xfs: add buffer types to directory and attribute buffers
[linux-2.6.git] / fs / xfs / xfs_log_recover.c
blob00727bc4a9b0a3e27b7045119e2351a7cbb71a8b
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_error.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_alloc_btree.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_btree.h"
33 #include "xfs_dinode.h"
34 #include "xfs_inode.h"
35 #include "xfs_inode_item.h"
36 #include "xfs_alloc.h"
37 #include "xfs_ialloc.h"
38 #include "xfs_log_priv.h"
39 #include "xfs_buf_item.h"
40 #include "xfs_log_recover.h"
41 #include "xfs_extfree_item.h"
42 #include "xfs_trans_priv.h"
43 #include "xfs_quota.h"
44 #include "xfs_utils.h"
45 #include "xfs_cksum.h"
46 #include "xfs_trace.h"
47 #include "xfs_icache.h"
49 /* Need all the magic numbers and buffer ops structures from these headers */
50 #include "xfs_symlink.h"
51 #include "xfs_da_btree.h"
52 #include "xfs_dir2_format.h"
53 #include "xfs_dir2_priv.h"
54 #include "xfs_attr_leaf.h"
55 #include "xfs_attr_remote.h"
57 STATIC int
58 xlog_find_zeroed(
59 struct xlog *,
60 xfs_daddr_t *);
61 STATIC int
62 xlog_clear_stale_blocks(
63 struct xlog *,
64 xfs_lsn_t);
65 #if defined(DEBUG)
66 STATIC void
67 xlog_recover_check_summary(
68 struct xlog *);
69 #else
70 #define xlog_recover_check_summary(log)
71 #endif
74 * This structure is used during recovery to record the buf log items which
75 * have been canceled and should not be replayed.
77 struct xfs_buf_cancel {
78 xfs_daddr_t bc_blkno;
79 uint bc_len;
80 int bc_refcount;
81 struct list_head bc_list;
85 * Sector aligned buffer routines for buffer create/read/write/access
89 * Verify the given count of basic blocks is valid number of blocks
90 * to specify for an operation involving the given XFS log buffer.
91 * Returns nonzero if the count is valid, 0 otherwise.
94 static inline int
95 xlog_buf_bbcount_valid(
96 struct xlog *log,
97 int bbcount)
99 return bbcount > 0 && bbcount <= log->l_logBBsize;
103 * Allocate a buffer to hold log data. The buffer needs to be able
104 * to map to a range of nbblks basic blocks at any valid (basic
105 * block) offset within the log.
107 STATIC xfs_buf_t *
108 xlog_get_bp(
109 struct xlog *log,
110 int nbblks)
112 struct xfs_buf *bp;
114 if (!xlog_buf_bbcount_valid(log, nbblks)) {
115 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
116 nbblks);
117 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
118 return NULL;
122 * We do log I/O in units of log sectors (a power-of-2
123 * multiple of the basic block size), so we round up the
124 * requested size to accommodate the basic blocks required
125 * for complete log sectors.
127 * In addition, the buffer may be used for a non-sector-
128 * aligned block offset, in which case an I/O of the
129 * requested size could extend beyond the end of the
130 * buffer. If the requested size is only 1 basic block it
131 * will never straddle a sector boundary, so this won't be
132 * an issue. Nor will this be a problem if the log I/O is
133 * done in basic blocks (sector size 1). But otherwise we
134 * extend the buffer by one extra log sector to ensure
135 * there's space to accommodate this possibility.
137 if (nbblks > 1 && log->l_sectBBsize > 1)
138 nbblks += log->l_sectBBsize;
139 nbblks = round_up(nbblks, log->l_sectBBsize);
141 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
142 if (bp)
143 xfs_buf_unlock(bp);
144 return bp;
147 STATIC void
148 xlog_put_bp(
149 xfs_buf_t *bp)
151 xfs_buf_free(bp);
155 * Return the address of the start of the given block number's data
156 * in a log buffer. The buffer covers a log sector-aligned region.
158 STATIC xfs_caddr_t
159 xlog_align(
160 struct xlog *log,
161 xfs_daddr_t blk_no,
162 int nbblks,
163 struct xfs_buf *bp)
165 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
167 ASSERT(offset + nbblks <= bp->b_length);
168 return bp->b_addr + BBTOB(offset);
173 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
175 STATIC int
176 xlog_bread_noalign(
177 struct xlog *log,
178 xfs_daddr_t blk_no,
179 int nbblks,
180 struct xfs_buf *bp)
182 int error;
184 if (!xlog_buf_bbcount_valid(log, nbblks)) {
185 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
186 nbblks);
187 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
188 return EFSCORRUPTED;
191 blk_no = round_down(blk_no, log->l_sectBBsize);
192 nbblks = round_up(nbblks, log->l_sectBBsize);
194 ASSERT(nbblks > 0);
195 ASSERT(nbblks <= bp->b_length);
197 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
198 XFS_BUF_READ(bp);
199 bp->b_io_length = nbblks;
200 bp->b_error = 0;
202 xfsbdstrat(log->l_mp, bp);
203 error = xfs_buf_iowait(bp);
204 if (error)
205 xfs_buf_ioerror_alert(bp, __func__);
206 return error;
209 STATIC int
210 xlog_bread(
211 struct xlog *log,
212 xfs_daddr_t blk_no,
213 int nbblks,
214 struct xfs_buf *bp,
215 xfs_caddr_t *offset)
217 int error;
219 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
220 if (error)
221 return error;
223 *offset = xlog_align(log, blk_no, nbblks, bp);
224 return 0;
228 * Read at an offset into the buffer. Returns with the buffer in it's original
229 * state regardless of the result of the read.
231 STATIC int
232 xlog_bread_offset(
233 struct xlog *log,
234 xfs_daddr_t blk_no, /* block to read from */
235 int nbblks, /* blocks to read */
236 struct xfs_buf *bp,
237 xfs_caddr_t offset)
239 xfs_caddr_t orig_offset = bp->b_addr;
240 int orig_len = BBTOB(bp->b_length);
241 int error, error2;
243 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
244 if (error)
245 return error;
247 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
249 /* must reset buffer pointer even on error */
250 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
251 if (error)
252 return error;
253 return error2;
257 * Write out the buffer at the given block for the given number of blocks.
258 * The buffer is kept locked across the write and is returned locked.
259 * This can only be used for synchronous log writes.
261 STATIC int
262 xlog_bwrite(
263 struct xlog *log,
264 xfs_daddr_t blk_no,
265 int nbblks,
266 struct xfs_buf *bp)
268 int error;
270 if (!xlog_buf_bbcount_valid(log, nbblks)) {
271 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
272 nbblks);
273 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
274 return EFSCORRUPTED;
277 blk_no = round_down(blk_no, log->l_sectBBsize);
278 nbblks = round_up(nbblks, log->l_sectBBsize);
280 ASSERT(nbblks > 0);
281 ASSERT(nbblks <= bp->b_length);
283 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
284 XFS_BUF_ZEROFLAGS(bp);
285 xfs_buf_hold(bp);
286 xfs_buf_lock(bp);
287 bp->b_io_length = nbblks;
288 bp->b_error = 0;
290 error = xfs_bwrite(bp);
291 if (error)
292 xfs_buf_ioerror_alert(bp, __func__);
293 xfs_buf_relse(bp);
294 return error;
297 #ifdef DEBUG
299 * dump debug superblock and log record information
301 STATIC void
302 xlog_header_check_dump(
303 xfs_mount_t *mp,
304 xlog_rec_header_t *head)
306 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d\n",
307 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
308 xfs_debug(mp, " log : uuid = %pU, fmt = %d\n",
309 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
311 #else
312 #define xlog_header_check_dump(mp, head)
313 #endif
316 * check log record header for recovery
318 STATIC int
319 xlog_header_check_recover(
320 xfs_mount_t *mp,
321 xlog_rec_header_t *head)
323 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
326 * IRIX doesn't write the h_fmt field and leaves it zeroed
327 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
328 * a dirty log created in IRIX.
330 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
331 xfs_warn(mp,
332 "dirty log written in incompatible format - can't recover");
333 xlog_header_check_dump(mp, head);
334 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
335 XFS_ERRLEVEL_HIGH, mp);
336 return XFS_ERROR(EFSCORRUPTED);
337 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
338 xfs_warn(mp,
339 "dirty log entry has mismatched uuid - can't recover");
340 xlog_header_check_dump(mp, head);
341 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
342 XFS_ERRLEVEL_HIGH, mp);
343 return XFS_ERROR(EFSCORRUPTED);
345 return 0;
349 * read the head block of the log and check the header
351 STATIC int
352 xlog_header_check_mount(
353 xfs_mount_t *mp,
354 xlog_rec_header_t *head)
356 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
358 if (uuid_is_nil(&head->h_fs_uuid)) {
360 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
361 * h_fs_uuid is nil, we assume this log was last mounted
362 * by IRIX and continue.
364 xfs_warn(mp, "nil uuid in log - IRIX style log");
365 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
366 xfs_warn(mp, "log has mismatched uuid - can't recover");
367 xlog_header_check_dump(mp, head);
368 XFS_ERROR_REPORT("xlog_header_check_mount",
369 XFS_ERRLEVEL_HIGH, mp);
370 return XFS_ERROR(EFSCORRUPTED);
372 return 0;
375 STATIC void
376 xlog_recover_iodone(
377 struct xfs_buf *bp)
379 if (bp->b_error) {
381 * We're not going to bother about retrying
382 * this during recovery. One strike!
384 xfs_buf_ioerror_alert(bp, __func__);
385 xfs_force_shutdown(bp->b_target->bt_mount,
386 SHUTDOWN_META_IO_ERROR);
388 bp->b_iodone = NULL;
389 xfs_buf_ioend(bp, 0);
393 * This routine finds (to an approximation) the first block in the physical
394 * log which contains the given cycle. It uses a binary search algorithm.
395 * Note that the algorithm can not be perfect because the disk will not
396 * necessarily be perfect.
398 STATIC int
399 xlog_find_cycle_start(
400 struct xlog *log,
401 struct xfs_buf *bp,
402 xfs_daddr_t first_blk,
403 xfs_daddr_t *last_blk,
404 uint cycle)
406 xfs_caddr_t offset;
407 xfs_daddr_t mid_blk;
408 xfs_daddr_t end_blk;
409 uint mid_cycle;
410 int error;
412 end_blk = *last_blk;
413 mid_blk = BLK_AVG(first_blk, end_blk);
414 while (mid_blk != first_blk && mid_blk != end_blk) {
415 error = xlog_bread(log, mid_blk, 1, bp, &offset);
416 if (error)
417 return error;
418 mid_cycle = xlog_get_cycle(offset);
419 if (mid_cycle == cycle)
420 end_blk = mid_blk; /* last_half_cycle == mid_cycle */
421 else
422 first_blk = mid_blk; /* first_half_cycle == mid_cycle */
423 mid_blk = BLK_AVG(first_blk, end_blk);
425 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
426 (mid_blk == end_blk && mid_blk-1 == first_blk));
428 *last_blk = end_blk;
430 return 0;
434 * Check that a range of blocks does not contain stop_on_cycle_no.
435 * Fill in *new_blk with the block offset where such a block is
436 * found, or with -1 (an invalid block number) if there is no such
437 * block in the range. The scan needs to occur from front to back
438 * and the pointer into the region must be updated since a later
439 * routine will need to perform another test.
441 STATIC int
442 xlog_find_verify_cycle(
443 struct xlog *log,
444 xfs_daddr_t start_blk,
445 int nbblks,
446 uint stop_on_cycle_no,
447 xfs_daddr_t *new_blk)
449 xfs_daddr_t i, j;
450 uint cycle;
451 xfs_buf_t *bp;
452 xfs_daddr_t bufblks;
453 xfs_caddr_t buf = NULL;
454 int error = 0;
457 * Greedily allocate a buffer big enough to handle the full
458 * range of basic blocks we'll be examining. If that fails,
459 * try a smaller size. We need to be able to read at least
460 * a log sector, or we're out of luck.
462 bufblks = 1 << ffs(nbblks);
463 while (bufblks > log->l_logBBsize)
464 bufblks >>= 1;
465 while (!(bp = xlog_get_bp(log, bufblks))) {
466 bufblks >>= 1;
467 if (bufblks < log->l_sectBBsize)
468 return ENOMEM;
471 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
472 int bcount;
474 bcount = min(bufblks, (start_blk + nbblks - i));
476 error = xlog_bread(log, i, bcount, bp, &buf);
477 if (error)
478 goto out;
480 for (j = 0; j < bcount; j++) {
481 cycle = xlog_get_cycle(buf);
482 if (cycle == stop_on_cycle_no) {
483 *new_blk = i+j;
484 goto out;
487 buf += BBSIZE;
491 *new_blk = -1;
493 out:
494 xlog_put_bp(bp);
495 return error;
499 * Potentially backup over partial log record write.
501 * In the typical case, last_blk is the number of the block directly after
502 * a good log record. Therefore, we subtract one to get the block number
503 * of the last block in the given buffer. extra_bblks contains the number
504 * of blocks we would have read on a previous read. This happens when the
505 * last log record is split over the end of the physical log.
507 * extra_bblks is the number of blocks potentially verified on a previous
508 * call to this routine.
510 STATIC int
511 xlog_find_verify_log_record(
512 struct xlog *log,
513 xfs_daddr_t start_blk,
514 xfs_daddr_t *last_blk,
515 int extra_bblks)
517 xfs_daddr_t i;
518 xfs_buf_t *bp;
519 xfs_caddr_t offset = NULL;
520 xlog_rec_header_t *head = NULL;
521 int error = 0;
522 int smallmem = 0;
523 int num_blks = *last_blk - start_blk;
524 int xhdrs;
526 ASSERT(start_blk != 0 || *last_blk != start_blk);
528 if (!(bp = xlog_get_bp(log, num_blks))) {
529 if (!(bp = xlog_get_bp(log, 1)))
530 return ENOMEM;
531 smallmem = 1;
532 } else {
533 error = xlog_bread(log, start_blk, num_blks, bp, &offset);
534 if (error)
535 goto out;
536 offset += ((num_blks - 1) << BBSHIFT);
539 for (i = (*last_blk) - 1; i >= 0; i--) {
540 if (i < start_blk) {
541 /* valid log record not found */
542 xfs_warn(log->l_mp,
543 "Log inconsistent (didn't find previous header)");
544 ASSERT(0);
545 error = XFS_ERROR(EIO);
546 goto out;
549 if (smallmem) {
550 error = xlog_bread(log, i, 1, bp, &offset);
551 if (error)
552 goto out;
555 head = (xlog_rec_header_t *)offset;
557 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
558 break;
560 if (!smallmem)
561 offset -= BBSIZE;
565 * We hit the beginning of the physical log & still no header. Return
566 * to caller. If caller can handle a return of -1, then this routine
567 * will be called again for the end of the physical log.
569 if (i == -1) {
570 error = -1;
571 goto out;
575 * We have the final block of the good log (the first block
576 * of the log record _before_ the head. So we check the uuid.
578 if ((error = xlog_header_check_mount(log->l_mp, head)))
579 goto out;
582 * We may have found a log record header before we expected one.
583 * last_blk will be the 1st block # with a given cycle #. We may end
584 * up reading an entire log record. In this case, we don't want to
585 * reset last_blk. Only when last_blk points in the middle of a log
586 * record do we update last_blk.
588 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
589 uint h_size = be32_to_cpu(head->h_size);
591 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
592 if (h_size % XLOG_HEADER_CYCLE_SIZE)
593 xhdrs++;
594 } else {
595 xhdrs = 1;
598 if (*last_blk - i + extra_bblks !=
599 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
600 *last_blk = i;
602 out:
603 xlog_put_bp(bp);
604 return error;
608 * Head is defined to be the point of the log where the next log write
609 * write could go. This means that incomplete LR writes at the end are
610 * eliminated when calculating the head. We aren't guaranteed that previous
611 * LR have complete transactions. We only know that a cycle number of
612 * current cycle number -1 won't be present in the log if we start writing
613 * from our current block number.
615 * last_blk contains the block number of the first block with a given
616 * cycle number.
618 * Return: zero if normal, non-zero if error.
620 STATIC int
621 xlog_find_head(
622 struct xlog *log,
623 xfs_daddr_t *return_head_blk)
625 xfs_buf_t *bp;
626 xfs_caddr_t offset;
627 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
628 int num_scan_bblks;
629 uint first_half_cycle, last_half_cycle;
630 uint stop_on_cycle;
631 int error, log_bbnum = log->l_logBBsize;
633 /* Is the end of the log device zeroed? */
634 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
635 *return_head_blk = first_blk;
637 /* Is the whole lot zeroed? */
638 if (!first_blk) {
639 /* Linux XFS shouldn't generate totally zeroed logs -
640 * mkfs etc write a dummy unmount record to a fresh
641 * log so we can store the uuid in there
643 xfs_warn(log->l_mp, "totally zeroed log");
646 return 0;
647 } else if (error) {
648 xfs_warn(log->l_mp, "empty log check failed");
649 return error;
652 first_blk = 0; /* get cycle # of 1st block */
653 bp = xlog_get_bp(log, 1);
654 if (!bp)
655 return ENOMEM;
657 error = xlog_bread(log, 0, 1, bp, &offset);
658 if (error)
659 goto bp_err;
661 first_half_cycle = xlog_get_cycle(offset);
663 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
664 error = xlog_bread(log, last_blk, 1, bp, &offset);
665 if (error)
666 goto bp_err;
668 last_half_cycle = xlog_get_cycle(offset);
669 ASSERT(last_half_cycle != 0);
672 * If the 1st half cycle number is equal to the last half cycle number,
673 * then the entire log is stamped with the same cycle number. In this
674 * case, head_blk can't be set to zero (which makes sense). The below
675 * math doesn't work out properly with head_blk equal to zero. Instead,
676 * we set it to log_bbnum which is an invalid block number, but this
677 * value makes the math correct. If head_blk doesn't changed through
678 * all the tests below, *head_blk is set to zero at the very end rather
679 * than log_bbnum. In a sense, log_bbnum and zero are the same block
680 * in a circular file.
682 if (first_half_cycle == last_half_cycle) {
684 * In this case we believe that the entire log should have
685 * cycle number last_half_cycle. We need to scan backwards
686 * from the end verifying that there are no holes still
687 * containing last_half_cycle - 1. If we find such a hole,
688 * then the start of that hole will be the new head. The
689 * simple case looks like
690 * x | x ... | x - 1 | x
691 * Another case that fits this picture would be
692 * x | x + 1 | x ... | x
693 * In this case the head really is somewhere at the end of the
694 * log, as one of the latest writes at the beginning was
695 * incomplete.
696 * One more case is
697 * x | x + 1 | x ... | x - 1 | x
698 * This is really the combination of the above two cases, and
699 * the head has to end up at the start of the x-1 hole at the
700 * end of the log.
702 * In the 256k log case, we will read from the beginning to the
703 * end of the log and search for cycle numbers equal to x-1.
704 * We don't worry about the x+1 blocks that we encounter,
705 * because we know that they cannot be the head since the log
706 * started with x.
708 head_blk = log_bbnum;
709 stop_on_cycle = last_half_cycle - 1;
710 } else {
712 * In this case we want to find the first block with cycle
713 * number matching last_half_cycle. We expect the log to be
714 * some variation on
715 * x + 1 ... | x ... | x
716 * The first block with cycle number x (last_half_cycle) will
717 * be where the new head belongs. First we do a binary search
718 * for the first occurrence of last_half_cycle. The binary
719 * search may not be totally accurate, so then we scan back
720 * from there looking for occurrences of last_half_cycle before
721 * us. If that backwards scan wraps around the beginning of
722 * the log, then we look for occurrences of last_half_cycle - 1
723 * at the end of the log. The cases we're looking for look
724 * like
725 * v binary search stopped here
726 * x + 1 ... | x | x + 1 | x ... | x
727 * ^ but we want to locate this spot
728 * or
729 * <---------> less than scan distance
730 * x + 1 ... | x ... | x - 1 | x
731 * ^ we want to locate this spot
733 stop_on_cycle = last_half_cycle;
734 if ((error = xlog_find_cycle_start(log, bp, first_blk,
735 &head_blk, last_half_cycle)))
736 goto bp_err;
740 * Now validate the answer. Scan back some number of maximum possible
741 * blocks and make sure each one has the expected cycle number. The
742 * maximum is determined by the total possible amount of buffering
743 * in the in-core log. The following number can be made tighter if
744 * we actually look at the block size of the filesystem.
746 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
747 if (head_blk >= num_scan_bblks) {
749 * We are guaranteed that the entire check can be performed
750 * in one buffer.
752 start_blk = head_blk - num_scan_bblks;
753 if ((error = xlog_find_verify_cycle(log,
754 start_blk, num_scan_bblks,
755 stop_on_cycle, &new_blk)))
756 goto bp_err;
757 if (new_blk != -1)
758 head_blk = new_blk;
759 } else { /* need to read 2 parts of log */
761 * We are going to scan backwards in the log in two parts.
762 * First we scan the physical end of the log. In this part
763 * of the log, we are looking for blocks with cycle number
764 * last_half_cycle - 1.
765 * If we find one, then we know that the log starts there, as
766 * we've found a hole that didn't get written in going around
767 * the end of the physical log. The simple case for this is
768 * x + 1 ... | x ... | x - 1 | x
769 * <---------> less than scan distance
770 * If all of the blocks at the end of the log have cycle number
771 * last_half_cycle, then we check the blocks at the start of
772 * the log looking for occurrences of last_half_cycle. If we
773 * find one, then our current estimate for the location of the
774 * first occurrence of last_half_cycle is wrong and we move
775 * back to the hole we've found. This case looks like
776 * x + 1 ... | x | x + 1 | x ...
777 * ^ binary search stopped here
778 * Another case we need to handle that only occurs in 256k
779 * logs is
780 * x + 1 ... | x ... | x+1 | x ...
781 * ^ binary search stops here
782 * In a 256k log, the scan at the end of the log will see the
783 * x + 1 blocks. We need to skip past those since that is
784 * certainly not the head of the log. By searching for
785 * last_half_cycle-1 we accomplish that.
787 ASSERT(head_blk <= INT_MAX &&
788 (xfs_daddr_t) num_scan_bblks >= head_blk);
789 start_blk = log_bbnum - (num_scan_bblks - head_blk);
790 if ((error = xlog_find_verify_cycle(log, start_blk,
791 num_scan_bblks - (int)head_blk,
792 (stop_on_cycle - 1), &new_blk)))
793 goto bp_err;
794 if (new_blk != -1) {
795 head_blk = new_blk;
796 goto validate_head;
800 * Scan beginning of log now. The last part of the physical
801 * log is good. This scan needs to verify that it doesn't find
802 * the last_half_cycle.
804 start_blk = 0;
805 ASSERT(head_blk <= INT_MAX);
806 if ((error = xlog_find_verify_cycle(log,
807 start_blk, (int)head_blk,
808 stop_on_cycle, &new_blk)))
809 goto bp_err;
810 if (new_blk != -1)
811 head_blk = new_blk;
814 validate_head:
816 * Now we need to make sure head_blk is not pointing to a block in
817 * the middle of a log record.
819 num_scan_bblks = XLOG_REC_SHIFT(log);
820 if (head_blk >= num_scan_bblks) {
821 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
823 /* start ptr at last block ptr before head_blk */
824 if ((error = xlog_find_verify_log_record(log, start_blk,
825 &head_blk, 0)) == -1) {
826 error = XFS_ERROR(EIO);
827 goto bp_err;
828 } else if (error)
829 goto bp_err;
830 } else {
831 start_blk = 0;
832 ASSERT(head_blk <= INT_MAX);
833 if ((error = xlog_find_verify_log_record(log, start_blk,
834 &head_blk, 0)) == -1) {
835 /* We hit the beginning of the log during our search */
836 start_blk = log_bbnum - (num_scan_bblks - head_blk);
837 new_blk = log_bbnum;
838 ASSERT(start_blk <= INT_MAX &&
839 (xfs_daddr_t) log_bbnum-start_blk >= 0);
840 ASSERT(head_blk <= INT_MAX);
841 if ((error = xlog_find_verify_log_record(log,
842 start_blk, &new_blk,
843 (int)head_blk)) == -1) {
844 error = XFS_ERROR(EIO);
845 goto bp_err;
846 } else if (error)
847 goto bp_err;
848 if (new_blk != log_bbnum)
849 head_blk = new_blk;
850 } else if (error)
851 goto bp_err;
854 xlog_put_bp(bp);
855 if (head_blk == log_bbnum)
856 *return_head_blk = 0;
857 else
858 *return_head_blk = head_blk;
860 * When returning here, we have a good block number. Bad block
861 * means that during a previous crash, we didn't have a clean break
862 * from cycle number N to cycle number N-1. In this case, we need
863 * to find the first block with cycle number N-1.
865 return 0;
867 bp_err:
868 xlog_put_bp(bp);
870 if (error)
871 xfs_warn(log->l_mp, "failed to find log head");
872 return error;
876 * Find the sync block number or the tail of the log.
878 * This will be the block number of the last record to have its
879 * associated buffers synced to disk. Every log record header has
880 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
881 * to get a sync block number. The only concern is to figure out which
882 * log record header to believe.
884 * The following algorithm uses the log record header with the largest
885 * lsn. The entire log record does not need to be valid. We only care
886 * that the header is valid.
888 * We could speed up search by using current head_blk buffer, but it is not
889 * available.
891 STATIC int
892 xlog_find_tail(
893 struct xlog *log,
894 xfs_daddr_t *head_blk,
895 xfs_daddr_t *tail_blk)
897 xlog_rec_header_t *rhead;
898 xlog_op_header_t *op_head;
899 xfs_caddr_t offset = NULL;
900 xfs_buf_t *bp;
901 int error, i, found;
902 xfs_daddr_t umount_data_blk;
903 xfs_daddr_t after_umount_blk;
904 xfs_lsn_t tail_lsn;
905 int hblks;
907 found = 0;
910 * Find previous log record
912 if ((error = xlog_find_head(log, head_blk)))
913 return error;
915 bp = xlog_get_bp(log, 1);
916 if (!bp)
917 return ENOMEM;
918 if (*head_blk == 0) { /* special case */
919 error = xlog_bread(log, 0, 1, bp, &offset);
920 if (error)
921 goto done;
923 if (xlog_get_cycle(offset) == 0) {
924 *tail_blk = 0;
925 /* leave all other log inited values alone */
926 goto done;
931 * Search backwards looking for log record header block
933 ASSERT(*head_blk < INT_MAX);
934 for (i = (int)(*head_blk) - 1; i >= 0; i--) {
935 error = xlog_bread(log, i, 1, bp, &offset);
936 if (error)
937 goto done;
939 if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
940 found = 1;
941 break;
945 * If we haven't found the log record header block, start looking
946 * again from the end of the physical log. XXXmiken: There should be
947 * a check here to make sure we didn't search more than N blocks in
948 * the previous code.
950 if (!found) {
951 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
952 error = xlog_bread(log, i, 1, bp, &offset);
953 if (error)
954 goto done;
956 if (*(__be32 *)offset ==
957 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
958 found = 2;
959 break;
963 if (!found) {
964 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
965 ASSERT(0);
966 return XFS_ERROR(EIO);
969 /* find blk_no of tail of log */
970 rhead = (xlog_rec_header_t *)offset;
971 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
974 * Reset log values according to the state of the log when we
975 * crashed. In the case where head_blk == 0, we bump curr_cycle
976 * one because the next write starts a new cycle rather than
977 * continuing the cycle of the last good log record. At this
978 * point we have guaranteed that all partial log records have been
979 * accounted for. Therefore, we know that the last good log record
980 * written was complete and ended exactly on the end boundary
981 * of the physical log.
983 log->l_prev_block = i;
984 log->l_curr_block = (int)*head_blk;
985 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
986 if (found == 2)
987 log->l_curr_cycle++;
988 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
989 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
990 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
991 BBTOB(log->l_curr_block));
992 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
993 BBTOB(log->l_curr_block));
996 * Look for unmount record. If we find it, then we know there
997 * was a clean unmount. Since 'i' could be the last block in
998 * the physical log, we convert to a log block before comparing
999 * to the head_blk.
1001 * Save the current tail lsn to use to pass to
1002 * xlog_clear_stale_blocks() below. We won't want to clear the
1003 * unmount record if there is one, so we pass the lsn of the
1004 * unmount record rather than the block after it.
1006 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1007 int h_size = be32_to_cpu(rhead->h_size);
1008 int h_version = be32_to_cpu(rhead->h_version);
1010 if ((h_version & XLOG_VERSION_2) &&
1011 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1012 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1013 if (h_size % XLOG_HEADER_CYCLE_SIZE)
1014 hblks++;
1015 } else {
1016 hblks = 1;
1018 } else {
1019 hblks = 1;
1021 after_umount_blk = (i + hblks + (int)
1022 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
1023 tail_lsn = atomic64_read(&log->l_tail_lsn);
1024 if (*head_blk == after_umount_blk &&
1025 be32_to_cpu(rhead->h_num_logops) == 1) {
1026 umount_data_blk = (i + hblks) % log->l_logBBsize;
1027 error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1028 if (error)
1029 goto done;
1031 op_head = (xlog_op_header_t *)offset;
1032 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1034 * Set tail and last sync so that newly written
1035 * log records will point recovery to after the
1036 * current unmount record.
1038 xlog_assign_atomic_lsn(&log->l_tail_lsn,
1039 log->l_curr_cycle, after_umount_blk);
1040 xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1041 log->l_curr_cycle, after_umount_blk);
1042 *tail_blk = after_umount_blk;
1045 * Note that the unmount was clean. If the unmount
1046 * was not clean, we need to know this to rebuild the
1047 * superblock counters from the perag headers if we
1048 * have a filesystem using non-persistent counters.
1050 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1055 * Make sure that there are no blocks in front of the head
1056 * with the same cycle number as the head. This can happen
1057 * because we allow multiple outstanding log writes concurrently,
1058 * and the later writes might make it out before earlier ones.
1060 * We use the lsn from before modifying it so that we'll never
1061 * overwrite the unmount record after a clean unmount.
1063 * Do this only if we are going to recover the filesystem
1065 * NOTE: This used to say "if (!readonly)"
1066 * However on Linux, we can & do recover a read-only filesystem.
1067 * We only skip recovery if NORECOVERY is specified on mount,
1068 * in which case we would not be here.
1070 * But... if the -device- itself is readonly, just skip this.
1071 * We can't recover this device anyway, so it won't matter.
1073 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1074 error = xlog_clear_stale_blocks(log, tail_lsn);
1076 done:
1077 xlog_put_bp(bp);
1079 if (error)
1080 xfs_warn(log->l_mp, "failed to locate log tail");
1081 return error;
1085 * Is the log zeroed at all?
1087 * The last binary search should be changed to perform an X block read
1088 * once X becomes small enough. You can then search linearly through
1089 * the X blocks. This will cut down on the number of reads we need to do.
1091 * If the log is partially zeroed, this routine will pass back the blkno
1092 * of the first block with cycle number 0. It won't have a complete LR
1093 * preceding it.
1095 * Return:
1096 * 0 => the log is completely written to
1097 * -1 => use *blk_no as the first block of the log
1098 * >0 => error has occurred
1100 STATIC int
1101 xlog_find_zeroed(
1102 struct xlog *log,
1103 xfs_daddr_t *blk_no)
1105 xfs_buf_t *bp;
1106 xfs_caddr_t offset;
1107 uint first_cycle, last_cycle;
1108 xfs_daddr_t new_blk, last_blk, start_blk;
1109 xfs_daddr_t num_scan_bblks;
1110 int error, log_bbnum = log->l_logBBsize;
1112 *blk_no = 0;
1114 /* check totally zeroed log */
1115 bp = xlog_get_bp(log, 1);
1116 if (!bp)
1117 return ENOMEM;
1118 error = xlog_bread(log, 0, 1, bp, &offset);
1119 if (error)
1120 goto bp_err;
1122 first_cycle = xlog_get_cycle(offset);
1123 if (first_cycle == 0) { /* completely zeroed log */
1124 *blk_no = 0;
1125 xlog_put_bp(bp);
1126 return -1;
1129 /* check partially zeroed log */
1130 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1131 if (error)
1132 goto bp_err;
1134 last_cycle = xlog_get_cycle(offset);
1135 if (last_cycle != 0) { /* log completely written to */
1136 xlog_put_bp(bp);
1137 return 0;
1138 } else if (first_cycle != 1) {
1140 * If the cycle of the last block is zero, the cycle of
1141 * the first block must be 1. If it's not, maybe we're
1142 * not looking at a log... Bail out.
1144 xfs_warn(log->l_mp,
1145 "Log inconsistent or not a log (last==0, first!=1)");
1146 return XFS_ERROR(EINVAL);
1149 /* we have a partially zeroed log */
1150 last_blk = log_bbnum-1;
1151 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1152 goto bp_err;
1155 * Validate the answer. Because there is no way to guarantee that
1156 * the entire log is made up of log records which are the same size,
1157 * we scan over the defined maximum blocks. At this point, the maximum
1158 * is not chosen to mean anything special. XXXmiken
1160 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1161 ASSERT(num_scan_bblks <= INT_MAX);
1163 if (last_blk < num_scan_bblks)
1164 num_scan_bblks = last_blk;
1165 start_blk = last_blk - num_scan_bblks;
1168 * We search for any instances of cycle number 0 that occur before
1169 * our current estimate of the head. What we're trying to detect is
1170 * 1 ... | 0 | 1 | 0...
1171 * ^ binary search ends here
1173 if ((error = xlog_find_verify_cycle(log, start_blk,
1174 (int)num_scan_bblks, 0, &new_blk)))
1175 goto bp_err;
1176 if (new_blk != -1)
1177 last_blk = new_blk;
1180 * Potentially backup over partial log record write. We don't need
1181 * to search the end of the log because we know it is zero.
1183 if ((error = xlog_find_verify_log_record(log, start_blk,
1184 &last_blk, 0)) == -1) {
1185 error = XFS_ERROR(EIO);
1186 goto bp_err;
1187 } else if (error)
1188 goto bp_err;
1190 *blk_no = last_blk;
1191 bp_err:
1192 xlog_put_bp(bp);
1193 if (error)
1194 return error;
1195 return -1;
1199 * These are simple subroutines used by xlog_clear_stale_blocks() below
1200 * to initialize a buffer full of empty log record headers and write
1201 * them into the log.
1203 STATIC void
1204 xlog_add_record(
1205 struct xlog *log,
1206 xfs_caddr_t buf,
1207 int cycle,
1208 int block,
1209 int tail_cycle,
1210 int tail_block)
1212 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1214 memset(buf, 0, BBSIZE);
1215 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1216 recp->h_cycle = cpu_to_be32(cycle);
1217 recp->h_version = cpu_to_be32(
1218 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1219 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1220 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1221 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1222 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1225 STATIC int
1226 xlog_write_log_records(
1227 struct xlog *log,
1228 int cycle,
1229 int start_block,
1230 int blocks,
1231 int tail_cycle,
1232 int tail_block)
1234 xfs_caddr_t offset;
1235 xfs_buf_t *bp;
1236 int balign, ealign;
1237 int sectbb = log->l_sectBBsize;
1238 int end_block = start_block + blocks;
1239 int bufblks;
1240 int error = 0;
1241 int i, j = 0;
1244 * Greedily allocate a buffer big enough to handle the full
1245 * range of basic blocks to be written. If that fails, try
1246 * a smaller size. We need to be able to write at least a
1247 * log sector, or we're out of luck.
1249 bufblks = 1 << ffs(blocks);
1250 while (bufblks > log->l_logBBsize)
1251 bufblks >>= 1;
1252 while (!(bp = xlog_get_bp(log, bufblks))) {
1253 bufblks >>= 1;
1254 if (bufblks < sectbb)
1255 return ENOMEM;
1258 /* We may need to do a read at the start to fill in part of
1259 * the buffer in the starting sector not covered by the first
1260 * write below.
1262 balign = round_down(start_block, sectbb);
1263 if (balign != start_block) {
1264 error = xlog_bread_noalign(log, start_block, 1, bp);
1265 if (error)
1266 goto out_put_bp;
1268 j = start_block - balign;
1271 for (i = start_block; i < end_block; i += bufblks) {
1272 int bcount, endcount;
1274 bcount = min(bufblks, end_block - start_block);
1275 endcount = bcount - j;
1277 /* We may need to do a read at the end to fill in part of
1278 * the buffer in the final sector not covered by the write.
1279 * If this is the same sector as the above read, skip it.
1281 ealign = round_down(end_block, sectbb);
1282 if (j == 0 && (start_block + endcount > ealign)) {
1283 offset = bp->b_addr + BBTOB(ealign - start_block);
1284 error = xlog_bread_offset(log, ealign, sectbb,
1285 bp, offset);
1286 if (error)
1287 break;
1291 offset = xlog_align(log, start_block, endcount, bp);
1292 for (; j < endcount; j++) {
1293 xlog_add_record(log, offset, cycle, i+j,
1294 tail_cycle, tail_block);
1295 offset += BBSIZE;
1297 error = xlog_bwrite(log, start_block, endcount, bp);
1298 if (error)
1299 break;
1300 start_block += endcount;
1301 j = 0;
1304 out_put_bp:
1305 xlog_put_bp(bp);
1306 return error;
1310 * This routine is called to blow away any incomplete log writes out
1311 * in front of the log head. We do this so that we won't become confused
1312 * if we come up, write only a little bit more, and then crash again.
1313 * If we leave the partial log records out there, this situation could
1314 * cause us to think those partial writes are valid blocks since they
1315 * have the current cycle number. We get rid of them by overwriting them
1316 * with empty log records with the old cycle number rather than the
1317 * current one.
1319 * The tail lsn is passed in rather than taken from
1320 * the log so that we will not write over the unmount record after a
1321 * clean unmount in a 512 block log. Doing so would leave the log without
1322 * any valid log records in it until a new one was written. If we crashed
1323 * during that time we would not be able to recover.
1325 STATIC int
1326 xlog_clear_stale_blocks(
1327 struct xlog *log,
1328 xfs_lsn_t tail_lsn)
1330 int tail_cycle, head_cycle;
1331 int tail_block, head_block;
1332 int tail_distance, max_distance;
1333 int distance;
1334 int error;
1336 tail_cycle = CYCLE_LSN(tail_lsn);
1337 tail_block = BLOCK_LSN(tail_lsn);
1338 head_cycle = log->l_curr_cycle;
1339 head_block = log->l_curr_block;
1342 * Figure out the distance between the new head of the log
1343 * and the tail. We want to write over any blocks beyond the
1344 * head that we may have written just before the crash, but
1345 * we don't want to overwrite the tail of the log.
1347 if (head_cycle == tail_cycle) {
1349 * The tail is behind the head in the physical log,
1350 * so the distance from the head to the tail is the
1351 * distance from the head to the end of the log plus
1352 * the distance from the beginning of the log to the
1353 * tail.
1355 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1356 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1357 XFS_ERRLEVEL_LOW, log->l_mp);
1358 return XFS_ERROR(EFSCORRUPTED);
1360 tail_distance = tail_block + (log->l_logBBsize - head_block);
1361 } else {
1363 * The head is behind the tail in the physical log,
1364 * so the distance from the head to the tail is just
1365 * the tail block minus the head block.
1367 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1368 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1369 XFS_ERRLEVEL_LOW, log->l_mp);
1370 return XFS_ERROR(EFSCORRUPTED);
1372 tail_distance = tail_block - head_block;
1376 * If the head is right up against the tail, we can't clear
1377 * anything.
1379 if (tail_distance <= 0) {
1380 ASSERT(tail_distance == 0);
1381 return 0;
1384 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1386 * Take the smaller of the maximum amount of outstanding I/O
1387 * we could have and the distance to the tail to clear out.
1388 * We take the smaller so that we don't overwrite the tail and
1389 * we don't waste all day writing from the head to the tail
1390 * for no reason.
1392 max_distance = MIN(max_distance, tail_distance);
1394 if ((head_block + max_distance) <= log->l_logBBsize) {
1396 * We can stomp all the blocks we need to without
1397 * wrapping around the end of the log. Just do it
1398 * in a single write. Use the cycle number of the
1399 * current cycle minus one so that the log will look like:
1400 * n ... | n - 1 ...
1402 error = xlog_write_log_records(log, (head_cycle - 1),
1403 head_block, max_distance, tail_cycle,
1404 tail_block);
1405 if (error)
1406 return error;
1407 } else {
1409 * We need to wrap around the end of the physical log in
1410 * order to clear all the blocks. Do it in two separate
1411 * I/Os. The first write should be from the head to the
1412 * end of the physical log, and it should use the current
1413 * cycle number minus one just like above.
1415 distance = log->l_logBBsize - head_block;
1416 error = xlog_write_log_records(log, (head_cycle - 1),
1417 head_block, distance, tail_cycle,
1418 tail_block);
1420 if (error)
1421 return error;
1424 * Now write the blocks at the start of the physical log.
1425 * This writes the remainder of the blocks we want to clear.
1426 * It uses the current cycle number since we're now on the
1427 * same cycle as the head so that we get:
1428 * n ... n ... | n - 1 ...
1429 * ^^^^^ blocks we're writing
1431 distance = max_distance - (log->l_logBBsize - head_block);
1432 error = xlog_write_log_records(log, head_cycle, 0, distance,
1433 tail_cycle, tail_block);
1434 if (error)
1435 return error;
1438 return 0;
1441 /******************************************************************************
1443 * Log recover routines
1445 ******************************************************************************
1448 STATIC xlog_recover_t *
1449 xlog_recover_find_tid(
1450 struct hlist_head *head,
1451 xlog_tid_t tid)
1453 xlog_recover_t *trans;
1455 hlist_for_each_entry(trans, head, r_list) {
1456 if (trans->r_log_tid == tid)
1457 return trans;
1459 return NULL;
1462 STATIC void
1463 xlog_recover_new_tid(
1464 struct hlist_head *head,
1465 xlog_tid_t tid,
1466 xfs_lsn_t lsn)
1468 xlog_recover_t *trans;
1470 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1471 trans->r_log_tid = tid;
1472 trans->r_lsn = lsn;
1473 INIT_LIST_HEAD(&trans->r_itemq);
1475 INIT_HLIST_NODE(&trans->r_list);
1476 hlist_add_head(&trans->r_list, head);
1479 STATIC void
1480 xlog_recover_add_item(
1481 struct list_head *head)
1483 xlog_recover_item_t *item;
1485 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1486 INIT_LIST_HEAD(&item->ri_list);
1487 list_add_tail(&item->ri_list, head);
1490 STATIC int
1491 xlog_recover_add_to_cont_trans(
1492 struct xlog *log,
1493 struct xlog_recover *trans,
1494 xfs_caddr_t dp,
1495 int len)
1497 xlog_recover_item_t *item;
1498 xfs_caddr_t ptr, old_ptr;
1499 int old_len;
1501 if (list_empty(&trans->r_itemq)) {
1502 /* finish copying rest of trans header */
1503 xlog_recover_add_item(&trans->r_itemq);
1504 ptr = (xfs_caddr_t) &trans->r_theader +
1505 sizeof(xfs_trans_header_t) - len;
1506 memcpy(ptr, dp, len); /* d, s, l */
1507 return 0;
1509 /* take the tail entry */
1510 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1512 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1513 old_len = item->ri_buf[item->ri_cnt-1].i_len;
1515 ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP);
1516 memcpy(&ptr[old_len], dp, len); /* d, s, l */
1517 item->ri_buf[item->ri_cnt-1].i_len += len;
1518 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1519 trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1520 return 0;
1524 * The next region to add is the start of a new region. It could be
1525 * a whole region or it could be the first part of a new region. Because
1526 * of this, the assumption here is that the type and size fields of all
1527 * format structures fit into the first 32 bits of the structure.
1529 * This works because all regions must be 32 bit aligned. Therefore, we
1530 * either have both fields or we have neither field. In the case we have
1531 * neither field, the data part of the region is zero length. We only have
1532 * a log_op_header and can throw away the header since a new one will appear
1533 * later. If we have at least 4 bytes, then we can determine how many regions
1534 * will appear in the current log item.
1536 STATIC int
1537 xlog_recover_add_to_trans(
1538 struct xlog *log,
1539 struct xlog_recover *trans,
1540 xfs_caddr_t dp,
1541 int len)
1543 xfs_inode_log_format_t *in_f; /* any will do */
1544 xlog_recover_item_t *item;
1545 xfs_caddr_t ptr;
1547 if (!len)
1548 return 0;
1549 if (list_empty(&trans->r_itemq)) {
1550 /* we need to catch log corruptions here */
1551 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
1552 xfs_warn(log->l_mp, "%s: bad header magic number",
1553 __func__);
1554 ASSERT(0);
1555 return XFS_ERROR(EIO);
1557 if (len == sizeof(xfs_trans_header_t))
1558 xlog_recover_add_item(&trans->r_itemq);
1559 memcpy(&trans->r_theader, dp, len); /* d, s, l */
1560 return 0;
1563 ptr = kmem_alloc(len, KM_SLEEP);
1564 memcpy(ptr, dp, len);
1565 in_f = (xfs_inode_log_format_t *)ptr;
1567 /* take the tail entry */
1568 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1569 if (item->ri_total != 0 &&
1570 item->ri_total == item->ri_cnt) {
1571 /* tail item is in use, get a new one */
1572 xlog_recover_add_item(&trans->r_itemq);
1573 item = list_entry(trans->r_itemq.prev,
1574 xlog_recover_item_t, ri_list);
1577 if (item->ri_total == 0) { /* first region to be added */
1578 if (in_f->ilf_size == 0 ||
1579 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
1580 xfs_warn(log->l_mp,
1581 "bad number of regions (%d) in inode log format",
1582 in_f->ilf_size);
1583 ASSERT(0);
1584 return XFS_ERROR(EIO);
1587 item->ri_total = in_f->ilf_size;
1588 item->ri_buf =
1589 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
1590 KM_SLEEP);
1592 ASSERT(item->ri_total > item->ri_cnt);
1593 /* Description region is ri_buf[0] */
1594 item->ri_buf[item->ri_cnt].i_addr = ptr;
1595 item->ri_buf[item->ri_cnt].i_len = len;
1596 item->ri_cnt++;
1597 trace_xfs_log_recover_item_add(log, trans, item, 0);
1598 return 0;
1602 * Sort the log items in the transaction. Cancelled buffers need
1603 * to be put first so they are processed before any items that might
1604 * modify the buffers. If they are cancelled, then the modifications
1605 * don't need to be replayed.
1607 STATIC int
1608 xlog_recover_reorder_trans(
1609 struct xlog *log,
1610 struct xlog_recover *trans,
1611 int pass)
1613 xlog_recover_item_t *item, *n;
1614 LIST_HEAD(sort_list);
1616 list_splice_init(&trans->r_itemq, &sort_list);
1617 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1618 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1620 switch (ITEM_TYPE(item)) {
1621 case XFS_LI_BUF:
1622 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1623 trace_xfs_log_recover_item_reorder_head(log,
1624 trans, item, pass);
1625 list_move(&item->ri_list, &trans->r_itemq);
1626 break;
1628 case XFS_LI_INODE:
1629 case XFS_LI_DQUOT:
1630 case XFS_LI_QUOTAOFF:
1631 case XFS_LI_EFD:
1632 case XFS_LI_EFI:
1633 trace_xfs_log_recover_item_reorder_tail(log,
1634 trans, item, pass);
1635 list_move_tail(&item->ri_list, &trans->r_itemq);
1636 break;
1637 default:
1638 xfs_warn(log->l_mp,
1639 "%s: unrecognized type of log operation",
1640 __func__);
1641 ASSERT(0);
1642 return XFS_ERROR(EIO);
1645 ASSERT(list_empty(&sort_list));
1646 return 0;
1650 * Build up the table of buf cancel records so that we don't replay
1651 * cancelled data in the second pass. For buffer records that are
1652 * not cancel records, there is nothing to do here so we just return.
1654 * If we get a cancel record which is already in the table, this indicates
1655 * that the buffer was cancelled multiple times. In order to ensure
1656 * that during pass 2 we keep the record in the table until we reach its
1657 * last occurrence in the log, we keep a reference count in the cancel
1658 * record in the table to tell us how many times we expect to see this
1659 * record during the second pass.
1661 STATIC int
1662 xlog_recover_buffer_pass1(
1663 struct xlog *log,
1664 struct xlog_recover_item *item)
1666 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1667 struct list_head *bucket;
1668 struct xfs_buf_cancel *bcp;
1671 * If this isn't a cancel buffer item, then just return.
1673 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1674 trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1675 return 0;
1679 * Insert an xfs_buf_cancel record into the hash table of them.
1680 * If there is already an identical record, bump its reference count.
1682 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1683 list_for_each_entry(bcp, bucket, bc_list) {
1684 if (bcp->bc_blkno == buf_f->blf_blkno &&
1685 bcp->bc_len == buf_f->blf_len) {
1686 bcp->bc_refcount++;
1687 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
1688 return 0;
1692 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
1693 bcp->bc_blkno = buf_f->blf_blkno;
1694 bcp->bc_len = buf_f->blf_len;
1695 bcp->bc_refcount = 1;
1696 list_add_tail(&bcp->bc_list, bucket);
1698 trace_xfs_log_recover_buf_cancel_add(log, buf_f);
1699 return 0;
1703 * Check to see whether the buffer being recovered has a corresponding
1704 * entry in the buffer cancel record table. If it does then return 1
1705 * so that it will be cancelled, otherwise return 0. If the buffer is
1706 * actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement
1707 * the refcount on the entry in the table and remove it from the table
1708 * if this is the last reference.
1710 * We remove the cancel record from the table when we encounter its
1711 * last occurrence in the log so that if the same buffer is re-used
1712 * again after its last cancellation we actually replay the changes
1713 * made at that point.
1715 STATIC int
1716 xlog_check_buffer_cancelled(
1717 struct xlog *log,
1718 xfs_daddr_t blkno,
1719 uint len,
1720 ushort flags)
1722 struct list_head *bucket;
1723 struct xfs_buf_cancel *bcp;
1725 if (log->l_buf_cancel_table == NULL) {
1727 * There is nothing in the table built in pass one,
1728 * so this buffer must not be cancelled.
1730 ASSERT(!(flags & XFS_BLF_CANCEL));
1731 return 0;
1735 * Search for an entry in the cancel table that matches our buffer.
1737 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
1738 list_for_each_entry(bcp, bucket, bc_list) {
1739 if (bcp->bc_blkno == blkno && bcp->bc_len == len)
1740 goto found;
1744 * We didn't find a corresponding entry in the table, so return 0 so
1745 * that the buffer is NOT cancelled.
1747 ASSERT(!(flags & XFS_BLF_CANCEL));
1748 return 0;
1750 found:
1752 * We've go a match, so return 1 so that the recovery of this buffer
1753 * is cancelled. If this buffer is actually a buffer cancel log
1754 * item, then decrement the refcount on the one in the table and
1755 * remove it if this is the last reference.
1757 if (flags & XFS_BLF_CANCEL) {
1758 if (--bcp->bc_refcount == 0) {
1759 list_del(&bcp->bc_list);
1760 kmem_free(bcp);
1763 return 1;
1767 * Perform recovery for a buffer full of inodes. In these buffers, the only
1768 * data which should be recovered is that which corresponds to the
1769 * di_next_unlinked pointers in the on disk inode structures. The rest of the
1770 * data for the inodes is always logged through the inodes themselves rather
1771 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1773 * The only time when buffers full of inodes are fully recovered is when the
1774 * buffer is full of newly allocated inodes. In this case the buffer will
1775 * not be marked as an inode buffer and so will be sent to
1776 * xlog_recover_do_reg_buffer() below during recovery.
1778 STATIC int
1779 xlog_recover_do_inode_buffer(
1780 struct xfs_mount *mp,
1781 xlog_recover_item_t *item,
1782 struct xfs_buf *bp,
1783 xfs_buf_log_format_t *buf_f)
1785 int i;
1786 int item_index = 0;
1787 int bit = 0;
1788 int nbits = 0;
1789 int reg_buf_offset = 0;
1790 int reg_buf_bytes = 0;
1791 int next_unlinked_offset;
1792 int inodes_per_buf;
1793 xfs_agino_t *logged_nextp;
1794 xfs_agino_t *buffer_nextp;
1796 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
1797 bp->b_ops = &xfs_inode_buf_ops;
1799 inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
1800 for (i = 0; i < inodes_per_buf; i++) {
1801 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1802 offsetof(xfs_dinode_t, di_next_unlinked);
1804 while (next_unlinked_offset >=
1805 (reg_buf_offset + reg_buf_bytes)) {
1807 * The next di_next_unlinked field is beyond
1808 * the current logged region. Find the next
1809 * logged region that contains or is beyond
1810 * the current di_next_unlinked field.
1812 bit += nbits;
1813 bit = xfs_next_bit(buf_f->blf_data_map,
1814 buf_f->blf_map_size, bit);
1817 * If there are no more logged regions in the
1818 * buffer, then we're done.
1820 if (bit == -1)
1821 return 0;
1823 nbits = xfs_contig_bits(buf_f->blf_data_map,
1824 buf_f->blf_map_size, bit);
1825 ASSERT(nbits > 0);
1826 reg_buf_offset = bit << XFS_BLF_SHIFT;
1827 reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1828 item_index++;
1832 * If the current logged region starts after the current
1833 * di_next_unlinked field, then move on to the next
1834 * di_next_unlinked field.
1836 if (next_unlinked_offset < reg_buf_offset)
1837 continue;
1839 ASSERT(item->ri_buf[item_index].i_addr != NULL);
1840 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
1841 ASSERT((reg_buf_offset + reg_buf_bytes) <=
1842 BBTOB(bp->b_io_length));
1845 * The current logged region contains a copy of the
1846 * current di_next_unlinked field. Extract its value
1847 * and copy it to the buffer copy.
1849 logged_nextp = item->ri_buf[item_index].i_addr +
1850 next_unlinked_offset - reg_buf_offset;
1851 if (unlikely(*logged_nextp == 0)) {
1852 xfs_alert(mp,
1853 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
1854 "Trying to replay bad (0) inode di_next_unlinked field.",
1855 item, bp);
1856 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1857 XFS_ERRLEVEL_LOW, mp);
1858 return XFS_ERROR(EFSCORRUPTED);
1861 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1862 next_unlinked_offset);
1863 *buffer_nextp = *logged_nextp;
1866 return 0;
1870 * Validate the recovered buffer is of the correct type and attach the
1871 * appropriate buffer operations to them for writeback. Magic numbers are in a
1872 * few places:
1873 * the first 16 bits of the buffer (inode buffer, dquot buffer),
1874 * the first 32 bits of the buffer (most blocks),
1875 * inside a struct xfs_da_blkinfo at the start of the buffer.
1877 static void
1878 xlog_recovery_validate_buf_type(
1879 struct xfs_mount *mp,
1880 struct xfs_buf *bp,
1881 xfs_buf_log_format_t *buf_f)
1883 struct xfs_da_blkinfo *info = bp->b_addr;
1884 __uint32_t magic32;
1885 __uint16_t magic16;
1886 __uint16_t magicda;
1888 magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
1889 magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
1890 magicda = be16_to_cpu(info->magic);
1891 switch (buf_f->blf_flags & XFS_BLF_TYPE_MASK) {
1892 case XFS_BLF_BTREE_BUF:
1893 switch (magic32) {
1894 case XFS_ABTB_CRC_MAGIC:
1895 case XFS_ABTC_CRC_MAGIC:
1896 case XFS_ABTB_MAGIC:
1897 case XFS_ABTC_MAGIC:
1898 bp->b_ops = &xfs_allocbt_buf_ops;
1899 break;
1900 case XFS_IBT_CRC_MAGIC:
1901 case XFS_IBT_MAGIC:
1902 bp->b_ops = &xfs_inobt_buf_ops;
1903 break;
1904 case XFS_BMAP_CRC_MAGIC:
1905 case XFS_BMAP_MAGIC:
1906 bp->b_ops = &xfs_bmbt_buf_ops;
1907 break;
1908 default:
1909 xfs_warn(mp, "Bad btree block magic!");
1910 ASSERT(0);
1911 break;
1913 break;
1914 case XFS_BLF_AGF_BUF:
1915 if (magic32 != XFS_AGF_MAGIC) {
1916 xfs_warn(mp, "Bad AGF block magic!");
1917 ASSERT(0);
1918 break;
1920 bp->b_ops = &xfs_agf_buf_ops;
1921 break;
1922 case XFS_BLF_AGFL_BUF:
1923 if (!xfs_sb_version_hascrc(&mp->m_sb))
1924 break;
1925 if (magic32 != XFS_AGFL_MAGIC) {
1926 xfs_warn(mp, "Bad AGFL block magic!");
1927 ASSERT(0);
1928 break;
1930 bp->b_ops = &xfs_agfl_buf_ops;
1931 break;
1932 case XFS_BLF_AGI_BUF:
1933 if (magic32 != XFS_AGI_MAGIC) {
1934 xfs_warn(mp, "Bad AGI block magic!");
1935 ASSERT(0);
1936 break;
1938 bp->b_ops = &xfs_agi_buf_ops;
1939 break;
1940 case XFS_BLF_UDQUOT_BUF:
1941 case XFS_BLF_PDQUOT_BUF:
1942 case XFS_BLF_GDQUOT_BUF:
1943 if (magic16 != XFS_DQUOT_MAGIC) {
1944 xfs_warn(mp, "Bad DQUOT block magic!");
1945 ASSERT(0);
1946 break;
1948 bp->b_ops = &xfs_dquot_buf_ops;
1949 break;
1950 case XFS_BLF_DINO_BUF:
1952 * we get here with inode allocation buffers, not buffers that
1953 * track unlinked list changes.
1955 if (magic16 != XFS_DINODE_MAGIC) {
1956 xfs_warn(mp, "Bad INODE block magic!");
1957 ASSERT(0);
1958 break;
1960 bp->b_ops = &xfs_inode_buf_ops;
1961 break;
1962 case XFS_BLF_SYMLINK_BUF:
1963 if (magic32 != XFS_SYMLINK_MAGIC) {
1964 xfs_warn(mp, "Bad symlink block magic!");
1965 ASSERT(0);
1966 break;
1968 bp->b_ops = &xfs_symlink_buf_ops;
1969 break;
1970 case XFS_BLF_DIR_BLOCK_BUF:
1971 if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
1972 magic32 != XFS_DIR3_BLOCK_MAGIC) {
1973 xfs_warn(mp, "Bad dir block magic!");
1974 ASSERT(0);
1975 break;
1977 bp->b_ops = &xfs_dir3_block_buf_ops;
1978 break;
1979 case XFS_BLF_DIR_DATA_BUF:
1980 if (magic32 != XFS_DIR2_DATA_MAGIC &&
1981 magic32 != XFS_DIR3_DATA_MAGIC) {
1982 xfs_warn(mp, "Bad dir data magic!");
1983 ASSERT(0);
1984 break;
1986 bp->b_ops = &xfs_dir3_data_buf_ops;
1987 break;
1988 case XFS_BLF_DIR_FREE_BUF:
1989 if (magic32 != XFS_DIR2_FREE_MAGIC &&
1990 magic32 != XFS_DIR3_FREE_MAGIC) {
1991 xfs_warn(mp, "Bad dir3 free magic!");
1992 ASSERT(0);
1993 break;
1995 bp->b_ops = &xfs_dir3_free_buf_ops;
1996 break;
1997 case XFS_BLF_DIR_LEAF1_BUF:
1998 if (magicda != XFS_DIR2_LEAF1_MAGIC &&
1999 magicda != XFS_DIR3_LEAF1_MAGIC) {
2000 xfs_warn(mp, "Bad dir leaf1 magic!");
2001 ASSERT(0);
2002 break;
2004 bp->b_ops = &xfs_dir3_leaf1_buf_ops;
2005 break;
2006 case XFS_BLF_DIR_LEAFN_BUF:
2007 if (magicda != XFS_DIR2_LEAFN_MAGIC &&
2008 magicda != XFS_DIR3_LEAFN_MAGIC) {
2009 xfs_warn(mp, "Bad dir leafn magic!");
2010 ASSERT(0);
2011 break;
2013 bp->b_ops = &xfs_dir3_leafn_buf_ops;
2014 break;
2015 case XFS_BLF_DA_NODE_BUF:
2016 if (magicda != XFS_DA_NODE_MAGIC &&
2017 magicda != XFS_DA3_NODE_MAGIC) {
2018 xfs_warn(mp, "Bad da node magic!");
2019 ASSERT(0);
2020 break;
2022 bp->b_ops = &xfs_da3_node_buf_ops;
2023 break;
2024 case XFS_BLF_ATTR_LEAF_BUF:
2025 if (magicda != XFS_ATTR_LEAF_MAGIC &&
2026 magicda != XFS_ATTR3_LEAF_MAGIC) {
2027 xfs_warn(mp, "Bad attr leaf magic!");
2028 ASSERT(0);
2029 break;
2031 bp->b_ops = &xfs_attr3_leaf_buf_ops;
2032 break;
2033 case XFS_BLF_ATTR_RMT_BUF:
2034 if (!xfs_sb_version_hascrc(&mp->m_sb))
2035 break;
2036 if (magicda != XFS_ATTR3_RMT_MAGIC) {
2037 xfs_warn(mp, "Bad attr remote magic!");
2038 ASSERT(0);
2039 break;
2041 bp->b_ops = &xfs_attr3_rmt_buf_ops;
2042 break;
2043 default:
2044 break;
2049 * Perform a 'normal' buffer recovery. Each logged region of the
2050 * buffer should be copied over the corresponding region in the
2051 * given buffer. The bitmap in the buf log format structure indicates
2052 * where to place the logged data.
2054 STATIC void
2055 xlog_recover_do_reg_buffer(
2056 struct xfs_mount *mp,
2057 xlog_recover_item_t *item,
2058 struct xfs_buf *bp,
2059 xfs_buf_log_format_t *buf_f)
2061 int i;
2062 int bit;
2063 int nbits;
2064 int error;
2066 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
2068 bit = 0;
2069 i = 1; /* 0 is the buf format structure */
2070 while (1) {
2071 bit = xfs_next_bit(buf_f->blf_data_map,
2072 buf_f->blf_map_size, bit);
2073 if (bit == -1)
2074 break;
2075 nbits = xfs_contig_bits(buf_f->blf_data_map,
2076 buf_f->blf_map_size, bit);
2077 ASSERT(nbits > 0);
2078 ASSERT(item->ri_buf[i].i_addr != NULL);
2079 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
2080 ASSERT(BBTOB(bp->b_io_length) >=
2081 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
2084 * Do a sanity check if this is a dquot buffer. Just checking
2085 * the first dquot in the buffer should do. XXXThis is
2086 * probably a good thing to do for other buf types also.
2088 error = 0;
2089 if (buf_f->blf_flags &
2090 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2091 if (item->ri_buf[i].i_addr == NULL) {
2092 xfs_alert(mp,
2093 "XFS: NULL dquot in %s.", __func__);
2094 goto next;
2096 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
2097 xfs_alert(mp,
2098 "XFS: dquot too small (%d) in %s.",
2099 item->ri_buf[i].i_len, __func__);
2100 goto next;
2102 error = xfs_qm_dqcheck(mp, item->ri_buf[i].i_addr,
2103 -1, 0, XFS_QMOPT_DOWARN,
2104 "dquot_buf_recover");
2105 if (error)
2106 goto next;
2109 memcpy(xfs_buf_offset(bp,
2110 (uint)bit << XFS_BLF_SHIFT), /* dest */
2111 item->ri_buf[i].i_addr, /* source */
2112 nbits<<XFS_BLF_SHIFT); /* length */
2113 next:
2114 i++;
2115 bit += nbits;
2118 /* Shouldn't be any more regions */
2119 ASSERT(i == item->ri_total);
2121 xlog_recovery_validate_buf_type(mp, bp, buf_f);
2126 * Do some primitive error checking on ondisk dquot data structures.
2129 xfs_qm_dqcheck(
2130 struct xfs_mount *mp,
2131 xfs_disk_dquot_t *ddq,
2132 xfs_dqid_t id,
2133 uint type, /* used only when IO_dorepair is true */
2134 uint flags,
2135 char *str)
2137 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
2138 int errs = 0;
2141 * We can encounter an uninitialized dquot buffer for 2 reasons:
2142 * 1. If we crash while deleting the quotainode(s), and those blks got
2143 * used for user data. This is because we take the path of regular
2144 * file deletion; however, the size field of quotainodes is never
2145 * updated, so all the tricks that we play in itruncate_finish
2146 * don't quite matter.
2148 * 2. We don't play the quota buffers when there's a quotaoff logitem.
2149 * But the allocation will be replayed so we'll end up with an
2150 * uninitialized quota block.
2152 * This is all fine; things are still consistent, and we haven't lost
2153 * any quota information. Just don't complain about bad dquot blks.
2155 if (ddq->d_magic != cpu_to_be16(XFS_DQUOT_MAGIC)) {
2156 if (flags & XFS_QMOPT_DOWARN)
2157 xfs_alert(mp,
2158 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
2159 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
2160 errs++;
2162 if (ddq->d_version != XFS_DQUOT_VERSION) {
2163 if (flags & XFS_QMOPT_DOWARN)
2164 xfs_alert(mp,
2165 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
2166 str, id, ddq->d_version, XFS_DQUOT_VERSION);
2167 errs++;
2170 if (ddq->d_flags != XFS_DQ_USER &&
2171 ddq->d_flags != XFS_DQ_PROJ &&
2172 ddq->d_flags != XFS_DQ_GROUP) {
2173 if (flags & XFS_QMOPT_DOWARN)
2174 xfs_alert(mp,
2175 "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
2176 str, id, ddq->d_flags);
2177 errs++;
2180 if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
2181 if (flags & XFS_QMOPT_DOWARN)
2182 xfs_alert(mp,
2183 "%s : ondisk-dquot 0x%p, ID mismatch: "
2184 "0x%x expected, found id 0x%x",
2185 str, ddq, id, be32_to_cpu(ddq->d_id));
2186 errs++;
2189 if (!errs && ddq->d_id) {
2190 if (ddq->d_blk_softlimit &&
2191 be64_to_cpu(ddq->d_bcount) >
2192 be64_to_cpu(ddq->d_blk_softlimit)) {
2193 if (!ddq->d_btimer) {
2194 if (flags & XFS_QMOPT_DOWARN)
2195 xfs_alert(mp,
2196 "%s : Dquot ID 0x%x (0x%p) BLK TIMER NOT STARTED",
2197 str, (int)be32_to_cpu(ddq->d_id), ddq);
2198 errs++;
2201 if (ddq->d_ino_softlimit &&
2202 be64_to_cpu(ddq->d_icount) >
2203 be64_to_cpu(ddq->d_ino_softlimit)) {
2204 if (!ddq->d_itimer) {
2205 if (flags & XFS_QMOPT_DOWARN)
2206 xfs_alert(mp,
2207 "%s : Dquot ID 0x%x (0x%p) INODE TIMER NOT STARTED",
2208 str, (int)be32_to_cpu(ddq->d_id), ddq);
2209 errs++;
2212 if (ddq->d_rtb_softlimit &&
2213 be64_to_cpu(ddq->d_rtbcount) >
2214 be64_to_cpu(ddq->d_rtb_softlimit)) {
2215 if (!ddq->d_rtbtimer) {
2216 if (flags & XFS_QMOPT_DOWARN)
2217 xfs_alert(mp,
2218 "%s : Dquot ID 0x%x (0x%p) RTBLK TIMER NOT STARTED",
2219 str, (int)be32_to_cpu(ddq->d_id), ddq);
2220 errs++;
2225 if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2226 return errs;
2228 if (flags & XFS_QMOPT_DOWARN)
2229 xfs_notice(mp, "Re-initializing dquot ID 0x%x", id);
2232 * Typically, a repair is only requested by quotacheck.
2234 ASSERT(id != -1);
2235 ASSERT(flags & XFS_QMOPT_DQREPAIR);
2236 memset(d, 0, sizeof(xfs_dqblk_t));
2238 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2239 d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2240 d->dd_diskdq.d_flags = type;
2241 d->dd_diskdq.d_id = cpu_to_be32(id);
2243 return errs;
2247 * Perform a dquot buffer recovery.
2248 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2249 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2250 * Else, treat it as a regular buffer and do recovery.
2252 STATIC void
2253 xlog_recover_do_dquot_buffer(
2254 struct xfs_mount *mp,
2255 struct xlog *log,
2256 struct xlog_recover_item *item,
2257 struct xfs_buf *bp,
2258 struct xfs_buf_log_format *buf_f)
2260 uint type;
2262 trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2265 * Filesystems are required to send in quota flags at mount time.
2267 if (mp->m_qflags == 0) {
2268 return;
2271 type = 0;
2272 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2273 type |= XFS_DQ_USER;
2274 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2275 type |= XFS_DQ_PROJ;
2276 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2277 type |= XFS_DQ_GROUP;
2279 * This type of quotas was turned off, so ignore this buffer
2281 if (log->l_quotaoffs_flag & type)
2282 return;
2284 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2288 * This routine replays a modification made to a buffer at runtime.
2289 * There are actually two types of buffer, regular and inode, which
2290 * are handled differently. Inode buffers are handled differently
2291 * in that we only recover a specific set of data from them, namely
2292 * the inode di_next_unlinked fields. This is because all other inode
2293 * data is actually logged via inode records and any data we replay
2294 * here which overlaps that may be stale.
2296 * When meta-data buffers are freed at run time we log a buffer item
2297 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2298 * of the buffer in the log should not be replayed at recovery time.
2299 * This is so that if the blocks covered by the buffer are reused for
2300 * file data before we crash we don't end up replaying old, freed
2301 * meta-data into a user's file.
2303 * To handle the cancellation of buffer log items, we make two passes
2304 * over the log during recovery. During the first we build a table of
2305 * those buffers which have been cancelled, and during the second we
2306 * only replay those buffers which do not have corresponding cancel
2307 * records in the table. See xlog_recover_do_buffer_pass[1,2] above
2308 * for more details on the implementation of the table of cancel records.
2310 STATIC int
2311 xlog_recover_buffer_pass2(
2312 struct xlog *log,
2313 struct list_head *buffer_list,
2314 struct xlog_recover_item *item)
2316 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
2317 xfs_mount_t *mp = log->l_mp;
2318 xfs_buf_t *bp;
2319 int error;
2320 uint buf_flags;
2323 * In this pass we only want to recover all the buffers which have
2324 * not been cancelled and are not cancellation buffers themselves.
2326 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2327 buf_f->blf_len, buf_f->blf_flags)) {
2328 trace_xfs_log_recover_buf_cancel(log, buf_f);
2329 return 0;
2332 trace_xfs_log_recover_buf_recover(log, buf_f);
2334 buf_flags = 0;
2335 if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2336 buf_flags |= XBF_UNMAPPED;
2338 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2339 buf_flags, NULL);
2340 if (!bp)
2341 return XFS_ERROR(ENOMEM);
2342 error = bp->b_error;
2343 if (error) {
2344 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
2345 xfs_buf_relse(bp);
2346 return error;
2349 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2350 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2351 } else if (buf_f->blf_flags &
2352 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2353 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2354 } else {
2355 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2357 if (error)
2358 return XFS_ERROR(error);
2361 * Perform delayed write on the buffer. Asynchronous writes will be
2362 * slower when taking into account all the buffers to be flushed.
2364 * Also make sure that only inode buffers with good sizes stay in
2365 * the buffer cache. The kernel moves inodes in buffers of 1 block
2366 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
2367 * buffers in the log can be a different size if the log was generated
2368 * by an older kernel using unclustered inode buffers or a newer kernel
2369 * running with a different inode cluster size. Regardless, if the
2370 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2371 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2372 * the buffer out of the buffer cache so that the buffer won't
2373 * overlap with future reads of those inodes.
2375 if (XFS_DINODE_MAGIC ==
2376 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2377 (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
2378 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2379 xfs_buf_stale(bp);
2380 error = xfs_bwrite(bp);
2381 } else {
2382 ASSERT(bp->b_target->bt_mount == mp);
2383 bp->b_iodone = xlog_recover_iodone;
2384 xfs_buf_delwri_queue(bp, buffer_list);
2387 xfs_buf_relse(bp);
2388 return error;
2391 STATIC int
2392 xlog_recover_inode_pass2(
2393 struct xlog *log,
2394 struct list_head *buffer_list,
2395 struct xlog_recover_item *item)
2397 xfs_inode_log_format_t *in_f;
2398 xfs_mount_t *mp = log->l_mp;
2399 xfs_buf_t *bp;
2400 xfs_dinode_t *dip;
2401 int len;
2402 xfs_caddr_t src;
2403 xfs_caddr_t dest;
2404 int error;
2405 int attr_index;
2406 uint fields;
2407 xfs_icdinode_t *dicp;
2408 uint isize;
2409 int need_free = 0;
2411 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2412 in_f = item->ri_buf[0].i_addr;
2413 } else {
2414 in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
2415 need_free = 1;
2416 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2417 if (error)
2418 goto error;
2422 * Inode buffers can be freed, look out for it,
2423 * and do not replay the inode.
2425 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2426 in_f->ilf_len, 0)) {
2427 error = 0;
2428 trace_xfs_log_recover_inode_cancel(log, in_f);
2429 goto error;
2431 trace_xfs_log_recover_inode_recover(log, in_f);
2433 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
2434 &xfs_inode_buf_ops);
2435 if (!bp) {
2436 error = ENOMEM;
2437 goto error;
2439 error = bp->b_error;
2440 if (error) {
2441 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
2442 xfs_buf_relse(bp);
2443 goto error;
2445 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2446 dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
2449 * Make sure the place we're flushing out to really looks
2450 * like an inode!
2452 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
2453 xfs_buf_relse(bp);
2454 xfs_alert(mp,
2455 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2456 __func__, dip, bp, in_f->ilf_ino);
2457 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
2458 XFS_ERRLEVEL_LOW, mp);
2459 error = EFSCORRUPTED;
2460 goto error;
2462 dicp = item->ri_buf[1].i_addr;
2463 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2464 xfs_buf_relse(bp);
2465 xfs_alert(mp,
2466 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2467 __func__, item, in_f->ilf_ino);
2468 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
2469 XFS_ERRLEVEL_LOW, mp);
2470 error = EFSCORRUPTED;
2471 goto error;
2474 /* Skip replay when the on disk inode is newer than the log one */
2475 if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
2477 * Deal with the wrap case, DI_MAX_FLUSH is less
2478 * than smaller numbers
2480 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
2481 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
2482 /* do nothing */
2483 } else {
2484 xfs_buf_relse(bp);
2485 trace_xfs_log_recover_inode_skip(log, in_f);
2486 error = 0;
2487 goto error;
2490 /* Take the opportunity to reset the flush iteration count */
2491 dicp->di_flushiter = 0;
2493 if (unlikely(S_ISREG(dicp->di_mode))) {
2494 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2495 (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2496 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
2497 XFS_ERRLEVEL_LOW, mp, dicp);
2498 xfs_buf_relse(bp);
2499 xfs_alert(mp,
2500 "%s: Bad regular inode log record, rec ptr 0x%p, "
2501 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2502 __func__, item, dip, bp, in_f->ilf_ino);
2503 error = EFSCORRUPTED;
2504 goto error;
2506 } else if (unlikely(S_ISDIR(dicp->di_mode))) {
2507 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2508 (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2509 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2510 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
2511 XFS_ERRLEVEL_LOW, mp, dicp);
2512 xfs_buf_relse(bp);
2513 xfs_alert(mp,
2514 "%s: Bad dir inode log record, rec ptr 0x%p, "
2515 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2516 __func__, item, dip, bp, in_f->ilf_ino);
2517 error = EFSCORRUPTED;
2518 goto error;
2521 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2522 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
2523 XFS_ERRLEVEL_LOW, mp, dicp);
2524 xfs_buf_relse(bp);
2525 xfs_alert(mp,
2526 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2527 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2528 __func__, item, dip, bp, in_f->ilf_ino,
2529 dicp->di_nextents + dicp->di_anextents,
2530 dicp->di_nblocks);
2531 error = EFSCORRUPTED;
2532 goto error;
2534 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2535 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
2536 XFS_ERRLEVEL_LOW, mp, dicp);
2537 xfs_buf_relse(bp);
2538 xfs_alert(mp,
2539 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2540 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
2541 item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
2542 error = EFSCORRUPTED;
2543 goto error;
2545 isize = xfs_icdinode_size(dicp->di_version);
2546 if (unlikely(item->ri_buf[1].i_len > isize)) {
2547 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
2548 XFS_ERRLEVEL_LOW, mp, dicp);
2549 xfs_buf_relse(bp);
2550 xfs_alert(mp,
2551 "%s: Bad inode log record length %d, rec ptr 0x%p",
2552 __func__, item->ri_buf[1].i_len, item);
2553 error = EFSCORRUPTED;
2554 goto error;
2557 /* The core is in in-core format */
2558 xfs_dinode_to_disk(dip, dicp);
2560 /* the rest is in on-disk format */
2561 if (item->ri_buf[1].i_len > isize) {
2562 memcpy((char *)dip + isize,
2563 item->ri_buf[1].i_addr + isize,
2564 item->ri_buf[1].i_len - isize);
2567 fields = in_f->ilf_fields;
2568 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2569 case XFS_ILOG_DEV:
2570 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
2571 break;
2572 case XFS_ILOG_UUID:
2573 memcpy(XFS_DFORK_DPTR(dip),
2574 &in_f->ilf_u.ilfu_uuid,
2575 sizeof(uuid_t));
2576 break;
2579 if (in_f->ilf_size == 2)
2580 goto write_inode_buffer;
2581 len = item->ri_buf[2].i_len;
2582 src = item->ri_buf[2].i_addr;
2583 ASSERT(in_f->ilf_size <= 4);
2584 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2585 ASSERT(!(fields & XFS_ILOG_DFORK) ||
2586 (len == in_f->ilf_dsize));
2588 switch (fields & XFS_ILOG_DFORK) {
2589 case XFS_ILOG_DDATA:
2590 case XFS_ILOG_DEXT:
2591 memcpy(XFS_DFORK_DPTR(dip), src, len);
2592 break;
2594 case XFS_ILOG_DBROOT:
2595 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
2596 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
2597 XFS_DFORK_DSIZE(dip, mp));
2598 break;
2600 default:
2602 * There are no data fork flags set.
2604 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2605 break;
2609 * If we logged any attribute data, recover it. There may or
2610 * may not have been any other non-core data logged in this
2611 * transaction.
2613 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2614 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2615 attr_index = 3;
2616 } else {
2617 attr_index = 2;
2619 len = item->ri_buf[attr_index].i_len;
2620 src = item->ri_buf[attr_index].i_addr;
2621 ASSERT(len == in_f->ilf_asize);
2623 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2624 case XFS_ILOG_ADATA:
2625 case XFS_ILOG_AEXT:
2626 dest = XFS_DFORK_APTR(dip);
2627 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2628 memcpy(dest, src, len);
2629 break;
2631 case XFS_ILOG_ABROOT:
2632 dest = XFS_DFORK_APTR(dip);
2633 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2634 len, (xfs_bmdr_block_t*)dest,
2635 XFS_DFORK_ASIZE(dip, mp));
2636 break;
2638 default:
2639 xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
2640 ASSERT(0);
2641 xfs_buf_relse(bp);
2642 error = EIO;
2643 goto error;
2647 write_inode_buffer:
2648 /* re-generate the checksum. */
2649 xfs_dinode_calc_crc(log->l_mp, dip);
2651 ASSERT(bp->b_target->bt_mount == mp);
2652 bp->b_iodone = xlog_recover_iodone;
2653 xfs_buf_delwri_queue(bp, buffer_list);
2654 xfs_buf_relse(bp);
2655 error:
2656 if (need_free)
2657 kmem_free(in_f);
2658 return XFS_ERROR(error);
2662 * Recover QUOTAOFF records. We simply make a note of it in the xlog
2663 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2664 * of that type.
2666 STATIC int
2667 xlog_recover_quotaoff_pass1(
2668 struct xlog *log,
2669 struct xlog_recover_item *item)
2671 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
2672 ASSERT(qoff_f);
2675 * The logitem format's flag tells us if this was user quotaoff,
2676 * group/project quotaoff or both.
2678 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2679 log->l_quotaoffs_flag |= XFS_DQ_USER;
2680 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2681 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2682 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2683 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2685 return (0);
2689 * Recover a dquot record
2691 STATIC int
2692 xlog_recover_dquot_pass2(
2693 struct xlog *log,
2694 struct list_head *buffer_list,
2695 struct xlog_recover_item *item)
2697 xfs_mount_t *mp = log->l_mp;
2698 xfs_buf_t *bp;
2699 struct xfs_disk_dquot *ddq, *recddq;
2700 int error;
2701 xfs_dq_logformat_t *dq_f;
2702 uint type;
2706 * Filesystems are required to send in quota flags at mount time.
2708 if (mp->m_qflags == 0)
2709 return (0);
2711 recddq = item->ri_buf[1].i_addr;
2712 if (recddq == NULL) {
2713 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
2714 return XFS_ERROR(EIO);
2716 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
2717 xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
2718 item->ri_buf[1].i_len, __func__);
2719 return XFS_ERROR(EIO);
2723 * This type of quotas was turned off, so ignore this record.
2725 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2726 ASSERT(type);
2727 if (log->l_quotaoffs_flag & type)
2728 return (0);
2731 * At this point we know that quota was _not_ turned off.
2732 * Since the mount flags are not indicating to us otherwise, this
2733 * must mean that quota is on, and the dquot needs to be replayed.
2734 * Remember that we may not have fully recovered the superblock yet,
2735 * so we can't do the usual trick of looking at the SB quota bits.
2737 * The other possibility, of course, is that the quota subsystem was
2738 * removed since the last mount - ENOSYS.
2740 dq_f = item->ri_buf[0].i_addr;
2741 ASSERT(dq_f);
2742 error = xfs_qm_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2743 "xlog_recover_dquot_pass2 (log copy)");
2744 if (error)
2745 return XFS_ERROR(EIO);
2746 ASSERT(dq_f->qlf_len == 1);
2748 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
2749 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
2750 NULL);
2751 if (error)
2752 return error;
2754 ASSERT(bp);
2755 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2758 * At least the magic num portion should be on disk because this
2759 * was among a chunk of dquots created earlier, and we did some
2760 * minimal initialization then.
2762 error = xfs_qm_dqcheck(mp, ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2763 "xlog_recover_dquot_pass2");
2764 if (error) {
2765 xfs_buf_relse(bp);
2766 return XFS_ERROR(EIO);
2769 memcpy(ddq, recddq, item->ri_buf[1].i_len);
2771 ASSERT(dq_f->qlf_size == 2);
2772 ASSERT(bp->b_target->bt_mount == mp);
2773 bp->b_iodone = xlog_recover_iodone;
2774 xfs_buf_delwri_queue(bp, buffer_list);
2775 xfs_buf_relse(bp);
2777 return (0);
2781 * This routine is called to create an in-core extent free intent
2782 * item from the efi format structure which was logged on disk.
2783 * It allocates an in-core efi, copies the extents from the format
2784 * structure into it, and adds the efi to the AIL with the given
2785 * LSN.
2787 STATIC int
2788 xlog_recover_efi_pass2(
2789 struct xlog *log,
2790 struct xlog_recover_item *item,
2791 xfs_lsn_t lsn)
2793 int error;
2794 xfs_mount_t *mp = log->l_mp;
2795 xfs_efi_log_item_t *efip;
2796 xfs_efi_log_format_t *efi_formatp;
2798 efi_formatp = item->ri_buf[0].i_addr;
2800 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
2801 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2802 &(efip->efi_format)))) {
2803 xfs_efi_item_free(efip);
2804 return error;
2806 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
2808 spin_lock(&log->l_ailp->xa_lock);
2810 * xfs_trans_ail_update() drops the AIL lock.
2812 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
2813 return 0;
2818 * This routine is called when an efd format structure is found in
2819 * a committed transaction in the log. It's purpose is to cancel
2820 * the corresponding efi if it was still in the log. To do this
2821 * it searches the AIL for the efi with an id equal to that in the
2822 * efd format structure. If we find it, we remove the efi from the
2823 * AIL and free it.
2825 STATIC int
2826 xlog_recover_efd_pass2(
2827 struct xlog *log,
2828 struct xlog_recover_item *item)
2830 xfs_efd_log_format_t *efd_formatp;
2831 xfs_efi_log_item_t *efip = NULL;
2832 xfs_log_item_t *lip;
2833 __uint64_t efi_id;
2834 struct xfs_ail_cursor cur;
2835 struct xfs_ail *ailp = log->l_ailp;
2837 efd_formatp = item->ri_buf[0].i_addr;
2838 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2839 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2840 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2841 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
2842 efi_id = efd_formatp->efd_efi_id;
2845 * Search for the efi with the id in the efd format structure
2846 * in the AIL.
2848 spin_lock(&ailp->xa_lock);
2849 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2850 while (lip != NULL) {
2851 if (lip->li_type == XFS_LI_EFI) {
2852 efip = (xfs_efi_log_item_t *)lip;
2853 if (efip->efi_format.efi_id == efi_id) {
2855 * xfs_trans_ail_delete() drops the
2856 * AIL lock.
2858 xfs_trans_ail_delete(ailp, lip,
2859 SHUTDOWN_CORRUPT_INCORE);
2860 xfs_efi_item_free(efip);
2861 spin_lock(&ailp->xa_lock);
2862 break;
2865 lip = xfs_trans_ail_cursor_next(ailp, &cur);
2867 xfs_trans_ail_cursor_done(ailp, &cur);
2868 spin_unlock(&ailp->xa_lock);
2870 return 0;
2874 * Free up any resources allocated by the transaction
2876 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2878 STATIC void
2879 xlog_recover_free_trans(
2880 struct xlog_recover *trans)
2882 xlog_recover_item_t *item, *n;
2883 int i;
2885 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
2886 /* Free the regions in the item. */
2887 list_del(&item->ri_list);
2888 for (i = 0; i < item->ri_cnt; i++)
2889 kmem_free(item->ri_buf[i].i_addr);
2890 /* Free the item itself */
2891 kmem_free(item->ri_buf);
2892 kmem_free(item);
2894 /* Free the transaction recover structure */
2895 kmem_free(trans);
2898 STATIC int
2899 xlog_recover_commit_pass1(
2900 struct xlog *log,
2901 struct xlog_recover *trans,
2902 struct xlog_recover_item *item)
2904 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
2906 switch (ITEM_TYPE(item)) {
2907 case XFS_LI_BUF:
2908 return xlog_recover_buffer_pass1(log, item);
2909 case XFS_LI_QUOTAOFF:
2910 return xlog_recover_quotaoff_pass1(log, item);
2911 case XFS_LI_INODE:
2912 case XFS_LI_EFI:
2913 case XFS_LI_EFD:
2914 case XFS_LI_DQUOT:
2915 /* nothing to do in pass 1 */
2916 return 0;
2917 default:
2918 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
2919 __func__, ITEM_TYPE(item));
2920 ASSERT(0);
2921 return XFS_ERROR(EIO);
2925 STATIC int
2926 xlog_recover_commit_pass2(
2927 struct xlog *log,
2928 struct xlog_recover *trans,
2929 struct list_head *buffer_list,
2930 struct xlog_recover_item *item)
2932 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
2934 switch (ITEM_TYPE(item)) {
2935 case XFS_LI_BUF:
2936 return xlog_recover_buffer_pass2(log, buffer_list, item);
2937 case XFS_LI_INODE:
2938 return xlog_recover_inode_pass2(log, buffer_list, item);
2939 case XFS_LI_EFI:
2940 return xlog_recover_efi_pass2(log, item, trans->r_lsn);
2941 case XFS_LI_EFD:
2942 return xlog_recover_efd_pass2(log, item);
2943 case XFS_LI_DQUOT:
2944 return xlog_recover_dquot_pass2(log, buffer_list, item);
2945 case XFS_LI_QUOTAOFF:
2946 /* nothing to do in pass2 */
2947 return 0;
2948 default:
2949 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
2950 __func__, ITEM_TYPE(item));
2951 ASSERT(0);
2952 return XFS_ERROR(EIO);
2957 * Perform the transaction.
2959 * If the transaction modifies a buffer or inode, do it now. Otherwise,
2960 * EFIs and EFDs get queued up by adding entries into the AIL for them.
2962 STATIC int
2963 xlog_recover_commit_trans(
2964 struct xlog *log,
2965 struct xlog_recover *trans,
2966 int pass)
2968 int error = 0, error2;
2969 xlog_recover_item_t *item;
2970 LIST_HEAD (buffer_list);
2972 hlist_del(&trans->r_list);
2974 error = xlog_recover_reorder_trans(log, trans, pass);
2975 if (error)
2976 return error;
2978 list_for_each_entry(item, &trans->r_itemq, ri_list) {
2979 switch (pass) {
2980 case XLOG_RECOVER_PASS1:
2981 error = xlog_recover_commit_pass1(log, trans, item);
2982 break;
2983 case XLOG_RECOVER_PASS2:
2984 error = xlog_recover_commit_pass2(log, trans,
2985 &buffer_list, item);
2986 break;
2987 default:
2988 ASSERT(0);
2991 if (error)
2992 goto out;
2995 xlog_recover_free_trans(trans);
2997 out:
2998 error2 = xfs_buf_delwri_submit(&buffer_list);
2999 return error ? error : error2;
3002 STATIC int
3003 xlog_recover_unmount_trans(
3004 struct xlog *log,
3005 struct xlog_recover *trans)
3007 /* Do nothing now */
3008 xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
3009 return 0;
3013 * There are two valid states of the r_state field. 0 indicates that the
3014 * transaction structure is in a normal state. We have either seen the
3015 * start of the transaction or the last operation we added was not a partial
3016 * operation. If the last operation we added to the transaction was a
3017 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
3019 * NOTE: skip LRs with 0 data length.
3021 STATIC int
3022 xlog_recover_process_data(
3023 struct xlog *log,
3024 struct hlist_head rhash[],
3025 struct xlog_rec_header *rhead,
3026 xfs_caddr_t dp,
3027 int pass)
3029 xfs_caddr_t lp;
3030 int num_logops;
3031 xlog_op_header_t *ohead;
3032 xlog_recover_t *trans;
3033 xlog_tid_t tid;
3034 int error;
3035 unsigned long hash;
3036 uint flags;
3038 lp = dp + be32_to_cpu(rhead->h_len);
3039 num_logops = be32_to_cpu(rhead->h_num_logops);
3041 /* check the log format matches our own - else we can't recover */
3042 if (xlog_header_check_recover(log->l_mp, rhead))
3043 return (XFS_ERROR(EIO));
3045 while ((dp < lp) && num_logops) {
3046 ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
3047 ohead = (xlog_op_header_t *)dp;
3048 dp += sizeof(xlog_op_header_t);
3049 if (ohead->oh_clientid != XFS_TRANSACTION &&
3050 ohead->oh_clientid != XFS_LOG) {
3051 xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
3052 __func__, ohead->oh_clientid);
3053 ASSERT(0);
3054 return (XFS_ERROR(EIO));
3056 tid = be32_to_cpu(ohead->oh_tid);
3057 hash = XLOG_RHASH(tid);
3058 trans = xlog_recover_find_tid(&rhash[hash], tid);
3059 if (trans == NULL) { /* not found; add new tid */
3060 if (ohead->oh_flags & XLOG_START_TRANS)
3061 xlog_recover_new_tid(&rhash[hash], tid,
3062 be64_to_cpu(rhead->h_lsn));
3063 } else {
3064 if (dp + be32_to_cpu(ohead->oh_len) > lp) {
3065 xfs_warn(log->l_mp, "%s: bad length 0x%x",
3066 __func__, be32_to_cpu(ohead->oh_len));
3067 WARN_ON(1);
3068 return (XFS_ERROR(EIO));
3070 flags = ohead->oh_flags & ~XLOG_END_TRANS;
3071 if (flags & XLOG_WAS_CONT_TRANS)
3072 flags &= ~XLOG_CONTINUE_TRANS;
3073 switch (flags) {
3074 case XLOG_COMMIT_TRANS:
3075 error = xlog_recover_commit_trans(log,
3076 trans, pass);
3077 break;
3078 case XLOG_UNMOUNT_TRANS:
3079 error = xlog_recover_unmount_trans(log, trans);
3080 break;
3081 case XLOG_WAS_CONT_TRANS:
3082 error = xlog_recover_add_to_cont_trans(log,
3083 trans, dp,
3084 be32_to_cpu(ohead->oh_len));
3085 break;
3086 case XLOG_START_TRANS:
3087 xfs_warn(log->l_mp, "%s: bad transaction",
3088 __func__);
3089 ASSERT(0);
3090 error = XFS_ERROR(EIO);
3091 break;
3092 case 0:
3093 case XLOG_CONTINUE_TRANS:
3094 error = xlog_recover_add_to_trans(log, trans,
3095 dp, be32_to_cpu(ohead->oh_len));
3096 break;
3097 default:
3098 xfs_warn(log->l_mp, "%s: bad flag 0x%x",
3099 __func__, flags);
3100 ASSERT(0);
3101 error = XFS_ERROR(EIO);
3102 break;
3104 if (error)
3105 return error;
3107 dp += be32_to_cpu(ohead->oh_len);
3108 num_logops--;
3110 return 0;
3114 * Process an extent free intent item that was recovered from
3115 * the log. We need to free the extents that it describes.
3117 STATIC int
3118 xlog_recover_process_efi(
3119 xfs_mount_t *mp,
3120 xfs_efi_log_item_t *efip)
3122 xfs_efd_log_item_t *efdp;
3123 xfs_trans_t *tp;
3124 int i;
3125 int error = 0;
3126 xfs_extent_t *extp;
3127 xfs_fsblock_t startblock_fsb;
3129 ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
3132 * First check the validity of the extents described by the
3133 * EFI. If any are bad, then assume that all are bad and
3134 * just toss the EFI.
3136 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3137 extp = &(efip->efi_format.efi_extents[i]);
3138 startblock_fsb = XFS_BB_TO_FSB(mp,
3139 XFS_FSB_TO_DADDR(mp, extp->ext_start));
3140 if ((startblock_fsb == 0) ||
3141 (extp->ext_len == 0) ||
3142 (startblock_fsb >= mp->m_sb.sb_dblocks) ||
3143 (extp->ext_len >= mp->m_sb.sb_agblocks)) {
3145 * This will pull the EFI from the AIL and
3146 * free the memory associated with it.
3148 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
3149 xfs_efi_release(efip, efip->efi_format.efi_nextents);
3150 return XFS_ERROR(EIO);
3154 tp = xfs_trans_alloc(mp, 0);
3155 error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
3156 if (error)
3157 goto abort_error;
3158 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3160 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3161 extp = &(efip->efi_format.efi_extents[i]);
3162 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3163 if (error)
3164 goto abort_error;
3165 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3166 extp->ext_len);
3169 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
3170 error = xfs_trans_commit(tp, 0);
3171 return error;
3173 abort_error:
3174 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3175 return error;
3179 * When this is called, all of the EFIs which did not have
3180 * corresponding EFDs should be in the AIL. What we do now
3181 * is free the extents associated with each one.
3183 * Since we process the EFIs in normal transactions, they
3184 * will be removed at some point after the commit. This prevents
3185 * us from just walking down the list processing each one.
3186 * We'll use a flag in the EFI to skip those that we've already
3187 * processed and use the AIL iteration mechanism's generation
3188 * count to try to speed this up at least a bit.
3190 * When we start, we know that the EFIs are the only things in
3191 * the AIL. As we process them, however, other items are added
3192 * to the AIL. Since everything added to the AIL must come after
3193 * everything already in the AIL, we stop processing as soon as
3194 * we see something other than an EFI in the AIL.
3196 STATIC int
3197 xlog_recover_process_efis(
3198 struct xlog *log)
3200 xfs_log_item_t *lip;
3201 xfs_efi_log_item_t *efip;
3202 int error = 0;
3203 struct xfs_ail_cursor cur;
3204 struct xfs_ail *ailp;
3206 ailp = log->l_ailp;
3207 spin_lock(&ailp->xa_lock);
3208 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3209 while (lip != NULL) {
3211 * We're done when we see something other than an EFI.
3212 * There should be no EFIs left in the AIL now.
3214 if (lip->li_type != XFS_LI_EFI) {
3215 #ifdef DEBUG
3216 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
3217 ASSERT(lip->li_type != XFS_LI_EFI);
3218 #endif
3219 break;
3223 * Skip EFIs that we've already processed.
3225 efip = (xfs_efi_log_item_t *)lip;
3226 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
3227 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3228 continue;
3231 spin_unlock(&ailp->xa_lock);
3232 error = xlog_recover_process_efi(log->l_mp, efip);
3233 spin_lock(&ailp->xa_lock);
3234 if (error)
3235 goto out;
3236 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3238 out:
3239 xfs_trans_ail_cursor_done(ailp, &cur);
3240 spin_unlock(&ailp->xa_lock);
3241 return error;
3245 * This routine performs a transaction to null out a bad inode pointer
3246 * in an agi unlinked inode hash bucket.
3248 STATIC void
3249 xlog_recover_clear_agi_bucket(
3250 xfs_mount_t *mp,
3251 xfs_agnumber_t agno,
3252 int bucket)
3254 xfs_trans_t *tp;
3255 xfs_agi_t *agi;
3256 xfs_buf_t *agibp;
3257 int offset;
3258 int error;
3260 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3261 error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
3262 0, 0, 0);
3263 if (error)
3264 goto out_abort;
3266 error = xfs_read_agi(mp, tp, agno, &agibp);
3267 if (error)
3268 goto out_abort;
3270 agi = XFS_BUF_TO_AGI(agibp);
3271 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3272 offset = offsetof(xfs_agi_t, agi_unlinked) +
3273 (sizeof(xfs_agino_t) * bucket);
3274 xfs_trans_log_buf(tp, agibp, offset,
3275 (offset + sizeof(xfs_agino_t) - 1));
3277 error = xfs_trans_commit(tp, 0);
3278 if (error)
3279 goto out_error;
3280 return;
3282 out_abort:
3283 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3284 out_error:
3285 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
3286 return;
3289 STATIC xfs_agino_t
3290 xlog_recover_process_one_iunlink(
3291 struct xfs_mount *mp,
3292 xfs_agnumber_t agno,
3293 xfs_agino_t agino,
3294 int bucket)
3296 struct xfs_buf *ibp;
3297 struct xfs_dinode *dip;
3298 struct xfs_inode *ip;
3299 xfs_ino_t ino;
3300 int error;
3302 ino = XFS_AGINO_TO_INO(mp, agno, agino);
3303 error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
3304 if (error)
3305 goto fail;
3308 * Get the on disk inode to find the next inode in the bucket.
3310 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
3311 if (error)
3312 goto fail_iput;
3314 ASSERT(ip->i_d.di_nlink == 0);
3315 ASSERT(ip->i_d.di_mode != 0);
3317 /* setup for the next pass */
3318 agino = be32_to_cpu(dip->di_next_unlinked);
3319 xfs_buf_relse(ibp);
3322 * Prevent any DMAPI event from being sent when the reference on
3323 * the inode is dropped.
3325 ip->i_d.di_dmevmask = 0;
3327 IRELE(ip);
3328 return agino;
3330 fail_iput:
3331 IRELE(ip);
3332 fail:
3334 * We can't read in the inode this bucket points to, or this inode
3335 * is messed up. Just ditch this bucket of inodes. We will lose
3336 * some inodes and space, but at least we won't hang.
3338 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3339 * clear the inode pointer in the bucket.
3341 xlog_recover_clear_agi_bucket(mp, agno, bucket);
3342 return NULLAGINO;
3346 * xlog_iunlink_recover
3348 * This is called during recovery to process any inodes which
3349 * we unlinked but not freed when the system crashed. These
3350 * inodes will be on the lists in the AGI blocks. What we do
3351 * here is scan all the AGIs and fully truncate and free any
3352 * inodes found on the lists. Each inode is removed from the
3353 * lists when it has been fully truncated and is freed. The
3354 * freeing of the inode and its removal from the list must be
3355 * atomic.
3357 STATIC void
3358 xlog_recover_process_iunlinks(
3359 struct xlog *log)
3361 xfs_mount_t *mp;
3362 xfs_agnumber_t agno;
3363 xfs_agi_t *agi;
3364 xfs_buf_t *agibp;
3365 xfs_agino_t agino;
3366 int bucket;
3367 int error;
3368 uint mp_dmevmask;
3370 mp = log->l_mp;
3373 * Prevent any DMAPI event from being sent while in this function.
3375 mp_dmevmask = mp->m_dmevmask;
3376 mp->m_dmevmask = 0;
3378 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3380 * Find the agi for this ag.
3382 error = xfs_read_agi(mp, NULL, agno, &agibp);
3383 if (error) {
3385 * AGI is b0rked. Don't process it.
3387 * We should probably mark the filesystem as corrupt
3388 * after we've recovered all the ag's we can....
3390 continue;
3393 * Unlock the buffer so that it can be acquired in the normal
3394 * course of the transaction to truncate and free each inode.
3395 * Because we are not racing with anyone else here for the AGI
3396 * buffer, we don't even need to hold it locked to read the
3397 * initial unlinked bucket entries out of the buffer. We keep
3398 * buffer reference though, so that it stays pinned in memory
3399 * while we need the buffer.
3401 agi = XFS_BUF_TO_AGI(agibp);
3402 xfs_buf_unlock(agibp);
3404 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3405 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3406 while (agino != NULLAGINO) {
3407 agino = xlog_recover_process_one_iunlink(mp,
3408 agno, agino, bucket);
3411 xfs_buf_rele(agibp);
3414 mp->m_dmevmask = mp_dmevmask;
3418 * Upack the log buffer data and crc check it. If the check fails, issue a
3419 * warning if and only if the CRC in the header is non-zero. This makes the
3420 * check an advisory warning, and the zero CRC check will prevent failure
3421 * warnings from being emitted when upgrading the kernel from one that does not
3422 * add CRCs by default.
3424 * When filesystems are CRC enabled, this CRC mismatch becomes a fatal log
3425 * corruption failure
3427 STATIC int
3428 xlog_unpack_data_crc(
3429 struct xlog_rec_header *rhead,
3430 xfs_caddr_t dp,
3431 struct xlog *log)
3433 __le32 crc;
3435 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
3436 if (crc != rhead->h_crc) {
3437 if (rhead->h_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
3438 xfs_alert(log->l_mp,
3439 "log record CRC mismatch: found 0x%x, expected 0x%x.\n",
3440 le32_to_cpu(rhead->h_crc),
3441 le32_to_cpu(crc));
3442 xfs_hex_dump(dp, 32);
3446 * If we've detected a log record corruption, then we can't
3447 * recover past this point. Abort recovery if we are enforcing
3448 * CRC protection by punting an error back up the stack.
3450 if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
3451 return EFSCORRUPTED;
3454 return 0;
3457 STATIC int
3458 xlog_unpack_data(
3459 struct xlog_rec_header *rhead,
3460 xfs_caddr_t dp,
3461 struct xlog *log)
3463 int i, j, k;
3464 int error;
3466 error = xlog_unpack_data_crc(rhead, dp, log);
3467 if (error)
3468 return error;
3470 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
3471 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3472 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
3473 dp += BBSIZE;
3476 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3477 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
3478 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
3479 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3480 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3481 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
3482 dp += BBSIZE;
3486 return 0;
3489 STATIC int
3490 xlog_valid_rec_header(
3491 struct xlog *log,
3492 struct xlog_rec_header *rhead,
3493 xfs_daddr_t blkno)
3495 int hlen;
3497 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
3498 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3499 XFS_ERRLEVEL_LOW, log->l_mp);
3500 return XFS_ERROR(EFSCORRUPTED);
3502 if (unlikely(
3503 (!rhead->h_version ||
3504 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
3505 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
3506 __func__, be32_to_cpu(rhead->h_version));
3507 return XFS_ERROR(EIO);
3510 /* LR body must have data or it wouldn't have been written */
3511 hlen = be32_to_cpu(rhead->h_len);
3512 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3513 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3514 XFS_ERRLEVEL_LOW, log->l_mp);
3515 return XFS_ERROR(EFSCORRUPTED);
3517 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3518 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3519 XFS_ERRLEVEL_LOW, log->l_mp);
3520 return XFS_ERROR(EFSCORRUPTED);
3522 return 0;
3526 * Read the log from tail to head and process the log records found.
3527 * Handle the two cases where the tail and head are in the same cycle
3528 * and where the active portion of the log wraps around the end of
3529 * the physical log separately. The pass parameter is passed through
3530 * to the routines called to process the data and is not looked at
3531 * here.
3533 STATIC int
3534 xlog_do_recovery_pass(
3535 struct xlog *log,
3536 xfs_daddr_t head_blk,
3537 xfs_daddr_t tail_blk,
3538 int pass)
3540 xlog_rec_header_t *rhead;
3541 xfs_daddr_t blk_no;
3542 xfs_caddr_t offset;
3543 xfs_buf_t *hbp, *dbp;
3544 int error = 0, h_size;
3545 int bblks, split_bblks;
3546 int hblks, split_hblks, wrapped_hblks;
3547 struct hlist_head rhash[XLOG_RHASH_SIZE];
3549 ASSERT(head_blk != tail_blk);
3552 * Read the header of the tail block and get the iclog buffer size from
3553 * h_size. Use this to tell how many sectors make up the log header.
3555 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3557 * When using variable length iclogs, read first sector of
3558 * iclog header and extract the header size from it. Get a
3559 * new hbp that is the correct size.
3561 hbp = xlog_get_bp(log, 1);
3562 if (!hbp)
3563 return ENOMEM;
3565 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
3566 if (error)
3567 goto bread_err1;
3569 rhead = (xlog_rec_header_t *)offset;
3570 error = xlog_valid_rec_header(log, rhead, tail_blk);
3571 if (error)
3572 goto bread_err1;
3573 h_size = be32_to_cpu(rhead->h_size);
3574 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
3575 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3576 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3577 if (h_size % XLOG_HEADER_CYCLE_SIZE)
3578 hblks++;
3579 xlog_put_bp(hbp);
3580 hbp = xlog_get_bp(log, hblks);
3581 } else {
3582 hblks = 1;
3584 } else {
3585 ASSERT(log->l_sectBBsize == 1);
3586 hblks = 1;
3587 hbp = xlog_get_bp(log, 1);
3588 h_size = XLOG_BIG_RECORD_BSIZE;
3591 if (!hbp)
3592 return ENOMEM;
3593 dbp = xlog_get_bp(log, BTOBB(h_size));
3594 if (!dbp) {
3595 xlog_put_bp(hbp);
3596 return ENOMEM;
3599 memset(rhash, 0, sizeof(rhash));
3600 if (tail_blk <= head_blk) {
3601 for (blk_no = tail_blk; blk_no < head_blk; ) {
3602 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3603 if (error)
3604 goto bread_err2;
3606 rhead = (xlog_rec_header_t *)offset;
3607 error = xlog_valid_rec_header(log, rhead, blk_no);
3608 if (error)
3609 goto bread_err2;
3611 /* blocks in data section */
3612 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3613 error = xlog_bread(log, blk_no + hblks, bblks, dbp,
3614 &offset);
3615 if (error)
3616 goto bread_err2;
3618 error = xlog_unpack_data(rhead, offset, log);
3619 if (error)
3620 goto bread_err2;
3622 error = xlog_recover_process_data(log,
3623 rhash, rhead, offset, pass);
3624 if (error)
3625 goto bread_err2;
3626 blk_no += bblks + hblks;
3628 } else {
3630 * Perform recovery around the end of the physical log.
3631 * When the head is not on the same cycle number as the tail,
3632 * we can't do a sequential recovery as above.
3634 blk_no = tail_blk;
3635 while (blk_no < log->l_logBBsize) {
3637 * Check for header wrapping around physical end-of-log
3639 offset = hbp->b_addr;
3640 split_hblks = 0;
3641 wrapped_hblks = 0;
3642 if (blk_no + hblks <= log->l_logBBsize) {
3643 /* Read header in one read */
3644 error = xlog_bread(log, blk_no, hblks, hbp,
3645 &offset);
3646 if (error)
3647 goto bread_err2;
3648 } else {
3649 /* This LR is split across physical log end */
3650 if (blk_no != log->l_logBBsize) {
3651 /* some data before physical log end */
3652 ASSERT(blk_no <= INT_MAX);
3653 split_hblks = log->l_logBBsize - (int)blk_no;
3654 ASSERT(split_hblks > 0);
3655 error = xlog_bread(log, blk_no,
3656 split_hblks, hbp,
3657 &offset);
3658 if (error)
3659 goto bread_err2;
3663 * Note: this black magic still works with
3664 * large sector sizes (non-512) only because:
3665 * - we increased the buffer size originally
3666 * by 1 sector giving us enough extra space
3667 * for the second read;
3668 * - the log start is guaranteed to be sector
3669 * aligned;
3670 * - we read the log end (LR header start)
3671 * _first_, then the log start (LR header end)
3672 * - order is important.
3674 wrapped_hblks = hblks - split_hblks;
3675 error = xlog_bread_offset(log, 0,
3676 wrapped_hblks, hbp,
3677 offset + BBTOB(split_hblks));
3678 if (error)
3679 goto bread_err2;
3681 rhead = (xlog_rec_header_t *)offset;
3682 error = xlog_valid_rec_header(log, rhead,
3683 split_hblks ? blk_no : 0);
3684 if (error)
3685 goto bread_err2;
3687 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3688 blk_no += hblks;
3690 /* Read in data for log record */
3691 if (blk_no + bblks <= log->l_logBBsize) {
3692 error = xlog_bread(log, blk_no, bblks, dbp,
3693 &offset);
3694 if (error)
3695 goto bread_err2;
3696 } else {
3697 /* This log record is split across the
3698 * physical end of log */
3699 offset = dbp->b_addr;
3700 split_bblks = 0;
3701 if (blk_no != log->l_logBBsize) {
3702 /* some data is before the physical
3703 * end of log */
3704 ASSERT(!wrapped_hblks);
3705 ASSERT(blk_no <= INT_MAX);
3706 split_bblks =
3707 log->l_logBBsize - (int)blk_no;
3708 ASSERT(split_bblks > 0);
3709 error = xlog_bread(log, blk_no,
3710 split_bblks, dbp,
3711 &offset);
3712 if (error)
3713 goto bread_err2;
3717 * Note: this black magic still works with
3718 * large sector sizes (non-512) only because:
3719 * - we increased the buffer size originally
3720 * by 1 sector giving us enough extra space
3721 * for the second read;
3722 * - the log start is guaranteed to be sector
3723 * aligned;
3724 * - we read the log end (LR header start)
3725 * _first_, then the log start (LR header end)
3726 * - order is important.
3728 error = xlog_bread_offset(log, 0,
3729 bblks - split_bblks, dbp,
3730 offset + BBTOB(split_bblks));
3731 if (error)
3732 goto bread_err2;
3735 error = xlog_unpack_data(rhead, offset, log);
3736 if (error)
3737 goto bread_err2;
3739 error = xlog_recover_process_data(log, rhash,
3740 rhead, offset, pass);
3741 if (error)
3742 goto bread_err2;
3743 blk_no += bblks;
3746 ASSERT(blk_no >= log->l_logBBsize);
3747 blk_no -= log->l_logBBsize;
3749 /* read first part of physical log */
3750 while (blk_no < head_blk) {
3751 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3752 if (error)
3753 goto bread_err2;
3755 rhead = (xlog_rec_header_t *)offset;
3756 error = xlog_valid_rec_header(log, rhead, blk_no);
3757 if (error)
3758 goto bread_err2;
3760 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3761 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
3762 &offset);
3763 if (error)
3764 goto bread_err2;
3766 error = xlog_unpack_data(rhead, offset, log);
3767 if (error)
3768 goto bread_err2;
3770 error = xlog_recover_process_data(log, rhash,
3771 rhead, offset, pass);
3772 if (error)
3773 goto bread_err2;
3774 blk_no += bblks + hblks;
3778 bread_err2:
3779 xlog_put_bp(dbp);
3780 bread_err1:
3781 xlog_put_bp(hbp);
3782 return error;
3786 * Do the recovery of the log. We actually do this in two phases.
3787 * The two passes are necessary in order to implement the function
3788 * of cancelling a record written into the log. The first pass
3789 * determines those things which have been cancelled, and the
3790 * second pass replays log items normally except for those which
3791 * have been cancelled. The handling of the replay and cancellations
3792 * takes place in the log item type specific routines.
3794 * The table of items which have cancel records in the log is allocated
3795 * and freed at this level, since only here do we know when all of
3796 * the log recovery has been completed.
3798 STATIC int
3799 xlog_do_log_recovery(
3800 struct xlog *log,
3801 xfs_daddr_t head_blk,
3802 xfs_daddr_t tail_blk)
3804 int error, i;
3806 ASSERT(head_blk != tail_blk);
3809 * First do a pass to find all of the cancelled buf log items.
3810 * Store them in the buf_cancel_table for use in the second pass.
3812 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
3813 sizeof(struct list_head),
3814 KM_SLEEP);
3815 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3816 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
3818 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3819 XLOG_RECOVER_PASS1);
3820 if (error != 0) {
3821 kmem_free(log->l_buf_cancel_table);
3822 log->l_buf_cancel_table = NULL;
3823 return error;
3826 * Then do a second pass to actually recover the items in the log.
3827 * When it is complete free the table of buf cancel items.
3829 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3830 XLOG_RECOVER_PASS2);
3831 #ifdef DEBUG
3832 if (!error) {
3833 int i;
3835 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3836 ASSERT(list_empty(&log->l_buf_cancel_table[i]));
3838 #endif /* DEBUG */
3840 kmem_free(log->l_buf_cancel_table);
3841 log->l_buf_cancel_table = NULL;
3843 return error;
3847 * Do the actual recovery
3849 STATIC int
3850 xlog_do_recover(
3851 struct xlog *log,
3852 xfs_daddr_t head_blk,
3853 xfs_daddr_t tail_blk)
3855 int error;
3856 xfs_buf_t *bp;
3857 xfs_sb_t *sbp;
3860 * First replay the images in the log.
3862 error = xlog_do_log_recovery(log, head_blk, tail_blk);
3863 if (error)
3864 return error;
3867 * If IO errors happened during recovery, bail out.
3869 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3870 return (EIO);
3874 * We now update the tail_lsn since much of the recovery has completed
3875 * and there may be space available to use. If there were no extent
3876 * or iunlinks, we can free up the entire log and set the tail_lsn to
3877 * be the last_sync_lsn. This was set in xlog_find_tail to be the
3878 * lsn of the last known good LR on disk. If there are extent frees
3879 * or iunlinks they will have some entries in the AIL; so we look at
3880 * the AIL to determine how to set the tail_lsn.
3882 xlog_assign_tail_lsn(log->l_mp);
3885 * Now that we've finished replaying all buffer and inode
3886 * updates, re-read in the superblock and reverify it.
3888 bp = xfs_getsb(log->l_mp, 0);
3889 XFS_BUF_UNDONE(bp);
3890 ASSERT(!(XFS_BUF_ISWRITE(bp)));
3891 XFS_BUF_READ(bp);
3892 XFS_BUF_UNASYNC(bp);
3893 bp->b_ops = &xfs_sb_buf_ops;
3894 xfsbdstrat(log->l_mp, bp);
3895 error = xfs_buf_iowait(bp);
3896 if (error) {
3897 xfs_buf_ioerror_alert(bp, __func__);
3898 ASSERT(0);
3899 xfs_buf_relse(bp);
3900 return error;
3903 /* Convert superblock from on-disk format */
3904 sbp = &log->l_mp->m_sb;
3905 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
3906 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
3907 ASSERT(xfs_sb_good_version(sbp));
3908 xfs_buf_relse(bp);
3910 /* We've re-read the superblock so re-initialize per-cpu counters */
3911 xfs_icsb_reinit_counters(log->l_mp);
3913 xlog_recover_check_summary(log);
3915 /* Normal transactions can now occur */
3916 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3917 return 0;
3921 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3923 * Return error or zero.
3926 xlog_recover(
3927 struct xlog *log)
3929 xfs_daddr_t head_blk, tail_blk;
3930 int error;
3932 /* find the tail of the log */
3933 if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
3934 return error;
3936 if (tail_blk != head_blk) {
3937 /* There used to be a comment here:
3939 * disallow recovery on read-only mounts. note -- mount
3940 * checks for ENOSPC and turns it into an intelligent
3941 * error message.
3942 * ...but this is no longer true. Now, unless you specify
3943 * NORECOVERY (in which case this function would never be
3944 * called), we just go ahead and recover. We do this all
3945 * under the vfs layer, so we can get away with it unless
3946 * the device itself is read-only, in which case we fail.
3948 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
3949 return error;
3952 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
3953 log->l_mp->m_logname ? log->l_mp->m_logname
3954 : "internal");
3956 error = xlog_do_recover(log, head_blk, tail_blk);
3957 log->l_flags |= XLOG_RECOVERY_NEEDED;
3959 return error;
3963 * In the first part of recovery we replay inodes and buffers and build
3964 * up the list of extent free items which need to be processed. Here
3965 * we process the extent free items and clean up the on disk unlinked
3966 * inode lists. This is separated from the first part of recovery so
3967 * that the root and real-time bitmap inodes can be read in from disk in
3968 * between the two stages. This is necessary so that we can free space
3969 * in the real-time portion of the file system.
3972 xlog_recover_finish(
3973 struct xlog *log)
3976 * Now we're ready to do the transactions needed for the
3977 * rest of recovery. Start with completing all the extent
3978 * free intent records and then process the unlinked inode
3979 * lists. At this point, we essentially run in normal mode
3980 * except that we're still performing recovery actions
3981 * rather than accepting new requests.
3983 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3984 int error;
3985 error = xlog_recover_process_efis(log);
3986 if (error) {
3987 xfs_alert(log->l_mp, "Failed to recover EFIs");
3988 return error;
3991 * Sync the log to get all the EFIs out of the AIL.
3992 * This isn't absolutely necessary, but it helps in
3993 * case the unlink transactions would have problems
3994 * pushing the EFIs out of the way.
3996 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3998 xlog_recover_process_iunlinks(log);
4000 xlog_recover_check_summary(log);
4002 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
4003 log->l_mp->m_logname ? log->l_mp->m_logname
4004 : "internal");
4005 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
4006 } else {
4007 xfs_info(log->l_mp, "Ending clean mount");
4009 return 0;
4013 #if defined(DEBUG)
4015 * Read all of the agf and agi counters and check that they
4016 * are consistent with the superblock counters.
4018 void
4019 xlog_recover_check_summary(
4020 struct xlog *log)
4022 xfs_mount_t *mp;
4023 xfs_agf_t *agfp;
4024 xfs_buf_t *agfbp;
4025 xfs_buf_t *agibp;
4026 xfs_agnumber_t agno;
4027 __uint64_t freeblks;
4028 __uint64_t itotal;
4029 __uint64_t ifree;
4030 int error;
4032 mp = log->l_mp;
4034 freeblks = 0LL;
4035 itotal = 0LL;
4036 ifree = 0LL;
4037 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4038 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
4039 if (error) {
4040 xfs_alert(mp, "%s agf read failed agno %d error %d",
4041 __func__, agno, error);
4042 } else {
4043 agfp = XFS_BUF_TO_AGF(agfbp);
4044 freeblks += be32_to_cpu(agfp->agf_freeblks) +
4045 be32_to_cpu(agfp->agf_flcount);
4046 xfs_buf_relse(agfbp);
4049 error = xfs_read_agi(mp, NULL, agno, &agibp);
4050 if (error) {
4051 xfs_alert(mp, "%s agi read failed agno %d error %d",
4052 __func__, agno, error);
4053 } else {
4054 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
4056 itotal += be32_to_cpu(agi->agi_count);
4057 ifree += be32_to_cpu(agi->agi_freecount);
4058 xfs_buf_relse(agibp);
4062 #endif /* DEBUG */