sl[au]b: allocate objects from memcg cache
[linux-2.6.git] / drivers / mfd / db8500-prcmu.c
blobdc8826d8d69da0d1ee8c29911dc6c95ade7f1da2
1 /*
2 * Copyright (C) STMicroelectronics 2009
3 * Copyright (C) ST-Ericsson SA 2010
5 * License Terms: GNU General Public License v2
6 * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
7 * Author: Sundar Iyer <sundar.iyer@stericsson.com>
8 * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
10 * U8500 PRCM Unit interface driver
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/delay.h>
16 #include <linux/errno.h>
17 #include <linux/err.h>
18 #include <linux/spinlock.h>
19 #include <linux/io.h>
20 #include <linux/slab.h>
21 #include <linux/mutex.h>
22 #include <linux/completion.h>
23 #include <linux/irq.h>
24 #include <linux/jiffies.h>
25 #include <linux/bitops.h>
26 #include <linux/fs.h>
27 #include <linux/platform_device.h>
28 #include <linux/uaccess.h>
29 #include <linux/mfd/core.h>
30 #include <linux/mfd/dbx500-prcmu.h>
31 #include <linux/mfd/abx500/ab8500.h>
32 #include <linux/regulator/db8500-prcmu.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/cpufreq.h>
35 #include <asm/hardware/gic.h>
36 #include <mach/hardware.h>
37 #include <mach/irqs.h>
38 #include <mach/db8500-regs.h>
39 #include <mach/id.h>
40 #include "dbx500-prcmu-regs.h"
42 /* Offset for the firmware version within the TCPM */
43 #define PRCMU_FW_VERSION_OFFSET 0xA4
45 /* Index of different voltages to be used when accessing AVSData */
46 #define PRCM_AVS_BASE 0x2FC
47 #define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0)
48 #define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1)
49 #define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2)
50 #define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3)
51 #define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4)
52 #define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5)
53 #define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6)
54 #define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7)
55 #define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8)
56 #define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9)
57 #define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA)
58 #define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB)
59 #define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC)
61 #define PRCM_AVS_VOLTAGE 0
62 #define PRCM_AVS_VOLTAGE_MASK 0x3f
63 #define PRCM_AVS_ISSLOWSTARTUP 6
64 #define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP)
65 #define PRCM_AVS_ISMODEENABLE 7
66 #define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE)
68 #define PRCM_BOOT_STATUS 0xFFF
69 #define PRCM_ROMCODE_A2P 0xFFE
70 #define PRCM_ROMCODE_P2A 0xFFD
71 #define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */
73 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
75 #define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */
76 #define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0)
77 #define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1)
78 #define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2)
79 #define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3)
80 #define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4)
81 #define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5)
82 #define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8)
84 /* Req Mailboxes */
85 #define PRCM_REQ_MB0 0xFDC /* 12 bytes */
86 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes */
87 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes */
88 #define PRCM_REQ_MB3 0xE4C /* 372 bytes */
89 #define PRCM_REQ_MB4 0xE48 /* 4 bytes */
90 #define PRCM_REQ_MB5 0xE44 /* 4 bytes */
92 /* Ack Mailboxes */
93 #define PRCM_ACK_MB0 0xE08 /* 52 bytes */
94 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
95 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
96 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
97 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
98 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
100 /* Mailbox 0 headers */
101 #define MB0H_POWER_STATE_TRANS 0
102 #define MB0H_CONFIG_WAKEUPS_EXE 1
103 #define MB0H_READ_WAKEUP_ACK 3
104 #define MB0H_CONFIG_WAKEUPS_SLEEP 4
106 #define MB0H_WAKEUP_EXE 2
107 #define MB0H_WAKEUP_SLEEP 5
109 /* Mailbox 0 REQs */
110 #define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0)
111 #define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1)
112 #define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2)
113 #define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3)
114 #define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4)
115 #define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8)
117 /* Mailbox 0 ACKs */
118 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0)
119 #define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1)
120 #define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4)
121 #define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8)
122 #define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C)
123 #define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20)
124 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
126 /* Mailbox 1 headers */
127 #define MB1H_ARM_APE_OPP 0x0
128 #define MB1H_RESET_MODEM 0x2
129 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
130 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
131 #define MB1H_RELEASE_USB_WAKEUP 0x5
132 #define MB1H_PLL_ON_OFF 0x6
134 /* Mailbox 1 Requests */
135 #define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0)
136 #define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1)
137 #define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4)
138 #define PLL_SOC0_OFF 0x1
139 #define PLL_SOC0_ON 0x2
140 #define PLL_SOC1_OFF 0x4
141 #define PLL_SOC1_ON 0x8
143 /* Mailbox 1 ACKs */
144 #define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0)
145 #define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1)
146 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
147 #define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3)
149 /* Mailbox 2 headers */
150 #define MB2H_DPS 0x0
151 #define MB2H_AUTO_PWR 0x1
153 /* Mailbox 2 REQs */
154 #define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0)
155 #define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1)
156 #define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2)
157 #define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3)
158 #define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4)
159 #define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5)
160 #define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6)
161 #define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7)
162 #define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8)
163 #define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC)
165 /* Mailbox 2 ACKs */
166 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
167 #define HWACC_PWR_ST_OK 0xFE
169 /* Mailbox 3 headers */
170 #define MB3H_ANC 0x0
171 #define MB3H_SIDETONE 0x1
172 #define MB3H_SYSCLK 0xE
174 /* Mailbox 3 Requests */
175 #define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0)
176 #define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20)
177 #define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60)
178 #define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64)
179 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68)
180 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
181 #define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C)
183 /* Mailbox 4 headers */
184 #define MB4H_DDR_INIT 0x0
185 #define MB4H_MEM_ST 0x1
186 #define MB4H_HOTDOG 0x12
187 #define MB4H_HOTMON 0x13
188 #define MB4H_HOT_PERIOD 0x14
189 #define MB4H_A9WDOG_CONF 0x16
190 #define MB4H_A9WDOG_EN 0x17
191 #define MB4H_A9WDOG_DIS 0x18
192 #define MB4H_A9WDOG_LOAD 0x19
193 #define MB4H_A9WDOG_KICK 0x20
195 /* Mailbox 4 Requests */
196 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0)
197 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1)
198 #define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3)
199 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0)
200 #define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0)
201 #define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1)
202 #define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2)
203 #define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0)
204 #define HOTMON_CONFIG_LOW BIT(0)
205 #define HOTMON_CONFIG_HIGH BIT(1)
206 #define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0)
207 #define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1)
208 #define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2)
209 #define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3)
210 #define A9WDOG_AUTO_OFF_EN BIT(7)
211 #define A9WDOG_AUTO_OFF_DIS 0
212 #define A9WDOG_ID_MASK 0xf
214 /* Mailbox 5 Requests */
215 #define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0)
216 #define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1)
217 #define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2)
218 #define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3)
219 #define PRCMU_I2C_WRITE(slave) \
220 (((slave) << 1) | (cpu_is_u8500v2() ? BIT(6) : 0))
221 #define PRCMU_I2C_READ(slave) \
222 (((slave) << 1) | BIT(0) | (cpu_is_u8500v2() ? BIT(6) : 0))
223 #define PRCMU_I2C_STOP_EN BIT(3)
225 /* Mailbox 5 ACKs */
226 #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
227 #define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3)
228 #define I2C_WR_OK 0x1
229 #define I2C_RD_OK 0x2
231 #define NUM_MB 8
232 #define MBOX_BIT BIT
233 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
236 * Wakeups/IRQs
239 #define WAKEUP_BIT_RTC BIT(0)
240 #define WAKEUP_BIT_RTT0 BIT(1)
241 #define WAKEUP_BIT_RTT1 BIT(2)
242 #define WAKEUP_BIT_HSI0 BIT(3)
243 #define WAKEUP_BIT_HSI1 BIT(4)
244 #define WAKEUP_BIT_CA_WAKE BIT(5)
245 #define WAKEUP_BIT_USB BIT(6)
246 #define WAKEUP_BIT_ABB BIT(7)
247 #define WAKEUP_BIT_ABB_FIFO BIT(8)
248 #define WAKEUP_BIT_SYSCLK_OK BIT(9)
249 #define WAKEUP_BIT_CA_SLEEP BIT(10)
250 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
251 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
252 #define WAKEUP_BIT_ANC_OK BIT(13)
253 #define WAKEUP_BIT_SW_ERROR BIT(14)
254 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
255 #define WAKEUP_BIT_ARM BIT(17)
256 #define WAKEUP_BIT_HOTMON_LOW BIT(18)
257 #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
258 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
259 #define WAKEUP_BIT_GPIO0 BIT(23)
260 #define WAKEUP_BIT_GPIO1 BIT(24)
261 #define WAKEUP_BIT_GPIO2 BIT(25)
262 #define WAKEUP_BIT_GPIO3 BIT(26)
263 #define WAKEUP_BIT_GPIO4 BIT(27)
264 #define WAKEUP_BIT_GPIO5 BIT(28)
265 #define WAKEUP_BIT_GPIO6 BIT(29)
266 #define WAKEUP_BIT_GPIO7 BIT(30)
267 #define WAKEUP_BIT_GPIO8 BIT(31)
269 static struct {
270 bool valid;
271 struct prcmu_fw_version version;
272 } fw_info;
274 static struct irq_domain *db8500_irq_domain;
277 * This vector maps irq numbers to the bits in the bit field used in
278 * communication with the PRCMU firmware.
280 * The reason for having this is to keep the irq numbers contiguous even though
281 * the bits in the bit field are not. (The bits also have a tendency to move
282 * around, to further complicate matters.)
284 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name) - IRQ_PRCMU_BASE)
285 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
286 static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
287 IRQ_ENTRY(RTC),
288 IRQ_ENTRY(RTT0),
289 IRQ_ENTRY(RTT1),
290 IRQ_ENTRY(HSI0),
291 IRQ_ENTRY(HSI1),
292 IRQ_ENTRY(CA_WAKE),
293 IRQ_ENTRY(USB),
294 IRQ_ENTRY(ABB),
295 IRQ_ENTRY(ABB_FIFO),
296 IRQ_ENTRY(CA_SLEEP),
297 IRQ_ENTRY(ARM),
298 IRQ_ENTRY(HOTMON_LOW),
299 IRQ_ENTRY(HOTMON_HIGH),
300 IRQ_ENTRY(MODEM_SW_RESET_REQ),
301 IRQ_ENTRY(GPIO0),
302 IRQ_ENTRY(GPIO1),
303 IRQ_ENTRY(GPIO2),
304 IRQ_ENTRY(GPIO3),
305 IRQ_ENTRY(GPIO4),
306 IRQ_ENTRY(GPIO5),
307 IRQ_ENTRY(GPIO6),
308 IRQ_ENTRY(GPIO7),
309 IRQ_ENTRY(GPIO8)
312 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
313 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
314 static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
315 WAKEUP_ENTRY(RTC),
316 WAKEUP_ENTRY(RTT0),
317 WAKEUP_ENTRY(RTT1),
318 WAKEUP_ENTRY(HSI0),
319 WAKEUP_ENTRY(HSI1),
320 WAKEUP_ENTRY(USB),
321 WAKEUP_ENTRY(ABB),
322 WAKEUP_ENTRY(ABB_FIFO),
323 WAKEUP_ENTRY(ARM)
327 * mb0_transfer - state needed for mailbox 0 communication.
328 * @lock: The transaction lock.
329 * @dbb_events_lock: A lock used to handle concurrent access to (parts of)
330 * the request data.
331 * @mask_work: Work structure used for (un)masking wakeup interrupts.
332 * @req: Request data that need to persist between requests.
334 static struct {
335 spinlock_t lock;
336 spinlock_t dbb_irqs_lock;
337 struct work_struct mask_work;
338 struct mutex ac_wake_lock;
339 struct completion ac_wake_work;
340 struct {
341 u32 dbb_irqs;
342 u32 dbb_wakeups;
343 u32 abb_events;
344 } req;
345 } mb0_transfer;
348 * mb1_transfer - state needed for mailbox 1 communication.
349 * @lock: The transaction lock.
350 * @work: The transaction completion structure.
351 * @ape_opp: The current APE OPP.
352 * @ack: Reply ("acknowledge") data.
354 static struct {
355 struct mutex lock;
356 struct completion work;
357 u8 ape_opp;
358 struct {
359 u8 header;
360 u8 arm_opp;
361 u8 ape_opp;
362 u8 ape_voltage_status;
363 } ack;
364 } mb1_transfer;
367 * mb2_transfer - state needed for mailbox 2 communication.
368 * @lock: The transaction lock.
369 * @work: The transaction completion structure.
370 * @auto_pm_lock: The autonomous power management configuration lock.
371 * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
372 * @req: Request data that need to persist between requests.
373 * @ack: Reply ("acknowledge") data.
375 static struct {
376 struct mutex lock;
377 struct completion work;
378 spinlock_t auto_pm_lock;
379 bool auto_pm_enabled;
380 struct {
381 u8 status;
382 } ack;
383 } mb2_transfer;
386 * mb3_transfer - state needed for mailbox 3 communication.
387 * @lock: The request lock.
388 * @sysclk_lock: A lock used to handle concurrent sysclk requests.
389 * @sysclk_work: Work structure used for sysclk requests.
391 static struct {
392 spinlock_t lock;
393 struct mutex sysclk_lock;
394 struct completion sysclk_work;
395 } mb3_transfer;
398 * mb4_transfer - state needed for mailbox 4 communication.
399 * @lock: The transaction lock.
400 * @work: The transaction completion structure.
402 static struct {
403 struct mutex lock;
404 struct completion work;
405 } mb4_transfer;
408 * mb5_transfer - state needed for mailbox 5 communication.
409 * @lock: The transaction lock.
410 * @work: The transaction completion structure.
411 * @ack: Reply ("acknowledge") data.
413 static struct {
414 struct mutex lock;
415 struct completion work;
416 struct {
417 u8 status;
418 u8 value;
419 } ack;
420 } mb5_transfer;
422 static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
424 /* Spinlocks */
425 static DEFINE_SPINLOCK(prcmu_lock);
426 static DEFINE_SPINLOCK(clkout_lock);
428 /* Global var to runtime determine TCDM base for v2 or v1 */
429 static __iomem void *tcdm_base;
431 struct clk_mgt {
432 void __iomem *reg;
433 u32 pllsw;
434 int branch;
435 bool clk38div;
438 enum {
439 PLL_RAW,
440 PLL_FIX,
441 PLL_DIV
444 static DEFINE_SPINLOCK(clk_mgt_lock);
446 #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
447 { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
448 struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
449 CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
450 CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
451 CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
452 CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
453 CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
454 CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
455 CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
456 CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
457 CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
458 CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
459 CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
460 CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
461 CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
462 CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
463 CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
464 CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
465 CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
466 CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
467 CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
468 CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
469 CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
470 CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
471 CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
472 CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
473 CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
474 CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
475 CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
476 CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
477 CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
480 struct dsiclk {
481 u32 divsel_mask;
482 u32 divsel_shift;
483 u32 divsel;
486 static struct dsiclk dsiclk[2] = {
488 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
489 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
490 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
493 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
494 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
495 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
499 struct dsiescclk {
500 u32 en;
501 u32 div_mask;
502 u32 div_shift;
505 static struct dsiescclk dsiescclk[3] = {
507 .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
508 .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
509 .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
512 .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
513 .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
514 .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
517 .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
518 .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
519 .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
525 * Used by MCDE to setup all necessary PRCMU registers
527 #define PRCMU_RESET_DSIPLL 0x00004000
528 #define PRCMU_UNCLAMP_DSIPLL 0x00400800
530 #define PRCMU_CLK_PLL_DIV_SHIFT 0
531 #define PRCMU_CLK_PLL_SW_SHIFT 5
532 #define PRCMU_CLK_38 (1 << 9)
533 #define PRCMU_CLK_38_SRC (1 << 10)
534 #define PRCMU_CLK_38_DIV (1 << 11)
536 /* PLLDIV=12, PLLSW=4 (PLLDDR) */
537 #define PRCMU_DSI_CLOCK_SETTING 0x0000008C
539 /* DPI 50000000 Hz */
540 #define PRCMU_DPI_CLOCK_SETTING ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
541 (16 << PRCMU_CLK_PLL_DIV_SHIFT))
542 #define PRCMU_DSI_LP_CLOCK_SETTING 0x00000E00
544 /* D=101, N=1, R=4, SELDIV2=0 */
545 #define PRCMU_PLLDSI_FREQ_SETTING 0x00040165
547 #define PRCMU_ENABLE_PLLDSI 0x00000001
548 #define PRCMU_DISABLE_PLLDSI 0x00000000
549 #define PRCMU_RELEASE_RESET_DSS 0x0000400C
550 #define PRCMU_DSI_PLLOUT_SEL_SETTING 0x00000202
551 /* ESC clk, div0=1, div1=1, div2=3 */
552 #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV 0x07030101
553 #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV 0x00030101
554 #define PRCMU_DSI_RESET_SW 0x00000007
556 #define PRCMU_PLLDSI_LOCKP_LOCKED 0x3
558 int db8500_prcmu_enable_dsipll(void)
560 int i;
562 /* Clear DSIPLL_RESETN */
563 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
564 /* Unclamp DSIPLL in/out */
565 writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
567 /* Set DSI PLL FREQ */
568 writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
569 writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
570 /* Enable Escape clocks */
571 writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
573 /* Start DSI PLL */
574 writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
575 /* Reset DSI PLL */
576 writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
577 for (i = 0; i < 10; i++) {
578 if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
579 == PRCMU_PLLDSI_LOCKP_LOCKED)
580 break;
581 udelay(100);
583 /* Set DSIPLL_RESETN */
584 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
585 return 0;
588 int db8500_prcmu_disable_dsipll(void)
590 /* Disable dsi pll */
591 writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
592 /* Disable escapeclock */
593 writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
594 return 0;
597 int db8500_prcmu_set_display_clocks(void)
599 unsigned long flags;
601 spin_lock_irqsave(&clk_mgt_lock, flags);
603 /* Grab the HW semaphore. */
604 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
605 cpu_relax();
607 writel(PRCMU_DSI_CLOCK_SETTING, PRCM_HDMICLK_MGT);
608 writel(PRCMU_DSI_LP_CLOCK_SETTING, PRCM_TVCLK_MGT);
609 writel(PRCMU_DPI_CLOCK_SETTING, PRCM_LCDCLK_MGT);
611 /* Release the HW semaphore. */
612 writel(0, PRCM_SEM);
614 spin_unlock_irqrestore(&clk_mgt_lock, flags);
616 return 0;
619 u32 db8500_prcmu_read(unsigned int reg)
621 return readl(_PRCMU_BASE + reg);
624 void db8500_prcmu_write(unsigned int reg, u32 value)
626 unsigned long flags;
628 spin_lock_irqsave(&prcmu_lock, flags);
629 writel(value, (_PRCMU_BASE + reg));
630 spin_unlock_irqrestore(&prcmu_lock, flags);
633 void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
635 u32 val;
636 unsigned long flags;
638 spin_lock_irqsave(&prcmu_lock, flags);
639 val = readl(_PRCMU_BASE + reg);
640 val = ((val & ~mask) | (value & mask));
641 writel(val, (_PRCMU_BASE + reg));
642 spin_unlock_irqrestore(&prcmu_lock, flags);
645 struct prcmu_fw_version *prcmu_get_fw_version(void)
647 return fw_info.valid ? &fw_info.version : NULL;
650 bool prcmu_has_arm_maxopp(void)
652 return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
653 PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
657 * prcmu_get_boot_status - PRCMU boot status checking
658 * Returns: the current PRCMU boot status
660 int prcmu_get_boot_status(void)
662 return readb(tcdm_base + PRCM_BOOT_STATUS);
666 * prcmu_set_rc_a2p - This function is used to run few power state sequences
667 * @val: Value to be set, i.e. transition requested
668 * Returns: 0 on success, -EINVAL on invalid argument
670 * This function is used to run the following power state sequences -
671 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
673 int prcmu_set_rc_a2p(enum romcode_write val)
675 if (val < RDY_2_DS || val > RDY_2_XP70_RST)
676 return -EINVAL;
677 writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
678 return 0;
682 * prcmu_get_rc_p2a - This function is used to get power state sequences
683 * Returns: the power transition that has last happened
685 * This function can return the following transitions-
686 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
688 enum romcode_read prcmu_get_rc_p2a(void)
690 return readb(tcdm_base + PRCM_ROMCODE_P2A);
694 * prcmu_get_current_mode - Return the current XP70 power mode
695 * Returns: Returns the current AP(ARM) power mode: init,
696 * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
698 enum ap_pwrst prcmu_get_xp70_current_state(void)
700 return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
704 * prcmu_config_clkout - Configure one of the programmable clock outputs.
705 * @clkout: The CLKOUT number (0 or 1).
706 * @source: The clock to be used (one of the PRCMU_CLKSRC_*).
707 * @div: The divider to be applied.
709 * Configures one of the programmable clock outputs (CLKOUTs).
710 * @div should be in the range [1,63] to request a configuration, or 0 to
711 * inform that the configuration is no longer requested.
713 int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
715 static int requests[2];
716 int r = 0;
717 unsigned long flags;
718 u32 val;
719 u32 bits;
720 u32 mask;
721 u32 div_mask;
723 BUG_ON(clkout > 1);
724 BUG_ON(div > 63);
725 BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
727 if (!div && !requests[clkout])
728 return -EINVAL;
730 switch (clkout) {
731 case 0:
732 div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
733 mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
734 bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
735 (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
736 break;
737 case 1:
738 div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
739 mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
740 PRCM_CLKOCR_CLK1TYPE);
741 bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
742 (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
743 break;
745 bits &= mask;
747 spin_lock_irqsave(&clkout_lock, flags);
749 val = readl(PRCM_CLKOCR);
750 if (val & div_mask) {
751 if (div) {
752 if ((val & mask) != bits) {
753 r = -EBUSY;
754 goto unlock_and_return;
756 } else {
757 if ((val & mask & ~div_mask) != bits) {
758 r = -EINVAL;
759 goto unlock_and_return;
763 writel((bits | (val & ~mask)), PRCM_CLKOCR);
764 requests[clkout] += (div ? 1 : -1);
766 unlock_and_return:
767 spin_unlock_irqrestore(&clkout_lock, flags);
769 return r;
772 int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
774 unsigned long flags;
776 BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
778 spin_lock_irqsave(&mb0_transfer.lock, flags);
780 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
781 cpu_relax();
783 writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
784 writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
785 writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
786 writeb((keep_ulp_clk ? 1 : 0),
787 (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
788 writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
789 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
791 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
793 return 0;
796 u8 db8500_prcmu_get_power_state_result(void)
798 return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
801 /* This function decouple the gic from the prcmu */
802 int db8500_prcmu_gic_decouple(void)
804 u32 val = readl(PRCM_A9_MASK_REQ);
806 /* Set bit 0 register value to 1 */
807 writel(val | PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ,
808 PRCM_A9_MASK_REQ);
810 /* Make sure the register is updated */
811 readl(PRCM_A9_MASK_REQ);
813 /* Wait a few cycles for the gic mask completion */
814 udelay(1);
816 return 0;
819 /* This function recouple the gic with the prcmu */
820 int db8500_prcmu_gic_recouple(void)
822 u32 val = readl(PRCM_A9_MASK_REQ);
824 /* Set bit 0 register value to 0 */
825 writel(val & ~PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ, PRCM_A9_MASK_REQ);
827 return 0;
830 #define PRCMU_GIC_NUMBER_REGS 5
833 * This function checks if there are pending irq on the gic. It only
834 * makes sense if the gic has been decoupled before with the
835 * db8500_prcmu_gic_decouple function. Disabling an interrupt only
836 * disables the forwarding of the interrupt to any CPU interface. It
837 * does not prevent the interrupt from changing state, for example
838 * becoming pending, or active and pending if it is already
839 * active. Hence, we have to check the interrupt is pending *and* is
840 * active.
842 bool db8500_prcmu_gic_pending_irq(void)
844 u32 pr; /* Pending register */
845 u32 er; /* Enable register */
846 void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE);
847 int i;
849 /* 5 registers. STI & PPI not skipped */
850 for (i = 0; i < PRCMU_GIC_NUMBER_REGS; i++) {
852 pr = readl_relaxed(dist_base + GIC_DIST_PENDING_SET + i * 4);
853 er = readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
855 if (pr & er)
856 return true; /* There is a pending interrupt */
859 return false;
863 * This function checks if there are pending interrupt on the
864 * prcmu which has been delegated to monitor the irqs with the
865 * db8500_prcmu_copy_gic_settings function.
867 bool db8500_prcmu_pending_irq(void)
869 u32 it, im;
870 int i;
872 for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) {
873 it = readl(PRCM_ARMITVAL31TO0 + i * 4);
874 im = readl(PRCM_ARMITMSK31TO0 + i * 4);
875 if (it & im)
876 return true; /* There is a pending interrupt */
879 return false;
883 * This function checks if the specified cpu is in in WFI. It's usage
884 * makes sense only if the gic is decoupled with the db8500_prcmu_gic_decouple
885 * function. Of course passing smp_processor_id() to this function will
886 * always return false...
888 bool db8500_prcmu_is_cpu_in_wfi(int cpu)
890 return readl(PRCM_ARM_WFI_STANDBY) & cpu ? PRCM_ARM_WFI_STANDBY_WFI1 :
891 PRCM_ARM_WFI_STANDBY_WFI0;
895 * This function copies the gic SPI settings to the prcmu in order to
896 * monitor them and abort/finish the retention/off sequence or state.
898 int db8500_prcmu_copy_gic_settings(void)
900 u32 er; /* Enable register */
901 void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE);
902 int i;
904 /* We skip the STI and PPI */
905 for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) {
906 er = readl_relaxed(dist_base +
907 GIC_DIST_ENABLE_SET + (i + 1) * 4);
908 writel(er, PRCM_ARMITMSK31TO0 + i * 4);
911 return 0;
914 /* This function should only be called while mb0_transfer.lock is held. */
915 static void config_wakeups(void)
917 const u8 header[2] = {
918 MB0H_CONFIG_WAKEUPS_EXE,
919 MB0H_CONFIG_WAKEUPS_SLEEP
921 static u32 last_dbb_events;
922 static u32 last_abb_events;
923 u32 dbb_events;
924 u32 abb_events;
925 unsigned int i;
927 dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
928 dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
930 abb_events = mb0_transfer.req.abb_events;
932 if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
933 return;
935 for (i = 0; i < 2; i++) {
936 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
937 cpu_relax();
938 writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
939 writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
940 writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
941 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
943 last_dbb_events = dbb_events;
944 last_abb_events = abb_events;
947 void db8500_prcmu_enable_wakeups(u32 wakeups)
949 unsigned long flags;
950 u32 bits;
951 int i;
953 BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
955 for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
956 if (wakeups & BIT(i))
957 bits |= prcmu_wakeup_bit[i];
960 spin_lock_irqsave(&mb0_transfer.lock, flags);
962 mb0_transfer.req.dbb_wakeups = bits;
963 config_wakeups();
965 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
968 void db8500_prcmu_config_abb_event_readout(u32 abb_events)
970 unsigned long flags;
972 spin_lock_irqsave(&mb0_transfer.lock, flags);
974 mb0_transfer.req.abb_events = abb_events;
975 config_wakeups();
977 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
980 void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
982 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
983 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
984 else
985 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
989 * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
990 * @opp: The new ARM operating point to which transition is to be made
991 * Returns: 0 on success, non-zero on failure
993 * This function sets the the operating point of the ARM.
995 int db8500_prcmu_set_arm_opp(u8 opp)
997 int r;
999 if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
1000 return -EINVAL;
1002 r = 0;
1004 mutex_lock(&mb1_transfer.lock);
1006 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1007 cpu_relax();
1009 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1010 writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1011 writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
1013 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1014 wait_for_completion(&mb1_transfer.work);
1016 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1017 (mb1_transfer.ack.arm_opp != opp))
1018 r = -EIO;
1020 mutex_unlock(&mb1_transfer.lock);
1022 return r;
1026 * db8500_prcmu_get_arm_opp - get the current ARM OPP
1028 * Returns: the current ARM OPP
1030 int db8500_prcmu_get_arm_opp(void)
1032 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
1036 * db8500_prcmu_get_ddr_opp - get the current DDR OPP
1038 * Returns: the current DDR OPP
1040 int db8500_prcmu_get_ddr_opp(void)
1042 return readb(PRCM_DDR_SUBSYS_APE_MINBW);
1046 * db8500_set_ddr_opp - set the appropriate DDR OPP
1047 * @opp: The new DDR operating point to which transition is to be made
1048 * Returns: 0 on success, non-zero on failure
1050 * This function sets the operating point of the DDR.
1052 int db8500_prcmu_set_ddr_opp(u8 opp)
1054 if (opp < DDR_100_OPP || opp > DDR_25_OPP)
1055 return -EINVAL;
1056 /* Changing the DDR OPP can hang the hardware pre-v21 */
1057 if (cpu_is_u8500v20_or_later() && !cpu_is_u8500v20())
1058 writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW);
1060 return 0;
1063 /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
1064 static void request_even_slower_clocks(bool enable)
1066 void __iomem *clock_reg[] = {
1067 PRCM_ACLK_MGT,
1068 PRCM_DMACLK_MGT
1070 unsigned long flags;
1071 unsigned int i;
1073 spin_lock_irqsave(&clk_mgt_lock, flags);
1075 /* Grab the HW semaphore. */
1076 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1077 cpu_relax();
1079 for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
1080 u32 val;
1081 u32 div;
1083 val = readl(clock_reg[i]);
1084 div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
1085 if (enable) {
1086 if ((div <= 1) || (div > 15)) {
1087 pr_err("prcmu: Bad clock divider %d in %s\n",
1088 div, __func__);
1089 goto unlock_and_return;
1091 div <<= 1;
1092 } else {
1093 if (div <= 2)
1094 goto unlock_and_return;
1095 div >>= 1;
1097 val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
1098 (div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
1099 writel(val, clock_reg[i]);
1102 unlock_and_return:
1103 /* Release the HW semaphore. */
1104 writel(0, PRCM_SEM);
1106 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1110 * db8500_set_ape_opp - set the appropriate APE OPP
1111 * @opp: The new APE operating point to which transition is to be made
1112 * Returns: 0 on success, non-zero on failure
1114 * This function sets the operating point of the APE.
1116 int db8500_prcmu_set_ape_opp(u8 opp)
1118 int r = 0;
1120 if (opp == mb1_transfer.ape_opp)
1121 return 0;
1123 mutex_lock(&mb1_transfer.lock);
1125 if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
1126 request_even_slower_clocks(false);
1128 if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
1129 goto skip_message;
1131 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1132 cpu_relax();
1134 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1135 writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1136 writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
1137 (tcdm_base + PRCM_REQ_MB1_APE_OPP));
1139 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1140 wait_for_completion(&mb1_transfer.work);
1142 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1143 (mb1_transfer.ack.ape_opp != opp))
1144 r = -EIO;
1146 skip_message:
1147 if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
1148 (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
1149 request_even_slower_clocks(true);
1150 if (!r)
1151 mb1_transfer.ape_opp = opp;
1153 mutex_unlock(&mb1_transfer.lock);
1155 return r;
1159 * db8500_prcmu_get_ape_opp - get the current APE OPP
1161 * Returns: the current APE OPP
1163 int db8500_prcmu_get_ape_opp(void)
1165 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
1169 * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
1170 * @enable: true to request the higher voltage, false to drop a request.
1172 * Calls to this function to enable and disable requests must be balanced.
1174 int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
1176 int r = 0;
1177 u8 header;
1178 static unsigned int requests;
1180 mutex_lock(&mb1_transfer.lock);
1182 if (enable) {
1183 if (0 != requests++)
1184 goto unlock_and_return;
1185 header = MB1H_REQUEST_APE_OPP_100_VOLT;
1186 } else {
1187 if (requests == 0) {
1188 r = -EIO;
1189 goto unlock_and_return;
1190 } else if (1 != requests--) {
1191 goto unlock_and_return;
1193 header = MB1H_RELEASE_APE_OPP_100_VOLT;
1196 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1197 cpu_relax();
1199 writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1201 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1202 wait_for_completion(&mb1_transfer.work);
1204 if ((mb1_transfer.ack.header != header) ||
1205 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1206 r = -EIO;
1208 unlock_and_return:
1209 mutex_unlock(&mb1_transfer.lock);
1211 return r;
1215 * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1217 * This function releases the power state requirements of a USB wakeup.
1219 int prcmu_release_usb_wakeup_state(void)
1221 int r = 0;
1223 mutex_lock(&mb1_transfer.lock);
1225 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1226 cpu_relax();
1228 writeb(MB1H_RELEASE_USB_WAKEUP,
1229 (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1231 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1232 wait_for_completion(&mb1_transfer.work);
1234 if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1235 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1236 r = -EIO;
1238 mutex_unlock(&mb1_transfer.lock);
1240 return r;
1243 static int request_pll(u8 clock, bool enable)
1245 int r = 0;
1247 if (clock == PRCMU_PLLSOC0)
1248 clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1249 else if (clock == PRCMU_PLLSOC1)
1250 clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1251 else
1252 return -EINVAL;
1254 mutex_lock(&mb1_transfer.lock);
1256 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1257 cpu_relax();
1259 writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1260 writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1262 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1263 wait_for_completion(&mb1_transfer.work);
1265 if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1266 r = -EIO;
1268 mutex_unlock(&mb1_transfer.lock);
1270 return r;
1274 * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1275 * @epod_id: The EPOD to set
1276 * @epod_state: The new EPOD state
1278 * This function sets the state of a EPOD (power domain). It may not be called
1279 * from interrupt context.
1281 int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1283 int r = 0;
1284 bool ram_retention = false;
1285 int i;
1287 /* check argument */
1288 BUG_ON(epod_id >= NUM_EPOD_ID);
1290 /* set flag if retention is possible */
1291 switch (epod_id) {
1292 case EPOD_ID_SVAMMDSP:
1293 case EPOD_ID_SIAMMDSP:
1294 case EPOD_ID_ESRAM12:
1295 case EPOD_ID_ESRAM34:
1296 ram_retention = true;
1297 break;
1300 /* check argument */
1301 BUG_ON(epod_state > EPOD_STATE_ON);
1302 BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1304 /* get lock */
1305 mutex_lock(&mb2_transfer.lock);
1307 /* wait for mailbox */
1308 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1309 cpu_relax();
1311 /* fill in mailbox */
1312 for (i = 0; i < NUM_EPOD_ID; i++)
1313 writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1314 writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1316 writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1318 writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1321 * The current firmware version does not handle errors correctly,
1322 * and we cannot recover if there is an error.
1323 * This is expected to change when the firmware is updated.
1325 if (!wait_for_completion_timeout(&mb2_transfer.work,
1326 msecs_to_jiffies(20000))) {
1327 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1328 __func__);
1329 r = -EIO;
1330 goto unlock_and_return;
1333 if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1334 r = -EIO;
1336 unlock_and_return:
1337 mutex_unlock(&mb2_transfer.lock);
1338 return r;
1342 * prcmu_configure_auto_pm - Configure autonomous power management.
1343 * @sleep: Configuration for ApSleep.
1344 * @idle: Configuration for ApIdle.
1346 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1347 struct prcmu_auto_pm_config *idle)
1349 u32 sleep_cfg;
1350 u32 idle_cfg;
1351 unsigned long flags;
1353 BUG_ON((sleep == NULL) || (idle == NULL));
1355 sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1356 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1357 sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1358 sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1359 sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1360 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1362 idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1363 idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1364 idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1365 idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1366 idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1367 idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1369 spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1372 * The autonomous power management configuration is done through
1373 * fields in mailbox 2, but these fields are only used as shared
1374 * variables - i.e. there is no need to send a message.
1376 writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1377 writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1379 mb2_transfer.auto_pm_enabled =
1380 ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1381 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1382 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1383 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1385 spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1387 EXPORT_SYMBOL(prcmu_configure_auto_pm);
1389 bool prcmu_is_auto_pm_enabled(void)
1391 return mb2_transfer.auto_pm_enabled;
1394 static int request_sysclk(bool enable)
1396 int r;
1397 unsigned long flags;
1399 r = 0;
1401 mutex_lock(&mb3_transfer.sysclk_lock);
1403 spin_lock_irqsave(&mb3_transfer.lock, flags);
1405 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1406 cpu_relax();
1408 writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1410 writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1411 writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
1413 spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1416 * The firmware only sends an ACK if we want to enable the
1417 * SysClk, and it succeeds.
1419 if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1420 msecs_to_jiffies(20000))) {
1421 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1422 __func__);
1423 r = -EIO;
1426 mutex_unlock(&mb3_transfer.sysclk_lock);
1428 return r;
1431 static int request_timclk(bool enable)
1433 u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1435 if (!enable)
1436 val |= PRCM_TCR_STOP_TIMERS;
1437 writel(val, PRCM_TCR);
1439 return 0;
1442 static int request_clock(u8 clock, bool enable)
1444 u32 val;
1445 unsigned long flags;
1447 spin_lock_irqsave(&clk_mgt_lock, flags);
1449 /* Grab the HW semaphore. */
1450 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1451 cpu_relax();
1453 val = readl(clk_mgt[clock].reg);
1454 if (enable) {
1455 val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1456 } else {
1457 clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1458 val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1460 writel(val, clk_mgt[clock].reg);
1462 /* Release the HW semaphore. */
1463 writel(0, PRCM_SEM);
1465 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1467 return 0;
1470 static int request_sga_clock(u8 clock, bool enable)
1472 u32 val;
1473 int ret;
1475 if (enable) {
1476 val = readl(PRCM_CGATING_BYPASS);
1477 writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1480 ret = request_clock(clock, enable);
1482 if (!ret && !enable) {
1483 val = readl(PRCM_CGATING_BYPASS);
1484 writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1487 return ret;
1490 static inline bool plldsi_locked(void)
1492 return (readl(PRCM_PLLDSI_LOCKP) &
1493 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1494 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1495 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1496 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1499 static int request_plldsi(bool enable)
1501 int r = 0;
1502 u32 val;
1504 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1505 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1506 PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1508 val = readl(PRCM_PLLDSI_ENABLE);
1509 if (enable)
1510 val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1511 else
1512 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1513 writel(val, PRCM_PLLDSI_ENABLE);
1515 if (enable) {
1516 unsigned int i;
1517 bool locked = plldsi_locked();
1519 for (i = 10; !locked && (i > 0); --i) {
1520 udelay(100);
1521 locked = plldsi_locked();
1523 if (locked) {
1524 writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1525 PRCM_APE_RESETN_SET);
1526 } else {
1527 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1528 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1529 PRCM_MMIP_LS_CLAMP_SET);
1530 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1531 writel(val, PRCM_PLLDSI_ENABLE);
1532 r = -EAGAIN;
1534 } else {
1535 writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1537 return r;
1540 static int request_dsiclk(u8 n, bool enable)
1542 u32 val;
1544 val = readl(PRCM_DSI_PLLOUT_SEL);
1545 val &= ~dsiclk[n].divsel_mask;
1546 val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1547 dsiclk[n].divsel_shift);
1548 writel(val, PRCM_DSI_PLLOUT_SEL);
1549 return 0;
1552 static int request_dsiescclk(u8 n, bool enable)
1554 u32 val;
1556 val = readl(PRCM_DSITVCLK_DIV);
1557 enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1558 writel(val, PRCM_DSITVCLK_DIV);
1559 return 0;
1563 * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1564 * @clock: The clock for which the request is made.
1565 * @enable: Whether the clock should be enabled (true) or disabled (false).
1567 * This function should only be used by the clock implementation.
1568 * Do not use it from any other place!
1570 int db8500_prcmu_request_clock(u8 clock, bool enable)
1572 if (clock == PRCMU_SGACLK)
1573 return request_sga_clock(clock, enable);
1574 else if (clock < PRCMU_NUM_REG_CLOCKS)
1575 return request_clock(clock, enable);
1576 else if (clock == PRCMU_TIMCLK)
1577 return request_timclk(enable);
1578 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1579 return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1580 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1581 return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1582 else if (clock == PRCMU_PLLDSI)
1583 return request_plldsi(enable);
1584 else if (clock == PRCMU_SYSCLK)
1585 return request_sysclk(enable);
1586 else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
1587 return request_pll(clock, enable);
1588 else
1589 return -EINVAL;
1592 static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1593 int branch)
1595 u64 rate;
1596 u32 val;
1597 u32 d;
1598 u32 div = 1;
1600 val = readl(reg);
1602 rate = src_rate;
1603 rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1605 d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1606 if (d > 1)
1607 div *= d;
1609 d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1610 if (d > 1)
1611 div *= d;
1613 if (val & PRCM_PLL_FREQ_SELDIV2)
1614 div *= 2;
1616 if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1617 (val & PRCM_PLL_FREQ_DIV2EN) &&
1618 ((reg == PRCM_PLLSOC0_FREQ) ||
1619 (reg == PRCM_PLLARM_FREQ) ||
1620 (reg == PRCM_PLLDDR_FREQ))))
1621 div *= 2;
1623 (void)do_div(rate, div);
1625 return (unsigned long)rate;
1628 #define ROOT_CLOCK_RATE 38400000
1630 static unsigned long clock_rate(u8 clock)
1632 u32 val;
1633 u32 pllsw;
1634 unsigned long rate = ROOT_CLOCK_RATE;
1636 val = readl(clk_mgt[clock].reg);
1638 if (val & PRCM_CLK_MGT_CLK38) {
1639 if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1640 rate /= 2;
1641 return rate;
1644 val |= clk_mgt[clock].pllsw;
1645 pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1647 if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1648 rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1649 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1650 rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1651 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1652 rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1653 else
1654 return 0;
1656 if ((clock == PRCMU_SGACLK) &&
1657 (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1658 u64 r = (rate * 10);
1660 (void)do_div(r, 25);
1661 return (unsigned long)r;
1663 val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1664 if (val)
1665 return rate / val;
1666 else
1667 return 0;
1670 static unsigned long armss_rate(void)
1672 u32 r;
1673 unsigned long rate;
1675 r = readl(PRCM_ARM_CHGCLKREQ);
1677 if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
1678 /* External ARMCLKFIX clock */
1680 rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1682 /* Check PRCM_ARM_CHGCLKREQ divider */
1683 if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
1684 rate /= 2;
1686 /* Check PRCM_ARMCLKFIX_MGT divider */
1687 r = readl(PRCM_ARMCLKFIX_MGT);
1688 r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1689 rate /= r;
1691 } else {/* ARM PLL */
1692 rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1695 return rate;
1698 static unsigned long dsiclk_rate(u8 n)
1700 u32 divsel;
1701 u32 div = 1;
1703 divsel = readl(PRCM_DSI_PLLOUT_SEL);
1704 divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1706 if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1707 divsel = dsiclk[n].divsel;
1709 switch (divsel) {
1710 case PRCM_DSI_PLLOUT_SEL_PHI_4:
1711 div *= 2;
1712 case PRCM_DSI_PLLOUT_SEL_PHI_2:
1713 div *= 2;
1714 case PRCM_DSI_PLLOUT_SEL_PHI:
1715 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1716 PLL_RAW) / div;
1717 default:
1718 return 0;
1722 static unsigned long dsiescclk_rate(u8 n)
1724 u32 div;
1726 div = readl(PRCM_DSITVCLK_DIV);
1727 div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1728 return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1731 unsigned long prcmu_clock_rate(u8 clock)
1733 if (clock < PRCMU_NUM_REG_CLOCKS)
1734 return clock_rate(clock);
1735 else if (clock == PRCMU_TIMCLK)
1736 return ROOT_CLOCK_RATE / 16;
1737 else if (clock == PRCMU_SYSCLK)
1738 return ROOT_CLOCK_RATE;
1739 else if (clock == PRCMU_PLLSOC0)
1740 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1741 else if (clock == PRCMU_PLLSOC1)
1742 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1743 else if (clock == PRCMU_ARMSS)
1744 return armss_rate();
1745 else if (clock == PRCMU_PLLDDR)
1746 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1747 else if (clock == PRCMU_PLLDSI)
1748 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1749 PLL_RAW);
1750 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1751 return dsiclk_rate(clock - PRCMU_DSI0CLK);
1752 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1753 return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1754 else
1755 return 0;
1758 static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1760 if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1761 return ROOT_CLOCK_RATE;
1762 clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1763 if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1764 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1765 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1766 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1767 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1768 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1769 else
1770 return 0;
1773 static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1775 u32 div;
1777 div = (src_rate / rate);
1778 if (div == 0)
1779 return 1;
1780 if (rate < (src_rate / div))
1781 div++;
1782 return div;
1785 static long round_clock_rate(u8 clock, unsigned long rate)
1787 u32 val;
1788 u32 div;
1789 unsigned long src_rate;
1790 long rounded_rate;
1792 val = readl(clk_mgt[clock].reg);
1793 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1794 clk_mgt[clock].branch);
1795 div = clock_divider(src_rate, rate);
1796 if (val & PRCM_CLK_MGT_CLK38) {
1797 if (clk_mgt[clock].clk38div) {
1798 if (div > 2)
1799 div = 2;
1800 } else {
1801 div = 1;
1803 } else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1804 u64 r = (src_rate * 10);
1806 (void)do_div(r, 25);
1807 if (r <= rate)
1808 return (unsigned long)r;
1810 rounded_rate = (src_rate / min(div, (u32)31));
1812 return rounded_rate;
1815 /* CPU FREQ table, may be changed due to if MAX_OPP is supported. */
1816 static struct cpufreq_frequency_table db8500_cpufreq_table[] = {
1817 { .frequency = 200000, .index = ARM_EXTCLK,},
1818 { .frequency = 400000, .index = ARM_50_OPP,},
1819 { .frequency = 800000, .index = ARM_100_OPP,},
1820 { .frequency = CPUFREQ_TABLE_END,}, /* To be used for MAX_OPP. */
1821 { .frequency = CPUFREQ_TABLE_END,},
1824 static long round_armss_rate(unsigned long rate)
1826 long freq = 0;
1827 int i = 0;
1829 /* cpufreq table frequencies is in KHz. */
1830 rate = rate / 1000;
1832 /* Find the corresponding arm opp from the cpufreq table. */
1833 while (db8500_cpufreq_table[i].frequency != CPUFREQ_TABLE_END) {
1834 freq = db8500_cpufreq_table[i].frequency;
1835 if (freq == rate)
1836 break;
1837 i++;
1840 /* Return the last valid value, even if a match was not found. */
1841 return freq * 1000;
1844 #define MIN_PLL_VCO_RATE 600000000ULL
1845 #define MAX_PLL_VCO_RATE 1680640000ULL
1847 static long round_plldsi_rate(unsigned long rate)
1849 long rounded_rate = 0;
1850 unsigned long src_rate;
1851 unsigned long rem;
1852 u32 r;
1854 src_rate = clock_rate(PRCMU_HDMICLK);
1855 rem = rate;
1857 for (r = 7; (rem > 0) && (r > 0); r--) {
1858 u64 d;
1860 d = (r * rate);
1861 (void)do_div(d, src_rate);
1862 if (d < 6)
1863 d = 6;
1864 else if (d > 255)
1865 d = 255;
1866 d *= src_rate;
1867 if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1868 ((r * MAX_PLL_VCO_RATE) < (2 * d)))
1869 continue;
1870 (void)do_div(d, r);
1871 if (rate < d) {
1872 if (rounded_rate == 0)
1873 rounded_rate = (long)d;
1874 break;
1876 if ((rate - d) < rem) {
1877 rem = (rate - d);
1878 rounded_rate = (long)d;
1881 return rounded_rate;
1884 static long round_dsiclk_rate(unsigned long rate)
1886 u32 div;
1887 unsigned long src_rate;
1888 long rounded_rate;
1890 src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1891 PLL_RAW);
1892 div = clock_divider(src_rate, rate);
1893 rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1895 return rounded_rate;
1898 static long round_dsiescclk_rate(unsigned long rate)
1900 u32 div;
1901 unsigned long src_rate;
1902 long rounded_rate;
1904 src_rate = clock_rate(PRCMU_TVCLK);
1905 div = clock_divider(src_rate, rate);
1906 rounded_rate = (src_rate / min(div, (u32)255));
1908 return rounded_rate;
1911 long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1913 if (clock < PRCMU_NUM_REG_CLOCKS)
1914 return round_clock_rate(clock, rate);
1915 else if (clock == PRCMU_ARMSS)
1916 return round_armss_rate(rate);
1917 else if (clock == PRCMU_PLLDSI)
1918 return round_plldsi_rate(rate);
1919 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1920 return round_dsiclk_rate(rate);
1921 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1922 return round_dsiescclk_rate(rate);
1923 else
1924 return (long)prcmu_clock_rate(clock);
1927 static void set_clock_rate(u8 clock, unsigned long rate)
1929 u32 val;
1930 u32 div;
1931 unsigned long src_rate;
1932 unsigned long flags;
1934 spin_lock_irqsave(&clk_mgt_lock, flags);
1936 /* Grab the HW semaphore. */
1937 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1938 cpu_relax();
1940 val = readl(clk_mgt[clock].reg);
1941 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1942 clk_mgt[clock].branch);
1943 div = clock_divider(src_rate, rate);
1944 if (val & PRCM_CLK_MGT_CLK38) {
1945 if (clk_mgt[clock].clk38div) {
1946 if (div > 1)
1947 val |= PRCM_CLK_MGT_CLK38DIV;
1948 else
1949 val &= ~PRCM_CLK_MGT_CLK38DIV;
1951 } else if (clock == PRCMU_SGACLK) {
1952 val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1953 PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1954 if (div == 3) {
1955 u64 r = (src_rate * 10);
1957 (void)do_div(r, 25);
1958 if (r <= rate) {
1959 val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1960 div = 0;
1963 val |= min(div, (u32)31);
1964 } else {
1965 val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1966 val |= min(div, (u32)31);
1968 writel(val, clk_mgt[clock].reg);
1970 /* Release the HW semaphore. */
1971 writel(0, PRCM_SEM);
1973 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1976 static int set_armss_rate(unsigned long rate)
1978 int i = 0;
1980 /* cpufreq table frequencies is in KHz. */
1981 rate = rate / 1000;
1983 /* Find the corresponding arm opp from the cpufreq table. */
1984 while (db8500_cpufreq_table[i].frequency != CPUFREQ_TABLE_END) {
1985 if (db8500_cpufreq_table[i].frequency == rate)
1986 break;
1987 i++;
1990 if (db8500_cpufreq_table[i].frequency != rate)
1991 return -EINVAL;
1993 /* Set the new arm opp. */
1994 return db8500_prcmu_set_arm_opp(db8500_cpufreq_table[i].index);
1997 static int set_plldsi_rate(unsigned long rate)
1999 unsigned long src_rate;
2000 unsigned long rem;
2001 u32 pll_freq = 0;
2002 u32 r;
2004 src_rate = clock_rate(PRCMU_HDMICLK);
2005 rem = rate;
2007 for (r = 7; (rem > 0) && (r > 0); r--) {
2008 u64 d;
2009 u64 hwrate;
2011 d = (r * rate);
2012 (void)do_div(d, src_rate);
2013 if (d < 6)
2014 d = 6;
2015 else if (d > 255)
2016 d = 255;
2017 hwrate = (d * src_rate);
2018 if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
2019 ((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
2020 continue;
2021 (void)do_div(hwrate, r);
2022 if (rate < hwrate) {
2023 if (pll_freq == 0)
2024 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
2025 (r << PRCM_PLL_FREQ_R_SHIFT));
2026 break;
2028 if ((rate - hwrate) < rem) {
2029 rem = (rate - hwrate);
2030 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
2031 (r << PRCM_PLL_FREQ_R_SHIFT));
2034 if (pll_freq == 0)
2035 return -EINVAL;
2037 pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
2038 writel(pll_freq, PRCM_PLLDSI_FREQ);
2040 return 0;
2043 static void set_dsiclk_rate(u8 n, unsigned long rate)
2045 u32 val;
2046 u32 div;
2048 div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
2049 clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
2051 dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
2052 (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
2053 /* else */ PRCM_DSI_PLLOUT_SEL_PHI_4;
2055 val = readl(PRCM_DSI_PLLOUT_SEL);
2056 val &= ~dsiclk[n].divsel_mask;
2057 val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
2058 writel(val, PRCM_DSI_PLLOUT_SEL);
2061 static void set_dsiescclk_rate(u8 n, unsigned long rate)
2063 u32 val;
2064 u32 div;
2066 div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
2067 val = readl(PRCM_DSITVCLK_DIV);
2068 val &= ~dsiescclk[n].div_mask;
2069 val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
2070 writel(val, PRCM_DSITVCLK_DIV);
2073 int prcmu_set_clock_rate(u8 clock, unsigned long rate)
2075 if (clock < PRCMU_NUM_REG_CLOCKS)
2076 set_clock_rate(clock, rate);
2077 else if (clock == PRCMU_ARMSS)
2078 return set_armss_rate(rate);
2079 else if (clock == PRCMU_PLLDSI)
2080 return set_plldsi_rate(rate);
2081 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
2082 set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
2083 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
2084 set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
2085 return 0;
2088 int db8500_prcmu_config_esram0_deep_sleep(u8 state)
2090 if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
2091 (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
2092 return -EINVAL;
2094 mutex_lock(&mb4_transfer.lock);
2096 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2097 cpu_relax();
2099 writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2100 writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
2101 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
2102 writeb(DDR_PWR_STATE_ON,
2103 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
2104 writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
2106 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2107 wait_for_completion(&mb4_transfer.work);
2109 mutex_unlock(&mb4_transfer.lock);
2111 return 0;
2114 int db8500_prcmu_config_hotdog(u8 threshold)
2116 mutex_lock(&mb4_transfer.lock);
2118 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2119 cpu_relax();
2121 writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
2122 writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2124 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2125 wait_for_completion(&mb4_transfer.work);
2127 mutex_unlock(&mb4_transfer.lock);
2129 return 0;
2132 int db8500_prcmu_config_hotmon(u8 low, u8 high)
2134 mutex_lock(&mb4_transfer.lock);
2136 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2137 cpu_relax();
2139 writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
2140 writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
2141 writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
2142 (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
2143 writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2145 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2146 wait_for_completion(&mb4_transfer.work);
2148 mutex_unlock(&mb4_transfer.lock);
2150 return 0;
2153 static int config_hot_period(u16 val)
2155 mutex_lock(&mb4_transfer.lock);
2157 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2158 cpu_relax();
2160 writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
2161 writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2163 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2164 wait_for_completion(&mb4_transfer.work);
2166 mutex_unlock(&mb4_transfer.lock);
2168 return 0;
2171 int db8500_prcmu_start_temp_sense(u16 cycles32k)
2173 if (cycles32k == 0xFFFF)
2174 return -EINVAL;
2176 return config_hot_period(cycles32k);
2179 int db8500_prcmu_stop_temp_sense(void)
2181 return config_hot_period(0xFFFF);
2184 static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2187 mutex_lock(&mb4_transfer.lock);
2189 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2190 cpu_relax();
2192 writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2193 writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2194 writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2195 writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2197 writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2199 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2200 wait_for_completion(&mb4_transfer.work);
2202 mutex_unlock(&mb4_transfer.lock);
2204 return 0;
2208 int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
2210 BUG_ON(num == 0 || num > 0xf);
2211 return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2212 sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2213 A9WDOG_AUTO_OFF_DIS);
2216 int db8500_prcmu_enable_a9wdog(u8 id)
2218 return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2221 int db8500_prcmu_disable_a9wdog(u8 id)
2223 return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2226 int db8500_prcmu_kick_a9wdog(u8 id)
2228 return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2232 * timeout is 28 bit, in ms.
2234 int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
2236 return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2237 (id & A9WDOG_ID_MASK) |
2239 * Put the lowest 28 bits of timeout at
2240 * offset 4. Four first bits are used for id.
2242 (u8)((timeout << 4) & 0xf0),
2243 (u8)((timeout >> 4) & 0xff),
2244 (u8)((timeout >> 12) & 0xff),
2245 (u8)((timeout >> 20) & 0xff));
2249 * prcmu_abb_read() - Read register value(s) from the ABB.
2250 * @slave: The I2C slave address.
2251 * @reg: The (start) register address.
2252 * @value: The read out value(s).
2253 * @size: The number of registers to read.
2255 * Reads register value(s) from the ABB.
2256 * @size has to be 1 for the current firmware version.
2258 int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2260 int r;
2262 if (size != 1)
2263 return -EINVAL;
2265 mutex_lock(&mb5_transfer.lock);
2267 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2268 cpu_relax();
2270 writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2271 writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2272 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2273 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2274 writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2276 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2278 if (!wait_for_completion_timeout(&mb5_transfer.work,
2279 msecs_to_jiffies(20000))) {
2280 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2281 __func__);
2282 r = -EIO;
2283 } else {
2284 r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
2287 if (!r)
2288 *value = mb5_transfer.ack.value;
2290 mutex_unlock(&mb5_transfer.lock);
2292 return r;
2296 * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2297 * @slave: The I2C slave address.
2298 * @reg: The (start) register address.
2299 * @value: The value(s) to write.
2300 * @mask: The mask(s) to use.
2301 * @size: The number of registers to write.
2303 * Writes masked register value(s) to the ABB.
2304 * For each @value, only the bits set to 1 in the corresponding @mask
2305 * will be written. The other bits are not changed.
2306 * @size has to be 1 for the current firmware version.
2308 int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
2310 int r;
2312 if (size != 1)
2313 return -EINVAL;
2315 mutex_lock(&mb5_transfer.lock);
2317 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2318 cpu_relax();
2320 writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2321 writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2322 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2323 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2324 writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2326 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2328 if (!wait_for_completion_timeout(&mb5_transfer.work,
2329 msecs_to_jiffies(20000))) {
2330 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2331 __func__);
2332 r = -EIO;
2333 } else {
2334 r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
2337 mutex_unlock(&mb5_transfer.lock);
2339 return r;
2343 * prcmu_abb_write() - Write register value(s) to the ABB.
2344 * @slave: The I2C slave address.
2345 * @reg: The (start) register address.
2346 * @value: The value(s) to write.
2347 * @size: The number of registers to write.
2349 * Writes register value(s) to the ABB.
2350 * @size has to be 1 for the current firmware version.
2352 int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2354 u8 mask = ~0;
2356 return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2360 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2362 int prcmu_ac_wake_req(void)
2364 u32 val;
2365 int ret = 0;
2367 mutex_lock(&mb0_transfer.ac_wake_lock);
2369 val = readl(PRCM_HOSTACCESS_REQ);
2370 if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2371 goto unlock_and_return;
2373 atomic_set(&ac_wake_req_state, 1);
2376 * Force Modem Wake-up before hostaccess_req ping-pong.
2377 * It prevents Modem to enter in Sleep while acking the hostaccess
2378 * request. The 31us delay has been calculated by HWI.
2380 val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2381 writel(val, PRCM_HOSTACCESS_REQ);
2383 udelay(31);
2385 val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2386 writel(val, PRCM_HOSTACCESS_REQ);
2388 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2389 msecs_to_jiffies(5000))) {
2390 #if defined(CONFIG_DBX500_PRCMU_DEBUG)
2391 db8500_prcmu_debug_dump(__func__, true, true);
2392 #endif
2393 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2394 __func__);
2395 ret = -EFAULT;
2398 unlock_and_return:
2399 mutex_unlock(&mb0_transfer.ac_wake_lock);
2400 return ret;
2404 * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2406 void prcmu_ac_sleep_req()
2408 u32 val;
2410 mutex_lock(&mb0_transfer.ac_wake_lock);
2412 val = readl(PRCM_HOSTACCESS_REQ);
2413 if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2414 goto unlock_and_return;
2416 writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2417 PRCM_HOSTACCESS_REQ);
2419 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2420 msecs_to_jiffies(5000))) {
2421 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2422 __func__);
2425 atomic_set(&ac_wake_req_state, 0);
2427 unlock_and_return:
2428 mutex_unlock(&mb0_transfer.ac_wake_lock);
2431 bool db8500_prcmu_is_ac_wake_requested(void)
2433 return (atomic_read(&ac_wake_req_state) != 0);
2437 * db8500_prcmu_system_reset - System reset
2439 * Saves the reset reason code and then sets the APE_SOFTRST register which
2440 * fires interrupt to fw
2442 void db8500_prcmu_system_reset(u16 reset_code)
2444 writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
2445 writel(1, PRCM_APE_SOFTRST);
2449 * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2451 * Retrieves the reset reason code stored by prcmu_system_reset() before
2452 * last restart.
2454 u16 db8500_prcmu_get_reset_code(void)
2456 return readw(tcdm_base + PRCM_SW_RST_REASON);
2460 * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
2462 void db8500_prcmu_modem_reset(void)
2464 mutex_lock(&mb1_transfer.lock);
2466 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
2467 cpu_relax();
2469 writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
2470 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
2471 wait_for_completion(&mb1_transfer.work);
2474 * No need to check return from PRCMU as modem should go in reset state
2475 * This state is already managed by upper layer
2478 mutex_unlock(&mb1_transfer.lock);
2481 static void ack_dbb_wakeup(void)
2483 unsigned long flags;
2485 spin_lock_irqsave(&mb0_transfer.lock, flags);
2487 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
2488 cpu_relax();
2490 writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
2491 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
2493 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2496 static inline void print_unknown_header_warning(u8 n, u8 header)
2498 pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
2499 header, n);
2502 static bool read_mailbox_0(void)
2504 bool r;
2505 u32 ev;
2506 unsigned int n;
2507 u8 header;
2509 header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2510 switch (header) {
2511 case MB0H_WAKEUP_EXE:
2512 case MB0H_WAKEUP_SLEEP:
2513 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2514 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2515 else
2516 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2518 if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2519 complete(&mb0_transfer.ac_wake_work);
2520 if (ev & WAKEUP_BIT_SYSCLK_OK)
2521 complete(&mb3_transfer.sysclk_work);
2523 ev &= mb0_transfer.req.dbb_irqs;
2525 for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2526 if (ev & prcmu_irq_bit[n])
2527 generic_handle_irq(IRQ_PRCMU_BASE + n);
2529 r = true;
2530 break;
2531 default:
2532 print_unknown_header_warning(0, header);
2533 r = false;
2534 break;
2536 writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
2537 return r;
2540 static bool read_mailbox_1(void)
2542 mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2543 mb1_transfer.ack.arm_opp = readb(tcdm_base +
2544 PRCM_ACK_MB1_CURRENT_ARM_OPP);
2545 mb1_transfer.ack.ape_opp = readb(tcdm_base +
2546 PRCM_ACK_MB1_CURRENT_APE_OPP);
2547 mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2548 PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
2549 writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
2550 complete(&mb1_transfer.work);
2551 return false;
2554 static bool read_mailbox_2(void)
2556 mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
2557 writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
2558 complete(&mb2_transfer.work);
2559 return false;
2562 static bool read_mailbox_3(void)
2564 writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
2565 return false;
2568 static bool read_mailbox_4(void)
2570 u8 header;
2571 bool do_complete = true;
2573 header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2574 switch (header) {
2575 case MB4H_MEM_ST:
2576 case MB4H_HOTDOG:
2577 case MB4H_HOTMON:
2578 case MB4H_HOT_PERIOD:
2579 case MB4H_A9WDOG_CONF:
2580 case MB4H_A9WDOG_EN:
2581 case MB4H_A9WDOG_DIS:
2582 case MB4H_A9WDOG_LOAD:
2583 case MB4H_A9WDOG_KICK:
2584 break;
2585 default:
2586 print_unknown_header_warning(4, header);
2587 do_complete = false;
2588 break;
2591 writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
2593 if (do_complete)
2594 complete(&mb4_transfer.work);
2596 return false;
2599 static bool read_mailbox_5(void)
2601 mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2602 mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
2603 writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
2604 complete(&mb5_transfer.work);
2605 return false;
2608 static bool read_mailbox_6(void)
2610 writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
2611 return false;
2614 static bool read_mailbox_7(void)
2616 writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
2617 return false;
2620 static bool (* const read_mailbox[NUM_MB])(void) = {
2621 read_mailbox_0,
2622 read_mailbox_1,
2623 read_mailbox_2,
2624 read_mailbox_3,
2625 read_mailbox_4,
2626 read_mailbox_5,
2627 read_mailbox_6,
2628 read_mailbox_7
2631 static irqreturn_t prcmu_irq_handler(int irq, void *data)
2633 u32 bits;
2634 u8 n;
2635 irqreturn_t r;
2637 bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
2638 if (unlikely(!bits))
2639 return IRQ_NONE;
2641 r = IRQ_HANDLED;
2642 for (n = 0; bits; n++) {
2643 if (bits & MBOX_BIT(n)) {
2644 bits -= MBOX_BIT(n);
2645 if (read_mailbox[n]())
2646 r = IRQ_WAKE_THREAD;
2649 return r;
2652 static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2654 ack_dbb_wakeup();
2655 return IRQ_HANDLED;
2658 static void prcmu_mask_work(struct work_struct *work)
2660 unsigned long flags;
2662 spin_lock_irqsave(&mb0_transfer.lock, flags);
2664 config_wakeups();
2666 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2669 static void prcmu_irq_mask(struct irq_data *d)
2671 unsigned long flags;
2673 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2675 mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
2677 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2679 if (d->irq != IRQ_PRCMU_CA_SLEEP)
2680 schedule_work(&mb0_transfer.mask_work);
2683 static void prcmu_irq_unmask(struct irq_data *d)
2685 unsigned long flags;
2687 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2689 mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
2691 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2693 if (d->irq != IRQ_PRCMU_CA_SLEEP)
2694 schedule_work(&mb0_transfer.mask_work);
2697 static void noop(struct irq_data *d)
2701 static struct irq_chip prcmu_irq_chip = {
2702 .name = "prcmu",
2703 .irq_disable = prcmu_irq_mask,
2704 .irq_ack = noop,
2705 .irq_mask = prcmu_irq_mask,
2706 .irq_unmask = prcmu_irq_unmask,
2709 static char *fw_project_name(u8 project)
2711 switch (project) {
2712 case PRCMU_FW_PROJECT_U8500:
2713 return "U8500";
2714 case PRCMU_FW_PROJECT_U8500_C2:
2715 return "U8500 C2";
2716 case PRCMU_FW_PROJECT_U9500:
2717 return "U9500";
2718 case PRCMU_FW_PROJECT_U9500_C2:
2719 return "U9500 C2";
2720 case PRCMU_FW_PROJECT_U8520:
2721 return "U8520";
2722 case PRCMU_FW_PROJECT_U8420:
2723 return "U8420";
2724 default:
2725 return "Unknown";
2729 static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
2730 irq_hw_number_t hwirq)
2732 irq_set_chip_and_handler(virq, &prcmu_irq_chip,
2733 handle_simple_irq);
2734 set_irq_flags(virq, IRQF_VALID);
2736 return 0;
2739 static struct irq_domain_ops db8500_irq_ops = {
2740 .map = db8500_irq_map,
2741 .xlate = irq_domain_xlate_twocell,
2744 static int db8500_irq_init(struct device_node *np)
2746 int irq_base = -1;
2748 /* In the device tree case, just take some IRQs */
2749 if (!np)
2750 irq_base = IRQ_PRCMU_BASE;
2752 db8500_irq_domain = irq_domain_add_simple(
2753 np, NUM_PRCMU_WAKEUPS, irq_base,
2754 &db8500_irq_ops, NULL);
2756 if (!db8500_irq_domain) {
2757 pr_err("Failed to create irqdomain\n");
2758 return -ENOSYS;
2761 return 0;
2764 void __init db8500_prcmu_early_init(void)
2766 if (cpu_is_u8500v2() || cpu_is_u9540()) {
2767 void *tcpm_base = ioremap_nocache(U8500_PRCMU_TCPM_BASE, SZ_4K);
2769 if (tcpm_base != NULL) {
2770 u32 version;
2771 version = readl(tcpm_base + PRCMU_FW_VERSION_OFFSET);
2772 fw_info.version.project = version & 0xFF;
2773 fw_info.version.api_version = (version >> 8) & 0xFF;
2774 fw_info.version.func_version = (version >> 16) & 0xFF;
2775 fw_info.version.errata = (version >> 24) & 0xFF;
2776 fw_info.valid = true;
2777 pr_info("PRCMU firmware: %s, version %d.%d.%d\n",
2778 fw_project_name(fw_info.version.project),
2779 (version >> 8) & 0xFF, (version >> 16) & 0xFF,
2780 (version >> 24) & 0xFF);
2781 iounmap(tcpm_base);
2784 if (cpu_is_u9540())
2785 tcdm_base = ioremap_nocache(U8500_PRCMU_TCDM_BASE,
2786 SZ_4K + SZ_8K) + SZ_8K;
2787 else
2788 tcdm_base = __io_address(U8500_PRCMU_TCDM_BASE);
2789 } else {
2790 pr_err("prcmu: Unsupported chip version\n");
2791 BUG();
2794 spin_lock_init(&mb0_transfer.lock);
2795 spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2796 mutex_init(&mb0_transfer.ac_wake_lock);
2797 init_completion(&mb0_transfer.ac_wake_work);
2798 mutex_init(&mb1_transfer.lock);
2799 init_completion(&mb1_transfer.work);
2800 mb1_transfer.ape_opp = APE_NO_CHANGE;
2801 mutex_init(&mb2_transfer.lock);
2802 init_completion(&mb2_transfer.work);
2803 spin_lock_init(&mb2_transfer.auto_pm_lock);
2804 spin_lock_init(&mb3_transfer.lock);
2805 mutex_init(&mb3_transfer.sysclk_lock);
2806 init_completion(&mb3_transfer.sysclk_work);
2807 mutex_init(&mb4_transfer.lock);
2808 init_completion(&mb4_transfer.work);
2809 mutex_init(&mb5_transfer.lock);
2810 init_completion(&mb5_transfer.work);
2812 INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2815 static void __init init_prcm_registers(void)
2817 u32 val;
2819 val = readl(PRCM_A9PL_FORCE_CLKEN);
2820 val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2821 PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2822 writel(val, (PRCM_A9PL_FORCE_CLKEN));
2826 * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2828 static struct regulator_consumer_supply db8500_vape_consumers[] = {
2829 REGULATOR_SUPPLY("v-ape", NULL),
2830 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2831 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2832 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2833 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2834 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2835 /* "v-mmc" changed to "vcore" in the mainline kernel */
2836 REGULATOR_SUPPLY("vcore", "sdi0"),
2837 REGULATOR_SUPPLY("vcore", "sdi1"),
2838 REGULATOR_SUPPLY("vcore", "sdi2"),
2839 REGULATOR_SUPPLY("vcore", "sdi3"),
2840 REGULATOR_SUPPLY("vcore", "sdi4"),
2841 REGULATOR_SUPPLY("v-dma", "dma40.0"),
2842 REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2843 /* "v-uart" changed to "vcore" in the mainline kernel */
2844 REGULATOR_SUPPLY("vcore", "uart0"),
2845 REGULATOR_SUPPLY("vcore", "uart1"),
2846 REGULATOR_SUPPLY("vcore", "uart2"),
2847 REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2848 REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2849 REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2852 static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
2853 REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2854 /* AV8100 regulator */
2855 REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2858 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2859 REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2860 REGULATOR_SUPPLY("vsupply", "mcde"),
2863 /* SVA MMDSP regulator switch */
2864 static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2865 REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2868 /* SVA pipe regulator switch */
2869 static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2870 REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2873 /* SIA MMDSP regulator switch */
2874 static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2875 REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2878 /* SIA pipe regulator switch */
2879 static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2880 REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2883 static struct regulator_consumer_supply db8500_sga_consumers[] = {
2884 REGULATOR_SUPPLY("v-mali", NULL),
2887 /* ESRAM1 and 2 regulator switch */
2888 static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2889 REGULATOR_SUPPLY("esram12", "cm_control"),
2892 /* ESRAM3 and 4 regulator switch */
2893 static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2894 REGULATOR_SUPPLY("v-esram34", "mcde"),
2895 REGULATOR_SUPPLY("esram34", "cm_control"),
2896 REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2899 static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2900 [DB8500_REGULATOR_VAPE] = {
2901 .constraints = {
2902 .name = "db8500-vape",
2903 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2904 .always_on = true,
2906 .consumer_supplies = db8500_vape_consumers,
2907 .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2909 [DB8500_REGULATOR_VARM] = {
2910 .constraints = {
2911 .name = "db8500-varm",
2912 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2915 [DB8500_REGULATOR_VMODEM] = {
2916 .constraints = {
2917 .name = "db8500-vmodem",
2918 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2921 [DB8500_REGULATOR_VPLL] = {
2922 .constraints = {
2923 .name = "db8500-vpll",
2924 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2927 [DB8500_REGULATOR_VSMPS1] = {
2928 .constraints = {
2929 .name = "db8500-vsmps1",
2930 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2933 [DB8500_REGULATOR_VSMPS2] = {
2934 .constraints = {
2935 .name = "db8500-vsmps2",
2936 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2938 .consumer_supplies = db8500_vsmps2_consumers,
2939 .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2941 [DB8500_REGULATOR_VSMPS3] = {
2942 .constraints = {
2943 .name = "db8500-vsmps3",
2944 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2947 [DB8500_REGULATOR_VRF1] = {
2948 .constraints = {
2949 .name = "db8500-vrf1",
2950 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2953 [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2954 /* dependency to u8500-vape is handled outside regulator framework */
2955 .constraints = {
2956 .name = "db8500-sva-mmdsp",
2957 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2959 .consumer_supplies = db8500_svammdsp_consumers,
2960 .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2962 [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2963 .constraints = {
2964 /* "ret" means "retention" */
2965 .name = "db8500-sva-mmdsp-ret",
2966 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2969 [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
2970 /* dependency to u8500-vape is handled outside regulator framework */
2971 .constraints = {
2972 .name = "db8500-sva-pipe",
2973 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2975 .consumer_supplies = db8500_svapipe_consumers,
2976 .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
2978 [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
2979 /* dependency to u8500-vape is handled outside regulator framework */
2980 .constraints = {
2981 .name = "db8500-sia-mmdsp",
2982 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2984 .consumer_supplies = db8500_siammdsp_consumers,
2985 .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
2987 [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2988 .constraints = {
2989 .name = "db8500-sia-mmdsp-ret",
2990 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2993 [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
2994 /* dependency to u8500-vape is handled outside regulator framework */
2995 .constraints = {
2996 .name = "db8500-sia-pipe",
2997 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2999 .consumer_supplies = db8500_siapipe_consumers,
3000 .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
3002 [DB8500_REGULATOR_SWITCH_SGA] = {
3003 .supply_regulator = "db8500-vape",
3004 .constraints = {
3005 .name = "db8500-sga",
3006 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3008 .consumer_supplies = db8500_sga_consumers,
3009 .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
3012 [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
3013 .supply_regulator = "db8500-vape",
3014 .constraints = {
3015 .name = "db8500-b2r2-mcde",
3016 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3018 .consumer_supplies = db8500_b2r2_mcde_consumers,
3019 .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
3021 [DB8500_REGULATOR_SWITCH_ESRAM12] = {
3023 * esram12 is set in retention and supplied by Vsafe when Vape is off,
3024 * no need to hold Vape
3026 .constraints = {
3027 .name = "db8500-esram12",
3028 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3030 .consumer_supplies = db8500_esram12_consumers,
3031 .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
3033 [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
3034 .constraints = {
3035 .name = "db8500-esram12-ret",
3036 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3039 [DB8500_REGULATOR_SWITCH_ESRAM34] = {
3041 * esram34 is set in retention and supplied by Vsafe when Vape is off,
3042 * no need to hold Vape
3044 .constraints = {
3045 .name = "db8500-esram34",
3046 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3048 .consumer_supplies = db8500_esram34_consumers,
3049 .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
3051 [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
3052 .constraints = {
3053 .name = "db8500-esram34-ret",
3054 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3059 static struct resource ab8500_resources[] = {
3060 [0] = {
3061 .start = IRQ_DB8500_AB8500,
3062 .end = IRQ_DB8500_AB8500,
3063 .flags = IORESOURCE_IRQ
3067 static struct mfd_cell db8500_prcmu_devs[] = {
3069 .name = "db8500-prcmu-regulators",
3070 .of_compatible = "stericsson,db8500-prcmu-regulator",
3071 .platform_data = &db8500_regulators,
3072 .pdata_size = sizeof(db8500_regulators),
3075 .name = "cpufreq-u8500",
3076 .of_compatible = "stericsson,cpufreq-u8500",
3077 .platform_data = &db8500_cpufreq_table,
3078 .pdata_size = sizeof(db8500_cpufreq_table),
3081 .name = "ab8500-core",
3082 .of_compatible = "stericsson,ab8500",
3083 .num_resources = ARRAY_SIZE(ab8500_resources),
3084 .resources = ab8500_resources,
3085 .id = AB8500_VERSION_AB8500,
3089 static void db8500_prcmu_update_cpufreq(void)
3091 if (prcmu_has_arm_maxopp()) {
3092 db8500_cpufreq_table[3].frequency = 1000000;
3093 db8500_cpufreq_table[3].index = ARM_MAX_OPP;
3098 * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
3101 static int db8500_prcmu_probe(struct platform_device *pdev)
3103 struct ab8500_platform_data *ab8500_platdata = pdev->dev.platform_data;
3104 struct device_node *np = pdev->dev.of_node;
3105 int irq = 0, err = 0, i;
3107 if (ux500_is_svp())
3108 return -ENODEV;
3110 init_prcm_registers();
3112 /* Clean up the mailbox interrupts after pre-kernel code. */
3113 writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3115 if (np)
3116 irq = platform_get_irq(pdev, 0);
3118 if (!np || irq <= 0)
3119 irq = IRQ_DB8500_PRCMU1;
3121 err = request_threaded_irq(irq, prcmu_irq_handler,
3122 prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3123 if (err < 0) {
3124 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3125 err = -EBUSY;
3126 goto no_irq_return;
3129 db8500_irq_init(np);
3131 for (i = 0; i < ARRAY_SIZE(db8500_prcmu_devs); i++) {
3132 if (!strcmp(db8500_prcmu_devs[i].name, "ab8500-core")) {
3133 db8500_prcmu_devs[i].platform_data = ab8500_platdata;
3134 db8500_prcmu_devs[i].pdata_size = sizeof(struct ab8500_platform_data);
3138 if (cpu_is_u8500v20_or_later())
3139 prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3141 db8500_prcmu_update_cpufreq();
3143 err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
3144 ARRAY_SIZE(db8500_prcmu_devs), NULL, 0, NULL);
3145 if (err) {
3146 pr_err("prcmu: Failed to add subdevices\n");
3147 return err;
3150 pr_info("DB8500 PRCMU initialized\n");
3152 no_irq_return:
3153 return err;
3155 static const struct of_device_id db8500_prcmu_match[] = {
3156 { .compatible = "stericsson,db8500-prcmu"},
3157 { },
3160 static struct platform_driver db8500_prcmu_driver = {
3161 .driver = {
3162 .name = "db8500-prcmu",
3163 .owner = THIS_MODULE,
3164 .of_match_table = db8500_prcmu_match,
3166 .probe = db8500_prcmu_probe,
3169 static int __init db8500_prcmu_init(void)
3171 return platform_driver_register(&db8500_prcmu_driver);
3174 core_initcall(db8500_prcmu_init);
3176 MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
3177 MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
3178 MODULE_LICENSE("GPL v2");