Merge tag 'samsung-defconfig-v2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6.git] / kernel / pid.c
blob66505c1dfc516f3985e2072029152291cd0bedf9
1 /*
2 * Generic pidhash and scalable, time-bounded PID allocator
4 * (C) 2002-2003 Nadia Yvette Chambers, IBM
5 * (C) 2004 Nadia Yvette Chambers, Oracle
6 * (C) 2002-2004 Ingo Molnar, Red Hat
8 * pid-structures are backing objects for tasks sharing a given ID to chain
9 * against. There is very little to them aside from hashing them and
10 * parking tasks using given ID's on a list.
12 * The hash is always changed with the tasklist_lock write-acquired,
13 * and the hash is only accessed with the tasklist_lock at least
14 * read-acquired, so there's no additional SMP locking needed here.
16 * We have a list of bitmap pages, which bitmaps represent the PID space.
17 * Allocating and freeing PIDs is completely lockless. The worst-case
18 * allocation scenario when all but one out of 1 million PIDs possible are
19 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
20 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
22 * Pid namespaces:
23 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
24 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
25 * Many thanks to Oleg Nesterov for comments and help
29 #include <linux/mm.h>
30 #include <linux/export.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/rculist.h>
34 #include <linux/bootmem.h>
35 #include <linux/hash.h>
36 #include <linux/pid_namespace.h>
37 #include <linux/init_task.h>
38 #include <linux/syscalls.h>
39 #include <linux/proc_ns.h>
40 #include <linux/proc_fs.h>
42 #define pid_hashfn(nr, ns) \
43 hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
44 static struct hlist_head *pid_hash;
45 static unsigned int pidhash_shift = 4;
46 struct pid init_struct_pid = INIT_STRUCT_PID;
48 int pid_max = PID_MAX_DEFAULT;
50 #define RESERVED_PIDS 300
52 int pid_max_min = RESERVED_PIDS + 1;
53 int pid_max_max = PID_MAX_LIMIT;
55 static inline int mk_pid(struct pid_namespace *pid_ns,
56 struct pidmap *map, int off)
58 return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
61 #define find_next_offset(map, off) \
62 find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
65 * PID-map pages start out as NULL, they get allocated upon
66 * first use and are never deallocated. This way a low pid_max
67 * value does not cause lots of bitmaps to be allocated, but
68 * the scheme scales to up to 4 million PIDs, runtime.
70 struct pid_namespace init_pid_ns = {
71 .kref = {
72 .refcount = ATOMIC_INIT(2),
74 .pidmap = {
75 [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
77 .last_pid = 0,
78 .nr_hashed = PIDNS_HASH_ADDING,
79 .level = 0,
80 .child_reaper = &init_task,
81 .user_ns = &init_user_ns,
82 .proc_inum = PROC_PID_INIT_INO,
84 EXPORT_SYMBOL_GPL(init_pid_ns);
87 * Note: disable interrupts while the pidmap_lock is held as an
88 * interrupt might come in and do read_lock(&tasklist_lock).
90 * If we don't disable interrupts there is a nasty deadlock between
91 * detach_pid()->free_pid() and another cpu that does
92 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
93 * read_lock(&tasklist_lock);
95 * After we clean up the tasklist_lock and know there are no
96 * irq handlers that take it we can leave the interrupts enabled.
97 * For now it is easier to be safe than to prove it can't happen.
100 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
102 static void free_pidmap(struct upid *upid)
104 int nr = upid->nr;
105 struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE;
106 int offset = nr & BITS_PER_PAGE_MASK;
108 clear_bit(offset, map->page);
109 atomic_inc(&map->nr_free);
113 * If we started walking pids at 'base', is 'a' seen before 'b'?
115 static int pid_before(int base, int a, int b)
118 * This is the same as saying
120 * (a - base + MAXUINT) % MAXUINT < (b - base + MAXUINT) % MAXUINT
121 * and that mapping orders 'a' and 'b' with respect to 'base'.
123 return (unsigned)(a - base) < (unsigned)(b - base);
127 * We might be racing with someone else trying to set pid_ns->last_pid
128 * at the pid allocation time (there's also a sysctl for this, but racing
129 * with this one is OK, see comment in kernel/pid_namespace.c about it).
130 * We want the winner to have the "later" value, because if the
131 * "earlier" value prevails, then a pid may get reused immediately.
133 * Since pids rollover, it is not sufficient to just pick the bigger
134 * value. We have to consider where we started counting from.
136 * 'base' is the value of pid_ns->last_pid that we observed when
137 * we started looking for a pid.
139 * 'pid' is the pid that we eventually found.
141 static void set_last_pid(struct pid_namespace *pid_ns, int base, int pid)
143 int prev;
144 int last_write = base;
145 do {
146 prev = last_write;
147 last_write = cmpxchg(&pid_ns->last_pid, prev, pid);
148 } while ((prev != last_write) && (pid_before(base, last_write, pid)));
151 static int alloc_pidmap(struct pid_namespace *pid_ns)
153 int i, offset, max_scan, pid, last = pid_ns->last_pid;
154 struct pidmap *map;
156 pid = last + 1;
157 if (pid >= pid_max)
158 pid = RESERVED_PIDS;
159 offset = pid & BITS_PER_PAGE_MASK;
160 map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
162 * If last_pid points into the middle of the map->page we
163 * want to scan this bitmap block twice, the second time
164 * we start with offset == 0 (or RESERVED_PIDS).
166 max_scan = DIV_ROUND_UP(pid_max, BITS_PER_PAGE) - !offset;
167 for (i = 0; i <= max_scan; ++i) {
168 if (unlikely(!map->page)) {
169 void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
171 * Free the page if someone raced with us
172 * installing it:
174 spin_lock_irq(&pidmap_lock);
175 if (!map->page) {
176 map->page = page;
177 page = NULL;
179 spin_unlock_irq(&pidmap_lock);
180 kfree(page);
181 if (unlikely(!map->page))
182 break;
184 if (likely(atomic_read(&map->nr_free))) {
185 for ( ; ; ) {
186 if (!test_and_set_bit(offset, map->page)) {
187 atomic_dec(&map->nr_free);
188 set_last_pid(pid_ns, last, pid);
189 return pid;
191 offset = find_next_offset(map, offset);
192 if (offset >= BITS_PER_PAGE)
193 break;
194 pid = mk_pid(pid_ns, map, offset);
195 if (pid >= pid_max)
196 break;
199 if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
200 ++map;
201 offset = 0;
202 } else {
203 map = &pid_ns->pidmap[0];
204 offset = RESERVED_PIDS;
205 if (unlikely(last == offset))
206 break;
208 pid = mk_pid(pid_ns, map, offset);
210 return -1;
213 int next_pidmap(struct pid_namespace *pid_ns, unsigned int last)
215 int offset;
216 struct pidmap *map, *end;
218 if (last >= PID_MAX_LIMIT)
219 return -1;
221 offset = (last + 1) & BITS_PER_PAGE_MASK;
222 map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
223 end = &pid_ns->pidmap[PIDMAP_ENTRIES];
224 for (; map < end; map++, offset = 0) {
225 if (unlikely(!map->page))
226 continue;
227 offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
228 if (offset < BITS_PER_PAGE)
229 return mk_pid(pid_ns, map, offset);
231 return -1;
234 void put_pid(struct pid *pid)
236 struct pid_namespace *ns;
238 if (!pid)
239 return;
241 ns = pid->numbers[pid->level].ns;
242 if ((atomic_read(&pid->count) == 1) ||
243 atomic_dec_and_test(&pid->count)) {
244 kmem_cache_free(ns->pid_cachep, pid);
245 put_pid_ns(ns);
248 EXPORT_SYMBOL_GPL(put_pid);
250 static void delayed_put_pid(struct rcu_head *rhp)
252 struct pid *pid = container_of(rhp, struct pid, rcu);
253 put_pid(pid);
256 void free_pid(struct pid *pid)
258 /* We can be called with write_lock_irq(&tasklist_lock) held */
259 int i;
260 unsigned long flags;
262 spin_lock_irqsave(&pidmap_lock, flags);
263 for (i = 0; i <= pid->level; i++) {
264 struct upid *upid = pid->numbers + i;
265 struct pid_namespace *ns = upid->ns;
266 hlist_del_rcu(&upid->pid_chain);
267 switch(--ns->nr_hashed) {
268 case 1:
269 /* When all that is left in the pid namespace
270 * is the reaper wake up the reaper. The reaper
271 * may be sleeping in zap_pid_ns_processes().
273 wake_up_process(ns->child_reaper);
274 break;
275 case 0:
276 schedule_work(&ns->proc_work);
277 break;
280 spin_unlock_irqrestore(&pidmap_lock, flags);
282 for (i = 0; i <= pid->level; i++)
283 free_pidmap(pid->numbers + i);
285 call_rcu(&pid->rcu, delayed_put_pid);
288 struct pid *alloc_pid(struct pid_namespace *ns)
290 struct pid *pid;
291 enum pid_type type;
292 int i, nr;
293 struct pid_namespace *tmp;
294 struct upid *upid;
296 pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
297 if (!pid)
298 goto out;
300 tmp = ns;
301 pid->level = ns->level;
302 for (i = ns->level; i >= 0; i--) {
303 nr = alloc_pidmap(tmp);
304 if (nr < 0)
305 goto out_free;
307 pid->numbers[i].nr = nr;
308 pid->numbers[i].ns = tmp;
309 tmp = tmp->parent;
312 if (unlikely(is_child_reaper(pid))) {
313 if (pid_ns_prepare_proc(ns))
314 goto out_free;
317 get_pid_ns(ns);
318 atomic_set(&pid->count, 1);
319 for (type = 0; type < PIDTYPE_MAX; ++type)
320 INIT_HLIST_HEAD(&pid->tasks[type]);
322 upid = pid->numbers + ns->level;
323 spin_lock_irq(&pidmap_lock);
324 if (!(ns->nr_hashed & PIDNS_HASH_ADDING))
325 goto out_unlock;
326 for ( ; upid >= pid->numbers; --upid) {
327 hlist_add_head_rcu(&upid->pid_chain,
328 &pid_hash[pid_hashfn(upid->nr, upid->ns)]);
329 upid->ns->nr_hashed++;
331 spin_unlock_irq(&pidmap_lock);
333 out:
334 return pid;
336 out_unlock:
337 spin_unlock_irq(&pidmap_lock);
338 out_free:
339 while (++i <= ns->level)
340 free_pidmap(pid->numbers + i);
342 kmem_cache_free(ns->pid_cachep, pid);
343 pid = NULL;
344 goto out;
347 void disable_pid_allocation(struct pid_namespace *ns)
349 spin_lock_irq(&pidmap_lock);
350 ns->nr_hashed &= ~PIDNS_HASH_ADDING;
351 spin_unlock_irq(&pidmap_lock);
354 struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
356 struct upid *pnr;
358 hlist_for_each_entry_rcu(pnr,
359 &pid_hash[pid_hashfn(nr, ns)], pid_chain)
360 if (pnr->nr == nr && pnr->ns == ns)
361 return container_of(pnr, struct pid,
362 numbers[ns->level]);
364 return NULL;
366 EXPORT_SYMBOL_GPL(find_pid_ns);
368 struct pid *find_vpid(int nr)
370 return find_pid_ns(nr, task_active_pid_ns(current));
372 EXPORT_SYMBOL_GPL(find_vpid);
375 * attach_pid() must be called with the tasklist_lock write-held.
377 void attach_pid(struct task_struct *task, enum pid_type type)
379 struct pid_link *link = &task->pids[type];
380 hlist_add_head_rcu(&link->node, &link->pid->tasks[type]);
383 static void __change_pid(struct task_struct *task, enum pid_type type,
384 struct pid *new)
386 struct pid_link *link;
387 struct pid *pid;
388 int tmp;
390 link = &task->pids[type];
391 pid = link->pid;
393 hlist_del_rcu(&link->node);
394 link->pid = new;
396 for (tmp = PIDTYPE_MAX; --tmp >= 0; )
397 if (!hlist_empty(&pid->tasks[tmp]))
398 return;
400 free_pid(pid);
403 void detach_pid(struct task_struct *task, enum pid_type type)
405 __change_pid(task, type, NULL);
408 void change_pid(struct task_struct *task, enum pid_type type,
409 struct pid *pid)
411 __change_pid(task, type, pid);
412 attach_pid(task, type);
415 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
416 void transfer_pid(struct task_struct *old, struct task_struct *new,
417 enum pid_type type)
419 new->pids[type].pid = old->pids[type].pid;
420 hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
423 struct task_struct *pid_task(struct pid *pid, enum pid_type type)
425 struct task_struct *result = NULL;
426 if (pid) {
427 struct hlist_node *first;
428 first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
429 lockdep_tasklist_lock_is_held());
430 if (first)
431 result = hlist_entry(first, struct task_struct, pids[(type)].node);
433 return result;
435 EXPORT_SYMBOL(pid_task);
438 * Must be called under rcu_read_lock().
440 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
442 rcu_lockdep_assert(rcu_read_lock_held(),
443 "find_task_by_pid_ns() needs rcu_read_lock()"
444 " protection");
445 return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
448 struct task_struct *find_task_by_vpid(pid_t vnr)
450 return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
453 struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
455 struct pid *pid;
456 rcu_read_lock();
457 if (type != PIDTYPE_PID)
458 task = task->group_leader;
459 pid = get_pid(task->pids[type].pid);
460 rcu_read_unlock();
461 return pid;
463 EXPORT_SYMBOL_GPL(get_task_pid);
465 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
467 struct task_struct *result;
468 rcu_read_lock();
469 result = pid_task(pid, type);
470 if (result)
471 get_task_struct(result);
472 rcu_read_unlock();
473 return result;
475 EXPORT_SYMBOL_GPL(get_pid_task);
477 struct pid *find_get_pid(pid_t nr)
479 struct pid *pid;
481 rcu_read_lock();
482 pid = get_pid(find_vpid(nr));
483 rcu_read_unlock();
485 return pid;
487 EXPORT_SYMBOL_GPL(find_get_pid);
489 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
491 struct upid *upid;
492 pid_t nr = 0;
494 if (pid && ns->level <= pid->level) {
495 upid = &pid->numbers[ns->level];
496 if (upid->ns == ns)
497 nr = upid->nr;
499 return nr;
501 EXPORT_SYMBOL_GPL(pid_nr_ns);
503 pid_t pid_vnr(struct pid *pid)
505 return pid_nr_ns(pid, task_active_pid_ns(current));
507 EXPORT_SYMBOL_GPL(pid_vnr);
509 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
510 struct pid_namespace *ns)
512 pid_t nr = 0;
514 rcu_read_lock();
515 if (!ns)
516 ns = task_active_pid_ns(current);
517 if (likely(pid_alive(task))) {
518 if (type != PIDTYPE_PID)
519 task = task->group_leader;
520 nr = pid_nr_ns(task->pids[type].pid, ns);
522 rcu_read_unlock();
524 return nr;
526 EXPORT_SYMBOL(__task_pid_nr_ns);
528 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
530 return pid_nr_ns(task_tgid(tsk), ns);
532 EXPORT_SYMBOL(task_tgid_nr_ns);
534 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
536 return ns_of_pid(task_pid(tsk));
538 EXPORT_SYMBOL_GPL(task_active_pid_ns);
541 * Used by proc to find the first pid that is greater than or equal to nr.
543 * If there is a pid at nr this function is exactly the same as find_pid_ns.
545 struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
547 struct pid *pid;
549 do {
550 pid = find_pid_ns(nr, ns);
551 if (pid)
552 break;
553 nr = next_pidmap(ns, nr);
554 } while (nr > 0);
556 return pid;
560 * The pid hash table is scaled according to the amount of memory in the
561 * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or
562 * more.
564 void __init pidhash_init(void)
566 unsigned int i, pidhash_size;
568 pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18,
569 HASH_EARLY | HASH_SMALL,
570 &pidhash_shift, NULL,
571 0, 4096);
572 pidhash_size = 1U << pidhash_shift;
574 for (i = 0; i < pidhash_size; i++)
575 INIT_HLIST_HEAD(&pid_hash[i]);
578 void __init pidmap_init(void)
580 /* Veryify no one has done anything silly */
581 BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_HASH_ADDING);
583 /* bump default and minimum pid_max based on number of cpus */
584 pid_max = min(pid_max_max, max_t(int, pid_max,
585 PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
586 pid_max_min = max_t(int, pid_max_min,
587 PIDS_PER_CPU_MIN * num_possible_cpus());
588 pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
590 init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
591 /* Reserve PID 0. We never call free_pidmap(0) */
592 set_bit(0, init_pid_ns.pidmap[0].page);
593 atomic_dec(&init_pid_ns.pidmap[0].nr_free);
595 init_pid_ns.pid_cachep = KMEM_CACHE(pid,
596 SLAB_HWCACHE_ALIGN | SLAB_PANIC);