) {
1146 detach_pid(p
, PIDTYPE_PGID
);
1147 p
->signal
->pgrp
= pgid
;
1148 attach_pid(p
, PIDTYPE_PGID
, pgid
);
1153 /* All paths lead to here, thus we are safe. -DaveM */
1154 write_unlock_irq(&tasklist_lock
);
1158 asmlinkage
long sys_getpgid(pid_t pid
)
1161 return process_group(current
);
1164 struct task_struct
*p
;
1166 read_lock(&tasklist_lock
);
1167 p
= find_task_by_pid(pid
);
1171 retval
= security_task_getpgid(p
);
1173 retval
= process_group(p
);
1175 read_unlock(&tasklist_lock
);
1180 #ifdef __ARCH_WANT_SYS_GETPGRP
1182 asmlinkage
long sys_getpgrp(void)
1184 /* SMP - assuming writes are word atomic this is fine */
1185 return process_group(current
);
1190 asmlinkage
long sys_getsid(pid_t pid
)
1193 return current
->signal
->session
;
1196 struct task_struct
*p
;
1198 read_lock(&tasklist_lock
);
1199 p
= find_task_by_pid(pid
);
1203 retval
= security_task_getsid(p
);
1205 retval
= p
->signal
->session
;
1207 read_unlock(&tasklist_lock
);
1212 asmlinkage
long sys_setsid(void)
1214 struct task_struct
*group_leader
= current
->group_leader
;
1218 mutex_lock(&tty_mutex
);
1219 write_lock_irq(&tasklist_lock
);
1221 pid
= find_pid(PIDTYPE_PGID
, group_leader
->pid
);
1225 group_leader
->signal
->leader
= 1;
1226 __set_special_pids(group_leader
->pid
, group_leader
->pid
);
1227 group_leader
->signal
->tty
= NULL
;
1228 group_leader
->signal
->tty_old_pgrp
= 0;
1229 err
= process_group(group_leader
);
1231 write_unlock_irq(&tasklist_lock
);
1232 mutex_unlock(&tty_mutex
);
1237 * Supplementary group IDs
1240 /* init to 2 - one for init_task, one to ensure it is never freed */
1241 struct group_info init_groups
= { .usage
= ATOMIC_INIT(2) };
1243 struct group_info
*groups_alloc(int gidsetsize
)
1245 struct group_info
*group_info
;
1249 nblocks
= (gidsetsize
+ NGROUPS_PER_BLOCK
- 1) / NGROUPS_PER_BLOCK
;
1250 /* Make sure we always allocate at least one indirect block pointer */
1251 nblocks
= nblocks
? : 1;
1252 group_info
= kmalloc(sizeof(*group_info
) + nblocks
*sizeof(gid_t
*), GFP_USER
);
1255 group_info
->ngroups
= gidsetsize
;
1256 group_info
->nblocks
= nblocks
;
1257 atomic_set(&group_info
->usage
, 1);
1259 if (gidsetsize
<= NGROUPS_SMALL
) {
1260 group_info
->blocks
[0] = group_info
->small_block
;
1262 for (i
= 0; i
< nblocks
; i
++) {
1264 b
= (void *)__get_free_page(GFP_USER
);
1266 goto out_undo_partial_alloc
;
1267 group_info
->blocks
[i
] = b
;
1272 out_undo_partial_alloc
:
1274 free_page((unsigned long)group_info
->blocks
[i
]);
1280 EXPORT_SYMBOL(groups_alloc
);
1282 void groups_free(struct group_info
*group_info
)
1284 if (group_info
->blocks
[0] != group_info
->small_block
) {
1286 for (i
= 0; i
< group_info
->nblocks
; i
++)
1287 free_page((unsigned long)group_info
->blocks
[i
]);
1292 EXPORT_SYMBOL(groups_free
);
1294 /* export the group_info to a user-space array */
1295 static int groups_to_user(gid_t __user
*grouplist
,
1296 struct group_info
*group_info
)
1299 int count
= group_info
->ngroups
;
1301 for (i
= 0; i
< group_info
->nblocks
; i
++) {
1302 int cp_count
= min(NGROUPS_PER_BLOCK
, count
);
1303 int off
= i
* NGROUPS_PER_BLOCK
;
1304 int len
= cp_count
* sizeof(*grouplist
);
1306 if (copy_to_user(grouplist
+off
, group_info
->blocks
[i
], len
))
1314 /* fill a group_info from a user-space array - it must be allocated already */
1315 static int groups_from_user(struct group_info
*group_info
,
1316 gid_t __user
*grouplist
)
1319 int count
= group_info
->ngroups
;
1321 for (i
= 0; i
< group_info
->nblocks
; i
++) {
1322 int cp_count
= min(NGROUPS_PER_BLOCK
, count
);
1323 int off
= i
* NGROUPS_PER_BLOCK
;
1324 int len
= cp_count
* sizeof(*grouplist
);
1326 if (copy_from_user(group_info
->blocks
[i
], grouplist
+off
, len
))
1334 /* a simple Shell sort */
1335 static void groups_sort(struct group_info
*group_info
)
1337 int base
, max
, stride
;
1338 int gidsetsize
= group_info
->ngroups
;
1340 for (stride
= 1; stride
< gidsetsize
; stride
= 3 * stride
+ 1)
1345 max
= gidsetsize
- stride
;
1346 for (base
= 0; base
< max
; base
++) {
1348 int right
= left
+ stride
;
1349 gid_t tmp
= GROUP_AT(group_info
, right
);
1351 while (left
>= 0 && GROUP_AT(group_info
, left
) > tmp
) {
1352 GROUP_AT(group_info
, right
) =
1353 GROUP_AT(group_info
, left
);
1357 GROUP_AT(group_info
, right
) = tmp
;
1363 /* a simple bsearch */
1364 int groups_search(struct group_info
*group_info
, gid_t grp
)
1366 unsigned int left
, right
;
1372 right
= group_info
->ngroups
;
1373 while (left
< right
) {
1374 unsigned int mid
= (left
+right
)/2;
1375 int cmp
= grp
- GROUP_AT(group_info
, mid
);
1386 /* validate and set current->group_info */
1387 int set_current_groups(struct group_info
*group_info
)
1390 struct group_info
*old_info
;
1392 retval
= security_task_setgroups(group_info
);
1396 groups_sort(group_info
);
1397 get_group_info(group_info
);
1400 old_info
= current
->group_info
;
1401 current
->group_info
= group_info
;
1402 task_unlock(current
);
1404 put_group_info(old_info
);
1409 EXPORT_SYMBOL(set_current_groups
);
1411 asmlinkage
long sys_getgroups(int gidsetsize
, gid_t __user
*grouplist
)
1416 * SMP: Nobody else can change our grouplist. Thus we are
1423 /* no need to grab task_lock here; it cannot change */
1424 i
= current
->group_info
->ngroups
;
1426 if (i
> gidsetsize
) {
1430 if (groups_to_user(grouplist
, current
->group_info
)) {
1440 * SMP: Our groups are copy-on-write. We can set them safely
1441 * without another task interfering.
1444 asmlinkage
long sys_setgroups(int gidsetsize
, gid_t __user
*grouplist
)
1446 struct group_info
*group_info
;
1449 if (!capable(CAP_SETGID
))
1451 if ((unsigned)gidsetsize
> NGROUPS_MAX
)
1454 group_info
= groups_alloc(gidsetsize
);
1457 retval
= groups_from_user(group_info
, grouplist
);
1459 put_group_info(group_info
);
1463 retval
= set_current_groups(group_info
);
1464 put_group_info(group_info
);
1470 * Check whether we're fsgid/egid or in the supplemental group..
1472 int in_group_p(gid_t grp
)
1475 if (grp
!= current
->fsgid
) {
1476 retval
= groups_search(current
->group_info
, grp
);
1481 EXPORT_SYMBOL(in_group_p
);
1483 int in_egroup_p(gid_t grp
)
1486 if (grp
!= current
->egid
) {
1487 retval
= groups_search(current
->group_info
, grp
);
1492 EXPORT_SYMBOL(in_egroup_p
);
1494 DECLARE_RWSEM(uts_sem
);
1496 EXPORT_SYMBOL(uts_sem
);
1498 asmlinkage
long sys_newuname(struct new_utsname __user
* name
)
1502 down_read(&uts_sem
);
1503 if (copy_to_user(name
,&system_utsname
,sizeof *name
))
1509 asmlinkage
long sys_sethostname(char __user
*name
, int len
)
1512 char tmp
[__NEW_UTS_LEN
];
1514 if (!capable(CAP_SYS_ADMIN
))
1516 if (len
< 0 || len
> __NEW_UTS_LEN
)
1518 down_write(&uts_sem
);
1520 if (!copy_from_user(tmp
, name
, len
)) {
1521 memcpy(system_utsname
.nodename
, tmp
, len
);
1522 system_utsname
.nodename
[len
] = 0;
1529 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1531 asmlinkage
long sys_gethostname(char __user
*name
, int len
)
1537 down_read(&uts_sem
);
1538 i
= 1 + strlen(system_utsname
.nodename
);
1542 if (copy_to_user(name
, system_utsname
.nodename
, i
))
1551 * Only setdomainname; getdomainname can be implemented by calling
1554 asmlinkage
long sys_setdomainname(char __user
*name
, int len
)
1557 char tmp
[__NEW_UTS_LEN
];
1559 if (!capable(CAP_SYS_ADMIN
))
1561 if (len
< 0 || len
> __NEW_UTS_LEN
)
1564 down_write(&uts_sem
);
1566 if (!copy_from_user(tmp
, name
, len
)) {
1567 memcpy(system_utsname
.domainname
, tmp
, len
);
1568 system_utsname
.domainname
[len
] = 0;
1575 asmlinkage
long sys_getrlimit(unsigned int resource
, struct rlimit __user
*rlim
)
1577 if (resource
>= RLIM_NLIMITS
)
1580 struct rlimit value
;
1581 task_lock(current
->group_leader
);
1582 value
= current
->signal
->rlim
[resource
];
1583 task_unlock(current
->group_leader
);
1584 return copy_to_user(rlim
, &value
, sizeof(*rlim
)) ? -EFAULT
: 0;
1588 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1591 * Back compatibility for getrlimit. Needed for some apps.
1594 asmlinkage
long sys_old_getrlimit(unsigned int resource
, struct rlimit __user
*rlim
)
1597 if (resource
>= RLIM_NLIMITS
)
1600 task_lock(current
->group_leader
);
1601 x
= current
->signal
->rlim
[resource
];
1602 task_unlock(current
->group_leader
);
1603 if(x
.rlim_cur
> 0x7FFFFFFF)
1604 x
.rlim_cur
= 0x7FFFFFFF;
1605 if(x
.rlim_max
> 0x7FFFFFFF)
1606 x
.rlim_max
= 0x7FFFFFFF;
1607 return copy_to_user(rlim
, &x
, sizeof(x
))?-EFAULT
:0;
1612 asmlinkage
long sys_setrlimit(unsigned int resource
, struct rlimit __user
*rlim
)
1614 struct rlimit new_rlim
, *old_rlim
;
1615 unsigned long it_prof_secs
;
1618 if (resource
>= RLIM_NLIMITS
)
1620 if (copy_from_user(&new_rlim
, rlim
, sizeof(*rlim
)))
1622 if (new_rlim
.rlim_cur
> new_rlim
.rlim_max
)
1624 old_rlim
= current
->signal
->rlim
+ resource
;
1625 if ((new_rlim
.rlim_max
> old_rlim
->rlim_max
) &&
1626 !capable(CAP_SYS_RESOURCE
))
1628 if (resource
== RLIMIT_NOFILE
&& new_rlim
.rlim_max
> NR_OPEN
)
1631 retval
= security_task_setrlimit(resource
, &new_rlim
);
1635 task_lock(current
->group_leader
);
1636 *old_rlim
= new_rlim
;
1637 task_unlock(current
->group_leader
);
1639 if (resource
!= RLIMIT_CPU
)
1643 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1644 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1645 * very long-standing error, and fixing it now risks breakage of
1646 * applications, so we live with it
1648 if (new_rlim
.rlim_cur
== RLIM_INFINITY
)
1651 it_prof_secs
= cputime_to_secs(current
->signal
->it_prof_expires
);
1652 if (it_prof_secs
== 0 || new_rlim
.rlim_cur
<= it_prof_secs
) {
1653 unsigned long rlim_cur
= new_rlim
.rlim_cur
;
1656 if (rlim_cur
== 0) {
1658 * The caller is asking for an immediate RLIMIT_CPU
1659 * expiry. But we use the zero value to mean "it was
1660 * never set". So let's cheat and make it one second
1665 cputime
= secs_to_cputime(rlim_cur
);
1666 read_lock(&tasklist_lock
);
1667 spin_lock_irq(¤t
->sighand
->siglock
);
1668 set_process_cpu_timer(current
, CPUCLOCK_PROF
, &cputime
, NULL
);
1669 spin_unlock_irq(¤t
->sighand
->siglock
);
1670 read_unlock(&tasklist_lock
);
1677 * It would make sense to put struct rusage in the task_struct,
1678 * except that would make the task_struct be *really big*. After
1679 * task_struct gets moved into malloc'ed memory, it would
1680 * make sense to do this. It will make moving the rest of the information
1681 * a lot simpler! (Which we're not doing right now because we're not
1682 * measuring them yet).
1684 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1685 * races with threads incrementing their own counters. But since word
1686 * reads are atomic, we either get new values or old values and we don't
1687 * care which for the sums. We always take the siglock to protect reading
1688 * the c* fields from p->signal from races with exit.c updating those
1689 * fields when reaping, so a sample either gets all the additions of a
1690 * given child after it's reaped, or none so this sample is before reaping.
1692 * tasklist_lock locking optimisation:
1693 * If we are current and single threaded, we do not need to take the tasklist
1694 * lock or the siglock. No one else can take our signal_struct away,
1695 * no one else can reap the children to update signal->c* counters, and
1696 * no one else can race with the signal-> fields.
1697 * If we do not take the tasklist_lock, the signal-> fields could be read
1698 * out of order while another thread was just exiting. So we place a
1699 * read memory barrier when we avoid the lock. On the writer side,
1700 * write memory barrier is implied in __exit_signal as __exit_signal releases
1701 * the siglock spinlock after updating the signal-> fields.
1703 * We don't really need the siglock when we access the non c* fields
1704 * of the signal_struct (for RUSAGE_SELF) even in multithreaded
1705 * case, since we take the tasklist lock for read and the non c* signal->
1706 * fields are updated only in __exit_signal, which is called with
1707 * tasklist_lock taken for write, hence these two threads cannot execute
1712 static void k_getrusage(struct task_struct
*p
, int who
, struct rusage
*r
)
1714 struct task_struct
*t
;
1715 unsigned long flags
;
1716 cputime_t utime
, stime
;
1719 memset((char *) r
, 0, sizeof *r
);
1720 utime
= stime
= cputime_zero
;
1722 if (p
!= current
|| !thread_group_empty(p
))
1726 read_lock(&tasklist_lock
);
1727 if (unlikely(!p
->signal
)) {
1728 read_unlock(&tasklist_lock
);
1732 /* See locking comments above */
1737 case RUSAGE_CHILDREN
:
1738 spin_lock_irqsave(&p
->sighand
->siglock
, flags
);
1739 utime
= p
->signal
->cutime
;
1740 stime
= p
->signal
->cstime
;
1741 r
->ru_nvcsw
= p
->signal
->cnvcsw
;
1742 r
->ru_nivcsw
= p
->signal
->cnivcsw
;
1743 r
->ru_minflt
= p
->signal
->cmin_flt
;
1744 r
->ru_majflt
= p
->signal
->cmaj_flt
;
1745 spin_unlock_irqrestore(&p
->sighand
->siglock
, flags
);
1747 if (who
== RUSAGE_CHILDREN
)
1751 utime
= cputime_add(utime
, p
->signal
->utime
);
1752 stime
= cputime_add(stime
, p
->signal
->stime
);
1753 r
->ru_nvcsw
+= p
->signal
->nvcsw
;
1754 r
->ru_nivcsw
+= p
->signal
->nivcsw
;
1755 r
->ru_minflt
+= p
->signal
->min_flt
;
1756 r
->ru_majflt
+= p
->signal
->maj_flt
;
1759 utime
= cputime_add(utime
, t
->utime
);
1760 stime
= cputime_add(stime
, t
->stime
);
1761 r
->ru_nvcsw
+= t
->nvcsw
;
1762 r
->ru_nivcsw
+= t
->nivcsw
;
1763 r
->ru_minflt
+= t
->min_flt
;
1764 r
->ru_majflt
+= t
->maj_flt
;
1774 read_unlock(&tasklist_lock
);
1775 cputime_to_timeval(utime
, &r
->ru_utime
);
1776 cputime_to_timeval(stime
, &r
->ru_stime
);
1779 int getrusage(struct task_struct
*p
, int who
, struct rusage __user
*ru
)
1782 k_getrusage(p
, who
, &r
);
1783 return copy_to_user(ru
, &r
, sizeof(r
)) ? -EFAULT
: 0;
1786 asmlinkage
long sys_getrusage(int who
, struct rusage __user
*ru
)
1788 if (who
!= RUSAGE_SELF
&& who
!= RUSAGE_CHILDREN
)
1790 return getrusage(current
, who
, ru
);
1793 asmlinkage
long sys_umask(int mask
)
1795 mask
= xchg(¤t
->fs
->umask
, mask
& S_IRWXUGO
);
1799 asmlinkage
long sys_prctl(int option
, unsigned long arg2
, unsigned long arg3
,
1800 unsigned long arg4
, unsigned long arg5
)
1804 error
= security_task_prctl(option
, arg2
, arg3
, arg4
, arg5
);
1809 case PR_SET_PDEATHSIG
:
1810 if (!valid_signal(arg2
)) {
1814 current
->pdeath_signal
= arg2
;
1816 case PR_GET_PDEATHSIG
:
1817 error
= put_user(current
->pdeath_signal
, (int __user
*)arg2
);
1819 case PR_GET_DUMPABLE
:
1820 error
= current
->mm
->dumpable
;
1822 case PR_SET_DUMPABLE
:
1823 if (arg2
< 0 || arg2
> 2) {
1827 current
->mm
->dumpable
= arg2
;
1830 case PR_SET_UNALIGN
:
1831 error
= SET_UNALIGN_CTL(current
, arg2
);
1833 case PR_GET_UNALIGN
:
1834 error
= GET_UNALIGN_CTL(current
, arg2
);
1837 error
= SET_FPEMU_CTL(current
, arg2
);
1840 error
= GET_FPEMU_CTL(current
, arg2
);
1843 error
= SET_FPEXC_CTL(current
, arg2
);
1846 error
= GET_FPEXC_CTL(current
, arg2
);
1849 error
= PR_TIMING_STATISTICAL
;
1852 if (arg2
== PR_TIMING_STATISTICAL
)
1858 case PR_GET_KEEPCAPS
:
1859 if (current
->keep_capabilities
)
1862 case PR_SET_KEEPCAPS
:
1863 if (arg2
!= 0 && arg2
!= 1) {
1867 current
->keep_capabilities
= arg2
;
1870 struct task_struct
*me
= current
;
1871 unsigned char ncomm
[sizeof(me
->comm
)];
1873 ncomm
[sizeof(me
->comm
)-1] = 0;
1874 if (strncpy_from_user(ncomm
, (char __user
*)arg2
,
1875 sizeof(me
->comm
)-1) < 0)
1877 set_task_comm(me
, ncomm
);
1881 struct task_struct
*me
= current
;
1882 unsigned char tcomm
[sizeof(me
->comm
)];
1884 get_task_comm(tcomm
, me
);
1885 if (copy_to_user((char __user
*)arg2
, tcomm
, sizeof(tcomm
)))